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CHAPTER I

Introduction

This research project focuses on the development of RF pulse design techniques in par-

allel excitation. Parallel excitation was first proposed by Katscher et al [1] and Zhu [2]

as a means of accelerating multi-dimensional excitation by performing excitation using

multiple coils driven with independent waveforms. It was a natural extension of ideas that

had emerged in the field of parallel imaging to the excitation stage of MRI. In a manner

analogous to parallel imaging methods such as SENSE [3] or GRAPPA [4], parallel ex-

citation enables a more rapid traversal of the spatial frequency domain to excite a desired

magnetization pattern, by exploiting the localized influence of surface coils to deposit RF

energy in untraversed regions of the spatial frequency-domain. Because parallel excitation

is a new field in MRI, current research focuses on the basics; hardware implementation,

applications, and pulse design methods.

In this chapter, we will review fundamental theories of excitation in MRI that are nec-

essary to the development of new parallel excitation pulse design methods, and to the

analysis of these methods’ performance. We will begin with the Bloch equation, and then

introduce Fourier analyses of RF excitation that facilitate fast pulse design, and review a

single-coil Fourier-based RF pulse design method. We will introduce parallel excitation

and the motivations for its use, followed by a review of current parallel pulse design meth-

1
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ods. I will then state the major goals of this project that will be addressed by subsequent

chapters.

1.1 The Bloch Equation

The Bloch equation [5] governs the precession of a nuclear magnetic momentm (x) =

(mx (x) ,my (x) ,mz (x))T about a time-varying externally-applied magnetic fieldω (t) =

(ωx (t) , ωy (t) , ωz (t))T . In the context of MR excitation, the Bloch equation relates the

gradient fields G (t) = (Gx (t) , Gy (t) , Gz (t))T and the RF magnetic fields b1 (t) =

(b1,x (t) , b1,y (t))T to the time derivative of the magnetization. In a frame that rotates at the

Larmor frequency, the Bloch equation is given by:

(1.1)
dm (x, t)

dt
= γ


0 G (t) · x −b1,y (t)

−G (t) · x 0 b1,x (t)

b1,y (t) −b1,x (t) 0

m (x, t) ,

where γ is the gyromagnetic ratio of the nucleus of interest, and we have neglected re-

laxation effects. Here, we assume that the RF fields are spatially uniform, though in later

sections we will generalize our analysis to non-uniform fields, as is the case in parallel

excitation. Equation 1.1 can be used to determine the magnetization state following RF

excitation, given an initial magnetization state and RF pulse and gradient waveforms. The

goal of our work is to develop methods for designing pulses b1 (t) that rotate magnetization

from an initial state m (x, 0) at the beginning of the pulse, to a desired state mdes (x, T )

at the end of the pulse.

Later we will make use of an alternative spin domain expression of the Bloch equation

[6]. While Eq. 1.1 operates on the magnetization directly, the spin domain Bloch equation

operates on the rotation matrix, which is determined by two complex spinor parameters,

α and β. Together they describe a rotation by an angle φ about a unit axis vector n̂ =
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(nx, ny, nz), as:

α = cos
φ

2
+ inz sin

φ

2
(1.2)

β = i (nx − iny) sin
φ

2
.(1.3)

In the spin domain, α and β determine a rotation matrix, given by:

(1.4) Q =

 α β

−β∗ α∗

 ,

where ‘∗’ denotes complex conjugate. The spin domain version of the Bloch equation is:

(1.5)

 β̇

α̇∗

 =
iγ

2

 G (t) · x b∗1 (t)

b1 (t) −G (t) · x


 β

α∗

 ,

where b1 (t) = b1,x (t) + ib1,y (t). Given an initial magnetization state
(
m−xy,m

−
z

)
, where

mxy = mx + imy, the magnetization state following the application of a pulse b1 (t) and

gradient waveformG (t) is given by:

(1.6)


m+
xy

m+∗
xy

m+
z

 =


(α∗)2 − (β∗)2 −2α∗β∗

−β2 α2 −2αβ

α∗β αβ∗ αα∗ − ββ∗




m−xy

m−∗xy

m−z

 ,

where α and β are the solutions to Eq. 1.5 for b1 (t) andG (t).

1.2 Fourier Interpretations of Selective Excitation

1.2.1 Small-tip-angle approximation

The small-tip-angle approximation to the Bloch equation, first introduced by Pauly et al

[7], greatly simplifies small-tip-angle RF pulse design by providing a Fourier relationship

between an RF pulse and the magnetization pattern it excites. It is the basis of all small-

tip-angle parallel pulse design algorithms, and inspires the large-tip-angle pulse design

strategies we will introduce in Chapters III and IV. To derive it, we make the assumptions
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that (i) magnetization is at equilibrium at the beginning of the pulse, i.e., m (x, 0) =

(0, 0,M0 (x))T , where M0 (x) is the equilibrium magnetization, and (ii) that the RF pulse

b1 (t) excites a small angle θ < 30◦. These assumptions lead to the approximation that

Mz (t) remains constant during the RF pulse. The Bloch equation becomes:

(1.7)
dm (x, t)

dt
≈ γ


0 G (t) · x −b1,y (t)

−G (t) · x 0 b1,x (t)

b1,y (t) −b1,x (t) 0




mx (x, t)

my (x, t)

M0 (x)

 .

Multiplying this out for the dmx(x,t)
dt

and dmy(x,t)

dt
terms, and combining them to obtain a

complex magnetization m (x, t) = mx (x, t) + imy (x, t) gives:

(1.8)
dm (x, t)

dt
≈ −iG (t) · xm (x, t) + ib1 (t)M0 (x) ,

Equation 1.8 is a first order linear differential equation whose solution at the end of a pulse

of length T is given by:

(1.9) m (x, T ) = iγM0 (x)

∫ T

0

b1 (t) e−iγx·
R T
t G(t′)t′dt.

From this equation we can introduce a spatial frequency variable that is defined as a time-

reversed integration of the gradient waveformG (t):

(1.10) k (t) = −γ
∫ T

t

G (t′) dt′,

and rewrite Eq. 1.9 as:

(1.11) m (x, T ) = iγM0 (x)

∫ T

0

b1 (t) eix·k(t)dt.

This equation has a simple interpretation. Under small-tip-angle assumptions, the excited

pattern m (x, T ) is given by a Fourier integral that is weighted by the RF pulse b1 (t) at

spatial frequency locations determined by the excitation k-space trajectory k (t). We will

revisit this formalism many times in this and later chapters.
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A second, less-common interpretation of Eq. 1.11 that we will use in Chapter III can

be derived by relating m (x, T ) to the initial longitudinal magnetization and the spinor

parameters representing RF excitation. Equation 1.6 gives this relationship:

m (x, T ) = −2α∗ (x, T ) β∗ (x, T )M0 (x)

= 2i cos
φ (x, T )

2
(nx (x, T ) + iny (x, T )) sin

φ (x, T )

2
M0 (x) .(1.12)

Here we have chosen to represent excitation as a rotation about an x-y vector, so nz = 0.

We have done this because it allows us to interpret φ (x, T ) as the tip-angle, i.e., the pos-

itive angle between the excited magnetization and the z-axis. Because φ (x, T ) is small,

cos φ(x,T )
2
≈ 1 and sin φ(x,T )

2
≈ φ(x,T )

2
. Making these substitutions gives:

m (x, T ) ≈ 2i (nx (x, T ) + iny (x, T ))
φ (x, T )

2
M0 (x)

= φ (x, T ) ei∠m(x,T )M0 (x) ,(1.13)

where the second equality follows from the fact that φ (x, T ) and M0 (x) are real and

positive, so the phase of m (x, T ) must equal that of i (nx (x, T ) + iny (x, T )), which

has unit norm. Equating (1.13) and (1.11), and dividing both sides by M0 (x) gives the

relationship we seek:

(1.14) φ (x, T ) ei∠m(x,T ) = iγ

∫ T

0

b1 (t) eix·k(t)dt.

This shows that under the small-tip-angle regime, Eq. 1.11 can be used to obtain a

complex-valued pattern whose magnitude equals the tip-angle excited by the pulse, and

whose phase corresponds to that of the excited magnetization.

1.2.2 Small-excitation approximation

Away from equilibrium, Pauly et al [8] derived another Fourier relationship for an RF

pulse that excites a small angle. The relationship is formulated in the spin domain, and is
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therefore independent of the initial magnetization state. It is derived by first inspecting the

spin-domain Bloch equation for the parameter α∗:

(1.15) α̇∗ =
iγ

2
(b1 (t) β −G (t) · xα∗) .

We then invoke the small-excitation approximation, by assuming that b1 (t) β is small.

This is a reasonable approximation for two reasons: (i) for a small rotation, |α∗| ≈ 1, and

β is near zero, and (ii) for non-central spatial locations, as well as for the majority of a

selective pulse’s duration, the magnitude of the RF field b1 (t) is smaller than the gradient

fieldG (t) · x. This reduces the α∗ equation to:

(1.16) α̇∗ +

(
iγ

2
G · x

)
α∗ = 0,

the solution of which is given by (with initial condition α∗ (0) = 1, corresponding to no

rotation):

(1.17) α∗ (t) = e−
iγ
2

x·
R t
0 G(t′)dt′ .

This solution can then be used to solve the β equation,

(1.18) β̇ =
iγ

2
(G (t) · xβ + b∗1 (t)α∗) ,

the solution of which is given by (for initial condition β (0) = 0, again corresponding to no

rotation):

(1.19) β (T ) =
iγ

2
e−

iγ
2

x·
R T
0 G(t′)dt′

∫ T

0

b∗1 (t) eiγx·
R t
0 G(t′)dt′dt.

As in the small-tip-angle case, we can simplify these expressions by substituting the spatial

frequency variable k (t) (Eq. 1.10) into Eqs. 1.17 and 1.19, yielding:

α∗ (T ) = e
i
2
x·k(0)(1.20)

β (T ) =
iγ

2
e
i
2
x·k(0)

∫ T

0

b∗1 (t) e−ix·k(t)dt.(1.21)
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To summarize, we have reviewed the derivation of a linear, Fourier relationship between

a small-flip-angle pulse b1 (t), and the spinor parameters (α∗, β) produced by that pulse.

In Chapter IV we will use a similar analysis to derive a large-tip-angle parallel excitation

pulse design method.

1.2.3 The Linear Class of Large-tip-angle Pulses

Small-excitation analysis has been used to characterize a class of Fourier-designed

pulses that can be scaled to accurately excite large-tip-angles [8]. Consider an RF pulse

b1 (t) that is played out along an excitation k-space trajectory k (t), and suppose b1 (t) de-

posits energy in a Hermitian-symmetric manner. That is, for each location in k-space that

the pulse deposits energy, it also deposits energy with a conjugate weighting at a location

that is symmetric about the origin. Suppose further that the trajectory is refocused, i.e.,

k (0) = 0. Under these assumptions, the spinor parameters for this pulse are:

α∗ (T ) = 1(1.22)

β (T ) =
iγ

2

∫ T

0

b∗1 (t) e−ix·k(t)dt,(1.23)

where β (T ) is a purely imaginary function of x. If we refer back to Eq. 1.2, we notice

that real α and imaginary β correspond to a rotation about an axis

(1.24) n̂ = (1, 0, 0) ,

that is not a function of x. If we again refer to Eq. 1.2, we see that in this scenario,

β = i sin φ
2
. Since for small φ

2
, sin φ

2
≈ φ

2
, we can approximate φ as:

φ ≈ 2 sin
φ

2

=
2

i
β

= γ

∫ T

0

b∗1 (t) e−ix·k(t)dt.(1.25)
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This result shows that a small-excitation inherently refocused pulse excites a flip angle

pattern that is the Fourier transform of the RF-weighted k-space trajectory. Note that our

analysis has made no assumptions about the initial magnetization state. Now, we use

this analysis to synthesize a large-tip-angle pulse via concatenation of a series of small-

excitation pulses. Consider a scenario in which we are given a large-tip-angle pulse that

may be decomposed into a sequence of n small-excitation, Hermitian-symmetric, refo-

cused pulses. The rotation produced by the j-th pulse is

(1.26) φj = γ

∫ Tj

Tj−1

b∗1 (t) e−ix·kj(t)dt,

where kj (t) is a refocused trajectory given by:

(1.27) kj (t) = −γ
∫ Tj

t

G (t′) dt′.

Because each of these pulses rotates magnetization about the vector n̂ = (1, 0, 0), the flip

angles they produce add, and the flip angle pattern resulting from their concatenation is

φ =
n∑
j=1

φj

=
n∑
j=1

γ

∫ Tj

Tj−1

b∗1 (t) e−ix·kj(t)dt

= γ

∫ T

0

b∗1 (t) e−ix·k(t)dt.(1.28)

This result shows that a pulse that can be decomposed into a series of small-excitation,

Hermitian-symmetric refocused pulses excites a flip angle pattern equal to the Fourier

transform of the pulse, evaluated along the excitation k-space trajectory. Because we

have only invoked the small-excitation approximation for the subpulses, the pulse obtained

by their concatenation may excite large-tip-angles, so the result holds for large-tip-angle

pulses. The conditions under which the approximations made in this section hold are col-

lectively referred to as the linear class conditions. We will visit them again in Chapter II
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Figure 1.1: (a) A spiral k-space trajectory, obtained by time-reversed integration of the gradient waveforms
in (b). (c) An echo-planar (EP) trajectory and (d) the gradient waveforms that generate it.

when analyzing the performance of small-tip-designed parallel excitation pulses at large

tip-angles. Their practical consequence is that one can design a pulse b1 (t) using a linear

Fourier analysis, and as long as the pulse and its trajectory satisfy these conditions, the

pulse may be scaled to excite accurate large-tip-angle patterns. Not all excitation k-space

trajectories may be decomposed into refocused trajectories, however. For example, the

two most commonly-used two-dimensional excitation k-space trajectories are spiral and

echo-planar (EP). Both are illustrated in Fig. 1.1. Between these, only the spiral may be

approximately decomposed into refocused trajectories. To design pulses that do satisfy the

linear class conditions, one may use the small-tip-angle expression of Eq. 1.11, by sim-

ply re-interpreting the excited magnetization pattern as the flip angle pattern, in radians.

Therefore, any general small-tip-angle pulse design method can also be used to design

large-tip-angle pulses.
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1.3 Iterative Small-tip-angle Selective Excitation Pulse Design

In 2005, Yip et al introduced an iterative method for small-tip-angle RF pulse design

[9]. The method forms the basis of the small-tip-angle pulse design method of Chapter

II, and its discrete model-based formulation is analogous to the large-tip-angle method of

Chapter IV, so we will introduce it here. It represents a major improvement over previous

pulse design methods, which we refer to as conjugate phase methods [10]. Specifically,

it permits control of the magnitude of a pulse, does not require computation of a Jacobian

determinant, minimizes excitation error, allows for the incorporation of regions of interest

(ROI’s) to improve excitation accuracy, and is capable of modeling and accounting for

off-resonance in pulse design in a more robust manner than conjugate phase methods. It is

a model-based approach, analogous to recently-developed iterative image reconstruction

techniques [11, 12] that improve image quality relative to conjugate phase reconstruction

methods [11–13].

The iterative small-tip-angle pulse design method is derived from the small-tip-angle

formula (Eq. 1.11). Including phase evolution due to a static off-resonance map ∆ω (x),

and re-writing m as a function of the pulse b1 (t), this is

(1.29) m (x; b1) = iγM0 (x)

∫ T

0

b1 (t) eix·k(t)+i∆ω(x)(t−T )dt.

In practice, an RF pulse is played out as a series of hard pulses on a high-rate digital-

to-analog (D/A) converter. The pulse is then modulated to the resonant frequency of the

chemical species to be excited, and is played out through an amplifier and coil. Though

the RF circuitry and the loaded coil effect a temporal smoothing of each hard pulse, it is

common practice to model the point spread function (PSF) of the RF system as narrow.

We therefore represent an RF pulse b1 (t) as a weighted train of Nt Dirac impulses, with

a sampling period of ∆t seconds, though alternative PSF’s could easily be incorporated in
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our analysis. Under these assumptions, we can approximate Eq. 1.29 as

(1.30) m (x; b1) ≈ iγ∆tM0 (x)
Nt∑
j=1

b1 (tj) e
ix·k(tj)+i∆ω(x)(tj−T ).

Sampling the magnetizationm at spatial locations {xi}Nsi=1 yields a matrix/vector equation:

(1.31) m ≈ Ab,

where m = [m (x1; b1) , . . . ,m (xNs ; b1)]T , b = [b1 (t1) , . . . , b1 (tNt)]
T , and the elements

of the Ns ×Nt system matrix are given by:

(1.32) aij = iγM0 (x) ∆teix·k(tj)+i∆ω(x)(tj−T ).

We are now in a position to define an optimization problem to design the RF pulse. The

pulse that solves this problem will minimize a quadratic cost function, consisting of a

term that quantifies excitation error and terms to control other pulse attributes, such as

integrated or instantaneous pulse power. The problem is given by:

(1.33) b̂ = argmin
b

{
‖Ab− d‖2

W +R (b)
}
,

where d is a vector containing samples of the desired excitation pattern,W is an Ns×Ns

diagonal spatial weighting matrix that can be used to specify a Region of Interest (ROI),

and R (b) is a regularization term. To reduce integrated RF power, the user can set

R (b) = βb′b, where β is a user-selected Tikhonov regularization parameter that is cho-

sen to strike an appropriate balance between excitation error and integrated power, and

′ denotes complex conjugate transpose. The optimization problem can be solved effi-

ciently using the Conjugate Gradient (CG) algorithm [12], and in the case ∆ω (x) = 0,

non-uniform Fast Fourier transforms (NUFFT’s) [14] can be used to evaluate multipli-

cations with the system matrix A. For non-zero off-resonance maps, one can use time-

or frequency-segmentation approaches combined with NUFFT’s to achieve fast computa-

tion [15, 16].
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1.4 Parallel Excitation

Up to now, the excitation theory and techniques introduced in this chapter have pre-

sumed that excitation was performed with a single coil. We further assumed that the

magnetic field produced by a current running through this coil is uniform within the object

being excited, so that a non-selective pulse excites spatially-uniform flip angles. Mea-

sured in the rotating frame of reference, the magnetic field produced by a current running

through the coil is referred to as the B+
1 field. In parallel excitation, multiple surface coils

are placed around an object, each of which produces an intentionally non-uniform B+
1

field. In this context the B+
1 fields are referred to as transmit sensitivity patterns. An ex-

ample set of transmit sensitivity patterns for an array of surface coils is shown in Fig. 1.2.

Generally, the fields are smoothly-varying, are peaked near the coil, and fall off slowly

away from the coil. Mathematically, in parallel excitation we model the RF field produced

by a single coil as a separable function of time and space:

(1.34) b1 (x, t) = s (x) b1 (t) ,

where s (x) is the complex-valued B+
1 field, and is generally taken to have units of mag-

netic field magnitude (Gauss or Tesla) per full RF waveform magnitude. By the linearity

of magnetic fields in biological tissue, the fields imposed by multiple coils sum, so that the

total excitation field is

(1.35) btot (x, t) =
R∑
r=1

sr (x) b1,r (t) ,

where R is the number of coils.

To elucidate the mechanism underlying parallel excitation, we re-visit the small-tip-

angle formula of Eq. 1.11, now substituting the spatially-varying multiple-coil RF model
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a b

Figure 1.2: Simulated (a) magnitude and (b) phase ofB+
1 fields for 4 coils in a transmit array . The fields are

peaked near the coil, and fall off slowly away from the coil. They vary slowly in both magnitude
and phase. Simulation details are given in Section 3.3.2.

of Eq. 1.35 for b1 (t):

m (x, T ) = iγM0 (x)

∫ T

0

btot (x, t) eix·k(t)dt

= iγM0 (x)

∫ T

0

R∑
r=1

sr (x) b1,r (t) eix·k(t)dt

= iγM0 (x)
R∑
r=1

sr (x)

∫ T

0

b1,r (t) eix·k(t)dt

=
R∑
r=1

sr (x)mr (x, T ) ,(1.36)

where the mr (x, T ) are the patterns that would be excited by the pulses b1,r (t) if each

were played through coils with uniform sensitivities sr (x) = 1. Equation 1.36 can be

equivalently expressed in the the Fourier domain as:

(1.37) m̃ (k) =
R∑
r=1

s̃r (k)⊗ m̃r (k) ,

where m̃ (k), s̃r (k), and m̃r (k) are the Fourier transforms of the total excited magne-

tization pattern, the sensitivities, and the individual excited patterns, respectively, and ⊗

denotes a convolution. Because the Fourier transforms of the individual excitation patterns

m̃r (k) are the pulses b1,r (t), this expression shows that the localized sensitivity patterns
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of the coils have the effect of blurring RF pulse energy in k-space. In parallel excitation,

we use multiple coils to control this blurring effect. This allows us to use excitation k-

space trajectories that do not fully sample k-space, with the same excitation accuracy as a

fully-sampled pulse, using sensitivity blurring to push energy out into untraversed regions.

