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Abstract 

 

Insulin-stimulated glucose transport is the rate-limiting step in glucose disposal and 

utilization. Insulin increases glucose uptake in fat and muscle through the translocation of 

the insulin-responsive glucose transporter Glut4 to the plasma membrane. Although our 

understanding of the pathways governing this process remain incomplete, small GTPases 

have been implicated as “molecular switches” that operate at the crossroads of insulin 

signaling and Glut4 translocation. This thesis elucidates the role of RalA, a small GTPase 

that regulates an octameric vesicle-tethering complex known as the exocyst during Glut4 

trafficking. 

 

Initial studies on the cell cycle revealed that both RalA and the exocyst are involved in 

trafficking through the recycling endosome. Loss of RalA or the exocyst led to a specific 

blockade in cell abscission, the very last stage of cytokinesis, implying the involvement 

of these proteins in a subset of transport events under tight regulation.   

 

Glut4 traffics through the recycling endosome in adipocytes. We found that RalA resides 

on the Glut4 vesicles and interacts with the exocyst in insulin-responsive cells. Insulin 

activates RalA in a PI-3 kinase-dependent manner. Disruption of RalA function led to 

inhibition of insulin-stimulated glucose transport, as did loss of the exocyst. Furthermore, 

RalA also binds to Myo1c, a molecular motor previously implicated in Glut4 trafficking. 

This interaction is modulated by Calmodulin, which functions as the light chain for 

 ix



Myo1c during insulin-stimulated glucose transport. The data suggested a dual role for 

RalA in insulin action, as a cargo receptor for Myo1c and a signal to unify the exocyst.  

 

The architecture of the exocyst complex was further dissected with RalA mutants 

uncoupled from one branch of its effectors, including the two exocyst subunits Sec5 and 

Exo84. We found that both subunits are required for exocyst function in glucose transport; 

however, they belong to different branches of the exocyst complex that also contain 

overlapping subunits. Furthermore, three exocyst subunits Sec8, Sec6, and Sec5 form a 

sub-complex that targets RalA-localized vesicles. 

 

Taken together, these data suggest that RalA integrates upstream signaling from the 

insulin receptor to mobilize downstream transport machineries, leading to the specificity 

required for the actions of insulin.  
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Chapter 1 

Introduction 

 

Diabetes Mellitus is a metabolic disorder characterized by elevated blood glucose and 

dyslipidemia. Chronic diabetes can be categorized into two major forms, type 1 and type 

2. While both disorders present with hyperglycemia and a similar sequelae of 

complications, including increased risk of cardiovascular disease and stroke, renal disease, 

blindness, and neuropathy [1], their etiologies are unrelated. Type 1 diabetes, which only 

accounts for ~5-10 % of diabetes in the U.S., results from autoimmune destruction of 

pancreatic β-cells. In contrast, type 2 diabetes occurs due to a combination of reduced 

insulin sensitivity and insulin secretion. Type 2 diabetes is a leading cause of mortality 

and morbidity worldwide. There were an estimated 143 millions people affected by the 

disease by the year 2003 [1], and this number is projected to double to 300 million by the 

year 2025 [2]. Type 2 diabetes occurs over a continuum of worsening insulin resistance.  

Eventually the beta cells of the endocrine pancreas become unable to compensate for the 

increased demand for insulin, and a period of decompensation occurs, leading to impaired 

glucose tolerance, and eventually frank diabetes [3]. In this regard, insulin resistance 

normally precedes β-cell failure [4], making the former the first lesion in the pathogenesis 

of type 2 diabetes. Therefore, a better understanding of the molecular mechanisms of 

insulin action may help in the development of new therapeutic strategies for this disease.  
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Insulin is the most potent anabolic hormone known, promoting the storage and synthesis 

of lipids, protein, and carbohydrates and inhibiting the breakdown and release of these 

molecules into the circulation, thus produces a net gain in energy intake and storage [5]. 

In muscle and fat tissue, the first and rate-limiting step in this energy surplus involves 

facilitated glucose uptake; a process mediated by the glucose transporter Glut4 [6]. 

Insulin accelerates the endocytic recycling of Glut4 to the plasma membrane, thus 

stimulating gluocose clearance from the circulation. 

 

THE INSULIN-RESPONSIVE GLUCOSE TRANSPORTER GLUT4 

 

Glut4 (Figure 1.1), encoded by the gene SLC2A4, belongs to a family of facilitative 

sugar transporters that contain 12 transmembrane domains [6, 7]. These proteins catalyze 

hexose transport across the bi-layer cell membrane in an ATP-independent, facilitative 

diffusion manner [8]. Glut4 is the only family member that displays responsiveness to 

insulin stimulation by changing its cellular localization [7, 9]. Moreover, the tissue 

distribution, transcriptional control, as well as protein stability of Glut4 highly correlates 

with insulin signaling and its regulation of energy metabolism [7, 9]. Therefore, Glut4 

represents a key player in maintaining whole body glucose homeostasis.  

 

The key role played by Glut4 is evident in various mouse models in which Glut4 has 

been specifically ablated [10].  Whole body Glut4 knockout (Glut4 -/-) mice display 

growth retardation, with markedly reduced adipose mass, cardiac hypertrophy, and 

shortened life span [11]. Surprising, these mice do not develop diabetes, possibly due to  
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Figure1.1 Schematic view of the Glut4 transporter The GLUT family of proteins is 
comprised of 13 members, all of which are 12-span trans-membrane proteins with both 
amino- and carboxyl-termini located in the cytosol. Based on their sequence homology, 
these transporters have been catogorized into three subclasses: Class I (GLUTs 1–4) are 
glucose transporters; Class II (GLUTs 5, 7, 9 and 11) are fructose transporters; and Class 
III (GLUTs 6, 8, 10, 12 and HMIT1) are structurally atypical members of the GLUT 
family, whose properties and functions are poorly studied to date. The diagram shows a 
homology plot between GLUT1 and GLUT4. Residues that are unique to GLUT4 are 
shown in red. (Figure adapted from Byrant et al, Ref. 7) 
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compensatory mechanisms that are required to promote survival of these animals [11, 12]. 

Heterozygous Glut4-null (Glut4 +/-) mice develop insulin resistance with an increased  

tendency to become diabetic [13-15]. The role of Glut4 in glucose homeostasis is further 

supported by its conditional depletion from muscle or adipose tissue. Deletion of Glut4 in 

muscle, the organ primarily responsible for the largest amount of insulin-stimulated 

glucose disposal, causes insulin resistance and more frequent diabetes [16]. Intriguingly, 

loss of Glut4 in adipose tissue leads to a similar metabolic disorder [17], despite the fact 

that adipose tissue accounts for only a small portion of insulin-stimulated glucose 

clearance [18]. This indicates crosstalk between different organs in metabolic regulation 

[19-22], and further that Glut4 plays a role as a gatekeeper for energy sensing in 

adipocytes. Furthermore, adipose-specific transgenic over-expression of Glut4 in Glut4 

+/- mice largely reverses the insulin resistant phenotype and prevents the development of 

diabetes [23]. Consistent with this, over-expression of Glut4 in skeletal muscle or adipose 

tissue on a wild type background results in improved insulin sensitivity and glucose 

tolerance [24, 25]. Taken together, these genetic models implicate a pivotal role of Glut4 

in whole body glucose metabolism. 

 

CELLUAR MACHINERIES THAT PARTICIPATE IN GLUT4 TRAFFICKING 

 

Given the importance of Glut4 in glucose homeostasis, much attention has focused on the 

molecular mechanisms by which insulin regulates the function of this protein. Insulin 

increases glucose uptake mainly by producing the translocation of the Glut4 proteins to 

the plasma membrane, rather than by increasing the intrinsic activity of the transporter  
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Figure 1.2 Itinerary of Glut4 trafficking In the basal states, Glut4 resides on the 
intracellular Glut4 Storage Vesicles (GSVs), which undergo dynamic exchanges with the 
recycling endosome (RE) and/or the trans-Golgi-network (TGN). The insulin-responsive 
Glut4 vesicles (IRVs) are thought to bud directly from GSVs or the recycling endosome 
(RE), a step that may involve the TGN as well. Upon activation of the insulin receptor by 
insulin, these insulin-responsive Glut4 vesicles undergo a rapid and robust re-location 
towards the plasma membrane. These Glut4 vesicles then dock and fuse with the plasma 
membrane, resulting in extracellular exposure of Glut4 and thus glucose uptake into cells. 
Glut4 on the cell surface then undergoes endocytosis via a clathrin-mediated process, and 
undergoes resorting to re-generate the insulin-responsive Glut4 vesicles.  
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[5, 26]. Furthermore, Glut4 trafficking represents one of the best studied examples of 

endocytic recycling of membrane proteins (Figure 1.2) [7, 27, 28]. In the basal state, 

Glut4 is largely retained in intracellular vesicles, which may undergo a futile cycle with 

the endocytic compartments and perhaps the trans-golgi-network (TGN) [7]. The insulin-

responsive Glut4 vesicles are thought to bud directly from the recycling endosome (RE) 

[27], a step that may involve the TGN as well [7]. Upon activation of the insulin receptor 

by insulin, these insulin-responsive Glut4 vesicles undergo a rapid and robust re-location 

towards the plasma membrane, a step involving molecular motors of the kinesin and 

myosin family [6]. The Glut4 vesicles then dock and fuse with the plasma membrane, 

resulting in extracellular exposure of Glut4 and efficient glucose uptake into cells [5, 29, 

30]. Glut4 on the cell surface then undergoes endocytosis via a clathrin-mediated process, 

and resorted to re-generate the insulin-responsive Glut4 vesicles [26, 30]. In general, 

insulin accelerates the exocytosis rate of Glut4 by 10-20 fold, while slightly decreasing 

the endocytosis rate of Glut4 by 1-2 fold, in the process leading to a large increase of 

plasma membrane-localized Glut4 [6].  