Because the transmit sensitivity patterns are smoothly-varying, they blur energy locally in

k-space, so we accelerate trajectories by undersampling them relative to the desired field-

of-view (FOV). Figure 1.3 shows examples of spiral and echo-planar (EP) trajectories with

different FOV’s. Trajectories with smaller FOV’s have larger gaps between visited k-space

locations in one or more dimensions, into which energy is blurred by the sensitivity pat-

terns, so that a pattern can be excited using an undersampled trajectory with the same

accuracy as when using a fully-sampled trajectory. Because we have traded traversal of

these regions by the k-space trajectory for the instantaneous blurring effect of the coil sen-

sitivities, the pulses along the undersampled trajectories will be shorter in duration. This

is the fundamental mechanism underlying parallel excitation.

1.4.1 Applications of Parallel Excitation

This section is based on materials from Ref. [17]

General Multi-dimensional RF Pulse Acceleration

Compared to multidimensional excitation with a single coil, parallel RF excitation with

localized coils allows for a reduction of pulse length. The reduction comes from the use of

an undersampled (and therefore short-duration) k-space trajectory with an excitation FOV

(XFOV) that is smaller than the FOV of the desired pattern. In analogy to parallel imaging,

we can characterize the reduction by a speedup factor, defined as the ratio of the FOV of

the desired pattern to the XFOV of the undersampled trajectory. High excitation accuracy

can be maintained over a range of speedup factors in parallel excitation, as demonstrated
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Figure 1.3: (a) A spiral trajectory with FOV = 18 cm, duration 5.1 ms. (b) A spiral trajectory with FOV = 9
cm, duration 2.8 ms. The spiral of (b) has a shorter duration due to wider gaps between rungs in
the radial direction. In parallel excitation, multiple coils are used with a reduced trajectory such
as (b), and the blurring effect of localized transmit sensitivities is exploited to push energy out
into regions not traversed by the trajectory. (c) A fully sampled EP trajectory with FOV = 18 cm,
duration 19.8 ms. (b) An EP trajectory with FOV = 9 cm, duration 10.6 ms.
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a b

Figure 1.4: Simulation of eight-channel parallel excitation without acceleration (a), and with a speedup fac-
tor of 4 (b). The desired pattern was a rectangular block of uniform 10◦ flip angle, centered in a
circular ROI. Spiral excitation k-space trajectories were used with pulse lengths 6.7ms and 2ms.
The pulses achieved the same excitation accuracy within the ROI, NRMSE = 0.003.

in Fig. 1.4, which shows simulated images corresponding to no acceleration (Fig. 1.4a),

and a speedup factor of 4 (Fig 1.4b). The parallel excitation simulation assumed an eight-

channel head transmit array, and both pulse sets were designed to excite a rectangular block

of flip angle 10 degrees inside a circular region-of-interest (ROI), using spiral trajectories

with different XFOV. From these images and their corresponding excitation error it is

evident that excitation accuracy is maintained despite a reduction in pulse length from

6.7ms to 2ms.

B+
1 Inhomogeneity Compensation

The problem of B+
1 inhomogeneity in MRI at high fields is well known [18,19]. Zhang

et al [20] have recently proposed that application of parallel excitation to the shortening of

multi-dimensional selective excitation pulses for B+
1 inhomogeneity compensation. Par-

allel excitation is well-suited to this problem because B+
1 inhomogeneity is captured as

a feature of the measured transmit sensitivity patterns. Thus a homogeneous excitation

may be achieved with RF pulses designed using these sensitivity patterns and a homo-

geneous desired excitation pattern. Figure 1.5b shows an experimental image obtained
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a b

Figure 1.5: Standard slice-selective excitation using multiple transmitters (a) and parallel excitation for B+
1

inhomogeneity compensation (b) at 3T. In (a), B+
1 inhomogeneity has the effect of creating a

central region of high intensity. In (b), a more homogeneous excitation is achieved. Images
courtesy of V.A. Stenger.

at 3T that demonstrates the use of parallel excitation for B+
1 inhomogeneity compensa-

tion. Pulses in this experiment were designed using a ‘fast-kz’ trajectory [15] and the

spatial domain method we describe in Chapter II. The experiment was performed using

the pseudo-parallel excitation method described in Chapter II and Ref [21]. It can be seen

that parallel excitation using these pulses results in a more homogeneous excitation (Fig

1.5b) than excitation using a standard slice-selective excitation with multiple transmit coils

(Fig 1.5a).

SAR Management

Zhu [2] has shown that parallel excitation can be employed for the purpose of SAR

management, which is of great concern at high field strengths. In a given parallel ex-

citation experiment, assuming that the speedup factor is less than the number of coils,

the parallel RF pulse design problem is underdetermined, i.e., there are extra degrees of

freedom in pulse design that can be exploited to optimize other metrics while maintain-

ing high excitation accuracy. One such metric of practical interest is a measure of SAR,
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which could be employed to favor pulses with low average SAR. For example, in a discrete

setting, for a given vector b of RF pulse samples, SAR may be quantified as:

(1.38) SARave = b′Fb.

The matrix F in Eq. 1.38 relates the RF pulse samples to the squared absolute value of

the electric fields in the sample, and is based on the application of the quasi-static approx-

imations to Maxwell’s equations, whereby it may be assumed that the electric field in the

sample volume scales linearly with the applied current in the coils. Such a metric might

be employed in an optimization-based RF pulse design process by enforcing a maximum

allowable norm-squared excitation error, while minimizing with respect to average SAR.

Zhu [2] reported a 38% decrease in average SAR between RF pulses designed by mini-

mizing excitation error alone and pulses designed with a maximum SAR constraint, for a

nine-channel transmit array with a speedup factor of 4.

1.5 Current Approaches to Small-tip-angle Parallel Excitation Pulse Design

This section is based on materials from Ref. [17]

Several methods exist for the design of small-tip-angle RF pulses in parallel excitation

[1,2,22]. The pioneering pulse design methods were introduced by Katscher et al [1], and

Zhu [2]. These were followed by our method [23], and a method introduced by Griswold

et al [22]. Our method will be visited in Chapter II. We now provide a brief review of the

other methods.

1.5.1 Frequency-Domain Method (Transmit SENSE)

The method introduced by Katscher et al, dubbed transmit SENSE [1], is character-

ized by the explicit use of transmit sensitivity patterns in the pulse design process, and its

formulation is based on a convolution in excitation k-space. It allows usage of arbitrary
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k-space trajectories. Consider the case of parallel excitation with R coils, each of which

is driven by an independent RF pulse waveform br (t), and produces an excitation pattern

pr (x). Assuming all pulses excite small-tip-angles, the total excitation pattern produced

by playing them simultaneously is given by a linear superposition of their excitation pat-

terns:

(1.39) p (x) =
R∑
r=1

sr (x) pr (x) ,

where sr (x) is coil r’s transmit sensitivity pattern. To derive the transmit SENSE method,

we first Fourier transform (1.39) to the k-space domain, in which the multiplications

sr (x) pr (x) become convolutions:

(1.40) p̃ (k) =
R∑
r=1

s̃r (k)⊗ p̃r (k) ,

where s̃r (k) is the Fourier transform of coil r’s sensitivity pattern, p̃r (k) is the Fourier

transform of coil r’s excitation pattern, and the operator ⊗ denotes a convolution. This

equation can be discretized in k, forming a length-Ns vector p̃ that contains samples along

a fully sampled grid {ks}Nss=1, R circulant convolution matrices S̃r of size Ns ×Nt, and R

length-Nt vectors p̃r containing samples along a common accelerated k-space trajectory

{kt}Nst=1. There are no restrictions placed on the choice of the fully-sample grid and the

accelerated trajectory, though for simplicity the fully-sampled grid {ks}Nss=1 is generally

Cartesian. The circulant convolution matrices S̃r may be constructed by computing the

discrete Fourier transform of the measured transmit sensitivity patterns, and interpolating

each onto a grid of points given by (ks − kt). The result of the discretization procedure is

a sum of matrix/vector products given by:

(1.41) p̃ =
R∑
r=1

S̃rp̃r.

We may replace the summation in Eq. 1.41 by concatenating the R convolution matrices

to form a size-Ns × RNt matrix S̃full, and concatenating the transforms of the excitation
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patterns, resulting in the length-RNt vector p̃full:

(1.42) p̃ =

[
S̃1 · · · S̃R

]

p̃1

...

p̃r

 = S̃fullp̃full.

Using this expression, a regularized least-squares cost function can be defined and mini-

mized to yield the Fourier transforms of the individual coils’ excitation patterns:

(1.43) ˆ̃pfull = argmin
p̃full

{∥∥∥S̃fullp̃full − p̃des∥∥∥2

+R (p̃full)

}
,

where p̃des is a length-Ns vector containing samples of the Fourier transform of the desired

excitation pattern, and R (p̃full) denotes a general regularization term that can be used to

control peak and integrated RF power [1]. The vector of RF pulse samples for coil r,

b̂r, can be derived from ˆ̃pr by multiplication with the Jacobian determinant for k-space

density and velocity compensation [1]. As will be shown in Chapter II, our spatial-domain

pulse design method is most closely related to this method, and even produces identical

pulses under certain conditions. However, we will also show that our method has several

practical advantages.

1.5.2 Removal-of-aliasing Method

The method introduced by Zhu [2] makes explicit use of transmit sensitivity patterns,

but is formulated as an optimization problem in the spatial domain. In this method, one

considers the aliasing pattern in the spatial domain that results from undersampling the

excitation k-space trajectory, and solves for the necessary excitation patterns for each coil.

It is assumed that the k-space trajectory is undersampled in one dimension by a speedup

factor that is equal to FOV/XFOV , the ratio of a field-of-view that covers the object to

the field-of-view of the excitation k-space trajectory. Because the method is based on the

removal of spatial-domain aliasing, aliases must be coherent and regular, which restricts
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the method to Cartesian echo-planar trajectories. For example, consider the case of a two-

dimensional Cartesian excitation trajectory that is undersampled in the y-dimension. The

aggregate excitation pattern can be expressed as:

(1.44) m (x, y) =
R∑
r=1

sr (x, y)
∞∑

j=−∞

mr (x, y − jXFOV ) ,

where mr (x, y) is pattern excited by the r-th coil using the fully-sampled trajectory. Be-

cause XFOV < FOV , undesired replicates of the excited patterns will be placed within

the field-of-view. Now, consider excitation patterns of the formmr (x, y) = hr (x, y)mdes (x, y).

Substituting this form into Eq. 1.44 and re-arranging gives:

(1.45) m (x, y) =
∞∑

j=−∞

mdes (x, y − jXFOV )
R∑
r=1

hr (x, y − jXFOV ) sr (x, y) .

We can see that the excited pattern can be made equal to the desired pattern if, over the

field-of-view, the following holds true:

(1.46)
R∑
r=1

hr (x, y − jXFOV ) sr (x, y) =

 1, j = 0

0, otherwise

In words, the excited pattern will be equal to the desired one if all but the central replicate

of the excitation pattern have zero weight applied to them, where the weight of a given

replicate is equal to the sum over coils of the product of each coil’s sensitivity pattern at

the replicate’s position with an additional coil-dependent excitation pattern hr (x, y). To

enforce this equality, we can design hr (x, y) to satisfy a system of equations within the

field-of-view:

s1 (x, y) · · · sR (x, y)

...
...

s1 (x, y + jXFOV ) · · · sR (x, y + jXFOV )

...
...





h1 (x, y)

h2 (x, y)

...

hR (x, y)


=



1

0

...

0


,(1.47)
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which is a system ofFOV/XFOV equations withR unknowns (typicallyFOV/XFOV ≤

R). Least-squares solutions to Eq. 1.47 can be obtained via pseudo-inverse or other meth-

ods, yielding the appropriate excitation pattern for each coil,mr (x, y) = hr (x, y)mdes (x, y),

which can then be used to calculate the RF pulse along the accelerated trajectory using the

excitation k-space perspective under the small-tip-angle approximation.

It should be noted that this formalism is very similar to the solution of the receive

SENSE problem using an undersampled Cartesian trajectory [3]. Similar to SENSE, the

number of equations 1.47 can be less than FOV/XFOV at spatial locations, where, due

to object shape, there exist fewer than FOV/XFOV replicas overlapping. Likewise, if a

more complex undersampling pattern is used (for example, in three-dimensional parallel

excitation), then a more complex pattern of overlapping aliases can be incorporated into

this expression, albeit leading to larger matrices to be inverted.

1.5.3 Transmit GRAPPA

Griswold et al [22] proposed a k-space domain method that is analogous to GRAPPA

imaging. Compared to other parallel pulse design methods, it is unique in that it does not

require prior determination of sensitivity patterns. Instead, it involves an extra calibration

step in the pulse design process. It also appears to be restricted to echo-planar k-space

trajectories that are accelerated via undersampling in one dimension by a speedup factor

equal to the ratio FOV/XFOV . In addition, the method is based on the assumption that

a relatively uniform transmit (B+
1 ) field may be produced via simultaneous excitation on

all coils. For example, this may require that, for a circular array of transmit coils, the de-

fault coil phase varies with angular position so as to produce an approximation to circular

polarization. The method begins with an initial 2D RF pulse, designed using the excita-

tion k-space perspective, that produces a desired pattern mdes (x) using a fully-sampled

k-space trajectory and uniform transmit sensitivity. Considering the aforementioned as-
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sumption of a uniform B+
1 field when using all coils, the desired pattern mdes (x) can be

excited by playing out the initial pulse on all coils simultaneously. The initial pulse can

be decomposed into its undersampled parts by taking every FOV/XFOV = C-th line in

excitation k-space:

(1.48) b (kx, ky) =
C∑
c=1

bc (kx, ky) .

Let mc
r (x, y) be the pattern excited by the r-th coil with the pulse corresponding to the

c-th k-space segment bc (kx, ky) and let the aggregate pattern for all coils produced by

simultaneous excitation along the c-th k-space segment be mc (x, y) =
∑R

r=1m
c
r (x, y). It

follows that the combined excitation along all segments and across all coils will produce

the desired excitation pattern:

(1.49) mdes (x, y) =
C∑
c=1

mc (x, y) .

The basic idea behind transmit GRAPPA is to determine what weighted combination of

RF pulses, transmitted along a single k-space segment (e.g., c = 1), will excite mdes.

More specifically, the design method will attempt to determine what RF pulses for each

of the coils, transmitted along segment c = 1, will produce the other segments’ excitation

patterns, mc (x, y) , c = 2, . . . , C. Thus, the mc (x, y) represent the targets of the paral-

lel excitation scheme and are half of the required calibration data for transmit GRAPPA.

These target patterns, mc (x, y), are determined experimentally by transmitting pulse seg-

ment bc via all coils simultaneously. This acquisition is repeated for excitation along all

segments c = 2, . . . , C. Next, calibration data representing the building blocks for excit-

ing mc (x, y) must also be obtained. As a matter of convenience, one can choose the first

segment of the initial pulse b1 as the building block. By exciting this pulse individually

on each of the R coils, one can acquire m1
r (x, y) , r = 1, . . . , R, which form the other

half of the required calibration data. If necessary, one can excite a richer set of building
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blocks, the use of which may yield a more accurate fit to the target k-space data. Finally,

the relationship between the segment-1 excitation patterns m1
r (x, y) and the target pat-

terns mc (x, y) is determined to build the final RF pulses. In practice, this relationship is

examined in the k-space domain and, in a manner analogous to receive GRAPPA, a linear

combination of RF pulses from the individual coils (the building blocks) with shifts in

k-space form the pulses that produce the pattern for each target segment, mc (x, y).

The final RF pulses will be in the form:

(1.50) b̃r =
C∑
c=1

b̃cr,

where b̃cr, r = 1, . . . , R is the set of RF pulses that, when transmitted simultaneously

along segment 1, will produce the excitation pattern for segment c, i.e., mc (x, y). By Eq.

1.49, simultaneous excitation with b̃r, r = 1, . . . , R will produce mdes. The subpulses b̃cr

are constructed from weighted combinations of shifted versions of the building block RF

pulse:

(1.51) b̃cr (kx, ky) =
∑
p,q

acr (p, q) b1 (kx − p∆k, kc − qC∆k) ,

where p and q are integer shifts that map out a neighborhood in excitation k-space, ∆k

are the fundamental k-space shifts, and acr (p, q) are the GRAPPA coefficients. In analogy

with receive GRAPPA, the underlying assumption is that the transmit patterns blur the RF

pulse energy into neighboring lines in k-space. The GRAPPA coefficients are determined

by finding the coefficients that best fit the following relationship:

(1.52) M c (kx, ky) =
R∑
r=1

∑
p,q

acr (p, q)M1
r (kx − p∆k, kc − qC∆k) ,

where M c and M1
r are the acquired k-space data associated with the calibration excita-

tion patterns mc, c = 2, . . . , C and m1
r, r = 1, . . . , R, respectively. Thus, the coefficients

that are used to construct the target RF pulses from the building block RF pulses are ob-

tained from a fitting procedure that is performed on images of the excitation patterns that
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the target and building block pulses produce. The method therefore obviates the need for

estimates of transmit sensitivity patterns, because they are manifest in the linear transfor-

mation from RF pulses to excitation patterns. Interestingly, while the shifts in (1.51) are

in excitation k-space and the shifts in (1.52) are in acquisition k-space, these shifts are the

same provided the field of view of the acquired data and the initial fully-sampled RF pulse

is the same. Thus, only a few acquisition lines are necessary to determine the transmit

GRAPPA coefficients.

1.6 Current Approaches to Large-Tip-Angle Parallel Excitation Pulse Design

Pulse design is more challenging at large-tip-angles, due to non-linearity of the Bloch

equation. Many techniques exist for large-tip-angle one-dimensional pulse design that

extend readily to parallel excitation, such as simulated annealing [24] and optimal con-

trol [25]. To date, three approaches have been reported for large-tip-angle pulse design.

The first was a method by Ulloa et al [26] that optimizes the complex weights applied

to a series of sinc pulses along a fast-kz trajectory [27], using a global search routine

and the Bloch equation. An improvement to this method was proposed by Setsompop et

al [28], who showed that Powell optimization [29] could be used to reduce computation

time. Neither of these methods are gradient-based. Xu et al [30] proposed an extension of

the one-dimensional optimal control pulse design [25] algorithm to the parallel case. This

gradient-based method has been shown to be robust, and does not require pulse parameter-

ization. Because we will compare our fast parallel optimal control method to this method

in Chapter IV, we review its derivation here.

Instead of deriving the optimal control algorithm for the Bloch equation directly, we

will derive it for a generic one-dimensional problem and then make appropriate substitu-
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tions. Consider a linear system defined by the differential equation

(1.53) ẋ = f [u (t) , x (t) , t] ,

where u (t) is a “control”, such as an RF pulse. Suppose we have an initial condition x (0),

and we wish to design u (t) to drive x to a desired end-state at time T . We can define a

cost function for this problem:

(1.54) J (u (t)) = φ (x (T )) +

∫ T

0

L (u (t)) dt,

where φ is an error function that measures the distance between x (T ) and the desired end-

state, and L is a differentiable penalty function, such as Tikhonov regularization, chosen to

discourage large values of some characteristic of the control u (t). We begin by adjoining

the differential equation governing x (t) to the cost function using the Lagrange multiplier

function λ (t),

(1.55) J̄ = φ (x (T )) +

∫ T

0

L (u (t)) + λT (t) {f [u (t) , x (t) , t]− ẋ} dt.

Integrating λT (t) ẋ by parts yields

(1.56) J̄ = φ (x (T ))− λT (T )x (T ) + λT (0)x (0) +

+

∫ T

0

L (u (t)) + λT (t) f [u (t) , x (t) , t] + λ̇T (t)x (t) dt.

Our desire is to find the stationary point of J̄ . Consider perturbations in J̄ due to pertur-

bations in u (t). Perturbations in J̄ depend on perturbations in u (t) both explicitly, and

implicitly through x (t):

(1.57) δJ̄ =

[(
∂φ

∂x
− λT

)
δx

]
t=T

+
[
λT δx

]
t=0

+

+

∫ T

0

[
∂L

∂u
+ λT

∂f

∂u

]
δu+

(
λT
∂f

∂x
+ λ̇T

)
δxdt.
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It would be difficult to determine perturbations δx (t) produced by δu (t), so we choose

λ (t) to cause the coefficients if δx (t) to vanish. This will occur if:

λ̇T = −λT (t)
∂f

∂x
,(1.58)

λT (T ) =
∂φ

∂x (T )
.(1.59)

With these definitions substituted into Eq. 1.57, δJ̄ becomes

(1.60) δJ̄ =
[
λT δx

]
t=0

+

∫ T

0

(
∂L

∂u
+ λT

∂f

∂u

)
δudt.