 

Composition and Biogenesis of Intracellular Glut4 Storage Compartments 

The first lines of evidence indicating the translocaton of Glut4 came from the reports that 

insulin causes re-distribution of “glucose transport activity” from intracellular 

compartments to the plasma membrane [31, 32]. This idea was certainly supported when 

five independent groups identified and cloned the insulin-responsive glucose transporter 

Glut4 in 1989 [33-37]. To date, compelling evidence has suggested that Glut4 is localized 

on intracellular membrane compartments referred to as Glut4 storage vesicles (GSV), and 
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further sorted into specialized insulin-responsive vesicles (IRV).  The latter population of 

vesicles then translocate to the plasma membrane upon insulin stimulation [7]. However, 

the exact identities and properties of the GSVs or IRVs remain elusive, largely due to the 

dynamic nature of these membrane compartments [27, 38].  

 

Early studies compared membrane compartments containing Glut4 with vesicles 

characterized in the secretory pathways, particularly since adipocytes also release several 

classes of secretory proteins in response to insulin [39, 40]. However, none of the 

proteins studied, including adipsin, leptin, lipoprotein lipase, and adiponectin, displayed 

functional overlap with Glut4 vesicles [41-45], reflecting the differences in trafficking 

routes between trans-membrane proteins such as receptors or transporters and soluble 

secretory proteins [28]. Indeed, many trans-membrane proteins undergo endocytic 

recycling that enables efficient recycling of the existing proteins after exocytosis [27, 28], 

while secretory proteins normally utilize the bio-synthetic route to load the vesicular 

carriers for release to the extracellular environment [28]. Consistent with this notion, 

Glut4 is still efficiently internalized in the presence of insulin, and only ~30-50% of total 

protein is present on the plasma membrane in this state [7, 27].  

 

The insulin responsive Glut4 vesicles are thought to be generated from either the 

recycling endosome or the trans-golgi network [46-50], and undergo a futile cycle with 

these compartments in the basal state [7, 27]. A portion of Glut4 vesicles contain 

endosome markers such as the Transferrin Receptor (TfR) and VAMP3 [47, 48], while 

others contain TGN markers such as Syntaxin6 or Syntaxin16 [51-53]. However, further 
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dissection of the trafficking itinerary of Glut4 at this level has been unsuccessful, 

possibly due to the overlapping and dynamic nature of these membrane compartments [7]. 

Nevertheless, several elegant studies using compartment ablation have found that a 

portion of Glut4 is packaged into specialized vesicle populations that are segregated from 

the general endocytic or TGN vesicles [54-56].   

 

Although the exact composition of insulin-responsive Glut4 vesicle remains to be 

characterized, a number of proteins have been reported to be integral components of these 

vesicular compartments [57, 58]. Among them, the insulin-regulated amino peptidase 

(IRAP) has been characterized as a major IRV protein [59-62]. IRAP is a 165 Kd type II 

trans-membrane protein with a 109-amino acid long cytosolic tail at its N-terminus [63]. 

IRAP has been shown to cleave vasopressin, oxytocin, lys-bradykinin, met-enkaphalin, 

dynorphin, and angiotensin III and IV, and possibly work as an angiotensin IV receptor 

[63, 64]. Interestingly, IRAP-null mice show decreased Glut4 vesicles and Glut4 protein 

levels in various tissues including adipose tissue, muscle, and heart [65]. This suggests a 

possible role of IRAP in biogenesis of Glut4 vesicles or maintaining the integrity of these 

vesicles. In addition, IRAP has been shown to directly interact with the Akt kinase 

substrate AS160 [66, 67], a protein involved in Glut4 vesicle trafficking [68]. 

Nevertheless, IRAP-null mice appear to have normal glucose metabolism, suggesting 

potential compensatory mechanisms for the loss of this protein [65].  

 

Sortilin is another major protein component of Glut4 vesicles [48, 69, 70], and has 

recently been shown to be both essential and sufficient to generate insulin-responsive 
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Glut4 vesicles [71]. Sortilin is a type I membrane receptor containing an N-terminal furin 

cleavage site, a trans-membrane domain [72], and an acidic C-terminal luminal domain 

that is homologous to that of the yeast vacuolar protein sorting receptor, VPS10 [73-75]. 

Intriguingly, this intra-luminal VPS10 domain of sortilin appears to play a predominant 

role in targeting to the Glut4 vesicles [71]. Furthermore, the role of sortilin in generating 

Glut4 vesicles may involve its interaction with the Golgi-localized γ-ear-containing Arf-

binding proteins (GGA) of coat adaptor proteins [30, 76, 77], although GGA proteins 

have only been suggested to play a role in sorting of newly-synthesized Glut4 [30, 78, 

79]. On the other hand, sorting of recycled Glut4 may involve AP-1 adaptor proteins [80, 

81] or ACAP1 and coat proteins such as clathrin [82].  

 

Compared to vesicle carriers such synaptic [83] or COPI/COPII vesicles [84, 85], GSVs 

or IRVs remain poorly characterized. One would predict that these vesicles contain 

phosphatidylinositol phosphates and enzymes that modify these lipids, small GTPases of 

Rab or Arf family, SNARE proteins, and target proteins of insulin signaling [83-85]. 

However, the function of most of these molecules in regulating Glut4 vesicles has only 

been studied sparsely, thus may represent an area that deserves future investigation.  

 

Transport of Glut4 Vesicles along the Cytoskeleton Network Is Mediated by 

Molecular Motors 

Numerous studies have demonstrated that many types of organelle transport in eukaryotic 

cells are powered by molecular motors along cytoskeleton tracks including the 

microtubule and actin filaments, particularly when efficient, high-speed transport is 
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desired [86-90]. Early studies supported the involvement of the cytoskeleton network in 

insulin-stimulated glucose transport and Glut4 trafficking [91-93]. Consistent with this, 

recent work has suggested motor proteins of three classes- kinesins, myosins, and 

dyneins- are involved in different aspects of Glut4 trafficking.  

 

Kinesins represent the largest class of molecular motors that mediate transport along the 

microtubules [94, 95]. Although early studies suggested a role for kinesin motors in 

Glut4 trafficking [93], the specific isoforms involved have not been elucidated. Czech 

and colleagues reported the involvement of Kif5B/Kinesin I in Glut4 trafficking to the 

plasma membrane, since this isoform appears to be highly expressed in adipocytes and 

over-expression of dominant-negative mutants of conventional kinesin light chain 

blocked outward GLUT4 vesicle movements and translocation to the plasma membrane 

in response to insulin [96]. Work from Olefsky’s group suggested another kinesin 

isoform, Kif3/Kinesin II, is also important for transporting Glut4 vesicles to the plasma 

membrane [97]. Interestingly, recent studies have suggested that Kif3 associates with the 

polarity protein complex Par3/Par6/aPKC via a direct interaction through Par3 [98, 99]. It 

is noteworthy that the latter protein complex has been reported to play an important role 

in insulin-stimulated glucose transport [100, 101]. Thus, it will be of interest to determine 

whether the Par3/Par6/aPKC complex may regulate the function of Kif3 in transporting 

Glut4 vesicles in response to insulin. 

 

Cytoplasmic dynein is a multimeric protein complex comprised of two heavy chains 

containing microtubule motor activity, and several intermediate, light intermediate, and 
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light chains [102, 103]. In most if not all cases, dynein-mediated transport involves 

another multimeric protein complex called dynactin to mediate the cargo-motor 

interaction [104]. Cytoplasmic dynein mediates movements towards the minus-end of 

microtubules, and is thus generally thought to function in the recycling of cargoes back to 

the intracellular compartments such as the recycling endosome or TGN [102, 103]. 

Alternatively, dynein activity is also important to maintain the organization of 

intracellular compartments, possibly through the mechanic force generated via 

attachment to the microtubule network [105-107]. Consistent with these observations, 

inhibition of dynein activity by brief cytoplasmic acidification of 3T3-L1 adipocytes 

dispersed perinuclear Glut4 localization and inhibited insulin-stimulated Glut4 

translocation to the cell surface [92]. Moreover, microinjection of a dynein antibody in 

adipocytes inhibited internalization of Glut4 from the plasma membrane, and increased 

Glut4 levels on the plasma membrane in the basal state [108]. Surprisingly, this antibody 

did not inhibit insulin-stimulated Glut4 translocation to the plasma membrane [108], as 

one would predict internalization of Glut4 might be important for its recycling and 

resorting. In this regard, further studies to establish the exact role of dynein motor and its 

associated proteins such as the dynactin complex in Glut4 trafficking will be enlightening. 

 

Myosins form a super-family of actin-based motor proteins that consist of 15 distinct sub-

families [109]. The conventional myosins were initially found in muscle tissues and to 

mediate muscle contraction [110]. Although this class of myosins is also found in non-

muscle tissue culture cells, their primary function is to regulate cytoskeleton dynamics 

rather than having a direct role in cargo transport [110]. On the other hand, a large 
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number of unconventional myosins have been suggested to play an important role in 

powering vesicle movement on the actin filaments [109, 111]. Among these, Myo1c 

[112-115] and Myosin 5a [116]have been shown to mediate transport of Glut4 vesicles. 

The first line of evidence implying a role of Myo1c in Glut4 trafficking came from the 

fact this motor protein is present in membrane fractions resembling insulin-responsive 

Glut4 vesicles [112]. Furthermore, disruption of Myo1c function by dominant negative 

mutants or siRNA-mediated knockdown attenuated insulin-stimulated glucose transport 

[112, 115]. This role of Myo1c in insulin action may require its binding to PI (4,5)P2 

through the C-terminal tail region [114, 117, 118]. Nevertheless, it is not clear how 

Myo1c may recognize the Glut4 vesicles. In Chapter 3, I will discuss the role of RalA 

GTPase as well as Calmodulin in bridging Myo1c to its cargo vesicles. Yoshizaki et al. 

reported that Myosin 5a is an Akt2 substrate that modulates Glut4 vesicle translocation. 

Insulin stimulates Myosin 5a phosphorylation on Ser1650 via Akt2, and this appears to 

enhance the ability of Myosin 5a to bind actin filaments [116]. Inhibition of Myosin 5a 

function leads to blockade of insulin-stimulated glucose transport [116]. However, 

phosphorylation on Ser1650 on Myosin 5 has been suggested to uncouple this motor 

from its cargo vesicles [119, 120]. Thus, the exact mechanism underline the involvement 

of Myosin 5a in insulin action requires further attention.  

 

Tethering/Targeting of Glut4 Vesicles Mediated by the Exocyst Complex  

Most, if not all, vesicular transport events require a step called tethering, following the 

delivery by molecular motors on cytoskeleton tracks but preceding the final fusion with 

the target membrane [85, 121, 122]. Vesicle tethering is then defined as the physical 
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interaction between the vesicles and target membrane at some distance and perhaps with 

some flexibility and reversibility [121]. In this regard, tethering factors are normally 

protein complexes comprised of multiple long coiled-coil subunits that undergo dynamic 

assembly cycles [122]. Furthermore, these complexes are able to respond to specific 

small GTPases localized to unique compartments, suggesting that vesicle tethering also 

contributes to the specificity of vesicle transport, in the process serving as a targeting 

mechanism [121, 123-125]. 

 

Although a detailed mechanism underling vesicle tethering has not been well 

characterized, numerous studies have demonstrated this step is an essential and integral 

component for vesicle transport to various destinations [85, 121, 122]. Consistent with 

this, multiple vesicle tethering complexes have been identified as regulators of vesicle 

targeting at specific cellular compartments [122]. These include the COG complex [126], 

the GRAP complex [127-129], and TRAPP I and II complexes that control tethering at 

Golgi apparatus [130-132]; the class C VPS proteins that regulate targeting on yeast 

vacuolar membranes [133-135]; and the exocyst complex that directs exocytic vesicles to 

the plasma membrane [121, 136]. Importantly, although most of these proteins were first 

identified in yeast as critical regulators of specific trafficking routes, they display high 

evolutionary similarity in primary sequences, complex organization, and roles in specific 

trafficking events [122]. Among these, the only known tethering complex at the plasma 

membrane is the exocyst, a protein complex that also works to target the Glut4 vesicles to 

fusion sites on the plasma membrane in adipocytes [137-140]. Intriguingly, recent studies 

have suggested that docking and the subsequent fusion step might represent the rate-
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limiting step in insulin signaling in both cultured and primary adipocytes, thus pointing to 

an pivotal role of vesicle targeting by the exocyst in this process [141-144].  

 

The exocyst was first discovered by Schekman and Novick through genetic screens to 

identify temperature-sensitive secretory (sec) mutant in budding yeast [145-149]. Six sec 

genes, namely Sec3, Sec5, Sec6, Sec8, Sec10, and Sec15, were found to encode proteins 

that exist in a complex to target secretory vesicle to the plasma membrane [150-152]. It 

was later found that the complex contains two additional subunits, Exo70 [151] and 

Exo84 [153]. Importantly, all of these proteins are conserved in the mammalian exocyst 

complex, which was purified from rat brain shortly after discovery of the yeast exocyst 

complex [154, 155], suggesting an evolutionarily conserved role of exocyst in multiple 

organisms. Most of genes encoding the exocyst protein are found to be essential even in 

yeast [156], and loss of several of these proteins in higher organisms also leads to 

embryonic lethality [157-159].  

 

The function and regulation of the exocyst complex has been best studied in budding 

yeast. Upon disruption of the exocyst function in this model organism, the secretory 

vesicles continue to form and are delivered to the sites of exocytosis; however, their 

plasma membrane fusion is blocked [160], as is the formation of the cognate SNARE 

complex [161]. Furthermore, the exocyst proteins genetically and biochemically interact 

with the SNARE proteins [162], and their regulators including Lgl [163] and Sec1, the 

only Sec1/Munc18 family protein that regulates the plasma membrane SNARE complex 

in yeast [164]. This suggests that the primary function of the exocyst is to bridge the 
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exocytic vesicles to their target sites at the plasma membrane, and perhaps prepare them 

for fusion [121]. This notion is supported by studies on the trafficking itinerary of the 

yeast exocyst proteins themselves. Although all exocyst proteins are highly concentrated 

in exocytosis sites like the bud tips, they appear to arrive there via different mechanisms- 

six of the exocyst subunits ride on the exocytic vesicles [165], while Sec3 localizes to the 

exocyst sites on the plasma membrane independent of vesicle trafficking [166, 167], and 

Exo70 seems to use both mechanisms for reaching exocyst sites [165].  

 

Consistent with the idea that the exocyst works to bridge vesicles to the plasma 

membrane, studies in yeast have shown that the subunits of exocyst proteins are anchored 

by different small GTPases on both membrane compartments (Figure1.3) [168, 169]. In 

essence, Sec3, and to some extent Exo70, is recruited to the plasma membrane by 

activated Cdc42 or Rho3, and serve as the landmark for exocytosis sites [168, 170, 171]. 

On the vesicle end, another activated GTPase Sec4 recruits a sub-complex containing 

Sec15, Sec10, Sec8, Sec6, Sec5, Exo84, and a pool of Exo70 to the vesicular membranes, 

via a direct interaction with Sec15 [165, 172]. Additionally, Exo70 appears to interact 

with phospholipids such as PI (4,5)P2, which may also contribute to the membrane 

localization of the protein [173, 174]. Thus, the assembly between the vesicle-localized 

exocyst subunits and those at the plasma membrane tethers vesicle to specific sites 

marked by the activated Rho GTPases and perhaps phospholipids [121]. Furthermore, 

this process is somewhat dependent on the integrity of actin cytoskeleton [166], and 

powered by the molecular motor Myo2 [165, 175-177], which is recruited to the vesicles 
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Figure1.3 Potential mechanisms that regulate the function of the exocyst complex 
during vesicle targeting in yeast The exocyst is anchored on both plasma membranes 
and the vesicular membranes via interactions with distinct small GTPases that are 
spatially activated. Part of the exocyst complex including Sec3 and Exo70 is recruited to 
the plasma membrane by activated Rho family GTPases including Cdc42 and Rho3. On 
the vesicle end, another activated GTPase Sec4 recruits the exocyst subunits including 
Sec15, Sec10, Sec5, Sec6, Sec8, Exo84, and a pool of Exo70 to the exocytic vesicles. 
The assembly of the holo-complex thus bridges the exocytic vesicles to the exocytosis 
sites on the plasma membrane. Additionally, Sec4 inteacts with the molecular motor 
Myo2 complex, which mediates the delivery of Sec4-residing vesicles along the actin 
cables. (Figure modified from Boyd et. al, Ref. 165) 

 16



by Sec4 in complex with the myosin light chain Mlc1 [178, 179]. In this way, the exocyst 

not only contributes to the specificity of vesicle transport to the plasma membrane, via 

responding to signals that activate specific GTPases; but also enhances the overall 

velocity of this process; by coordinating the function of the molecular motor Myo2.  