Because the initial state x (0) is independent of the control, δx (0) = 0, and we are left

with:

(1.61) δJ̄ =

∫ T

0

(
∂L

∂u
+ λT

∂f

∂u

)
δudt.

At a stationary point, δJ̄ will be 0 for arbitrary δu. This occurs if:

(1.62)
∂L

∂u
+ λT

∂f

∂u
= 0, 0 ≤ t ≤ T.

To summarize, to determine u (t) at a stationary point of J̄ , we can equivalently determine

the u (t) that satisfies Eq. 1.62, where λ satisfies Eqs. 1.58 and 1.59 and x satisfies Eq.

1.53, with x (0) given. To solve this problem iteratively, we can use an initial guess ui (t)

to integrate x forward and λ backward using Eqs. 1.53 and 1.58, and then set

(1.63) ui+1 (t) = ui (t)− µ
[
λT

∂f

∂ui
+
∂L

∂ui

]
.

To see why this will decrease J̄ , if µ is sufficiently small, the perturbation made to δui will

produce a perturbation in J̄ of:

(1.64) δJ̄ = −µ
∫ T

0

[
λT

∂f

∂ui
+
∂L

∂ui

]2

dt ≤ 0,

so J̄ will decrease.
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Now, in the parallel excitation case, we have the cost function

(1.65) Ψ (b1, . . . , bR) =
1

2
‖m̄des − m̄ (T ; b1, . . . , bR)‖2

W +
β

2

R∑
r=1

‖br‖2 ,

where m̄ is a vector of length-3Ns that contains the stacked m = (mx,my,mz)
T vectors

for each spatial location, and Ns is the number of spatial locations over which the desired

pattern is specified. The size-3Ns × 3Ns diagonal weighting matrix W can be used to

specify an ROI, or to design pulses on a subset of the three magnetization components,

mx, my, and mz. Compared to (1.54), the first term in (1.65) replaces φ, and the second

term replaces the integrated penalty term. At each spatial location x,m satisfies the Bloch

equation for parallel excitation:

(1.66) ṁ = γ


0 G (t) · x −={btot (x, t)}

−G (t) · x 0 <{btot (x, t)}

= {btot (x, t)} −<{btot (x, t)} 0

m,

where btot (x, t) =
∑R

r=1 sr (x) br (t). We then separate the matrix components to obtain
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a sum of matrices that are weighted by the real and imaginary parts of the RF:

(1.67) ṁ = γ


0 G (t) · x 0

−G (t) · x 0 0

0 0 0

m+

+ γ

R∑
r=1


0 0 −={sr (x)}

0 0 <{sr (x)}

= {sr (x)} −<{sr (x)} 0

m<{br (t)}+

+ γ
R∑
r=1


0 0 −<{sr (x)}

0 0 −={sr (x)}

< {sr (x)} = {sr (x)} 0

m={br (t)}

= γΩ (x, t)m+ γ
R∑
r=1

Srreal (x)m<{br (t)}+ γ
R∑
r=1

Srimag (x)m={br (t)} .

To combine all spatial locations into one equation, we stack the length-3 vectors ṁ and

m and form block-diagonal matrices from the size-3× 3 matrices Ω (x, t), Srreal (x), and
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Srimag (x), yielding:

(1.68) ˙̄m = γ


Ω (x1, t) . . . 0

... . . . ...

0 . . . Ω (xNs , t)

 m̄+

+ γ

R∑
r=1


Srreal (x1) . . . 0

... . . . ...

0 . . . Srreal (xNs)

 m̄<{br (t)}+

+ γ
R∑
r=1


Srimag (x1) . . . 0

... . . . ...

0 . . . Srimag (xNs)

 m̄={br (t)}

= γ ¯̄Ω (t) m̄+ γ
R∑
r=1

¯̄Srrealm̄<{br (t)}+ γ
R∑
r=1

¯̄Srimagm̄={br (t)} .

We are now in a position to define the optimal control algorithm for parallel excitation

pulse design. At each iteration i, we simulate the current set of pulses {bi1 (t) , . . . , biR (t)}

using a Bloch simulator to obtain m̄ for 0 ≤ t ≤ T . We then perform a reverse Bloch

simulation to obtain the stacked (length-3Ns) Lagrange multiplier vector, λ̄T , for 0 ≤ t ≤

T , with the boundary condition

(1.69) λ̄T (T ) = (m̄ (T ; b1, . . . , bR)− m̄des)
T W .

We then update the pulses. The update for the real part of the pulse for coil r will have the

form:

(1.70) <
{
bi+1
r (t)

}
= <

{
bir (t)

}
− µ

[
γλ̄T (t) ¯̄Srrealm̄ (t) + β<

{
bir (t)

}]
.

It is interesting to note that we could also arrive at this update equation by applying gradi-

ent descent directly to the cost function (1.65).
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Figure 1.6: A large-tip-angle pulse b1 (t), and a perturbed pulse b1 (t) + δb1 (t). In subsequent chapters,
we introduce fast multidimensional large-tip-angle pulse design algorithms that employ linear
models for the difference between the excitation patterns produced by the two pulses.

1.7 Our Approach to Large-Tip-Angle Parallel Excitation Pulse Design

In the previous section, we reviewed current methods for large-tip-angle parallel RF

pulse design. These methods either require unacceptably long computation times, or

achieve reduced computation times by parameterizing the pulses to be designed. Previ-

ous to this research project, there were no existing ‘fast’ methods for multi-dimensional

large-tip-angle RF pulse design, in either parallel or conventional excitation. In the large-

tip-angle regime, the Bloch equation is nonlinear, so magnetization responds nonlinearly

to an applied RF pulse, and the k-space formalism that enables Fourier-based small-tip-

angle pulse design methods breaks down.

In Chapters III and IV we introduce two ‘fast’ parallel large-tip pulse design methods

that achieve large reductions in compute time compared to previous methods, without

requiring pulse parameterization. The approaches that these methods take to accelerating

pulse computation can be unified under a single idea that we introduce here. Consider a

large-tip-angle RF pulse b1 (t), such as that shown in Fig. 1.6. The magnetization state

following the application of this pulse can be represented as a nonlinear function of it, F ,
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that is the solution to the Bloch equation:

(1.71) m (x, T ) = F (b1 (t) ;m0 (x)) .

Now, consider a scenario in which b1 (t) is perturbed via the addition of a pulse δb1 (t),

where δb1 (t) is of small magnitude (Fig. 1.6). While the magnetization state following

the application of b1 (t) + δb1 (t) will again be a nonlinear function of it, it is reasonable

to expect that the difference between the magnetization state following the application of

b1 (t) alone, and that following b1 (t) + δb1 (t) will be small, and possibly well-modelled

by a linear function. Therefore, in this project we make linear approximations to the Bloch

equation solution for b1 (t) + δb1 (t) of the form:

(1.72) m (x, T ) + δm (x, T ) ≈ F (b1 (t) ;m0 (x)) +L (δb1 (t) ; b1 (t) ,m0 (x)) ,

where L is a linear function of δb1 (t), and δm (x, T ) is the perturbation in the final mag-

netization state created by the addition of δb1 (t) to b1 (t). The difference between the

methods of Chapters III and IV lies in their choice of L. Both will use exact Bloch simu-

lations of b1 (t) to obtain m (x, T ), and both will use Fourier-like choices of L, to enable

fast computation. There are alternative approaches to linearizing the Bloch equation; we

previously implemented a time-segmentation scheme that breaks up a large-tip-angle RF

pulse into small time segments, over which excitation is approximated as linear [31]. The

drawback to that approach is that the error associated with each segment’s approximation

is compounded when combined with those of the others’, resulting in a model of insuffi-

cient accuracy. The approach described here has been much more successful.

1.8 Contributions

The contributions made in this research project are:
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1: A novel small-tip-angle pulse design method. To improve upon current methods, the

new method is model-based, applies to general excitation k-space trajectories, allows

compensation for off-resonance and other non-idealities, and permits fast computa-

tion using non-uniform fast Fourier transforms. We test this methods in simulation

and experiments.

2: Using simulation studies, an exploration of the performance of small-tip-angle-designed

parallel excitation pulses at large-tip-angles. We identify causes for degraded perfor-

mance of parallel pulses compared to single-channel pulses, and opportunities to

improve large-tip-angle performance of parallel pulses.

3: An exploration of new approximations to the Bloch equation that facilitate fast RF

large-tip-angle pulse design. We seek approximations that lead to linear, Fourier

relationships between RF pulses and the magnetization or flip angle pattern excited

by those pulses.

4: Two novel large-tip-angle pulse design methods that make use of linear approximations

to the Bloch equation. These are general, fast methods. We test them in simulations

and single-channel experiments involving excitation, inversion, and refocusing pulse

designs. We compare the new methods to conventional large-tip-angle parallel pulse

design methods. Because the new methods are based on linear approximations, they

are evaluated for robustness to design parameters.



CHAPTER II

Small-tip-angle parallel RF pulse design

2.1 Introduction

In this chapter we propose a parallel RF pulse design method that is closely related to

transmit SENSE [1], but is formulated in the spatial domain. It is a multi-coil generaliza-

tion of the iterative pulse design method proposed by Yip et al [9], and is based on the

minimization of a quadratic cost function that consists of an excitation error term, which

quantifies excitation error in the spatial domain, and a choice of regularization terms. The

regularization terms may be used to control the integrated and peak RF power. The mini-

mization problem may be solved iteratively via the conjugate gradient (CG) method [12],

or via brute-force inversion. We demonstrate that the new approach is approximately

equivalent to [1] under special conditions, but it has several new advantages. It allows

for spatially variant excitation error weighting and thus region of interest (ROI) specifica-

tion. Main field inhomogeneity is easily incorporated in the design. Unlike [1], it does not

require computation of a Jacobian determinant for compensation of k-space velocity and

density, nor does it require interpolation between excitation k-space trajectories. It also

enables fast pulse computation using the Conjugate Gradient algorithm with non-uniform

fast Fourier transform’s [14].

To date, all RF pulse design methods for parallel excitation are based on the assump-
This chapter is based on materials from Ref. [23].
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tion of small-tip-angle excitation. Beyond the small-tip-angle regime, it is expected that

the non-linearity of the Bloch equation will have an adverse effect on the performance of

pulses designed using these methods. Because it is often desirable to use large-tip-angle

pulses, we investigated the behavior, in terms of excitation error, of pulses designed us-

ing the proposed spatial domain method as they are scaled to produce relatively large tip

angles, up to 90. We also investigated the utility of Tikhonov regularization on integrated

pulse power [9] in mitigating this error.

In the following section we formulate small-tip-angle RF pulse design for multi-coil

parallel excitation in the spatial domain as an optimization problem. We then present

Bloch equation simulation results that show quantitatively the benefits of the proposed

method, in terms of excitation accuracy, at high speedup factors or when off resonance is

present. We then present results of our investigation into the large-tip-angle behavior of

pulses designed using the spatial domain method. Finally, we present experimental results

using a method we developed that exploits the linearity of small-tip-angle excitation and

the MR signal equation to swap the roles of transmitters and receivers.

2.2 Theory

The spatial domain design approach is an extension of the single-coil iterative RF pulse

design method introduced by Yip et al [9]. Assuming small tip angles, the transverse plane

excitation pattern produced by a single coil can be approximated by the Fourier integral

of an excitation k-space trajectory (10), k (t) =

[
kx (t) ky (t) kz (t)

]
, weighted by a

complex RF pulse b (t) and spatially weighted by the coils complex transmit sensitivity

s (x):

(2.1) m (x) ≈ iγm0s (x)

∫ T

0

b (t) eiγ∆B0(x)(t−T )eix·k(t)dt,
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where γ is the gyromagnetic ratio, m0 is the equilibrium magnetization magnitude, T is

the pulse length, and eiγ∆B0(x)(t−T ) represents the phase accrued due to main field in-

homogeneity defined by the field map ∆B0 (x). The trajectory k (t) is defined as the

time-reversed integration of the gradient waveforms [7]. Exploiting linearity in the small-

tip-angle regime, the excitation patterns from multiple coils can be spatially superposed to

form an aggregate pattern:

(2.2) m (x) ≈ iγm0

R∑
r=1

sr (x)

∫ T

0

br (t) eiγ∆B0(x)(t−T )eix·k(t)dt,

where R is the number of transmit coils, each with sensitivity pattern sr (x) and unique

RF pulse br (t). Discretizing time to Nt samples and space to Ns samples, we may write:

(2.3) m =
R∑
r=1

DrAbr,

where m is the length-Ns vector of spatial samples of the aggregate excitation pattern,

Dr = diag {sr (xi)} is a diagonal matrix containing samples of the sensitivity pattern of

coil r, and br is a length-Nt vector of RF pulse samples for coil r. The (i, j)-th element of

the Ns ×Nt system matrixA is given by:

(2.4) aij = iγm0∆teiγ∆B0(xi)(tj−T )eixi·k(tj).

Equation 2.4 can be rewritten via horizontal concatenation of the matrices DrA and ver-

tical concatenation of the vectors br, resulting in:

(2.5) m =

[
D1A · · · DRA

]

b1

...

bR

 = Afullbfull.

Given a vectormdes containing Ns samples of a desired pattern at the spatial locations xi,

the RF pulses can be designed via solving the following minimization problem:

(2.6) b̂full = argmin
bfull

{
‖Afullbfull −mdes‖2

W +R (bfull)
}
,



37

whereW is an Ns ×Ns diagonal matrix containing a spatial error weighting that one can

use to specify spin-free regions as “dont-care” regions, and R (bfull) denotes a general

regularization term that is a function of the RF samples. Integrated RF power may be con-

trolled via a Tikhonov regularization term R (bfull) = βb′fullbfull, where prime denotes

complex conjugate transpose, and β is a tuning parameter. As shown later in this work,

this term is useful for mitigating increased excitation error when RF pulses are scaled to

achieve large tip angles. Peak RF power may be controlled via R (bfull) = b′fullΛbfull,

where Λ = diag (λj), with λj , j = 0, . . . , R · Nt − 1 denoting regularization parameters

used to control the magnitude of individual RF pulse samples [9]. The minimization prob-

lem can be solved by brute-force inversion or efficiently by the CG method, in a manner

similar to the single-coil pulse design method proposed in [9].

In the special case in which a field map is not incorporated in the system matrix, error

weighting is not specified, and Tikhonov regularization is used, our proposed method and

the frequency domain approach of transmit SENSE [1] are approximately equivalent (see

Appendix). However, in general, our method offers the extra advantages of region-of-

interest (ROI) specification via the W matrix, and better system modeling via field map

incorporation in the system matrix A, which improve excitation accuracy. Computation

is also reduced compared to the frequency domain method because there is no need in our

method to transform the desired pattern and sensitivity patterns to the frequency domain,

nor does it require computation of a Jacobian determinant for k-space sampling density

and velocity compensation, or interpolation between k-space trajectories.
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(a)

(b)

Figure 2.1: (a) The ROI mask (dashed circle) for NRMSE calculation and pulse design was obtained by
thresholding the body coil image of a phantom. The desired excitation pattern (dashed rectangle)
was centered in the ROI, of uniform tip angle, zero phase, and dimensions 5×10 cm. (b) Receive
coil sensitivity patterns (magnitude) of an 8-channel head array, as measured on a spherical
phantom. These patterns are used in the numerical simulations of parallel excitation.

2.3 Methods

2.3.1 Pulse Design

RF pulses were computed in MATLAB 7.0.4 (MathWorks, Inc., Natick, MA), on a 2.0

GHz Pentium 4 computer with 1 Gb of RAM, using the CG algorithm initialized with a

zero pulse and run for 60 iterations [9, 12]. Except in Simulation III, no Tikhonov regu-

larization was used. In all cases, a single-shot spiral-out excitation k-space trajectory was

used with the following parameters: maximum amplitude = 4 G/cm, maximum slew rate

= 18000 G/cm/s, and sampling period 4 µs. To accelerate excitation, we used trajectories

that radially undersampled k-space, resulting in reduction of the excitation field of view

(XFOV) of individual coils excitation patterns. We define speedup factor as the ratio of the

FOV of the desired pattern to the reduced XFOV of the individual coils excitation patterns.

This convention is adopted because, regardless of k-space trajectory used, acceleration in
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parallel excitation is always achieved via undersampling in the FOV dimension. Alterna-

tive definitions, such as the ratio of unaccelerated and accelerated pulse lengths, would

make performance comparisons across k-space trajectories more difficult, as the savings

in pulse length would be specific to the trajectory used and the hardware on which they

are implemented. k-space trajectories were chosen to achieve a spatial resolution of 0.625

cm. The desired excitation pattern (Fig. 3.1a) was a 5 × 10 cm rectangle of uniform tip

angle (magnitude 0.1, corresponding to tip angle of 6◦) and zero phase. The pattern was

defined on a 64× 64 Cartesian grid in a 20× 20 cm region.

To obtain transmit sensitivity patterns, we estimated the receive sensitivity patterns

(Fig. 3.1b) of an 8-channel head coil array (MRI Devices), and make the assumption that

the resulting patterns represent reasonable transmit sensitivity patterns, though perhaps not

exactly those of the head array coil used. The sensitivity patterns were estimated by imag-

ing a spherical phantom with a Gradient Echo (GRE) spiral sequence with a slice-selective

sinc pulse, using both the head coil array and the body coil. The head coil array images

were divided by the body coil image, and then smoothed in an iterative penalized least-

squares fashion, as described in [32], to yield the final sensitivity patterns. Nonzero coil

sensitivity outside the phantom can be attributed to the smoothing operation in the sensi-

tivity estimation process. The body coil image was thresholded (at 0.3 of its maximum

magnitude) to derive an ROI (Fig. 3.1a) that defined a spatial error weighting function in

which the care region had error weighting 1, and the dont care region outside the ROI had

error weighting 0.

2.3.2 Numerical Simulations

We performed Bloch equation simulations to test pulse design methods. Simulations

were performed over a 128 × 128 transverse grid covering a 20 × 20 cm region. Re-

laxation effects were ignored. Normalized root-mean-square excitation error (NRMSE)
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(b)

(c)

(d)

Frequency domain

NRMSE=1.37
Spatial domain

NRMSE=1.38
Spatial domain with
field map

NRMSE=0.20

(a)

0 Hz

150 Hz

Figure 2.2: (a) Field map used in simulation of off-resonance correction. The magnitude of the center flat
region (white) is 150 Hz, while the outer region (black) is 0 Hz. (b,c,d) Excitation patterns re-
sulting from pulses designed using a speedup factor of 2, corresponding to an XFOV of 10 cm
and a 3.8 ms RF pulse length. Note the distortion on the right side of the excitation pattern re-
sulting from frequency domain-designed pulses (b) and spatial domain-designed pulses without
field map incorporation (c) at this peak off resonance.

was calculated for each result from the Bloch simulator (mbl). It was defined as ‖mbl −

dbl‖Wbl
/‖dbl‖Wbl

, where dbl and Wbl are the desired pattern and error weighting interpo-

lated to the Bloch simulation grid, respectively. The ROI for NRMSE calculation was the

same as that used in pulse design. Transmit sensitivity patterns used in simulation were

also obtained via interpolating those used in pulse design.

Simulation I: off resonance correction

In simulation I we evaluated our design methods ability to correct for off resonance

during excitation. In the Bloch simulator, we incorporated a field map with flat regions in

the center (+150 Hz) and background (0 Hz), bridged by a linear transition region (Figure

2.2a). The frequency offset of the center region represents a typical field map value at 3T.

We compared the performance of our method with and without field map incorporation

to the performance of pulses designed with the frequency domain method of transmit
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SENSE [1], in terms of NRMSE within the ROI. The applied spiral trajectory radially

undersampled k-space, yielding a speedup factor of 2 and a pulse length of 3.8 ms.

Simulation II: speedup factor

In simulation II we tested our design methods performance as a function of speedup

factor, with and without ROI specification, and compared this to the performance of pulses

designed with the frequency domain method. NRMSE was calculated over the ROI. The

speedup factor was varied from one, corresponding to no reduction in XFOV, to twenty,

corresponding to a twenty-fold reduction in XFOV. As speedup factor was incremented

from 1 to 20, pulse length was reduced from 6.9 ms to 0.25 ms.

Simulation III: tip angle

In this simulation we studied the relationships between speedup factor, Tikhonov reg-

ularization, and excitation accuracy of RF pulses at large tip angles. For a given speedup

factor and Tikhonov regularization parameter value β, RF pulses were designed using our

spatial domain method with ROI specification. The pulses were then scaled to alter the tip

angle achieved, and simulated in the Bloch simulator. We calculated the average tip angle

inside the resulting excited block, and NRMSE inside the ROI with respect to a desired

pattern that was scaled to the calculated average tip angle. This process was repeated over

a range of speedup factors, scaling factors, and regularization parameter values.