 

In eukaryotic organisms, the exocyst seems to adapt a more specialized function in the 

endocytic recycling pathway but not the secretory pathway [180-182], despite 

maintaining an architecture similar to its counterpart in yeast [136, 154, 155]. This was 

first suggested by genetic studies on Sec5 null flies [157, 158]. Loss of Sec5 caused 

lethality in files; however, in cultured neurons, only membrane protein insertion on the 

plasma membrane was impaired, but neurotrasmitter release was intact [157, 158]. 

Consistent with this, loss of Sec15 in flies causes a targeting defect of photoreceptors that 

coincides with mis-localization of specific cell adhesion and signaling molecules [183, 

184]. This defect is likely due to disruption of endocytic recycling of Notch signaling 

components [183, 185]. In addition, loss of function of exocyst components Sec5, Sec6, 

and Sec15 in Drosophila epithelial cells results in DE-Cadherin accumulation in an 

enlarged recycling endosomal compartment and inhibits DE-Cadherin delivery to the 

membrane [186]. Finally, a mutant form of the mammalian Sec15 isoform leads to 

anemia in hemoglobin deficient (hbd) mice, due to impaired endocytic recycling of the 

transferrin receptor. Taken together, these genetic studies unanimously point to a specific 

role of the exocyst in regulating plasma membrane targeting of membrane proteins in the 

endocytic recycling pathway [187-189].  
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The role of the exocyst in endocytic recycling is also supported by cell biology studies in 

different cellular contents. The exocyst is required for trafficking to the basal-lateral 

membrane in epithelial cells, but perhaps not for that to the apical domain [190, 191]. 

Consistent with this, trafficking of E-cadherin, a basal-lateral membrane-localized protein 

that undergoes endocytic recycling, is dependent on the function of the exocyst [192-194]. 

The exocyst also plays an essential role in mammalian cell cycle progression, particularly 

during the last stage of cytokinesis, the abscission [195-197]. These observations are 

consistent with the idea that the exocyst mediates vesicle transport to specific domains on 

the plasma membrane. Furthermore, the exocyst appears to be involved in phagocytosis, 

a process that also involves concentrated endocytic recycling to the sites of phagosome 

formation [198].  

 

Despite the importance of the exocyst in vesicle transport to the plasma membrane, it 

only regulates the targeting of a subset of proteins rather than being an absolute 

requirement for general trafficking [180-182]. The first indication that the exocyst 

regulates a unique set of membrane trafficking events came from cell cycle studies. 

Unlike many proteins involved in vesicle transport during cell cycle, loss of the exocyst 

function leads to a very specific blockade of abscission, rather than disruption of the early 

steps in mitosis or cytokinesis that could be caused by global inhibition of membrane 

transport [196, 197]. This implies that the exocyst only participates in trafficking of 

proteins that are under tight regulation, particularly since abscission represents the final 

separation of two dividing cells [199, 200]. This idea is further supported by studies in 

specialized cell types such as adipocytes, in which both hormone-stimulated, rapid 
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exocytosis and general trafficking/secretion exist [38, 40]. In this regard, studies have 

demonstrated that the exocyst is involved in insulin-stimulated Glut4 trafficking to the 

plasma membrane, but not in recycling of the transferrin receptor or secretion of certain 

adipokines in adipocytes [138].  

 

The differences in the involvement of the exocyst in certain trafficking processes are at 

least partly due to the mechanisms underlining the mobilization of the complex [168, 

169]. Similar to the yeast complex, the mammalian exocyst interacts with a number of 

small GTPases in their active states, including TC10 [139, 201], RalA [202-204], Rab11 

[185, 205], and Arf6 [206]. Hence, mobilization of the exocyst may require activation of 

signaling cascades that promote the activity of these GTPases, thus restricting the 

employment of exocyst in rapid exocytosis that tightly regulated by hormones. Consistent 

with this hypothesis, I will discuss how the function of the exocyst is regulated via the 

action of RalA GTPase in the latter part of the thesis.   

 

Plasma Membrane Fusion of Glut4 Vesicles is Mediated by the SNARE Complex 

and Associated Proteins 

Fusion between two membranous cellular compartments such as vesicles and their target 

membrane organelle, are catalyzed by a protein complex named the SNARE complex 

[207, 208]. The first indication for the presence of proteins that specialized in catalysis of 

membrane fusion came from studies aiming to reconstitute Golgi transport in vitro [207]. 

Two cytosolic proteins, the N-ethylmaleimide (NEM)-sensitive fusion protein (NSF) and 

the soluble NSF attachment proteins (SNAPs), were identified in membrane fusion in 
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Golgi-derived membrane compartments. Subsequently, membrane receptors for these 

cytosolic factors were discovered and named as SNAREs for Souble NSF Attachment 

protein REceptors [207, 208].  

 

Based on their different sub-cellular localization, the SNARE complex can be classified 

into two categories: the t-SNAREs that localize on the target membrane, and the v-

SNAREs that reside on the vesicles [209]. T-SNAREs include members of the Syntaxin 

family, as well as their binding partners SNAP-25 or SNAP-23 (here SNAP stands for 

synaptosome-associated protein, but not soluble NSF attachment protein); v-SNAREs are 

comprised of members of the VAMP proteins [208]. Membrane fusion is catalyzed by the 

formation of the cognate SNARE complex between the t- and v-SNAREs. This was best 

illustrated by several biophysics and structural studies, which have shown that cognate v- 

and t-SNAREs interact through coiled-coil domains to form a very stable four-helix 

bundle sufficient to overcome the energetic barrier of membrane fusion [210, 211]. 

Subsequently, the SNARE complex is disassembled through ATP hydrolysis of the 

ATPase NSF, thereby freeing the SNARE proteins for recycling and the next round of 

membrane fusion [208, 210, 211]. 

 

Syntaxin4 and SNAP-23 are the t-SNARE proteins implicated in Glut4 plasma 

membrane fusion [212]. Introduction of the cytosolic domain of Syntaxin4 into 

adipocytes blocked Glut4 translocation to the plasma membrane [213]. Similar inhibitory 

effects were observed by injection of a blocking antibody against Syntaxin4 [214]. In 

addition, while Syntaxin4 homozygous knockout mice are not viable, Syntaxin4 
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heterozygous mice appear to have impaired insulin-stimulated glucose transport in 

muscle [215]. Consistent with this, SNAP-23, which interacts with Syntaxin4 in 

adipocytes, has also been implicated in Glut4 vesicle fusion with the plasma membrane 

after insulin stimulation [216]. 

 

Both VAMP2 and VAMP3 have been suggested as potential v-SNAREs that regulate the 

plasma membrane fusion of Glut4 vesicles [213]. Both VAMP proteins co-localize with 

Glut4 on intracellular vesicles, and their plasma membrane localization is increased after 

insulin stimulation [48]. In addition, due to their similarity in the Syntaxin-binding 

coiled-coil domain in the C-terminus, both proteins are able to form a functional SNARE 

complex with Syntaxin4 [213, 217]. In this regard, over-expression of the cytosolic 

domain of either VAMP2 or VAMP3 inhibits Glut4 translocation to the plasma 

membrane [213]. Nevertheless, VAMP2 and VAMP3 appear to mark different vesicular 

compartments, probably due to differences in the N-terminus primary sequences of these 

two proteins [218, 219]. Indeed, membrane compartment ablation studies showed that 

VAMP3 localizes predominantly to endosomal compartments defined by the transferrin 

receptor. Although these compartments contain a portion of GLUT4, only a minor 

fraction of the total population of VAMP3 is found [218, 220, 221]. Furthermore, ablation 

of the endosomal population enriched for VAMP3 and the transferrin receptor results in a 

minor effect on insulin-stimulated GLUT4 translocation [220]. Consistent with this idea, 

mice lacking VAMP3 appear to have normal glucose metabolism [222]. Nevertheless, 

loss-of-function studies on VAMP2 in animal or cellular models of glucose transport 

have not been evaluated due to the fact that VAMP2 null mice are not viable [223].  
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Although the SNARE proteins may represent the minimal requirement for membrane 

fusion, their in vivo functions are tightly regulated by associated proteins in specific 

trafficking processes, particularly by proteins from the Sec1/Munc18 family [68, 224]. 