2.3.3 Scanner Experiments

We employed an experimental method based on a rearrangement of the MR signal

equation to validate our pulse design method on the scanner [21]. Exploiting linearity in

the small-tip regime, we swapped the roles of the non-uniform transmit sensitivity patterns

of the transmit coil array with the uniform receive sensitivity pattern of the body coil in the

signal equation. Neglecting off-resonance and T1 and T2 decay, the signal received during
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readout subsequent to small-tip parallel excitation is given by a substitution of Equation

2.2 into the MR signal equation:

(2.7) s (t) ≈
∫ {

iγm0 (x)
R∑
r=1

sr (x)

∫ T

0

br (t′) eix·kt(t
′)dt′

}
eix·kr(t)dx,

where sr (x) is coil r’s transmit sensitivity pattern, and kt (t) and kr (t) are the transmit

and receive k-space trajectories, respectively. This equation can be rearranged, bringing

the summation over coils outside of the signal integral:

(2.8) s (t) ≈
R∑
r=1

[∫
sr (x)

{
iγm0 (x)

∫ T

0

br (t′) eix·kt(t
′)dt′

}
eix·kr(t)dx

]
.

The resulting equation demonstrates that, in the case of linear small-tip excitation, the sig-

nal received subsequent to simultaneous transmission is equivalent to the signal obtained

via serial transmission using each transmit coil driven in isolation, followed by a summa-

tion of the resulting signals offline, where the isolated-transmit signals are represented in

Equation 2.8 by the quantity inside the square brackets. Furthermore, the signal s (t) is

equivalent to that obtained via serial transmission using a volume coil with uniform trans-

mit sensitivity and reception using receive coils with sensitivity patterns sr (x), where the

excited pattern is represented in Equation 2.8 by the quantity inside the curly braces. Thus,

in this experiment we make use of the body coil for transmission and a head array coil for

reception. The experiment proceeds as follows: the head arrays receive sensitivity patterns

are measured, and are used in the design of the parallel excitation pulses. The RF pulse

designed for coil r is then played out on the body coil, and coil r is used for reception

to produce an image. The process is repeated for all coils in the array, and assuming lin-

earity under the small-tip-angle approximation, the resulting imaged excitation patterns

are added together offline to obtain the final combined excitation pattern. Assuming that

the receive sensitivity patterns sr (x) are equivalent to the transmit sensitivity patterns of

some hypothetical transmit array, this method is equivalent to parallel transmission using



43

such a transmit array. In general, this approach may not produce transmit patterns that are

realizable in arbitrary objects, but it does allow for testing of the pulse design method. The

procedure is useful for validating pulse design methods without requiring parallel transmit

hardware that is still in the early stages of development.

We performed scanner experiments on a GE 3T Signa Excite Scanner (GE Health-

care, Milwaukee, WI), using a spherical homogeneous copper sulfate phantom. ROI, field

map, and sensitivity patterns were determined from images acquired using a gradient-echo

(GRE) spiral-out sequence. A spin-echo (SE) spiral-out pulse sequence was used to image

excitation patterns, in which the slice selective sinc pulse was replaced by the parallel exci-

tation pulse. Slice selection was performed by the 180-degree pulse. Imaging parameters

for all sequences were as follows: slice thickness = 4.0 mm, FOV = 20 cm; reconstructed

matrix size = 64 × 64; Repetition Time (TR) = 2 s; Echo Time (TE) = 40 ms (SE), 20

ms (GRE). Four acquisition interleaves were used in all sequences to reduce readout time,

thereby minimizing the effects of off resonance during acquisition. In both experiments,

tip angles of patterns being compared were matched by normalizing parallel excitation

pulses by the same value that ensured flip angles did not exceed 20 degrees. For the paral-

lel excitation pulses, gradient waveforms for excitation were shifted forward by 150 µs to

compensate for delay between RF and gradient channels. Images were reconstructed using

a fast implementation of the off-resonance compensated conjugate phase method [33]. It

used field maps estimated from two images acquired with a TE difference of 0.25 ms [34].

Experiment I: off resonance correction

This experiment validated the spatial domain methods ability to correct for distortion

due to off resonance during excitation. Three small ferromagnetic metal pieces were at-

tached to the phantom surface to create main field inhomogeneity. With pulse lengths of

3.5ms, 5.2ms and 6.9ms, corresponding to speedup factors of 2, 4/3, and 1, pulses were
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designed using the spatial domain method with and without field map incorporation. The

field map was estimated from two GRE images [34], with TE values of 20ms and 20.25ms.

We masked the field map with the ROI, and then smoothed it using a regularized weighted

least-squares method [32] before incorporation into the design process.

Experiment II: Region of Interest specification

In Experiment II we evaluated the performance of the spatial domain method with and

without ROI specification at high speedup factors. We used a speedup factor of 4, corre-

sponding to a pulse length of 1.8ms and XFOV of 5cm. The resulting excitation patterns

were visually compared to evaluate performance in terms of uniformity within the excited

block and erroneous excitation in the background.

2.4 Results

2.4.1 Simulation I: off resonance correction

Figure 2.2 shows excitation patterns produced using the frequency domain method and

the spatial domain method with and without field map incorporation. It can be seen that

pulses designed using the frequency domain method and the spatial domain method with-

out field map incorporation produced distorted excitation patterns in both the transition

region and the flat region of the field map, and their corresponding error is much higher

than that of the spatial domain method with field map incorporation.

2.4.2 Simulation II: speedup factor

Figure 2.3 contains a plot of the NRMSE vs. speedup factor for the frequency do-

main method and the spatial domain method with and without ROI specification. All three

achieved similar excitation error for speedup factors up to about 4, corresponding to an

XFOV of 5 cm. However, the spatial domain method with ROI specification was able

to achieve much lower error compared to the frequency domain method and the spatial
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Figure 2.3: Excitation error as a function of speedup factor for the three different pulse design methods. With
8 coils, comparable NRMSE is achieved by the three design methods for speedup factors below
4. For speedup factors above 4, the spatial domain method with ROI specification achieves sig-
nificantly lower error than the frequency domain method and the spatial domain method without
ROI specification.
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Frequency domain Spatial domain Spatial domain with ROI

Speedup factor=2

Speedup factor=4

Speedup factor=8

Figure 2.4: Excitation patterns resulting from pulses designed for speedup factors of 8, 4, and 2. A more
accurate excitation is achieved by the spatial domain method with ROI specification (indicated by
dashed circle) for large speedup factors, while pulses designed using the spatial domain method
without ROI specification and the frequency domain method perform similarly over the range of
speedup factors. The dashed line indicates the positions of the profiles in Fig. 2.5.

domain method without ROI specification for speedup factors beyond 4. This lower error

at high speedup factors for the excitation error-weighted pulses is due to an effective re-

duction in FOV of the desired excitation pattern via ROI specification. Figure 2.4 shows

excitation patterns at speedup factors of 2, 4, and 8. Comparing patterns resulting from

pulses designed with and without ROI specification, it is seen that ‘aliased’ excitation that

is pushed outside the desired patterns FOV when ROI specification is not used is allowed

inside the desired patterns FOV, but outside the ROI, when ROI specification is used. The

benefit of ROI specification is most visible in the patterns at a speedup factor of 8, where

we can see a more accurate excitation pattern resulting from pulses designed with ROI

specification than in the other two cases. Figure 2.5 contains profiles through the three

methods’ excitation patterns at this speedup factor, taken across the narrow dimension of

the desired pattern and within the ROI. From this plot it is evident that, compared to the
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Figure 2.5: Profile through the center of the excitation pattern resulting from pulses designed with speedup
factor 8. A more accurate excitation across the block, as well as reduced erroneous excitation
outside the block, is achieved by the spatial domain method with ROI specification. Arrows
indicate areas where the spatial domain method with ROI specification (dashed arrows) achieved
significantly higher accuracy than the frequency domain method and spatial domain method
without ROI specification (solid arrows).
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Figure 2.6: Excitation error vs. average tip angle for speedup factors 4 (a) and 6.7 (b). For the lower speedup
factor of 4 (a), reasonable excitation accuracy is maintained over a range of tip angles up to 90◦.
At a higher speedup factor of 6.7 (b), large-tip-angle performance is heavily degraded. In gen-
eral, for small-tip-angle excitation, lowest error is achieved using small Tikhonov regularization.
As pulses are scaled to achieve larger tip angles, it becomes desirable to design with larger reg-
ularization. The advantage of larger regularization at large-tip-angles is more pronounced for
high speedup factors (b) than for low speedup factors (a).

other two methods, the spatial domain method with ROI specification results in an ex-

citation pattern that more accurately matches the desired pattern inside and outside the

block.

2.4.3 Simulation III: tip angle

Figure 2.6 plots excitation error versus average tip angle for pulses designed with the

spatial domain method at speedup factors of 4 (Fig. 2.6a) and 6.7 (Fig. 2.6b). It can be

seen that excitation accuracy degrades with increasing tip angle for both speedup factors.

However, such performance degradation as a function of increasing tip angle is more rapid

at high speedup factors. This is evidenced by the fact that error curves increase much more

rapidly for speedup factor 6.7 than for speedup factor 4.

We find that large-tip-angle excitation error can be mitigated, particularly at high speedup

factors, by increasing Tikhonov regularization in the pulse design cost function. Large

Tikhonov regularization causes pulses with low integrated power to be favored in the
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Tip angle=10°
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Figure 2.7: Tikhonov regularization parameter vs. tip angle for speedup factor 6.7. Increasing the Tikhonov
regularization (β) in the cost function improves excitation accuracy at large tip angles. Tip angles
are calculated as the average tip angle over the region corresponding to the desired excitation
pattern.

design process over pulses with low small-tip-angle excitation error. The efficacy of

Tikhonov regularization is quantified in Figure 2.6. For a relatively small speedup fac-

tor of 4 (Fig. 2.6a), Tikhonov regularization has some effect on large-tip-angle excitation

accuracy, and it is desirable to use large β when designing for large tip angles. At a higher

speedup factor of 6.7 (Fig. 2.6b), the effect of increased Tikhonov regularization is much

more pronounced. In this case we see that for small-tip-angle excitation, it is desirable to

use small β to achieve low error, however, for these values the error increases drastically

with increasing tip angle. For large β, the error is higher at small tip angles, but as pulses

are scaled to produce large tip angles, the error curves remain flatter, and excitation error is

much lower compared to when small β is used. Figure 2.7 further illustrates this behavior,

and shows that for speedup factor 6.7 and small Tikhonov parameter value β = 0.1, the ex-

citation pattern becomes increasingly distorted as average tip angle increases, to the point
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Figure 2.8: Excitation patterns (b) resulting from pulses designed with and without incorporation of a field
map (a), for pulse lengths of 3.5 ms (speedup factor 2), 5.2 ms (speedup factor 4/3), and 6.9
ms (speedup factor 1). Pulses designed without field map incorporation yielded excitation pat-
terns with increasing blur with respect to pulse length, while pulses designed with field map
incorporation yielded excitation patterns which remained well-defined over all pulse lengths.

of being unrecognizable at 90◦. The erroneous excitation begins to appear around the inner

perimeter of the ROI, in areas of high transmit sensitivity pattern magnitude. In contrast,

pulses designed with larger β produce patterns with reduced distortion at 90◦, with best

accuracy attained using the largest Tikhonov parameter value simulated, β = 100. For 45◦

tip angle, though, β = 10 provides the best accuracy, indicating that the best choice of β

is a function of tip angle.

2.4.4 Experiment I: off resonance

The estimated field map (Fig. 2.8a) revealed global field distortion caused by the at-

tached metal, with a maximum field offset of 150 Hz occurring in the lower left side of

the slice of interest. Fig. 2.8b shows the resulting excitation patterns from pulses designed

both with and without off-resonance incorporation in the design, at three different speedup
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(a) (b) (c)
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Figure 2.9: (a) ROI defined by thresholding body coil image. (b,c) At a speedup factor of 4, incorpora-
tion of ROI (c) resulted in improved uniformity inside the block, and suppressed error in the
background, compared to pulses designed without ROI specification (b).

factors of 2, 4/3 and 1, corresponding to pulse lengths of 3.5ms, 5.2ms, and 6.9ms. With

increasing pulse length, off-resonance during excitation resulted in excitation patterns with

an increasingly distorted and blurred lower left corner when a field map was not incorpo-

rated into the design. When a field map is used, however, the definition of the excitation

pattern is maintained with increasing pulse length, and erroneous excitation outside the

block is reduced due to decreasing speedup factor.

2.4.5 Experiment II: Region of Interest specification

Incorporation of the ROI (Fig. 2.9a) into the design process results in higher excitation

accuracy within the ROI. Figure 2.9b shows the excitation patterns resulting from pulses

designed with and without ROI specification. The pattern with ROI specification is more

uniform over the block, and contains less erroneous excitation around the perimeter of the

block. Thus, ROI specification has resulted in a more accurate excitation pattern at this

speedup factor of 4.
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2.5 Discussion and Conclusions

In this chapter we have presented a spatial domain method for the design of RF pulses

in multi-coil parallel excitation and have verified it with both simulations and MR phan-

tom experiments. The new design method is formulated as a minimization problem, in

which the resulting RF pulses are the minimizer of a quadratic cost function comprising

a weighted norm-squared error term and regularization terms, the latter of which may be

used to control the integrated RF power, peak RF power, and waveform smoothness. The

minimization problem may be solved iteratively via the conjugate gradient (CG) method,

or via brute-force inversion.

In some cases, the new design approach produces RF pulses of similar quality to the

frequency domain method of transmit SENSE [1], e.g., in the special case that Tikhonov

regularization is used, but neither ROI specification nor main field inhomogeneity compen-

sation are incorporated in the design process. In general, though, it has some important

advantages over that method. It allows for a spatially varying excitation error weighting

such as region of interest (ROI) specification, which we have shown leads to increased

excitation accuracy at high speedup factors. This is because error outside the ROI does not

contribute to the norm-squared error term of the design cost function, thereby providing

more degrees of freedom to achieve higher excitation accuracy inside the ROI. ROI speci-

fication effectively decreases the FOV of the desired excitation pattern, and thus decreases

the effective speedup factor. In a given imaging experiment, an ROI can be determined

automatically in the pulse design process by thresholding prescan images obtained for sen-

sitivity mapping to yield an ROI corresponding to spatial locations containing tissue. The

new design method also allows for compensation of magnetic field inhomogeneities via

incorporation of an extra phase term in the design system matrix, which we have shown in
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our simulations and experiments increases excitation accuracy in the presence of magnetic

field inhomogeneities, by allowing each spatial point to effectively experience a unique

k-space trajectory. In Experiment I it was shown that in the presence of field inhomo-

geneities, the new method maintains excitation accuracy at lower speedup factors, com-

pared to methods that do not account for the effects of off resonance. The method does

not require computation of k-space traversal speed and density compensation functions,

nor does it require interpolation in the design process, unlike [1]. It enables fast pulse

computation using the Conjugate Gradient algorithm with non-uniform fast Fourier trans-

form’s [14]. Compared to the design methods proposed in [2,22], the new design approach

allows the use of arbitrary k-space trajectories and provides additional design controls.

Though not presented here, simulations performed using an EPI trajectory yielded results

consistent with those obtained using a spiral trajectory.

We also investigated the behavior, in terms of excitation accuracy, of pulses designed

using the proposed method as they are scaled to produce tip angles up to 90◦. It was shown

that excitation patterns became heavily distorted at these tip angles due to Bloch equation

non-linearity, and that the distortion becomes worse as the speedup factor is increased.

One interpretation of this result is that at high speedup factors XFOV is small, and each

coil plays an increased role in canceling aliased excitation produced by other coils. Thus,

the individual coil excitation patterns are less localized, and each coil excites larger tip an-

gles over a larger region of space compared to small speedup factors. As pulses are scaled

up, the largest tip angles in the individual coil excitation patterns leave the small-tip-angle

regime earliest and fail to combine effectively to cancel aliased excitation, thereby produc-

ing the observed distortion. Thus, the linear small-tip-angle assumption that the total tip

angle produced by each individual coil commutes with the tip angles produced by the other

coils is broken. A second interpretation is lent by the analysis used to derive the linear class
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of large-tip-angle pulses [8]. Pulses of this class may be linearly scaled to produce large

tip angles, provided that they meet three conditions; namely that the deposition of energy

in k-space is Hermitian symmetric, that RF magnitude is approximately zero compared

to gradient field magnitude, and that the excitation k-space trajectory may be approxi-

mately decomposed into individually refocused trajectories. In our tip angle simulation,

k-space energy deposition is approximately Hermitian symmetric, so the first condition is

met. However, at high speedup factors in parallel excitation, k-space coverage is sparse

which results in increased RF magnitude, so the second approximation becomes inaccu-

rate. Also at high speedup factors the distance between individual spiral arcs increases, so

the third approximation also becomes inaccurate. In the simulation we demonstrated the

utility of Tikhonov regularization in mitigating increased excitation error at large tip an-

gles and high speedup factors. The demonstrated error behavior with respect to Tikhonov

regularization parameter may be understood from the first perspective above by consider-

ing that increasing the parameter in the design process causes pulses with low integrated

RF power to be favored over those with low norm-squared excitation error. These pulses

produce individual coil excitation patterns with smaller tip angles in general, but whose

combination still yields the desired average excited tip angle. Because these pulses com-

bine more constructively, they are less susceptible to the adverse effects of Bloch equation

non-linearity. Thus, combination and aliased excitation cancellation performance is rela-

tively well maintained as they are scaled to produce large tip angles. From the linear class

perspective, Tikhonov regularization results in pulses with lower magnitude, and thus the

second approximation is more accurate when it is used. Thus, we conclude that at high

speedup factors and large tip angles, it is desirable in terms of excitation error to use a

large Tikhonov regularization parameter. Although the appropriate choice of Tikhonov

parameter is complicated by the non-linear nature of the effect we wish to mitigate, we
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have found that a metric which quantifies the inaccuracy of the second approximation of

the linear class formulation can be useful in predicting the accuracy of a given pulse at

large tip angles, and may thus serve as a guideline for choosing an appropriate parameter.

The metric we have tested is the average, over the pulse duration, of the ratio of instan-

taneous total RF magnitude (averaged over the sample) to gradient magnitude, and we

have found that the larger this metric, the more inaccurate pulses are as they are scaled to

large tip angles. One could incorporate this metric into a practical imaging experiment by

initially designing pulses with a small Tikhonov regularization parameter, and repeating

the pulse design process with larger parameters until the metric falls below a certain safe

number, the value of which may be a function of the desired excitation pattern, k-space tra-

jectory, and tip angle. In general, though, while we have shown that acceleration worsens

the large tip-angle performance of small-tip-designed pulses, the results presented here are

still surprisingly good for a range of speedup factors.

Appendix

The transmit SENSE [1] approach to RF pulse design in parallel excitation is formu-

lated in the frequency, or k-space domain. Assuming small tip angles, the Fourier trans-

form of an excitation pattern m (x) resulting from simultaneous excitation by R coils is

given by:

(2.9) p (k) =
R∑
r=1

Sr (k)⊗ pr (k) ,

where Sr is the Fourier transform of the transmit sensitivity pattern of coil r, pr is the

Fourier transform of the excitation pattern produced by coil r, and the operator ⊗ denotes

a convolution. This equation may be discretized in k, forming vectors from p and pr, and

circulant convolution matrices from samples of Sr. A regularized least-squares cost func-

tion may then be formed and minimized to yield the Fourier transforms of the individual
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coils excitation patterns:

Ψfd (pfull) = ‖Sfullpfull − pdes‖2 + β‖pfull‖2,(2.10)

pfull =

[
p1 · · · pR

]T
,

Sfull =

[
S1 · · · SR

]T
,

where pdes is a vector containing samples of the Fourier transform of the desired excitation

pattern. The pfull that minimizes Equation 2.10 is:

p̂full =
(
S′fullSfull + βI

)−1
S′fullpdes

= S′full
(
SfullS

′
full + βI

)−1
pdes,(2.11)

where we have used the push-through matrix identity. Thus, for coil r, the minimizing pr

is given by:

(2.12) p̂r = S′r
(
SfullS

′
full + βI

)−1
pdes.

The RF pulse for the r-th coil, br, can be derived from pr by multiplication with the

Jacobian determinant for k-space density and velocity compensation [1].