Munc18c of the Sec1/Munc18 family and Synip have been reported to modulate the 

function of VAMP2-Syntaxin4-SNAP23 complex during plasma membrane fusion of 

Glut4 vesicles [68]. Sec1 was first identified in yeast as a critical regulator of vesicle 

fusion on the plasma membrane, and was subsequently shown to bind the assembled 

SNARE complex [145, 147, 225]. Homologous proteins of Sec1 were found be play an 

evolutionarily conserved role in mediating vesicle fusion at the plasma membrane [224]. 

However, nSec1/Munc18a, the neuron-specific isoform of Sec1/Munc18 family was 

reported to only bind to Syntaxin and compete with VAMPs for this interaction [226]. In 

this regard, Munc18 isoforms were regarded as negative regulators that prevent the 

formation of cognate SNARE complex. A similar model was proposed for Munc18c, the 

ubiquitous isoform of Munc18 family that is also involved in insulin-stimulated Glut4 

trafficking[212, 227-230]. Over-expression of full length Munc18c in adipocytes inhibits 

insulin-stimulated glucose transport [228]. In addition, adipocytes differentiated from 

Munc18c-null MEFs show increased sensitivity to insulin-stimulated GLUT4 

externalization, while the knockout animal is not viable [231]. Nevertheless, it is 

noteworthy that loss of Munc18c leads to decrease cellular levels of Syntaxin4, an 

essential component of the SNARE complex, thus it is not entirely clear whether or how 

loss of Munc18c actually leads to increased formation of the cognate SNARE complex 

[231]. Furthermore, Munc18c heterozygous mice display significantly decreased insulin 
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sensitivity in the insulin tolerance test and a >50% reduction in skeletal muscle insulin-

stimulated GLUT4 translocation when compared with wild-type mice [232]. This 

indicates that, in contrast to what was originally proposed, Munc18c may actually serve 

as a positive regulator of the SNARE complex. Consistent with this idea, a recent study 

revealed that Munc18a is able to bind the assembled SNARE complex and acts as a 

stimulatory subunit of its cognate SNARE fusion machinery [233]. Similarly, Munc18c 

interacts with both the monomeric Syntaxin4 as well as the assembled Syntaxin4-

VAMP2-SNAP23 complex [234-236]. In summary, although Munc18c has been 

domonstrated to play an essential role in facilitating Glut4 vesicle fusion with the plasma 

membrane, the exact mechanism involved in the process remains to be elucidated. 

 

An additional Syntaxin4 binding protein involved in insulin action is Synip, which was 

identified using Syntaxin4 as a bait protein in yeast two-hybrid screen [237]. Synip 

contains a PDZ and EF hand domain at the N-terminus, two tandem coiled-coil domains 

in the middle, and a WW motif at its C-terminus. Insulin induces a dissociation of the 

Synip-syntaxin 4 complex. In contrast, the carboxyterminal domain of Synip does not 

dissociate from syntaxin 4 in response to insulin stimulation and inhibits insulin-

stimulated glucose transport [237].  

 

Endocytosis of Glut4 Mediated by Clathrin-dependent Mechanisms 

Compared to the exocytosis of Glut4, the endocytosis of the transporter is less well 

understood. Theoretically, endocytosis of Glut4 is an integral part of the Glut4 trafficking 

itinerary, particularly for the recycling of the transporter and the re-generation of exocytic 
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vesicles [238]. Furthermore, decreasing the internalization rate of Glut4 on the plasma 

membrane may lead to increased glucose uptake, assuming that Glut4 is not required for 

intracellular delivery of glucose [26].  

 

Although it is widely accepted that insulin stimulation increases the exocytosis rate of 

Glut4, whether insulin stimulates or inhibits Glut4 endocytosis rate is controversial, 

perhaps due to the small extent of changes (~ 2 fold regardless of increase or inhibition) 

exerted by insulin [7, 27, 238]. Nevertheless, several studies suggest that endocytosis of 

Glut4 is mediated by a clathrin-dependent mechanism [239, 240]. For instance, Glut4 is 

localized to clathrin-coated pits by immuno-fluorescence and electron microscopy [239, 

240]. Also, inhibition of Clathrin function via several methods also prevents Glut4 

endocytosis [241, 242].  

 

Like most proteins that undergo clathrin-dependent internalization, the endocytosis of 

Glut4 is mediated by the large GTPase dynamin [26, 243]. Dynamin contains an amino-

terminal GTPase domain, a central pleckstrin homology domain, and a carboxyl-terminal 

proline-rich region [244]. The function of dynamin in endocytosis was first observed in 

studies examining the dynamin homolog shibire in flies [245]. Temperature-sensitive 

mutations in shibire result in a paralytic phenotype at the non-permissive temperature, 

due to the absence of synaptic vesicles and an abundance of clathrin-coated pits in the 

pre-synaptic regions of these flies [246]. Furthermore, these clathrin-coated pits are found 

to have electron-dense collars around their necks, suggesting that a late stage of 

endocytosis was inhibited [246]. This defect resulted from altered GTPase activity of 
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dynamin, as the shibire temperature-sensitive mutation occurs near the GTPase domain. 

Furthermore, experiments employing GTP S, the non-hydrolysable analogy of GTP, also 

suggest that dynamin’s GTPase activity was necessary for the vesicle scission after 

invagination of clathrin-coated endocytic vesicles [247, 248]. It has been proposed that 

GTP hydrolysis by dynamin leads to a conformational change of the protein such that the 

necks of invaginating vesicles are constricted to the point where membrane scission 

occurs and free vesicles released [248]. However, it is also possible that the energy 

derived from GTP hydrolysis causes the elongation of dynamin spirals, resulting in the 

stretching and eventual scission of membranes on neck of the forming vesicles [247, 249]. 

Alternatively, dynamin may instead function to recruit downstream effector molecules, 

including endophilin, which then participate in the formation of released vesicles [243].  

Although the detailed mechanisms underlining its function remain to be established, 

dynamin clearly plays an important role in GLUT4 endocytosis [250-252]. Introducing 

dominant-negative dynamin mutants or specific peptides to disrupt dynamin function into 

adipocytes and muscle cells results in a significant inhibition of GLUT4 endocytosis 

[250-252]. Furthermore, insulin reportedly induces the tyrosine phosphorylation of 

dynamin [253]. Additionally, insulin may cause accessory proteins to associate with 

dynamin via its SH3 domain, thus modulating the function of the latter protein [254]. 

Hence, testing these possibilities will contribute to our understanding of the endocytosis 

of Glut4.  
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INSULIN SIGNALING THAT REGULATES GLUT4 TRAFFICKING 

 

Despite much attention, the insulin signaling events leading to Glut4 vesicle exocytosis 

remain to be fully elucidated (Figure 1.4). Insulin signaling is initiated when the hormone 

binds to its cell surface receptor, a heterotetrameric protein complex consisting two α and 

two β subunits [26]. Upon ligand binding to the α subunits, insulin receptor β trans-

phosphorylate each other on three tyrosine residues in the activation loop [100]. This 

results in increased tyrosine kinase activity, which leads to increased autophosphorylation 

on other tyrosine residues in the juxta-membrane regions and the cytosolic tail, and 

eventually activation of the receptor [255]. Once activated, the insulin receptor is able to 

recruit and then phosphorylate a number of substrates, including the insulin receptor 

substrates (IRS) family proteins, IRS5/DOK4, DOK5, SHC, Gab-1, APS, Cbl, and SIRP 

family proteins [100, 255]. Most of these substrates, such as IRS proteins or SHC, bind to 

the juxta-membrane regions of the insulin receptor via an NPXY sequence when the last 

tyrosine residue is phosphorylated [100, 255]. However, APS binds directly to the 

activation loop of the receptor [256, 257]. The subsequent phosphorylation on specific 

tyrosine residues within these substrate proteins creates docking sites for effector or 

adaptor proteins that contain Src-Homology 2 (SH2) domains, thus transducing and 

propagating signals from the receptor [100, 255].  