The spatial domain and frequency domain methods are approximately equivalent when

neither ROI nor magnetic field inhomogeneity compensation are incorporated into the

design process, and when Tikhonov regularization that penalizes integrated RF power is

used. In this special case, the cost function for the spatial domain method is:

(2.13) Ψsd (bfull) = ‖Afullbfull −mdes‖2 + β‖bfull‖2,

and the br that minimizes this cost function is given by:

(2.14) br = A′D′r
(
AfullA

′
full + βI

)−1
mdes.



57

The matrix product AfullA
′
full is equal to a summation over coils of the product of the

diagonal sensitivity matricesDr with the system matrixA, times its conjugate transpose:

(2.15) AfullA
′
full =

R∑
r=1

DrAA
′D′r.

The (j, k)-th element of the matrixAA′ is given by:

(2.16) [AA′]j,k =

Nk∑
i=1

ei2πki·(xj−xk).

Assuming Cartesian sampling in space, this matrix is Toeplitz, and is approximately cir-

culant [35]. This allows us to write:

(2.17) AA′ ≈ Q′HQ,

where H is a diagonal matrix containing samples of the DFT of the first column of AA′,

andQ,Q′ are orthonormal forward and inverse DFT matrices, respectively. We may then

substitute this expansion into the solution for the RF pulse of coil r. At the same time, we

insert DFT matrices on both sides of Dr and on the left of mdes, which is allowed since

Q′Q = I , yielding:

(2.18) br ≈ A′Q′QD′rQ′Q

(
R∑
r=1

DrQ
′HQD′r + βI

)−1

Q′Qmdes.

We bring these DFT matrices into the inverse, yielding:

(2.19) br ≈ A′Q′S̃′r

(
R∑
r=1

S̃rHS̃
′
r + βI

)−1

Qmdes.

where S̃r = QDrQ
′. The Q on the right side of this expression has the effect of trans-

forming the desired excitation pattern into the frequency domain, and the product A′Q′

on the left side has the effect of performing Cartesian to k-space trajectory interpolation

and multiplication by the Jacobian determinant. The circulant convolution matrix S̃r is

defined on a Cartesian grid of frequency locations, and thus the product A′Q′S̃′r repre-

sents the combined action of the matrix S′r in Eq. 2.12 and multiplication by the Jacobian
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determinant. Furthermore,
∑R

r=1 S̃rHS̃
′
r ≈ SfullS

′
full, and Qmdes = pdes. Thus this

final expression is equivalent to that for the minimizing RF pulse for coil r in the fre-

quency domain method of transmit SENSE [1], under the approximation in Eq. 2.17. This

approximate equivalence is established under the special conditions that neither ROI nor

main field inhomogeneity compensation are incorporated in the design process, and that

Tikhonov regularization is used.



CHAPTER III

Additive angle method for fast large-tip-angle parallel RF pulse design

3.1 Introduction

In Chapter II, we showed that RF pulses designed for accelerated parallel excitation

using small-tip-angle methods [1, 2, 22, 23] produce inaccurate excitation patterns when

scaled to large-tip-angles [23]. Although unaccelerated pulses designed with small-tip-

angle [7] methods can produce accurate large-tip-angle excitation patterns if they satisfy

the ‘linear-class’ conditions [8, 38], at high acceleration factors, increased pulse magni-

tudes violate the small-RF approximation used to derive the linear class. Several large-

tip-angle pulse design methods have recently been proposed specifically for parallel exci-

tation [26, 28, 30]. These methods either suffer from long computation times, or achieve

shorter computation times via pulse parameterization, which limits the degrees of free-

dom in pulse design, and locks the designer into using certain classes of excitation k-space

trajectories. The computational bottleneck of most large-tip-angle methods is the Bloch

equation, which must be evaluated repeatedly to obtain the magnetization profile subse-

quent to excitation, and in some methods to calculate the gradient of a cost function with

respect to RF pulse samples. In this chapter, we propose a large-tip-angle pulse design

method that requires only a small number of Bloch equation simulations, significantly

reducing computation time compared to other methods. Furthermore, our method is for-
This chapter is based on materials from Refs. [36] and [37].
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mulated as a series of small-tip-angle pulse designs that can be performed rapidly using

non-uniform fast Fourier transforms (NUFFT’s) [15]. Our method is also simple to imple-

ment, using existing software for designing small-tip-angle parallel RF pulses.

The method we propose is based on a series of iterative updates to a large-tip-angle

pulse. Initially, a pulse is designed using the small-tip-angle method of Chapter II. This

pulse is then simulated using a Bloch equation simulator, and we expect that the flip angle

pattern excited by the pulse will deviate significantly from the desired flip angle pattern. A

small-tip-angle pulse is then designed to add to the first pulse, to bring the pattern excited

by the summed pulses closer to the desired pattern. The summed pulse is seeded to the

next iteration, and iterations continue until a convergence criterion is met. In the context

of our approach to large-tip-angle pulse design (Section 1.7), this method’s choice for the

linear function L in Eq. 1.72 is the small-tip-angle equation. We show in simulations

and experiments that this method produces π
2
- and π-excitation pulses with significantly

improved accuracy over pulses designed using small-tip-angle methods, for both spiral

and echo-planar (EP) trajectories.

One-dimensional large-tip-angle RF pulse design methods have been proposed that are

similar to the one we present here [39,40]. Ref. [40] proposes an iterative scheme to design

large-tip-angle pulses. At each step in the design, the current pulse is Bloch-simulated, and

a pulse is designed that adds to the current pulse, to bring the excited pattern closer to the

desired one. In [40], the pulses are constrained to be real and time symmetric, to ensure

that they all rotate magnetization about the same vector everywhere in space, and as a

result their flip angles sum coherently. Our approach differs from this method in that we

allow pulses to possess time-varying phase, so the vectors about which the pulses rotate

magnetization can vary both spatially and between design iterations, and we employ the

Fourier small-tip-angle approximation to accelerate pulse computation. Ref. [39] proposes
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an iterative scheme to refine small-tip-angle pulses whose excited patterns are corrupted

by scanner imperfections. In that method, pulses are designed using Fourier analysis. Our

approach is perhaps most similar to that method, however, we introduce a modification

that allows us to design accurate large-tip-angle pulses. Additionally, to our knowledge,

this work also represents the first application of this class of pulse design methods to

multidimensional pulse design for parallel excitation.

3.2 Theory

Consider parallel excitation pulse design for R coils. Assume we are given Ns samples

of a desired tip angle pattern θdes (x) and an initial set of pulses {b1, . . . , bR}, where br

is a length-Nt vector of pulse samples for the rth coil. If {b1, . . . , bR} are small-tip-angle

pulses, the tip angle pattern they excite at spatial position xi is well approximated by the

extension of Eq. 1.14 to parallel excitation:

(3.1) θ (xi) e
i∠Mxy(xi) ≈ iγ∆t

R∑
r=1

sr (xi)
Nt∑
j=1

br,je
ixi·k(tj), i = 1, . . . , Ns,

where θ (x) is the tip angle excited by the pulses, ∠Mxy (x) is the phase of the resulting

transverse magnetization, sr (x) is coil r’s transmit sensitivity pattern, and k (t) is the

excitation k-space trajectory defined by reverse integration of the gradient waveforms [7].

Further assume that {b1, . . . , bR} do not excite θdes (x) accurately, and that the difference

between the desired and excited patterns, θnew (x) , θdes (x) − θ (x), is a small-tip-

angle pattern. Our goal is to design a new set of pulses
{
b̃1, . . . , b̃R

}
that, when added

to the initial pulse set, results in a set that excites θdes (x). To achieve this, we design{
b̃1, . . . , b̃R

}
to satisfy:

(3.2) θnew (xi) e
i∠Mxy(xi) ≈ iγ∆t

R∑
r=1

sr (xi)
Nt∑
j=1

b̃r,je
ixi·k(tj), i = 1, . . . , Ns,
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where ∠Mxy (x) is obtained from Eq. 3.1, i.e., it is the transverse phase induced by the

initial pulses. Setting

(3.3) dnew (x) , θnew (x) ei∠Mxy(x),

we design
{
b̃1, . . . , b̃R

}
using the iterative small-tip-angle parallel pulse design method

of [23], which will calculate pulses that minimize the cost function:

(3.4) Ψ
(
b̃1, . . . , b̃R

)
=

∥∥∥∥∥
R∑
r=1

SrAb̃r − dnew
∥∥∥∥∥

2

W

+ β
R∑
r=1

∥∥∥br + b̃r

∥∥∥2

,

where Sr is a diagonal matrix containing samples of sr (x) and A is a non-uniform fast

Fourier transform (NUFFT) matrix corresponding to eixi·k(tj) [14]. The term
∑R

r=1 SrAb̃r

is a matrix/vector expression for the right-hand side of Eq. 3.2. W is a diagonal ma-

trix containing a spatial error weighting that can be used to specify a region of interest

(ROI) [23]. Integrated power of the total RF pulse may be controlled via the Tikhonov

regularization term β
∑R

r=1

∥∥∥br + b̃r

∥∥∥2

, where β is a tuning parameter. We minimize

Ψ
(
b̃1, . . . , b̃R

)
using the Conjugate Gradient (CG) method. Because of linearity of exci-

tation in the small-tip-angle regime, and because the tip angle patterns excited by the new

and initial pulses are in phase,
{
b1 + b̃1, . . . , bR + b̃R

}
will accurately excite the tip angle

pattern θdes (x). In short, we are given an initial pulse set that excites an erroneous tip an-

gle pattern, and we design a set of correction pulses that excite the difference in tip angle

between the erroneous and desired patterns. When the initial and correction pulses are

summed, the result is a pulse set that excites an accurate pattern, in the small-tip regime.

Now consider the more challenging pulse design scenario in which θdes (x) is a large-

tip-angle desired pattern, and {b1, . . . , bR} are inaccurate initial large-tip-angle pulses.

Eq. 3.1 no longer holds in this case, and we must use Bloch equation simulation to ob-

tain θ (x) ei∠Mxy(x), where θ (x) = cos−1 Mz(x)
M0(x)

. Furthermore, for larger tip-angles the

right-hand side of Eq. 3.2 becomes an increasingly inaccurate model for the difference be-
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tween the tip angles excited by {b1, . . . , bR} and
{
b1 + b̃1, . . . , bR + b̃R

}
. Despite this,

we have found empirically that if the initial pulses {b1, . . . , bR} excite angles smaller than

180◦, then the pulses
{
b1 + b̃1, . . . , bR + b̃R

}
will still excite a more accurate pattern.

That is, while the linear model of Eq. 3.2 and the true difference in flip-angle patterns

are significantly different when the initial pulses excite large-tip angles, the difference is

not so great as to prevent an improvement in accuracy when
{
b̃1, . . . , b̃R

}
are designed

using Eq. 3.2. In contrast to the linear small-tip-angle case, the desired level of accuracy

generally cannot be reached with only one design of
{
b̃1, . . . , b̃R

}
. To make further im-

provements, we adopt a fixed-point iterative procedure to update the initial pulses multiple

times, until accuracy stops improving. It is usually necessary to incorporate the transverse

magnetization phase term, ei∠Mxy(x), into dnew so that the flip angle pattern produced by{
b̃1, . . . , b̃R

}
adds with the intended sign. If the phase term is not incorporated, the algo-

rithm may stop improving excitation accuracy before an acceptable error level is reached.

In summary, the additive angle pulse design method is an iterative technique that im-

proves the accuracy of a large-tip-angle RF pulse. At each iteration, a Bloch equation

simulation is performed to obtain θ (x) ei∠Mxy(x) for the initial pulses, and new pulses are

designed to excite θnew (x) ei∠Mxy(x) that are added to the initial pulses, where θnew (x) ,

θdes (x) − θ (x). The summed pulses then replace the initial pulses in the next iteration.

Iterations continue until excitation accuracy ceases to improve.

3.3 Methods

3.3.1 Pulse Design

We used the additive angle method to design two-dimensional RF pulses, and com-

pared it to small-tip-angle RF pulse design in simulations and experiments. Desired pat-

terns were specified on a 64 × 64 grid, with a FOV of 24 cm × 24 cm, and were blurred
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by convolution with a Gaussian kernel of FWHM = 1.2 cm, to reduce ringing in the re-

sulting excitation patterns. Bloch equation simulations for pulse design were performed

on the same grid, while simulations for final error computation and comparison were per-

formed on a finer 128 × 128 grid with the same FOV. Bloch simulations for pulse design

were initialized with all magnetization in Mz. Spins outside the ROI were not simu-

lated. 50 CG iterations were used for each small-tip-angle pulse design. To ensure that{
b̃1, . . . , b̃R

}
stay in the small-tip-angle regime, we scaled dnew (x) to a maximum tip

angle of π
4

radians, except in simulation II, where the maximum tip angle was varied. We

stopped the additive-angle iterations when the Root-Mean-Square Error (RMSE), defined

as RMSE = 1
Ns

√∑Ns
i=1 |θdes (xi)− θ (xi)|2, between the desired and Bloch-simulated

tip-angle patterns at the current iteration decreased by less than 0.01% of the previous one.

For conventional small-tip design, we used the method in [23], with the same desired flip

angle pattern as in the additive angle implementation, and with 100 CG iterations. Small-

tip-angle design was initialized with zero pulses, and additive angle design was initialized

with the small-tip-designed pulses, scaled by 0.75, except in Simulation II, where the scal-

ing factor is varied. This scaling factor corresponds to a nominal initial flip angle of 3π/8

radians in the case of π/2-pulse design, and 3π/4 radians in π-pulse design. Pulses were

designed with a small Tikhonov regularization parameter β = 10−1, except in Simulation

II, where β was varied. All pulse designs and simulations were performed in MATLAB

R2006a (Mathworks, Natick, MA, USA), on a 3.4GHz Pentium IV workstation with 2GB

RAM.

3.3.2 Numerical Simulations

Simulations of parallel excitation were carried out assuming an 8 element active rung

transmit array [41]. Transmit sensitivity patterns were obtained via Finite-Difference

Time-Domain simulation [42] of the array at 3.0 Tesla, using a phantom modeled as a
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Figure 3.1: (a) Magnitude of transmit sensitivity patterns used in simulations of eight-channel parallel exci-
tation. (b) Desired flip angle pattern used in simulations, which was a smoothed 10 cm × 5 cm
rectangular block, whose peak was scaled to π and π

2 for pulse design.
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22 cm diameter lossy cylinder with σ = 0.3 S/m and εr = 80 (Fig. 3.1a). The ROI for

pulse design and error calculation was the phantom interior. The desired pattern, shown in

Fig. 3.1b, was a rectangular block that was centered in the phantom, with dimensions 10

cm × 5 cm.

We designed pulses using spiral and echo-planar (EP) excitation k-space trajectories.

Spiral trajectories were single-shot spiral-out with the parameters: maximum amplitude =

4 G/cm, maximum slew rate = 18 G/cm/ms. Acceleration was achieved via undersampling

in the radial direction, resulting in reduction of the excitation field of view (XFOV) of the

individual coils’ excitation patterns. EP trajectories were designed using the parameters:

maximum amplitude = 4 G/cm, maximum slew rate = 15 G/cm/ms. For these trajectories,

acceleration was achieved via undersampling in the blipped (phase-encoded) dimension.

We define “speedup factor” as the ratio of the FOV of the desired pattern to the reduced

XFOV of the excitation k-space trajectories. The spatial resolution for all trajectories was

0.75 cm, which is twice that of the grid on which the desired patterns were specified.

We find that specifying the desired pattern on a grid of finer resolution than the k-space

trajectory improves accuracy of both small-tip-angle and additive angle-designed pulses.

The sampling period for all pulses was 4 µs.

Simulation I: Speedup Factor

In the first simulation, we designed π
2
- and π-excitation pulses with a range of speedup

factors from 2.4 to 6, corresponding to an XFOV range from 10 cm down to 4 cm. We

compared performance of the additive angle method to that of small-tip-angle design in

terms of RMSE between excited and desired flip angle patterns, peak total RF field mag-

nitude, and visual quality. Compute time was also recorded for the additive angle method.
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Simulation II: Convergence

In this simulation we investigated convergence properties of the additive angle method.

We repeated additive angle designs of EP (speedup factor = 3) and spiral (speedup factor

= 4.8) π-pulses, and varied design parameters that may influence final excitation error.

We first varied the nominal flip angle of the initial, small-tip-designed pulse that was used

to seed the additive angle method, between 0 and 2, corresponding to seed pulses with

nominal flip angles between 0 and 2π radians. We then performed designs in which we

varied the maximum tip angle of dnew (x) from π/8 to π radians, with a zero initial seed

pulse. Finally, we performed designs over a range of β-values, from log10 β = −1 to

log10 β = 2.5.

Simulation III: Refocusing

In this simulation we verified that a π-pulse designed using the additive angle method

will refocus a population of spins possessing a range of off-resonant frequencies, and

compared refocusing performance to that of a small-tip designed pulse. EP pulses with

speedup factor = 3 (XFOV = 8 cm, pulse length 3.34 ms) were used in these simulations.

We performed 40 simulations that were initialized with magnetization in the transverse

plane everywhere in the object, but over a phase range of 0-2π radians, in 40 equally-

spaced angular steps. The initial phase represents the phase accrued due to off-resonance

between excitation and TE/2. After application of the pulse, the initial phase was again

added to the magnetization’s phase, representing the phase accrued between the refocusing

pulse (TE/2) and TE. We then summed the magnetization over the phase range, to obtain

the net magnetization at TE. Phase evolution due to off-resonance during pulse application

was neglected, due to the short duration of the pulse.
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3.3.3 Scanner Experiment

Scanner experiments were performed on a GE 3T Signa Excite Scanner (GE Health-

care, Milwaukee, WI, USA). Due to a lack of parallel transmit hardware, we carried out

a single-channel transmit experiment to validate the additive angle design method and

compared it to small-tip-angle pulse design. We computed 2D spatially-selective inver-

sion pulses that were applied in the spin preparation stage of a spiral GRE sequence. The

sequence began with the inversion pulses, followed directly by gradient crushers, which

were subsequently followed by standard sinc excitation and a multi-shot spiral-in readout.

Ideally, the inversion pulses flip image phase within the inverted region, but leave image

magnitude unperturbed.

All transmission and reception was performed using a standard birdcage head coil. A

spherical MnCl phantom was used, which expressed a non-uniform transmit field magni-

tude (B1+) in the birdcage coil. The B1+ field was mapped for one slice in the phantom by

acquiring a set of GRE images collected with nominal flip angles (30◦, 60◦, 90◦), and pro-

cessing the resulting images with a regularized B1+ mapping method [43]. The imaging

parameters for B1+ mapping were as follows: slice thickness = 4.0 mm; FOV = 24 cm;

reconstructed matrix size = 64 × 64; repetition time (TR) = 8 s; echo time (TE) = 10 ms.

The measured B1+ pattern was used to design EP pulses that inverted the 9× 3 cm square

desired pattern shown in Fig 3.9a. Placement of the inverted region was chosen such that

a large B1+ magnitude gradient existed across the long dimension of the region. The EP

trajectory was designed with XFOV = 18 cm, spatial resolution = 0.75 cm, maximum slew

rate = 15 G/cm/ms, and sampling period = 4 µs. To reduce RF magnitude near the center

of k-space, the central 3 phase encodes were designed with a maximum gradient amplitude

of 0.5 G/cm, while the outer 22 phase encodes were designed with maximum amplitude =

4 G/cm. These parameters yielded a pulse length of 8.7 ms. Pulse design time, includ-
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ing B1+ map estimation, was recorded. Imaging parameters for the inversion-preparation

sequence were as follows: slice thickness = 4.0 mm; FOV = 24 cm; reconstructed matrix

size = 128× 128; TR = 8 s; TE = 20 ms; nominal flip angle (sinc pulse) = 10◦; 8 averages.

Excitation gradient waveforms were shifted forward by 150 µs to compensate for the de-

lay between RF and gradient channels. Four spiral interleaves were used in both the B1+

mapping and inversion-preparation sequences to reduce readout time so that off-resonance

effects during acquisition were minimized. We also acquired images with the inversion

pulse magnitude set to zero. These were used to remove the effects of non-uniform trans-

mit and receive sensitivities during sinc excitation and readout by dividing them from of

images acquired with the inversion pulses switched on. Images were reconstructed using

a fast implementation of the off-resonance compensated conjugate phase method [33]. It

used field maps estimated from two images acquired with a TE difference of 2.5 ms [34].

3.4 Results

3.4.1 Simulation I: Acceleration

Figure 3.2 shows simulated π-excitation patterns. In Figs. 3.2(a,c), the small-tip-

designed pulses produce significant erroneous excitation outside the inverted blocks. In

the EP case, we see the well-known bandwidth narrowing effect [44] that occurs when

small-tip-angle Cartesian pulses are scaled to large tip-angles. This effect manifests as a

spatially narrow inversion region, compared to the wider region the pulses would correctly

excite if scaled to produce small tip-angles. For both EP and spiral trajectories, excitation

accuracy is dramatically improved by the additive angle method. In Figs. 3.3(a,b), we

see that inversion pulses designed using the additive angle method achieve lower RMSE

over the full speedup factor range, without a significant increase in peak RF magnitude.