 

Phosphatidylinostol 3-kinase-dependent signaling 
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Of all the insulin receptor substrates, the best characterized are the IRS proteins [255, 

258]. Upon tyrosine phosphorylation, the IRS proteins recruit the p85 regulatory subunits 

of the PI 3-kinases. This frees the p110 catalytic subunits of the PI 3-kinase and leads to 

its activation [259, 260]. Activated PI 3-kinase then phosphorylates its lipid substrate 

phosphatidylinostol 4,5-bisphosphate (PIP2) at the 3 position and generates the lipid 

product phosphatidylinositol 3,4,5-trisphosphate (PIP3), which recruits and activates a 

number of downstream kinases, scaffolding molecules, as well as cytoskeleton proteins 

[261]. Signals from PI 3-kinase can be terminated by 3’ lipid phosphatases such as PTEN 

[262] or SHIP2 [263], although the latter might not be involved in insulin-stimulated 

glucose transport in adipocytes [264].  

 

The pivotal role of PI 3-kinase dependent signaling in insulin action has been 

demonstrated by several independent approaches. Introducing into cells the dominant-

negative forms of PI 3-kinase inhibits glucose transport, while overexpression of 

constitutively active forms can partially mimic insulin action [265, 266]. Pharmacological 

inhibitors of PI 3-kinase such as wortmannin block insulin-stimulated glucose transport 

[267]. Targeted ablation of the p85 regulatory subunits of PI 3-kinase in mice results in 

increase insulin sensitivity, presumably due to loss of inhibition of catalytic subunits 

[268-270]. Moreover, ablation of the p110 subunits in mice causes insulin resistance and 

glucose intolerance [271]. Taken together, these data demonstrate an essential role for PI 

3-kinase in insulin action.  
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Figure 1.4 Overview of insulin signaling events that regulate Glut4 trafficking Upon 
activation of the insulin receptor on the cell surface, multiple insulin receptor substrates 
become phosphorylated, thus initiating several insulin signaling cascades. The PI 3-
kinase-dependent signaling pathway eventually leads to the activation of serine/therenine 
kinase atypical PKCs and Akt. At least one Akt substrate, AS160, has been implicated in 
Glut4 trafficking, presumably through regulation of its downstream GTPases such as 
Rab10. The PI 3-kinase-independent pathway eventually results in the activation of a 
small GTPase named TC10, which then moblizes a number of downstream effectors 
including the Par3/Par6/aPKC complex, the CIP4/Gapex-5 complex, and the exocyst 
complex. Among these, Gapex-5 is able to modulate the activity of the Rab31 GTPase, 
which is impicated in intracellular retention of the Glut4 vesicles. (Figure modified from 
Chang et al., Ref.5) 
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Insulin-stimulated PI 3-kinase catalyzes the production of PIP3, which in turn recruits a 

number of downstream serine/therenine kinases through their pleckstrin homology (PH) 

domains. One such kinase is PDK1, which in turn phosphorylates additional kinases, 

including Akt1-3, atypical PKCs, and serum and glucocorticoid-inducible kinases (SGK) 

[272]. Additionally, activation of Akt kinases requires phosphorylation by mammalian 

Target of Rapamycin (mTOR) in complex with the adaptor protein rictor [273-275]. 

While the exact role of atypical PKCs in metabolism remains to be elucidated, multiple 

studies support a crucial role of Akt kinase in insulin action [276-279]. Remarkably, the 

two Akt isoforms, Akt1 and Akt2, appear to have differential physiological roles, despite 

their similar primary sequences [280]. Mice lacking Akt1 are growth retarded, but with 

less alteration in glucose metabolism [281]. In contrast, Akt2-null mice become insulin 

resistance and develop diabetes with aging[282]. Knockdown studies using siRNA in cell 

models like 3T3-L1 confirm the involvement of Akt2, but not Akt1, in insulin-stimulated 

glucose transport [276]. Nevertheless, the mechanisms underlying this differential 

involvement of Akt isoforms remain unclear, particularly since overexpression of either 

isoform can compensate for the defects from loss of the other [280]. Moreover, depletion 

of both isoforms in adipocytes results in more profound inhibition of insulin action [276], 

although interpretation of such studies are hampered by the numerous transcriptional 

targets of Akt that lead to changes in the levels of numerous adipocyte proteins that might 

play important roles in insulin action (Montminy M., personal communication) 

 

Numerous substrates of Akt kinases have been identified, yet only a few have been 

shown to play a role in insulin-stimulated glucose transport [68]. Using an antibody that 
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recognized the phosphorylated consensus motif in Akt substrates, Lienhard and 

colleagues identified two novel substrates of Akt in adipocytes, AS160 [283] and AS250 

[284], which are both phosphorylated by insulin. Interestingly, both proteins possess 

GTPase-activating-protein (GAP) domains, which may function as negative regulators 

for small GTPases that work as “molecular switches” during regulated vesicle trafficking 

[285]. AS160 contains a TBC/Rab GAP domain, which may inactivate Rab family 

GTPases by enhancing their GTP hydrolysis rate [286, 287]. Overexpression of mutant 

AS160 that is not able to be phosphorylated by Akt in adipocytes inhibits Glut4 plasma 

membrane translocation in response to insulin [286, 288]. Moreover, this inhibition is 

relieved when the GAP activity of AS160 is abolished by mutating a critical arginine into 

alanine [286]. This suggests that the GAP domain of AS160 plays a negative role in 

insulin action, and phosphorylation of AS160 by Akt is likely to relieve this negative role 

of the GAP activity [68, 286]. Conversely, knockdown of AS160 results in increased 

basal glucose uptake and Glut4 plasma membrane localization, an effect that can be 

blocked by re-introducing wild type AS160, but not the GAP-deficient AS160 [289]. The 

role of AS160 in insulin-stimulated glucose uptake appears to be conserved in muscle, 

and AMPK may mediate its phosphorylation in response to exercise [290-293]. Taken 

together, these data support an important role of AS160 in insulin action, and this 

requires a functional GAP domain of AS160 [68]. In vitro, the GAP domain of AS160 

displays activity towards Rab GTPases including Rab2A, 8A, 10, and 14 [287]. However, 

the in vivo target(s) of AS160 remains to be determined; different Rab proteins including 

Rab10, Rab8A, and Rab14 have been proposed to work downstream of AS160 to 
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regulate Glut4 trafficking [294, 295]. Moreover, whether the in vivo activity states of 

these Rab proteins are regulated by AS160 or Akt remain to be determined. 

 

The biochemical properties of AS250, as well as its role in insulin-stimulated glucose 

transport is much less clear [284]. AS250 contains a predicted GAP domain that 

resembles RapGAP in the C-terminus [284], yet it is not clear whether this domain has 

any GAP activity. Additionally, the target GTPases for this putative GAP remain 

unknown. Knockdown of AS250 leads to a small increase in Glut4 translocation in both 

basal and insulin-stimulated states [284]. Interestingly, AS250 exists in complex with a 

novel protein KIAA1219, in a manner that is similar to the TSC1/TSC2 complex [296]. It 

is noteworthy that the TSC1/TSC2 complex process GAP activity towards Ras family 

GTPase Rheb, and this activity is negatively regulated by Akt, which phosphorylates 

TSC2 at multiple sites [296]. Thus, it remains possible that AS250 may be involved in 

insulin action, via yet to be defined target GTPases.  

 

Although signals stem from the PI 3-kinase dependent cascades are absolutely required 

for insulin-stimulated glucose transport, substantial evidence suggest that these are not 

sufficient [101, 297, 298]. Over-expression of an active form of PDK1 leads to activation 

of Akt and the atypical PKCs, but has little effect on glucose uptake [299]. Furthermore, 

activation of PI 3-kinase by PDGF or interleukin-4 does not increase glucose transport in 

adipocytes [297, 298]. Also, incubation of adipocytes with a membrane-permeable 

analog of PIP3 fails to stimulate glucose uptake in the absence of insulin [300]. 

Consistent with this, over-expression of activate PI 3-kinase cannot fully mimic insulin 
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action [266]. Certain naturally occurred mutants of the insulin receptor retain the ability 

to activate PI 3-kinase signaling, but fail to induce glucose uptake [301]. Taken together, 

these data suggest the requirement of PI 3-kinase-independent signaling for the full action 

of insulin.  

 

Phosphatidylinositol 3-Kinase Independent Signaling 

Growing evidence suggest that insulin signaling is restricted into specialized cellular 

compartments, thus achieving maximal efficiency as well as specificity [302]. One such 

compartment is the lipid raft, specialized regions of the plasma membrane enriched in 

cholesterol, sphingolipids, lipid-modified signaling proteins, glycolipids, and 

glycosylphosphatidylinositol (GPI)-anchored proteins [303]. Multiple signaling proteins, 

including the insulin receptor, have been localized to lipid rafts [304-308]. Insulin 

receptor initiates a signaling branch by phosphorylation of the proto-oncogene Cbl [309]. 