Improvement in accuracy is most dramatic for the EP trajectory. Figure 3.4 plots coil 1’s
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Figure 3.2: Simulated π excitation patterns produced by pulses designed with the small-tip (a,c) and additive
angle (b,d) methods, for an EP trajectory (a,b) with speedup factor = 3 (XFOV = 8 cm, pulse
length 3.34 ms), and a spiral trajectory (c,d) with speedup factor = 4.8 (XFOV = 5 cm, pulse
length 1.16 ms). For both trajectories, the additive angle method yields pulses that produce
patterns with reduced erroneous excitation outside the block, and improved uniformity inside
the block.
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Figure 3.3: Comparison of excitation accuracy and peak RF magnitude between pulses designed using the
small-tip and additive angle methods, over a range of speedup factors. For both π- and π

2 -pulses
(a,b), the additive angle method achieves lower error, without a significant increase in pulse
power. Improvement in accuracy with the additive angle method is most significant for EP and
spiral π-pulses, and for EP π

2 -pulses.
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the central five phase encode lines only), large changes in pulse shape resulted in significantly
decreased RMS error, from 0.26 radians for the small-tip designed pulses, to 0.10 radians for the
additive angle-designed pulses. (b) For spiral pulses, smaller perturbations decreased RMS error
from 0.14 radians to 0.06 radians.
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Figure 3.5: Simulated π
2 excitation patterns produced by pulses designed with the small-tip (a,c) and additive

angle (b,d) methods. For both the EP trajectory (a,b) with speedup factor = 4 (XFOV = 6 cm,
pulse length 2.7 ms), and the spiral trajectory (c,d) with speedup factor = 6 (XFOV = 4 cm, pulse
length 1 ms), pulses designed with the additive angle method produce patterns with reduced
erroneous excitation outside the block, and improved uniformity inside the block. (e,f) Pulses
designed using the additive angle method excite magnetization with uniform phase, even though
phase is allowed to drift during the design process.
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Figure 3.6: Measured design times for simulations. The design times for π
2 -pulses are shorter than those

for π-pulses. Additionally, design times for spiral pulses are generally shorter than those for EP
pulses. This is most likely due to the shorter length of spiral pulses compared to EP pulses, and
the lower error achieved by the small-tip-designed spiral pulses used to seed the additive angle
method, compared to EP seed pulses.

pulse magnitude for the π-excitation pulses of Fig. 3.2. We observe that in the EP case

(Fig. 3.4(a)), large changes in pulse shape were required to achieve high excitation accu-

racy, while in the spiral case (Fig. 3.4(b)), smaller perturbations resulted in significantly

improved accuracy. Figure 3.5 shows simulated π
2
-excitation profiles, and we again see an

improvement in excitation accuracy for the additive angle case. As shown in Figs. 3.3(c,d),

this improvement is maintained over the simulated speedup factor range, particularly in the

EP case, again without a significant increase in peak RF magnitude. Additionally, for both

trajectories, the phase within the blocks excited by additive angle pulses is highly uniform,

as shown in Figs. 3.5(e,f). In the EP case of Figs. 3.5(b,e), an average (RMS) phase devi-

ation of 4.8◦ was measured in the block, while in the spiral case of Figs. 3.5(d,f), an RMS

deviation of 3.5◦ was measured. This is a welcome result, considering that the excited

magnetization’s phase is controlled only initially via the desired pattern used in the initial

small-tip-angle pulse design.
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Figure 3.6 plots design times required for convergence. Spiral design times are shorter

than EP design times for both π- and π
2
-pulses, with the exception of the highest speedup

factors for which accurate EP pulses are not reached. Longer EP design time is most

likely due to the longer duration of the EP trajectory for a given speedup factor, and the

higher level of error produced by the small-tip-designed pulses used to seed EP pulse

design. Compared to spiral design times, the longer EP times are also in agreement with

the larger changes in waveform shape created by our method, shown in Fig. 3.4. Design

time for π-excitation pulses is generally longer than that for π
2
-pulses in both EP and spiral

pulse design, which can be attributed to the higher level of error produced by the small-

tip-designed π-pulses used to seed our method. Bloch simulation/small-excitation pulse

design iterations required for convergence were roughly proportional to design time. EP

π-pulse design required between 10 and 20 iterations, while spiral π-pulse design required

between 7 and 16 iterations. For π
2
-pulse design, the EP trajectory required between 7

and 12 iterations, while the spiral trajectory required between 5 and 15 iterations. In

comparison to these measured times, design times for exact Bloch-equation based methods

are generally an order of magnitude longer.

3.4.2 Simulation II: Convergence

Figure 3.7 shows results of our convergence investigation. From the designs in which

we varied the nominal flip angle of the initial small-tip-designed pulse (Fig. 3.7a), we see

that the additive angle method converges to the same error level over the range of nominal

flip angles from 0 to π radians. In fact, the method continues to converge to the same error

even for larger nominal flip angles that would not be used in practice. Figure 3.7b shows

that the method is also robust to the maximum magnitude of dnew (x). Figure 3.7c shows

that the final RMS error of the pulses is a smooth, increasing function of the Tikhonov

regularization parameter β. Using a higher β results in a higher RMS error, but reduces



76

−1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

R
M

S
E

 (
ra

di
an

s)

log
10

 β

c

−1 0 1 2
0

2

4

6

8

G
au

ss

log
10

 β

d

0 1.57 3.14 4.71 6.28
0

0.05

0.1

0.15

0.2

R
M

S
E

 (
ra

di
an

s)

Initial flip angle (radians)

a

0.78 1.57 2.36 3.14
0

0.05

0.1

0.15

0.2

R
M

S
E

 (
ra

di
an

s)

Max step size (radians)

b

 

 

EP
Spiral

Figure 3.7: Influence of design parameters on convergence and peak RF magnitude. Additive angle designs
of EP (speedup factor = 3) and spiral (speedup factor = 4.8) π-pulses were repeated over a range
of design parameters, to investigate the method’s convergence properties. (a,b) The additive
angle method is robust to both the nominal flip angle of the small-tip-designed pulse used to seed
the method, and the maximum flip angle allowed in dnew (x). (c,d) The Tikhonov regularization
parameter β can be increased to mitigate peak RF magnitude, at the cost of increased excitation
error.
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Figure 3.8: Comparison of small-tip and additive angle-designed EP π-pulses applied as refocusing pulses.
In this simulation, the pulses of Figs. 3.2(a,b) were used to excite magnetization initially in the
transverse plane, and over a range of transverse-plane phase angles. (a) The small-tip-designed
pulse fails to uniformly rotate magnetization by π radians within the block, resulting in an in-
homogeneous magnetization pattern at TE. Furthermore, the small-tip-designed pulse partially
refocuses magnetization outside the block. (b) In comparison, the additive angle-designed pulse
fully refocuses magnetization within the block, and does not refocus magnetization outside the
block. (b,d) The net phase of magnetization at TE is spatially varying for both pulses, though
the additive-angle pulse leaves more phase variation within the refocused block.

peak RF magnitude, as shown in Fig. 3.7, and can be tuned to balance the two metrics. EP

and spiral pulse designs possess similar sensitivity to all design parameters.

3.4.3 Simulation III: Refocusing

Figure 3.8 shows simulation results of small-tip and additive angle-designed π-pulses

used for refocusing. In Fig. 3.8a, the magnetization magnitude subsequent to application

of the small-tip-designed π-pulse of Fig. 3.2a is highly non-uniform within the refocused

block, and exhibits a narrowing effect similar to that of the pulse’s flip angle pattern. Some

magnetization is also refocused outside the block. Figure 3.8b shows the magnetization

phase at TE, which is relatively uniform within the block, with an RMS deviation of 9◦.
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In contrast, Fig. 3.8c shows that the magnetization after application of the additive angle-

designed pulse is uniform inside the block, and no magnetization is refocused outside it. In

Fig. 3.8d, we see that for the additive angle pulse, magnetization phase is spatially-varying

within the block at TE, with a higher RMS phase deviation of 34◦.

3.4.4 Scanner Experiment

Figure 3.9b shows a magnitude profile of the estimated B1+ map, which expresses sig-

nificant inhomogeneity over the phantom. Within the desired inversion pattern, the B1+

map has a maximum magnitude of 0.74 Gauss/full RF magnitude, a minimum of 0.51

Gauss/full RF magnitude, and a mean of 0.66 Gauss/full RF magnitude. A pulse designed

without B1+ compensation and tuned to excite π radians at the mean B1+ magnitude

would produce flip angles between 2.43 and 3.5 radians over the excited region. Figures

3.9(c,d) show images obtained using the inversion-preparation sequence. The effects of

non-uniform B1+ during sinc excitation and B1- during signal reception have been re-

moved from these images using reference images obtained with the inversion pulses set

to zero. As in our simulations, we see that the small-tip-designed pulses suffer from a

bandwidth-narrowing effect [44] in the phase-encode dimension. The effect is manifested

as the narrowed My profile in Fig. 3.9e, and the non-uniform image intensity of the in-

verted region of Fig. 3.9c. In contrast, the additive angle-designed pulse inverts an accu-

rate rectangular region (Fig. 3.9d), in which the image intensity is more uniform (Figs.

3.9(d,e)). The intensity inside the inverted region is close to that outside it, indicating that

a full inversion was achieved in the square. Pulse design time, including B1+ map image

reconstruction and estimation, was 46.3 seconds.
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Figure 3.9: Experimental results. (a) The desired flip angle pattern was a smoothed 9 × 3 cm square, whose
peak was scaled to π for inversion pulse design. (b) Magnitude profile through the center of the
object’s B1+ field map, along the dashed lines in (c,d). (c,d) Magnitude images of the phantom
after application of the small-tip-designed pulse (c) and additive angle-designed pulse (d). (e)
My profiles taken through the center of the phantom, as indicated by the dashed lines in (c,d).
The small-tip-designed pulse produces a pattern that is narrowed in the phase-encode direction,
while the additive angle pulse produces an accurate square inversion region that matches the
desired pattern. The My profiles verify that magnetization phase in the inverted region is shifted
by π relative to magnetization outside.
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3.5 Discussion and Conclusions

We have presented a new method for fast large-tip-angle RF pulse design in multi-

dimensional parallel excitation, and have shown that it may be used to design π- and

π
2
-excitation pulses. We have demonstrated that these pulses produce flip angle patterns

with significantly improved accuracy, compared to pulses designed using small-tip-angle

methods. In the case of spiral trajectories, improvement in accuracy is most dramatic at

high speedup factors, corresponding to large reductions in pulse length. This is due to the

fact that pulses designed with spiral trajectories satisfy the linear-class conditions [8] at

low speedup factors, and may thus be scaled to produce accurate large-tip-angle excitation

patterns. At high speedup factors however, increased pulse magnitude violates the small-

RF approximation used to derive the linear class [23], and a non-linear design method such

as the one presented here must be used. In the case of EP trajectories, we showed that a

significant improvement in accuracy is achieved over the full range of speedup factors.

The EP trajectory does not satisfy the linear-class conditions, and so a non-linear method

must be used at all speedup factors. We showed experimentally that our method is also

capable of designing accurate large-tip-angle single-channel EP pulses. Though not pre-

sented here, we have also designed ‘B1+ shimming’ pulses using three-dimensional fast

kz trajectories [20, 27], and have found that the additive angle method produces accurate

three-dimensional large-tip-angle pulses in that scenario as well.

Our method presents two opportunities to further reduce compute time by parallelizing

computations. First, all small-tip-angle pulse designs require the evaluation of as many

NUFFT’s as there are coils, at each iteration of the CG algorithm. Because the NUFFT’s

are independent of each other, they can be computed in parallel to achieve a reduction in

small-tip-angle design times. The second opportunity is in Bloch simulation, which may
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be parallelized by dividing the simulation spatially or temporally. Though our method

already produces accurate pulses in a short time, these improvements would make online

large-tip-angle parallel pulse design even more practical.

Many of the pulses we designed in simulation possessed high peak RF magnitudes

and could not be feasibly deployed on human MR scanners. We showed in simula-

tions that one approach to obtaining usable pulses is to increase Tikhonov regularization,

which reduces peak RF magnitude at the cost of increased excitation error. Another ap-

proach is to modify the k-space trajectories using variable-XFOV [45, 46] or variable-rate

strategies [47, 48] to increase sampling density in regions of k-space where the pulses are

expected to possess high magnitude. Both strategies will reduce RF magnitude at the cost

of increased pulse length. In the design of large-tip-angle pulses, the k-space regions of

high RF magnitude can be determined either from prior pulse designs, or by intuition from

the small-tip-angle pulse design scenario.

In our method, the excited transverse magnetization’s phase is controlled only initially

via the desired pattern for small-tip-angle pulse design, and is allowed to vary both spa-

tially and between design iterations. Deviations from the initial phase are introduced by

Bloch equation non-linearity. In our simulations we found that phase deviation within the

π
2
-excitation patterns was small, suggesting that a multidimensional pulse designed using

our method could still be used to perform slice-selection in one dimension, with negli-

gible signal loss due to signal cancellation through the slice. We also demonstrated that

π-excitation pulses may be employed for refocusing, though there are larger variations in

the resulting phase in this case. While this is not problematic for scenarios in which the

pulses are applied in the imaging plane, it may reduce their utility for cases where signal

is averaged across the refocused region. In Chapter IV, we introduce a large-tip-angle

parallel pulse design method that permits control of excitation phase.
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In conclusion, we have introduced a method for large-tip-angle parallel RF pulse design

that is capable of producing accurate multidimensional pulses in a short time. The method

is simple to implement, provided one already has the software tools available to design

small-tip-angle parallel excitation pulses, and a Bloch equation simulator. Through spiral

and EP pulse design simulations, we demonstrated that the method produces pulses of

high accuracy that may be used for excitation, inversion, and refocusing.



CHAPTER IV

Fast optimal control method for large-tip-angle parallel RF pulse
design

4.1 Introduction

The optimal control pulse design method was initially introduced for the design of

one-dimensional slice-selective pulses [25]. Based on optimal control theory [49], the

method is an iterative algorithm that designs an RF pulse to minimize a least-squares

cost function. At each iteration, the Bloch equation is evaluated using the current pulse.

Gradients with respect to the Bloch equation and the cost function are also computed,

and the pulse is updated by stepping in the negative gradient direction. As we showed

in Chapter I, the method readily generalizes to multidimensional parallel excitation [30],

however, evaluation of the Bloch equation at each iteration is computationally expensive,

and renders the method unsuitable for online use.

The goal of the fast optimal control method is to replace the Bloch equation with a linear

model that can be evaluated rapidly, preferably using non-uniform fast Fourier transforms

(NUFFT’s). In Chapter III, we investigated a method that uses the small-tip-angle equation

for this purpose, a choice that was driven by intuition from the small-tip-angle regime. The

approach we take here is to analytically linearize the Bloch equation around an underlying

pulse, resulting in a model that accurately relates small perturbations in an RF pulse to

small perturbations in magnetization. As will be shown, the new algorithm converges to

83
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pulses of similar quality to those designed using conventional optimal control, in much

less time. Compared to the additive angle method of Chapter III, this algorithm produces

pulses of higher quality, and allows control of excitation phase.

The fast optimal control method has two main advantages over the additive angle

method introduced in Chapter III. First, it is derived by a more rigorous treatment of

the Bloch equation, and as such possesses a more solid theoretical foundation. While the

additive angle iterations were demonstrated to consistently and robustly reduce the value

of an l2 cost function, their form was not derived from any cost function. In contrast, the

fast optimal control method makes iterative updates to RF pulses that are directly derived

from the cost function being minimized. As a result, it is reasonable to expect that the

fast optimal control method may be more computationally efficient than the additive an-

gle method, and may converge to more accurate pulses. Additionally, the cost function

framework allows the user to easily include regularizers, or jointly refine gradient wave-

forms. The second advantage of the fast optimal control method is that the user maintains

control of the excited phase pattern. While additive angle iterations can be initialized with

pulses designed to produce a desired phase pattern, the pattern is allowed to drift from

iteration to iteration. In Chapter III we showed that in the case of EP pulses, the excited

phase of additive-angle-designed pulses deviated significantly from the initial flat phase

pattern. Control of the excited phase pattern may be important in certain pulse design

scenarios, e.g., if the imaging sequence does not resolve one of the dimensions selected

by a tailored excitation or refocusing pulse, in RF-encoded sequences [50, 51], or in spin

echo sequences requiring a specific phase relationship between excitation and refocusing

pulses, such as 90x-180y.
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4.2 Theory

4.2.1 Derivation of perturbed spinor parameters

Consider a scenario in which we are given a set of (possibly) large-tip-angle RF pulses

{b1, . . . , bR} for R coils. At a spatial position x, the spin-domain Bloch equation for these

pulses is (Eq. 1.5):

(4.1)

 β̇0

α̇∗0

 =
iγ

2

 G · x b∗tot

btot −G · x


 β0

α∗0

 ,

where btot =
∑R

r=1 s
∗
r (x) b∗r , sr (x) is coil r’s transmit sensitivity pattern. We have

dropped the time dependence of br, α0, β0 and G, and the spatial dependence of btot,

α0, and β0 for brevity. Our goal is to derive a differential equation for the perturbations(
α̃, β̃

)
of (α0, β0), induced by a pulse set

{
b̃1, . . . , b̃R

}
that is added to {b1, . . . , bR}. To

obtain this equation, we subtract (4.1) from the Bloch equation for the summed pulse set{
b1 + b̃1, . . . , bR + b̃R

}
, yielding: ˙̃β

˙̃α∗

 =
iγ

2

 G · x b∗tot + b̃∗tot

btot + b̃tot −G · x


 β0 + β̃

α∗0 + α̃∗

−(4.2)

−iγ
2

 G · x b∗tot

btot −G · x


 β0

α0
∗

 .

Multiplying this out gives the following coupled pair of differential equations:

˙̃β =
iγ

2

(
G · xβ̃ + b∗totα̃

∗ + b̃∗totα
∗
0 + b̃∗totα̃

∗
)

(4.3)

˙̃α∗ =
iγ

2

(
btotβ̃ + b̃totβ0 + b̃totβ̃ −G · xα̃∗

)
.(4.4)

This pair of equations seems unsolvable analytically, so we simplify it using approxima-

tions inspired by the small-excitation approximation (Section 1.2.2). We expect that b∗totα̃
∗

and b̃∗totα̃
∗ will be small compared to other terms in Eq. 4.3, so we approximate them as
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zero. Likewise, we approximate as zero btotβ̃ and b̃totβ̃ in Eq. 4.4. These approximations

decouple the equations for ˙̃β and ˙̃α∗, leaving:

˙̃β ≈ iγ

2

(
G · xβ̃ + b̃∗totα

∗
0

)
(4.5)

˙̃α∗ ≈ iγ

2

(
b̃totβ0 −G · xα̃∗

)
.(4.6)

Using initial conditions α̃ (0) = 0 and β̃ (0) = 0, the solutions to these equations are:

β̃ (x, T ) ≈ iγ

2

R∑
r=1

s∗r (x)

∫ T

0

b̃∗r (t)α∗0 (x, t) e
iγ
2

x·
R T
t G(t′)dt′dt(4.7)

=
iγ

2

R∑
r=1

s∗r (x)

∫ T

0

b̃∗r (t)α∗0 (x, t) e−
i
2
x·k(t)dt

α̃∗ (x, T ) ≈ iγ

2

R∑
r=1

sr (x)

∫ T

0

b̃r (t) β0 (x, t) e−
iγ
2

x·
R T
t G(t′)dt′dt(4.8)

=
iγ

2

R∑
r=1

sr (x)

∫ T

0

b̃r (t) β0 (x, t) e
i
2
x·k(t)dt,

where k (t) , −γ
∫ T
t
G (t′) dt′. It is interesting to note that the small-excitation approx-

imation (Section 1.2.2, Eqs. 1.17 and 1.19) is a special case of Eqs. 4.7 and 4.8. In that

scenario, btot = 0, so β0 = 0 and α∗0 (x, t) = e−
iγ
2

x·
R t
0 G(t′)dt′ . Plugging these into (4.8)

and (4.7), rearranging the k-space integral limits in (4.7), and summing the results with

(α0, β0) yields the parallel excitation version of (1.19) and (1.17). The small-tip-angle ap-

proximation then follows as a special case of the small-excitation approximation in which

magnetization is initially at equilibrium [8].

To implement Eqs. 4.7 and 4.8 on a computer, we discretize them toNt time points and

Ns spatial points, yielding:

β̃ (xi, T ) ≈ iγ

2
∆t

R∑
r=1

s∗r (xi)
Nt∑
j=1

b̃∗r (tj)α
∗
0 (xi, tj) e

− i
2
xi·k(tj), i = 1, . . . , Ns(4.9)

α̃∗ (xi, T ) ≈ iγ

2
∆t

R∑
r=1

sr (xi)
Nt∑
j=1

b̃r (tj) β0 (xi, tj) e
i
2
xi·k(tj), i = 1, . . . , Ns,(4.10)
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where ∆t is the sampling period. Expressed in matrix-vector form:

β̃ ≈
R∑
r=1

diag {s∗r (x)}Bb̃∗r, B = {bij}(4.11)

bij
4
=
iγ

2
α∗0 (xi, tj) e

− i
2
xi·k(tj)∆t(4.12)

α̃∗ ≈
R∑
r=1

diag {sr (x)}Ab̃r, A = {aij}(4.13)

aij
4
=
iγ

2
β0 (xi, tj) e

i
2
xi·k(tj)∆t,(4.14)

where b̃r =

[
b̃r (t1) · · · b̃r (tNt)

]T
. Eqs. 4.11 and 4.13 provide linear relationships

that can be used to compute approximate perturbations to the spinor parameters, β̃ and

α̃∗, given pulse perturbations
{
b̃1, . . . , b̃R

}
. Given an initial magnetization state, we use

the perturbations to compute magnetization perturbations via Eq. 1.6. For example, if

magnetization is initially at equilibrium, the magnetization perturbations are given by:

m̃xy ≈ −2 (α∗0 + α̃∗)
(
β∗0 + β̃∗

)
M0 + 2α∗0β

∗
0M0(4.15)

= −2
(
α∗0β̃

∗ + β∗0 α̃ + α̃∗β̃∗
)
M0

≈ −2
(
α∗0β̃

∗ + β∗0 α̃
∗
)
M0,

m̃z ≈ |α0 + α̃|2 − |β0 + β̃|2 − |α0|2 + |β0|2(4.16)

= 2<{α0α̃}+ α̃∗α̃− 2<
{
β0β̃
}
− β̃∗β̃

≈ 2<
{
α0α̃− β0β̃

}
.

In these approximations we have dropped terms that are quadratic in
{
b̃1, . . . , b̃R

}
, allow-

ing us to use a “linear” Conjugate Gradient algorithm [12] in our method. We then form a
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cost function in terms of the magnetization to design
{
b̃1, . . . , b̃R

}
:

Ψ
(
b̃1, . . . , b̃R

)
=

∥∥∥∥∥∥∥
 mdes

xy

mdes
z

−
 m0

xy + m̃xy

(
b̃1, . . . , b̃R

)
m0

z + m̃z

(
b̃1, . . . , b̃R

)

∥∥∥∥∥∥∥

2

W

+

+λ1

R∑
r=1

∥∥∥br + b̃r

∥∥∥2

+ λ2

R∑
r=1

∥∥∥b̃r∥∥∥2

,(4.17)

where mdes
xy and mdes

z are the sampled desired transverse and longitudinal magnetization

patterns, respectively, and m0
xy and m0

z are the transverse and longitudinal magnetization

patterns excited by the initial pulses {b1, . . . , bR}, and are computed via Bloch simula-

tion. The Tikhonov regularization parameter λ1 balances excitation error with total pulse

power, while λ2 can be set to enforce small perturbation pulse magnitudes, which may be

necessary to maintain the accuracy of our approximations. As an alternative to using λ2

to enforce small perturbation pulse magnitudes, one could simply incorporate a ‘step-size’

that multiplies
{
b̃1, . . . , b̃R

}
to ensure small pulse perturbations.

4.2.2 Fast computation of perturbed spinor parameters

Though the matrices B and A in Eqs. 4.11 and 4.13 contain Fourier kernels, overall

they are non-Fourier due to α∗0 (xi, tj) and β0 (xi, tj), respectively. This prevents us from

directly using NUFFT’s to evaluate matrix-vector products involving B and A. Focusing

on α∗0 (xi, tj) for the moment, to enable fast computation we seek separable approxima-

tions of the form [16]:

(4.18) α∗0 (xi, tj) ≈
L∑
l=1

cildlj
j = 1, . . . , Nt

i = 1, . . . , Ns.

Substituting this approximation into Eq. 4.12 yields, in matrix form,

(4.19) B ≈
L∑
l=1

diag {cil}Gdiag {dlj} ,
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whereG is anNs×Nt NUFFT operator with elements gij = iγ
2

∆te−
i
2
xi·k(tj). We evaluate

(4.19) efficiently using LNUFFT calls. LetC = {cil} ∈ CNs×L andD = {dlj} ∈ CL×Nt .

The length-Nt rows dl of D can be interpreted as temporal basis vectors over which the

rows of the matrix α∗0 = {α (xi, tj)} ∈ CNs×Nt are expanded, with spatially-varying

coefficients contained in the length-Ns columns cl ofC. One approach to choosingC and

D would be to compute the SVD of α∗0. This choice would yield C andD that minimize

the Frobenius norm

(4.20) argmin
C,D

‖α∗0 −CD‖
2
Frob .

Two issues are encountered in directly computing the full SVD of α∗0; the first is il-

lustrated in Fig. 4.1a. This figure plots the singular values, in descending order, of an

α∗0 matrix obtained by simulation of an accelerated spiral pulse, as well as from an ac-

celerated echo-planar (EP) pulse. In both cases α∗0 has a large number of singular values,

so low-rank (i.e., small L) approximations to it will be highly inaccurate. However, it is

possible to substitute an alternative form of α∗0 (xi, tj) into Eq. 4.7 that results in a non-

Fourier matrix (denoted as α̂∗0) with only a few significant singular values. We derive this

new form from the small-excitation regime. In Chapter I we showed that for a pulse that

rotates magnetization through a small angle, α∗0 (xi, tj) is given by (Eq. 1.20):

(4.21) α∗0 (xi, tj) = e−
iγ
2

xi·
R tj
0 G(t′)dt′ .

Substituting this analytical form into Eq. 4.12 yields:

bij =
iγ

2
e−

iγ
2

xi·
R tj
0 G(t′)dt′e−

i
2
xi·k(tj)∆t(4.22)

=
iγ

2
e−

i
2
xi·(k(tj)−kf (tj))∆t,

where kf (t) , −γ
∫ t

0
G (t′) dt′. Because this equation contains no non-Fourier terms,

an NUFFT can be used to directly evaluate it. In essence, to arrive at this expression we
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have divided α∗0 (xi, tj) by its’ Fourier small-excitation solution, and absorbed that solu-

tion into the existing Fourier kernel, resulting in a unity term that need not be expanded,

i.e., has one non-zero singular value. We have found empirically that even for large-tip-

angle pulses, the matrix α̂∗0 with elements α̂∗0 (xi, tj) = α∗0 (xi, tj) e
− i

2
xi·kf (tj) has only a

few significant singular values. This result is plotted in Fig. 4.1a for the spiral and EP

pulses. Therefore, an accurate low-rank approximation to α̂∗0 can be determined via SVD,

enabling fast computation of Eq. 4.11. Figure 4.1b shows that the same result is true for

β0 (xi, tj); i.e., that the matrix β̂0 with elements β̂0 (xi, tj) = β0 (xi, tj) e
− i

2
xi·kf (tj) has

only a few significant singular values compared to β0. Intuitively, in the α∗0 case, we use

our separable approximation to represent the deviation from the Fourier small-excitation

model for α∗0 that is caused by the large-tip-angle pulses. It is interesting to note that

β̂0 (xi, tj) and α̂∗0 (xi, tj) correspond to the spin domain parameters observed in a frame

rotating at the spatially- and temporally-varying frequency induced by the gradient fields,

that we refer to as the gradient frame. We can transform α∗ and β to and from the gradient

frame via division and multiplication with e
i
2
x·kf (t), respectively.

The second computational issue is that too much memory and time would be required

to compute the SVD of the full α∗0 matrix in practice. To avoid this cost, we compute the

SVD of a reduced α∗0 matrix that is obtained by Bloch simulation of {b1, . . . , bR} over a

subset of spatial locations, so that the reduced matrix has size N∗s ×Nt, where N∗s � Ns.

The simulated locations are chosen to be uniformly distributed over the range of flip angles

in the desired pattern. To choose the N∗s locations, we divide the range of flip angles into

Nb bins, Nb < N∗s , then pull N∗s /Nb locations from each bin by arranging the location

indices within that bin lexicographically and taking evenly-spaced locations. An SVD

of the reduced matrix yields the L × Nt temporal basis vector matrix D that we use to

approximate α∗0 (x, t) at all spatial locations, per (4.18). Once the matrixD is determined,
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Figure 4.1: (a) The first 100 normalized singular values σi and σ̂i, plotted in descending order, ofα∗
0 and α̂∗

0,
respectively. (b) The same, for β0 and β̂0. The matrices were obtained by Bloch simulation of
small-tip-designed accelerated spiral and EP pulses, that were scaled to excite large-tip-angles.
α̂∗

0 and β̂0 possess few significant singular values compared to α∗
0 and β0, permitting accurate

low-rank approximations to these matrices.

the least-squares optimal coefficient matrix C is determined as:

(4.23) C ′ = [DD′]
−1
D (α∗0)′ = D (α∗0)′ ,

where the second equality follows from the orthogonality of singular vectors. This is com-

puted as a running sum during Bloch simulation of {b1, . . . , bR} for all spatial locations,

obviating the need to store the full matrix α∗0.

We apply the same techniques to approximate β0, which we expand as

(4.24) β0 (xi, tj) ≈
L∑
l=1

eilflj
j = 1, . . . , Nt

i = 1, . . . , Ns.

This is substituted into Eq. 4.14, yielding

(4.25) A ≈
L∑
l=1

diag {eil}Gdiag {flj} .
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The matrix F = {flj} ∈ CL×Nt is computed using the SVD of a reduced β0 resulting

from Bloch simulation of the initial pulses over a subset of spatial locations. The matrix is

then used to compute the least-squares optimal E via:

(4.26) E′ = Fβ′0,

which is calculated as a running sum during Bloch simulation for all spatial locations.

4.2.3 The Fast Optimal Control Algorithm

The required steps of the algorithm are summarized as follows.

Fast Optimal Control Algorithm

1. Simulate {b1, . . . , bR} using a Bloch equation simulator over a subset of spatial lo-

cations, yielding α∗0 and β0 for these points.

2. Compute the SVD’s of the reduced α∗0 and β0 matrices to obtain temporal basis

matricesD and F .

3. Repeat the simulation of {b1, . . . , bR} for all spatial locations. Use (4.23) and (4.26)

to compute the matricesC andE via running sums, to conserve memory. Also store

the last columns of α∗0 and β0 in preparation for computing the perturbed magneti-

zation.

4. Using (4.11) and (4.13) to compute β̃ and α̃∗, with the approximations of (4.19)

and (4.25) for the matrices B and A, and computing perturbed magnetization using

(4.15) and (4.16), apply the CG algorithm to find the
{
b̃1, . . . , b̃R

}
that minimize

(4.17) iteratively.

5. Set {b1, . . . , bR} →
{
b1 + b̃1, . . . , bR + b̃R

}
and return to step 1 until a convergence

criterion is met.
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4.3 Methods

4.3.1 Pulse Design

We used the fast optimal control method to design two-dimensional RF pulses, and

compared it to additive-angle and conventional optimal control RF pulse design in simu-

lations. Desired patterns were specified on a 64× 64 grid, with a FOV of 24 cm × 24 cm,

and were blurred by convolution with a Gaussian kernel of FWHM = 1.2 cm, to reduce

ringing in the resulting excitation patterns. Bloch equation simulations for pulse design

were performed on the same grid, while simulations for final error computation and com-

parison were performed on a finer 128 × 128 grid with the same FOV. Spins outside the

ROI were not simulated.

The fast optimal control method alternated between Bloch simulations to update the

α∗0 and β0 expansions and 25 CG iterations. The expansions used L = 4 (Eqs. 4.19 and

4.25), except in simulation II, where L was varied. The SVD’s for determination of the

α∗0 and β0 expansions were calculated on the results of a reduced Bloch simulation over a

set of 50 representative spatial locations, that were chosen to uniformly sample the range

of flip angles in the desired pattern. Fast optimal control iterations were stopped when the

Normalized Root-Mean-Square Error (NRMSE), defined as

(4.27) NRMSE =

∥∥∥mdes −m
(
b̃1, . . . , b̃R

)∥∥∥
‖mdes‖

,

between the desired and Bloch-simulated magnetization patterns at the current Bloch/CG

alternation decreased by less than 0.01% of the previous one. The Tikhonov regularization

parameter for the perturbation pulses, λ2 in Eq. 4.17, was initialized to λ2 = 10−2. This

small value allows large perturbation pulse magnitudes, and therefore potentially large re-

ductions in excitation error per alternation. However, our linear model’s accuracy can also

be degraded at large perturbation pulse magnitudes. To allow the greatest possible error
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reduction per iteration while avoiding divergence due to model inaccuracy, we adopted the

following scheme to adjust λ2: if, at a given Bloch/CG alternation, the NRMSE of the total

pulse exceeded 99.99% of that of the previous alternation, λ2 was increased by a factor of

10. If λ2 exceeded 103, alternations were stopped.

The method of [30] was used for conventional optimal control pulse design. This

method optimized pulses using gradient descent, with a step size that was chosen to max-

imize downhill descent per iteration, while avoiding divergence. The method was stopped

at 100 iterations. The small-tip design method in Chapter II was used to design initial

pulses for all three large-tip methods, with 100 CG iterations and the same desired flip an-

gle pattern. Small-tip-angle design was initialized with zero pulses. In all design methods,

pulses were designed with small λ1, the total pulse Tikhonov regularization parameter

in Eq. 4.17, except in Simulation II, where λ1 was varied for the fast optimal control

method. For excitation and inversion pulse designs, Bloch simulations were initialized

with all magnetization inMz. For refocusing pulse designs, the fast and conventional opti-

mal control methods used Bloch simulations that were initialized with all magnetization in

Mx. All pulse designs and simulations were performed in MATLAB R2007a (Mathworks,

Natick, MA, USA), on a 3.4GHz Pentium IV workstation with 2GB RAM.

4.3.2 Numerical Simulations

Simulations of parallel excitation were carried out assuming the same 8 element active

rung transmit array and phantom configuration of Chapter III. The ROI for pulse design

and error calculation was the phantom interior. The desired pattern, shown in Fig. 3.1b,

was a rectangular block that was centered in the phantom, with dimensions 10 cm× 5 cm.

We designed pulses using spiral and echo-planar (EP) excitation k-space trajectories.

Spiral trajectories were single-shot spiral-out with the parameters: maximum amplitude =

4 G/cm, maximum slew rate = 18 G/cm/ms. Acceleration was achieved via undersampling
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in the radial direction, resulting in reduction of the excitation field of view (XFOV) of the

individual coils’ excitation patterns. EP trajectories were designed using the parameters:

maximum amplitude = 4 G/cm, maximum slew rate = 15 G/cm/ms. For these trajectories,

acceleration was achieved via undersampling in the blipped (phase-encoded) dimension.

The spatial resolution for all trajectories was 0.75 cm, which is twice that of the grid on

which the desired patterns were specified. The sampling period for all pulses was 4 µs.

Simulation I: Speedup Factor

In the first simulation, we designed π
2
- and π-excitation pulses with a range of speedup

factors from 2.4 to 6, corresponding to an XFOV range from 10 cm down to 4 cm. We

compared performance of the fast optimal control method to that of additive angle and con-

ventional optimal control design in terms of NRMSE between excited and desired mag-

netization patterns, peak total RF field magnitude, and visual quality. Compute time was

also recorded for the optimal control method.

Simulation II: Convergence

In this simulation we investigated convergence properties of the fast optimal control

method. We repeated fast optimal control designs of EP (speedup factor = 3) and spiral

(speedup factor = 4.8) π-pulses, and varied design parameters that may influence final

excitation error and peak total pulse power. We first varied the Tikhonov regularization

parameter λ1 (Eq. 4.17) from log10 λ1 = −1 to log10 λ1 = 2.25. This parameter adjusts the

balance between excitation error and integrated total pulse magnitude. We then performed

designs over a range of L values, from 1 to 10, where L is the expansion order of our

approximations to the matrices α∗0 and β0 in Eqs. 4.19 and 4.25.
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Simulation III: Refocusing

In our third simulation, we applied an EP π-pulse designed for inversion to refocusing

of a spin population. An EP pulse with speedup factor = 3 (XFOV = 8 cm, pulse length

3.34 ms) was used in these simulations. We performed 40 simulations that were initialized

with magnetization in the transverse plane everywhere in the object, but over a phase range

of 0-2π radians, in 40 equally-spaced angular steps. The initial phase represents the phase

accrued due to off-resonance between excitation and TE/2. After application of the pulse,

the initial phase was again added to the magnetization’s phase, representing the phase

accrued between the refocusing pulse (TE/2) and TE. We then summed the magnetization

over the phase range, to obtain the net magnetization at TE. Phase evolution due to off-

resonance during pulse application was neglected, due to the short duration of the pulse.

4.4 Results

4.4.1 Simulation I: Speedup Factor

Figure 4.2 plots error versus speedup factor for the three pulse design methods. In

terms of flip angle RMS error, the methods all perform equally well, for both spiral and

EP pulses, and both π and π
2

flip angles. This fact is also demonstrated in Fig. 4.3. In that

figure, the Mz profiles produced by fast optimal control-designed pulses are very similar

to those produced by additive angle-designed pulses. Though the EP Mz profile excited

by fast method’s pulses (Fig. 4.3b) appears rougher in the inverted region than the additive

angle pulses’ profile, the NRMSE of these profiles, measured on Mz, is 2.7 % lower for

the fast optimal control method. This is due to improved excitation fidelity in the transition

regions of the pattern. The biggest advantage of the optimal control methods is exhibited

in the plots (Figs. 4.2(b,d)) of magnetization error (NRMSExyz) versus speedup factor,

where we see that the optimal control methods achieve consistently lower error than the
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Figure 4.2: Error vs. speedup factor for the additive angle method, the conventional optimal control method,
and the fast optimal control method, for π- and π

2 -spiral and EP pulses. In terms of flip angle
error (a,b), the optimal control methods achieve the same or better accuracy than the additive
angle method. In terms of NRMSE calculated on the magnetization directly (b,d), the optimal
control methods produce pulses that are consistently more accurate than those produced by the
additive angle method. The fast optimal control method achieves similar error to the conventional
optimal control method.
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Figure 4.3: Simulated Mz patterns produced by π-pulses designed with the additive angle (a,c) and fast
optimal control (b,d) methods, for an EP trajectory (a,b) with speedup factor = 3 (XFOV = 8 cm,
pulse length 3.34 ms), and a spiral trajectory (c,d) with speedup factor = 4.8 (XFOV = 5 cm,
pulse length 1.16 ms). The Mz patterns excited by the methods are of similar quality, though in
the EP case the z-NRMSE is 2.7% lower for the fast optimal control-designed pulses.
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Figure 4.4: Simulated Mxy patterns produced by π
2 -pulses designed with the additive angle (a,c) and fast

optimal control (b,d) methods. For the EP trajectory (a,b) with speedup factor = 4 (XFOV = 6
cm, pulse length 2.7 ms), pulses designed with the fast optimal control method produce patterns
with reduced erroneous excitation outside the block. For the spiral trajectory with speedup factor
= 6 (XFOV = 4 cm, pulse length 1 ms), similar magnetization profiles are excited.

additive angle method. The excitation patterns shown in Fig. 4.4 demonstrate that in the

EP case (Fig. 4.4(a,b)) this is partly due to reduced erroneous excitation outside of the

desired pattern. However, if we examine Mx and My profiles through the centers of these

patterns (Fig. 4.5), we see the dominant reason for this reduction: the optimal control

methods produce pulses with accurate excitation phase. Our desired pattern specifies that

all excited magnetization should lie along the Mx direction, corresponding to zero phase.

While the additive angle method allows the excited phase to drift between iterations, hence

allowing non-zero My, the optimal control method maintains the desired phase.

Figure 4.2 also shows that for spiral π-pulses and for spiral and EP π
2
-pulses, the fast

optimal control method produces pulses of equal or better accuracy than the conventional

optimal control method. In the case of EP π-pulses, however, the conventional method



100

−10 0 10
−0.5

0

0.5

1
Additive Angle, EP

a

x (cm)

a.
u.

−10 0 10
−0.5

0

0.5

1
Fast Optimal Control, EP

b

x (cm)

a.
u.

−10 0 10
−0.5

0

0.5

1
Additive Angle, Spiral

c

x (cm)

a.
u.

−10 0 10
−0.5

0

0.5

1
Fast Optimal Control, Spiral

d

x (cm)

a.
u.