This is facilitated by the adaptor protein APS [310]. APS exists as a preformed 

homodimer, which is then recruited to the activation loop of the activated insulin receptor 

through binding between phosphorylated tyrosines on the receptor β subunits and the 

SH2 domain of APS [256, 257]. Upon binding to the receptor, APS is in turn 

phosphorylated on a tyrosine residue at the C-terminus, creating a docking site for the 

TKB domain of Cbl [310]. In this way, Cbl is then recruited to the insulin receptor and 

phosphorylated on 3 tyrosines [310, 311]. This phosphorylation of Cbl is anchored in 

lipid rafts by the multi-domain adaptor protein CAP [312]. In essence, the C-terminal 

SH3 domains of CAP interact with Cbl, while the N-terminal SoHo domain of CAP binds 

Flotillin, a structural protein localized to lipid rafts [312, 313]. CAP is also able to 
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associate with actin cytoskeleton, via direct binding to vinculin, paxillin, actin and 

filamin C [313-315]. This cytoskeleton association may also facilitate the organization of 

signaling platforms, by anchoring signaling molecule into specialized cellular 

microdomains [308, 316]. This function of CAP is further supported by studies on 

macrophages or other migratory cells in which CAP is depleted [314, 315, 317].  

Upon tyrosine phosphorylation, Cbl interacts with the protein CrkII, an SH2/SH3-

containing adapter protein [318]. The SH2 domain of CrkII binds to a phosphorylated 

tyrosine on Cbl, whereas the SH3 domain of CrkII is constitutively associated with the 

nucleotide exchange factor C3G [311, 318, 319]. In this way, insulin promotes the 

translocation of both CrkII and C3G to lipid rafts [319]. Upon its recruitment to lipid rafts, 

C3G can catalyze the activation of the small G protein TC10 isoforms, which 

constitutively reside in lipid raft microdomains [319, 320]. Taken together, these studies 

suggest that insulin initiates a signaling cascade that leads to the activation of the Rho 

family small GTPase TC10. As will be discussed later, this activation of TC10 is required 

for glucose transport [5].  

 

 

SMALL GTPASES THAT CONNECT CELLULAR SIGNALING AND 

TRANSPORT MACHINERIES 

Despite much effort to elucidate the mechanisms by which insulin regulates glucose 

transport, gaps still exist in our knowledge of how the hormone exerts its action [68, 100, 

255]. One essential question is how signaling initiated from the insulin receptor is linked 
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to transport machineries that modulate trafficking of Glut4 vesicles [68]. Although not 

completely understood, emerging evidence suggest that members of the Ras small 

GTPase super-family may fulfill some of this role [100, 321].  

 

Small GTPases exist in eukaryotes from yeast to human and constitute a super-family 

consisting of more than 100 members [322]. This super-family, named by its founding 

member Ras, is categorized into at least five sub-families: the Ras, Rho, Rab, Sar1/Arf, 

and Ran families [322]. These proteins share a similar structure, with a consensus 

sequence that enables GDP/GTP binding and GTP hydrolysis; a region that interacts with 

downstream effector proteins; and a C-terminal region that undergoes post-translational 

lipid modifications, though this region is at the N-terminal of Arf proteins and is absent in 

Sar1 or Ran family proteins [322, 323]. 

 

The most important feature of small GTPases is their ability to adapt to different 

conformations in the GDP or GTP bound states, which have different affinities for 

specific effector proteins [324, 325]. This was elegantly revealed by structural studies on 

multiple members of small GTPases, which were found to contain two highly flexible 

regions surrounding the γ-phosphate of GTP termed as the switch regions, the switch I 

region within loop L2 and β2 and the switch II region within loop L4 and helix α2. 

Binding to GTP allows switch I region to adapt to an “active” conformation that enables 

interactions with downstream effectors, whereas GDP-bound states are unfavorable for 

these interactions [323, 326, 327]. Furthermore, small GTPases are able to cycle between 

GTP- or GDP-bound states, a process utilizing their intrinsic GTPase activity and also 
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Figure 1.5 The small GTPase cycle Small GTPases can cycle between its GDP bound, 
inactive state (“off state”) and the GTP bound, active state (“on state”). In the active 
states, the GTPases are able to interact with their downstream effectors, resulting in their 
activation or mobilization. The activation of small GTPases is facilitated by guanine 
nucleotide exchange factors (GEFs); whereas GTPase-activating proteins (GAPs) 
accelerate the intrinsic GTPase activity of the small GTPases and lead to the inactivation 
of the GTPases. 
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facilitated by additional proteins including guanine-nucleotide-exchange factors (GEFs) 

or GTPase-activating proteins (GAPs) [285]. In this regard, small GTPases are often 

referred as “molecular switches” for their ability to modulate effector interaction and 

function via cycling between GTP-bound, active state and GDP-bound inactive state 

(Figure 1.5) [322].  

 

A growing body of literature has demonstrated that the activity of small GTPases is 

tightly regulated by signals emerging from membrane-bound receptors [322]. GEF or 

GAP proteins can be readily regulated by phosphorylation, binding to phospholipids, or 

association with adaptor proteins, resulting in the activation of specific small GTPases 

[285]. Upon activation, these small GTPases can then modulate the activity of their 

effector proteins, including Serine/Threnine kinases, cytoskeleton regulators, transport 

machineries, and additional adaptor proteins [124, 328, 329]. In this way, the small 

GTPases represent critical intermediates that integrate upstream signaling from the 

receptor and mobilize downstream effectors that often directly participate in the transport 

of vesicle cargos including Glut4 vesicles [100, 321]. In the following paragraphs, I will 

discuss studies on these small GTPases in the context of insulin signaling and glucose 

transport (Figure 1.6). 

 

Ras 

Although Ras has long been proposed as an important mediator of insulin action, its role 

in insulin-stimulated glucose transport remains unclear [330]. Earlier studies regarding 

glucose transport mainly focused on the H-ras isoform, but not K-ras or N-ras [331, 332]. 
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Figure 1.6 Schematic view of the roles of small GTPases in different steps of Glut4 
trafficking In the absence of insulin, Glut4 is internalized from the plasma membrane, a 
step regulated by the GTPase Rab5. Rab11 is thought to regulate the endosome sorting of 
Glut4 and perhaps the generation of Glut4-Storage Vesicles (GSVs), whereas Rab31 has 
been proposed to regulate the retention of Glut4 in endosomes. RalA is associated with 
Glut4 vesicles and may coordinate the movement of these vesicles along the actin 
cytoskeleton as well as their docking on the plasma membrane. TC10 is activated on the 
plasma membrane and directly participate in the targeting of Glut4 vesicles to their 
exocytosis sites. Rab10 may be involved in a distal step in Glut4 exocytosis such as 
priming or membrane fusion by the SNARE complex and their associated proteins.  
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The activation of Ras by insulin initiates a series of phosphorylation events resulting in a 

potent activation of mitogen-activated protein kinases (MAPK) by its upstream kinase 

MEK [330]. Nevertheless, studies have found that this activation of MAPK only 

contributes to the mitogenic actions of insulin, with little impact on the metabolic actions 

of the hormone [333, 334]. Microinjection of activated Ras into adipocytes enhances 

glucose uptake mainly via up-regulation of Glut1, but has little effect on the insulin-

responsive glucose transporter Glut4 [331, 332]. Also, expression of dominant negative 

Ras in adipocytes has little effect on glucose transport [335]. However, overexpression of 

active Ras in adipose tissue improves insulin sensitivity of this tissue, in which Glut4 is 

much more abundant and accounts for most of the glucose uptake [336]. It is noteworthy 

that Ras is also able to activate PI 3-kinase signaling via a direct interaction with the p85 

regulatory subunit of PI 3-kinase [337]. Additionally, Ras activation may lead to 

enhanced activity of other small GTPases including Ral and Rab5, via direct binding to 

the RalGEFs [338] or the Rab5 GEF Rin1 [339], respectively. In this regard, Ras effector 

domain mutants that selectively activate one branch of the downstream signaling [340, 

341], as well as siRNAs that deplete Ras isoforms, may be useful tools to further address 

its role in insulin action.  

 

Ral 

Ral GTPases (RalA and RalB) constitute a branch of the Ras sub-family in the small 

GTPase super-family [342]. Studies on Ral GTPases presented first examples of crosstalk 

between small GTPases, as a number of RalGEFs contain Ras-binding domains and are 

under the regulation of activated Ras [338, 343]. However, other signals independent of 
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Ras activation, including the PI 3-kinase pathway and calcium signaling, have also been 

implicated in the activation of RalA [342, 344]. Nevertheless, the mechanisms underlying 

Ral activation remain uncertain. Particularly, as RalGEFs contain a variety of regulatory 

domains that respond to different upstream signals, the exact role of specific GEF 

proteins in certain physiological contexts for the most part remain uncertain [345, 346]. 

On the other hand, no RalGAP protein has been identified, although GAP activity 

towards RalA has been reported [347].  