 

 

M
x

M
y

Figure 4.5: Profiles through the center (y = 0) of the excited magnetization patterns of Fig. 4.4. For both
EP and spiral pulses, the fast optimal control method excites patterns with more uniform phase,
as evidenced by the smaller imaginary (My) magnetization components in (b) and (d).

converges to pulses of lower accuracy than those produced by the fast method, for all

but one of the simulated speedup factors. To demonstrate that it is possible to use the fast

method to design pulses of the same accuracy as the conventional method, we re-ran the EP

π-pulse simulations with a larger value of λ2, which encourages small perturbation pulse

magnitudes for which our model is more accurate, at the cost of increased design time.

The results of these additional simulations are shown in Fig. 4.6. Here, we increased λ2

from 10−2 to 102. The increased regularization parameter discouraged large perturbation

pulse magnitudes, thereby maintaining our model’s accuracy. This in turn caused the

fast method to converge to pulses of more similar accuracy to those designed with the

conventional method. Design times for the two methods are compared in Fig. 4.7. The

figure plots the design times for EP and spiral π-pulses. For the EP pulse, the fast method

converged to a designNRMSExyz, measured on the 64×64 design grid, of 10.34% in 7.5

minutes. To reach this same level of error, the conventional method required 69 iterations,
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Figure 4.6: Error vs. speedup factor for EP π-pulses designed with the additive angle method, the con-
ventional optimal control method, and the fast optimal control method with λ2 = 10−2 and
102. Increasing λ2 encourages smaller perturbation pulse magnitudes for which our approxi-
mate model is more accurate. This in turn leads to a reduction in excitation error, resulting in
error levels that are closer to that of pulses designed using conventional optimal control. This
improvement comes at the cost of increased computation time.

which took 114 minutes. In this case, the fast method achieved a 15.2-fold reduction in

design time. For the spiral π-pulse, the fast method converged to a much lower design

NRMSExyz than was reached by the conventional method, NRMSExyz = 0.92%. In

contrast, the minimum design error reached by the conventional method in 100 iterations

was NRMSExyz = 2.81 %, in 67.5 minutes. The fast optimal control method reached this

same error in 3.2 minutes, corresponding to a 21.2-fold reduction in design time.

4.4.2 Simulation II: Convergence

Figure 4.8 plots the dependence of the fast optimal control-designed pulses’ error and

peak RF magnitude on the various design parameters. As the total pulse Tikhonov regular-

ization (λ1) is increased, the fast method trades NRMSExyz for lower pulse power, and

therefore lower pulse magnitude, as shown in Figs 4.8(a,b). Therefore, the user can adjust

λ1 to balance this tradeoff in a given design scenario. In Fig. 4.8c, the final NRMSExyz

is plotted against the order of the α∗0 and β0 matrix expansions, L. Interestingly, the fi-
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Figure 4.7: Comparison of design times for conventional and fast optimal control methods. For the EP
case (π-pulse speedup factor = 3), a 15.2-fold reduction in design time was achieved by the fast
method. For the spiral case (π-pulse, speedup factor = 4.8), the error achieved by the fast method
was never reached by the conventional method, though the fast method achieved the conventional
method’s final error with a 21.2-fold reduction in design time.

nal error is approximately independent of L, especially for the spiral design case. Figure

4.8d plots the design NRMSExyz as a function of Bloch/CG alternation, for L = 1 and

L = 10. This figure indicates, especially for the spiral case, that while L may not signif-

icantly influence the final design error, using a smaller L does cause a greater number of

Bloch/CG alternations to be required to reach a low error level. Because L influences the

time required to perform each CG design, this result indicates that L should be chosen to

optimize design time. For example, if Bloch equation simulations are computationally in-

expensive compared to CG iterations, a smaller L may minimize the design time, while if

Bloch simulations are very computationally expensive, the required number of simulations

can reduced by choosing larger L.

4.4.3 Simulation III: Refocusing

Figure 4.9 shows the results of our refocusing simulation. As evidenced in Fig. 4.9a,

the pulse successfully rotated magnetization by π radians within the block, and zero ra-
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Figure 4.8: Influence of design parameters. (a,b) The total pulse Tikhonov regularization parameter (λ1) can
be tuned to balance excitation accuracy against peak RF magnitude. (c) Final excitation accuracy
is largely independent of the (α∗0,β0) expansion order, L, but (d) shows that fewer Bloch/CG
alternations are required for larger values of L.

dians outside. This resulted in coherent signal addition within the block, and complete

signal cancellation outside. The phase pattern of the summed magnetization is shown in

Fig. 4.9b. We see from this image that the phase within the refocused region is spatially

varying, with a standard deviation of 25.4◦. This corresponds to a reduction in phase devi-

ation compared to additive angle-designed pulses of Chapter III, Figure 3.8, which excited

a refocused pattern with phase deviation 34◦.

4.5 Discussion and Conclusions

In this chapter we have introduced a new method for fast large-tip-angle RF pulse de-

sign in parallel excitation. It is a fast version of the optimal control pulse design method,

first introduced by Conolly et al [25], and extended to parallel excitation by Xu et al [30].

The method is derived directly from the spin-domain Bloch equation, by analyzing the
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Figure 4.9: Fast optimal control-designed EP π-pulse (speedup factor = 3) applied as a refocusing pulse. (a)
The pulse succeeds in uniformly rotating magnetization by π radians within the block, and zero
radians outside. (b) The net phase of the refocused magnetization is spatially varying.

difference between the Bloch equation of a set of large-tip-angle pulses plus small pertur-

bation pulses, and the Bloch equation of the small perturbation pulses alone. By approxi-

mating a few terms in the difference equations as zero, we were able to derive a Fourier-

like relationship between the perturbation pulses and the perturbations they produce to the

spinor parameters of the large-tip-angle pulses.

There are two central ideas we have introduced that make our method ‘fast’. The first

is the linearization of the spin-domain Bloch equation that results in a Fourier-like linear

relationship between perturbation pulses and the perturbations they produce. This rela-

tionship alone could be valuable to a pulse designer, particularly in scenarios where the

pulses being designed are parameterized. For example, this may arise when designing the

weights on the spokes of a fast-kz trajectory [27], where each spoke contains a sinc pulse

whose magnitude we wish to optimize to achieve a flat in-plane excitation pattern. In this

scenario, Eqs. 4.11 and 4.13 could be evaluated exactly for each spoke of the trajectory,

avoiding the need for further accelerations. The second innovation we introduced was the

translation of the α∗0 and β0 matrices to the gradient frame of reference. This dramatically

reduced the rank of these matrices, allowing us to use low-rank separable approximations
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to represent them accurately. This idea is necessary if the method is to be feasible when

applied to general pulse design scenarios.

Compared to the additive angle method of Chapter III, this new method has some at-

tractive advantages. First, the fast optimal control method is based upon a more solid

theoretical foundation. However, in the limiting case where the expansion order L = 1,

the additive angle method and the fast optimal control method have essentially the same

functional form. It would be an interesting exercise to determine just how closely related

they are in this case, and what exactly the difference between the methods is. Insight

gained from this exercise could result in the derivation of a more solid theoretical founda-

tion for the additive angle method, or a simpler fast optimal control method, whereby the

α∗0 and β0 expansions may be determined without SVD. Though the fast optimal control

method generally requires longer compute times than the additive angle method (several

minutes compared to about two minutes), we showed in Simulation I that it has the addi-

tional practical advantage of allowing the user to control the excitation phase. This will be

important both in applications where the user desires a specific phase pattern, and where

the imaging sequence does not resolve across all excited dimensions. Though not shown

here, the fast optimal control method should allow inclusion of off-resonance effects in

the pulse design, resulting in off resonance-compensated pulses. The inclusion of off-

resonance effects causes the additive angle method to diverge before a satisfactory level of

accuracy is achieved. This is a topic for future investigation.

Compared to the conventional optimal control method, we demonstrated that our method

generally achieves more than an order of magnitude reduction compute time. Furthermore,

the fast method requires significantly less memory. Efficient implementation of the con-

ventional optimal control requires the storage of 6Ns×Nt matrices, whereNs is the num-

ber of points in the spatial design grid, and Nt is the number of time points in the pulses.
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The matrices contain the three magnetization components resulting from the forward and

reverse Bloch simulations that are required at each iteration. This memory requirement

can be restrictive for longer two-dimensional pulse designs, and renders three-dimensionl

pulse design unfeasible on a workstation. In comparison, the fast method only requires

storage of 2L length-Ns vectors and 2L length-Nt vectors, where L � Ns and L � Nt,

and NUFFT interpolators. Therefore, the fast method can be used to design a much wider

range of pulses.

Another topic for future investigation is the application of our method to designing

refocusing pulses. While we showed that π inversion pulses designed with our method

can be applied as refocusing pulses if one does not care about exciting a flat phase pattern,

a designer will generally desire control over the phase of the refocused pattern. Directly

designing refocusing pulses is a more constrained problem than designing an inversion

pulse, since inversion pulses can excite magnetization about any vector; they need only

produce a π rotation. In our initial investigations, we have found that controlling the phase

of π-pulses is a more challenging problem than controlling the phase of π
2
-pulses. Simply

demanding that pulses rotate magnetization from +Mx to −Mx is not sufficient, since the

design algorithm can either produce pulses that rotate magnetization about a transverse-

plane (x-y) vector, or pulses that rotate magnetization about the z-axis using the gradient

field. Pulses that use the gradient field to rotate magnetization will fail when applied as

refocusing pulses. To avoid this pitfall, we can design the pulses in the spin domain,

which allows us to directly specify the flip angle and rotation vector at each point in space.

However, we have found that it is difficult to reach sufficiently-accurate pulses in this case

using the fast optimal control method. This is most likely due to the more non-linear nature

of the Bloch equation in the π flip-angle regime, which causes our method to converge to

a local minimum of insufficient accuracy. Therefore, it may be necessary to seek new
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initializers other than those provided by small-tip-angle designs, that are closer to the

desired pulses. For example, EP pulse designs could be initialized with a series of SLR-

weighted sinc pulses [44]. Another possibility is to design pulses in the magnetization

domain, by specifying multiple initial magnetization states in the transverse plane, each

with its own target state. This also avoids the possibility of designing pulses that rotate

about the z-axis.

In conclusion, the method we have introduced permits the design of large-tip-angle

parallel excitation pulses that are more accurate than those produced by the additive angle

method, in a shorter time than that required by the conventional optimal control method.

We have verified our method in simulations of two-dimensional spiral and EP parallel RF

pulse design. Future work will concentrate on the inclusion of off-resonance effects in the

method, and its application to the design of refocusing pulses.



CHAPTER V

Contributions and future work

The research reported in this thesis has explored methods for small- and large-tip-angle

RF pulse design in parallel excitation. In Chapter II we introduced a new method for small-

tip-angle RF pulse design. In Chapter III we introduced a simple but effective method for

designing large-tip-angle parallel excitation pulses that is capable of designing accurate

pulses with a small number of Bloch simulations. In Chapter IV we explored a fast optimal

control pulse design technique that aimed to complement the shortcomings of the simple

method in Chapter III. Let us recap the problems that each of these methods aim to solve,

and highlight their strengths, weaknesses and opportunities for future work.

5.1 Small-tip-angle parallel pulse design

We showed that the small-tip-angle method of Chapter II has several advantages over

the competing methods described in Chapter I, which include transmit SENSE [1], trans-

mit GRAPPA [22], and Zhu’s SENSE-like method [2]. It is a model-based approach that

is computationally efficient, optimal in a squared-excitation error sense, and allows the

user to model system non-idealities such as off-resonance. The method has been used

experimentally by other groups [20, 52–56], and is favored for its simplicity - one need

only discretize the small-tip-angle integral (Eq. 2.2) to a matrix-vector form and let the

conjugate gradient algorithm do the heavy lifting. It is also straightforward to include

108
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off-resonance and to improve excitation error using ROI’s. However, the method does

have some drawbacks that could lead a user to choose a different method. In analogy

to the SENSE [3] vs. GRAPPA [4] debate in parallel imaging, the first drawback is that

it requires accurate determination of transmit sensitivities, while transmit GRAPPA does

not. Another potential drawback is that a computationally-efficient implementation of the

method requires an NUFFT algorithm, which, while conceptually simple, are not ubiq-

uitous, and will therefore generally require extra coding on the user’s part. In contrast,

transmit GRAPPA and Zhu’s method are formulated as parameter fitting problems that are

of smaller dimension and therefore easy to implement efficiently.

There are many opportunities for future work on small-tip-angle RF pulse design.

Within the context of the spatial-domain method are opportunities to reduce computa-

tion time, which could be approached in two ways. First, one could aim to reduce the

number of iterations required to design a pulse via initialization or preconditioning. Our

group has developed an alternative parallel RF pulse design algorithm that is sub-optimal

but applies to general trajectories and is faster than the spatial-domain method, costing

half the compute time of one CG iteration [57]. The method produces pulses of an accu-

racy that requires several CG iterations of the spatial domain method. Particularly in the

case of longer pulses, it could be used to initialize spatial-domain CG iterations to achieve

a reduction in compute time. One could also take the approach of reducing the cost per

CG iteration. Yoon et al [58] have introduced a Toeplitz version of our method that avoids

NUFFT’s altogether, instead reformulating the design problem using the push-through ma-

trix identity. In the standard CG algorithm, at each iteration one computesA′fullAfullbfull

by first computing y = Afullbfull using an NUFFT, and then computing A′fully, again

using an NUFFT. The Toeplitz approach reformulates the problem so that at each iter-

ation, we instead evaluate AfullA
′
fullbfull, where AfullA

′
full is a block-Toeplitz matrix,
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with which multiplications can be evaluated using two FFT’s, at a computational cost that

is roughly half that of the original formulation. There may also be opportunities to de-

velop specialized NUFFT’s that somehow take advantage of the fact that for each system

matrix multiply (i.e., each time we evaluate Afullbfull), multiple NUFFT’s are computed

and their results are summed. Another approach to reducing design time is to parameterize

RF pulses, for instance using wavelet or spline bases. One could pre-compute the magne-

tization excited by each basis waveform and store the result. Online pulse design would

involve finding (a few) least-squares optimal coefficients for the basis expansion, which

would be chosen to provide as compact a representation as possible.

On a note related to pulse parameterization, another question that may require reso-

lution before parallel excitation achieves widespread adoption is the appropriate choice

of the RF pulse temporal point spread function (PSF’s) in the design process. Tradition-

ally, RF pulse design methods have assumed that the excitation PSF is either a Dirac delta

function, or a boxcar function. Though they can be easily generalized to any point spread

function, our own small- and large-tip-angle pulse design methods have assumed that the

PSF is a Dirac delta function. This assumption has not been problematic to previous re-

searchers since the designed pulses have always been very smooth, e.g., sinc-like, due to

slower traversal through excitation k-space, and any smoothing effected by the RF chain

has little effect. However, in parallel excitation, we have both a faster traversal of k-space,

and the additional sensitivity encoding mechanism, so we can no longer assume that the

designed pulses will be smooth. In my own experience, accelerated pulses can be very

‘spikey’, but the narrow spikes in the pulses are surely smoothed somewhat due to the

finite bandwidth of the RF amplifiers chain. Characterization of the temporal PSF of a

given excitation system may be required to ensure excitation fidelity. The temporal PSF

could probably be measured easily on the bench, using magnetic field probes and an os-
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cilloscope, and should remain relatively consistent from patient to patient (i.e., between

coil loads). Of course, this whole problem is avoided if pulses are parameterized by wide,

smooth basis functions.

Outside the context of our spatial-domain method, there are opportunities to improve

the performance of small-tip-designed pulses in practical situations that may be effectively

addressed by extensions to our method. One problem that users of parallel excitation will

face is uncertainty in the transmit sensitivity patterns. This could be the result of estimation

error, patient motion during readout, and many other sources. It may be possible to design

parallel pulses that are robust to sensitivity errors, for instance by reducing the speedup

factor of a pulse and penalizing for aliased excitation that the design algorithm expects

will be cancelled by another coil, but may not be when the pulses are deployed on the

scanner. Another issue I have found empirically concerns the large-tip-angle performance

of small-tip-designed spiral parallel pulses. The issue is that while an unaccelerated set of

spiral pulses that are designed using the spatial domain method excite a pattern at small tip-

angles that matches the accuracy of a single-channel spiral pulse, when scaled to produce

large-tip-angles, the pulses often excite a distorted pattern compared to the single-channel

pulse. The cause of this is perplexing, since there is no theoretical reason why parallel

pulses would not satisfy the linear class conditions [8]. Instead, I believe the cause is

the design algorithm. While the total RF deposition of pulses designed with the spatial-

domain method would be Hermitian symmetric for a real-valued excitation pattern, it is

likely that along one or more rungs of the spiral, energy is deposited in a non-Hermitian

symmetric manner, that is then expected to be cancelled out by an adjacent rung. Again, it

may be possible to discourage this effect via regularization, for instance by enforcing that

each coil excite a strictly real-valued pattern.
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5.2 Large-tip-angle parallel pulse design

In Chapter II, we analyzed the performance of small-tip-designed parallel pulses at

large-tip-angles, and demonstrated that, even when scaled to 90◦, the accelerated pulses

excited patterns that were highly distorted compared to unaccelerated pulses. This analy-

sis motivated our exploration of large-tip-angle methods, and we have introduced two of

these. Like the spatial-domain method, the additive-angle method introduced in Chapter

III has the advantage of being simple to implement, provided one already has code to de-

sign small-tip-angle parallel pulses, and Bloch simulation code. The method reduces the

number of Bloch simulations required to design a large-tip-angle pulse, compared to com-

peting optimal control-like algorithms [26, 28, 30]. It is also surprisingly robust to design

parameters, such as step size and the initial pulses’ excited flip angle. There are drawbacks

to the method, that we improved upon with the fast optimal control method. The first is

that the additive angle method was not formulated as the minimization of a specific cost

function; instead, it was based on the observation that the squared flip angle error of an

excited pattern can be generally reduced by adding pulses together that excite magneti-

zation with the same phase. In contrast, the fast optimal control method was formulated

as the minimization of a cost function that was a function of magnetization components,

and as a result generally produces more accurate pulses. The optimal control method also

controls excitation phase, which is particularly advantageous in echo-planar pulse designs

in which the initial pulses excite a highly distorted phase pattern. Furthermore, the fast

optimal control method would robustly account for off-resonance during pulse design. In

initial experiments with the additive angle method, I have found that the inclusion of an

off-resonance map can cause the algorithm to diverge. This should not be an issue for

the model-based fast optimal control method, and is a topic of future research. These ad-
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vantages do come at a cost in compute time, as it generally takes longer to design pulses

using the optimal control method. Even before parallel excitation becomes available, the

large-tip-angle algorithms I developed could find applications in single-channel multidi-

mensional pulse design. One example application is the design of fast-kz pulses for B1+

inhomogeneity compensation [27], a problem that has been explored in the small-tip-angle

regime by Stenger et al. Our methods could extend these pulse designs to large-tip-angles.

Other potential applications include reduced-FOV imaging [59,60], in which multidimen-

sional pulses or successive one-dimensional pulses along orthogonal directions are used

to restrict the FOV for decreased scan time, and spectroscopy [61], where the same can be

done to select a voxel.

My future work with large-tip-angle pulse design will focus on gradient waveform de-

sign and optimization. In the small-tip-angle regime, the design of gradient waveforms

can be largely informed by Fourier analysis, though it is somewhat complicated by the

non-Fourier nature of sensitivity encoding. In the large-tip-angle regime, where we do

not have generally have a Fourier relationship between a pulse and its excitation pattern,

gradient optimization techniques stand to make a larger impact. Recently, our group has

demonstrated an extension of the spatial-domain method that jointly designs RF pulses

and the phase-encoding locations of an echo-planar excitation trajectory [62]. The method

calculates parameterizes the echo-planar trajectory, and uses analytical gradient formulas

to optimize encoding locations using gradient descent. Because gradients are computed

with respect to the Fourier kernel, this method does not readily extend to large-tip-angle

pulse design. However, it may be possible to apply the perturbation analysis employed by

the fast optimal control method to the gradient waveforms, and to derive a linear relation-

ship between perturbations in the gradient waveforms and perturbations they produce in

the spinor parameters. Not only would this permit fast gradient waveform design at large-
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tip-angles, it could also be solved using the conjugate gradient algorithm, obviating the

need to choose a step size. Such a technique could also be applied to the small-tip-angle

regime. Another area of investigation is the initialization of large-tip-angle pulse design

methods. Both of the iterative methods presented in this thesis were initialized with small-

tip-designed pulses. Though this may be the best choice of initializer for spiral pulses that

generally behave well at large-tip-angles to begin with, there may be better choices for

other trajectories such as echo-planar.
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