 

The fact that Ral is a downstream target of Ras has lead to the idea that Ral may 

contribute to the oncogenic activity of Ras [342]. This idea was supported by 

morphological studies in fly eyes using Ras mutants that only activate a branch of 

downstream signaling including Ral activation [348]. However, other studies have shown 

that active Ral failed to transform NIH 3T3 cells in a focus-forming assay [340]. 

Nevertheless, a number of subsequent reports have shown that activation of Ral proteins, 

as well as RalGEFs, are crucial to cellular transformation [340, 349, 350], particularly in 

cells derived from human origin [351, 352]. Interestingly, it was recently proposed that 

RalA and RalB may play different roles in this process, with RalA important for 

proliferation of tumor cells and RalB important for the survival of these cells [351, 353-

355]. 

 

Although the differences in cellular function of RalA and RalB are not completely 

understood, the variations in the N- and C-terminus regions may contribute to this 

diversity [352]. RalA reportedly interacts with PLD through the N-terminus of the former 
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protein, a region that is absent in RalB [356]. Furthermore, RalA has been shown to 

reside both on the plasma membrane and but mostly on the intracellular vesicles, where 

as RalB is primarily localized to the former compartment [357]. Consistent with this, 

RalA has been found in a variety of vesicular structures in different tissues, including 

synaptic vesicles, platelet granules, as well as vesicles enriched with the water channel 

Aquaporin [358-361]. Furthermore, this vesicular localization has led to the hypothesis 

that RalA is directly involved in vesicle transport, although this function appears to be 

unusual for GTPases in the Ras sub-family [342]. 

 

The role of RalA in vesicle transport is best supported by the identification of the exocyst 

as a direct effector complex of the protein [202-204]. Both RalA and RalB interact with 

two subunits of the mammalian exocyst, Sec5 and Exo84 [202-204], and RalA has higher 

affinity than does RalB [357]. Furthermore, depletion of RalA disrupts the establishment 

of cell polarity; a process that also involves the exocyst function [203]. Nevertheless, the 

exact mechanism by which RalA regulates exocyst function remains uncertain, as is the 

role of these proteins in regulation of vesicle transport in physiological scenarios 

including insulin-stimulated glucose transport. 

  

 

Rho/Cdc42/Rac   

The Rho family GTPases including Rho, Rac, and Cdc42 were well characterized for 

their role in the regulation of cytoskeleton rearrangement, a process thought to be 

important for various vesicle transport events [328, 329]. However, whether insulin 
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actively regulates cytoskeleton rearrangement in target tissues remains controversial [91, 

100], particularly due to inconsistent results obtained regarding the insulin-induced 

activation of these Rho GTPases in insulin-responsive cells [91]. Nevertheless, it remains 

possible that the activities of these Rho GTPases are required for insulin-stimulated 

glucose transport. Consistent with this, Clostridia toxins that inactivate Rho GTPases and 

depolymerize the actin cytoskeleton have been shown to inhibit glucose transport in both 

the basal and insulin-stimulated states in 3T3-L1 adipocytes [362]. However, studies on 

glucose transport using dominant negative mutants of Rho GTPases are inconsistent [319, 

363-365]. It should be noted that expression levels of dominant negative GTPases need to 

be tightly controlled to achieve desired biological effects while avoiding non-specific 

toxicity. In this regard, loss of function studies at cellular level using siRNA-mediated 

knockdown or gene ablation in animal models are of interest to delineate the function of 

these Rho GTPases in insulin-stimulated glucose transport.  

 

TC10 

Although both isoforms of TC10 (TC10 α and TC10β) belong to the Rho GTPase sub-

family and share high homology to Cdc42 [320], several lines of evidence suggest that 

this GTPase may be an atypical member of Rho family GTPases. First, unlike another 

Rho GTPases such as Rho, Rac, and Cdc42 that undergo geranylgeranylation [322, 329], 

TC10 undergoes tandem palmitoylation and farnesylation at the C-terminal hyper-

variable region [366, 367]. This may at least partially explain the differences in 

subcellular localization between TC10 and other Rho GTPases, particularly Cdc42 [366, 

367]. Furthermore, many Cdc42 GEF proteins are unable to activate TC10, suggesting 
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the activity of these two GTPases are differentially regulated [368]. In addition, unlike 

Cdc42, TC10 does not exist in lower organisms like yeast, and human TC10 fails to 

rescue the defects in a cdc42 mutant like human Cdc42 does [369]. Taken together, these 

data suggest that TC10 may carry out distinct biological functions that are uniquely 

regulated in different cellular contexts. 

 

Several lines of evidence suggest that TC10 plays a pivotal role in insulin-stimulated 

glucose transport [5]. Both TC10 isoforms are enriched in insulin responsive tissues 

including muscle and fat, and rapidly activated by insulin stimulation [319, 320]. 

Nevertheless, it appears that only the alpha isoform of TC10 is critically involved in 

insulin action, as expression of dominant negative TC10α but not TC10β inhibits insulin-

stimulated glucose uptake and Glut4 translocation to the plasma membrane [319, 320]. 

Consistent with this, depletion of TC10α by siRNA-mediated knockdown inhibits 

insulin-stimulated glucose transport [370]. Furthermore, several studies have identified 

TC10 effectors that also participate in the metabolic actions of insulin, including the 

adaptor protein CIP4, Par6 in the Par3/Par6/aPKC complex, and the Exo70 subunit of the 

exocyst complex [5]. These interactions thus enable insulin to regulate diverse cellular 

processes via the activation of TC10.  

 

The multi-domain adaptor protein CIP4 contains an N-terminal FCH domain, two central 

coiled-coil domains, and a C-terminal SH3 domain [371]. Through its SH3 domain, CIP4 

is able to associate with a multi-functional protein called Gapex-5 via the PxxP motif of 

the latter protein [372]. Gapex-5 contains a Ras GAP domain at the N-terminus, a 
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VPS9/Rab5 GEF domain at the C-terminus, as well as several PxxP motifs in the middle 

region [372]. The GAP domain of Gapex-5 processes activity towards Ras as well as 

TC10, while the GEF domain of Gapex-5 enhances the activity of the Rab5 sub-family 

GTPases including Rab31 [372]. In the basal state, Gapex-5 is primary intracellular and 

maintains intracellular activity of Rab31 at a high level. Upon insulin stimulation, TC10 

recruits CIP4/Gapex-5 complex to the plasma membrane, thus decreasing the activity of 

Rab31 [372]. As will be discussed later, Rab31 is localized to TGN [373]and appears to 

prevent Glut4 translocation to the plasma membrane by retaining the transporter in a 

process of futile cycling [372]. Additionally, recruitment of CIP4/Gapex-5 complex to 

the plasma membrane by TC10 can then activate Rab5 at the plasma membrane (Lodhi et 

al, unpublished). Taken together, the CIP4/Gapex-5 branch of TC10 effectors represents 

a mechanism of compartmentalized activation of GTPases and cross-talk between 

different GTPases. 

 

Another branch of TC10 effectors is the adaptor protein Par6 of the Par3/Par6/aPKC 

complex [374, 375]. The atypical PKCs have been implicated in insulin-stimulated 

glucose transport [376, 377], as has Par3 and Par6 [374]. Active TC10 recruits aPKC to 

the plasma membrane of adipocytes via association with Par6 and Par3 [374]. It is 

noteworthy that the activity of atypical PKCs may be under the control of PI 3-kinase 

signaling [101]. Additionally, as discussed above, the Par3/Par6/aPKC complex may 

regulate the function of the microtubule motor KIF3/kinesin II [98, 99]. Thus, this branch 

of TC10 signaling may represent a convergent point with PI 3-kinase signaling, and/or 

with molecular motor functions. 
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Activated TC10 also interacts with Exo70, a subunit of the exocyst complex [139, 201]. 

This interaction recruits Exo70 and at least some of the exocyst subunits to the plasma 

membrane, a process involved in the docking of the Glut4 vesicles to the plasma 

membrane [139, 140]. Hence, insulin-induced activation of TC10 may mark the sites of 

exocyst assembly and direct the docking and eventually fusion of Glut4 vesicles. 

Regulation of the exocyst by TC10 is also involved in neurite outgrowth [201], as well as 

cell motility [378]. GTP hydrolysis of TC10 is also required for the fusion of vesicles 

with the plasma membrane, suggesting that disassembly of the exocyst via TC10 

inactivation is also an integral step of vesicle transport [378].  

 

ADP-ribosylation Factors (Arfs) 

Although ARF proteins were originally named for their ability to function as cofactors 

for cholera-toxin-catalyzed ADP-ribosylation of the -subunit of heterotrimeric G 

proteins Gs, they have now been shown to regulate membrane trafficking pathways in a 

variety of processes [379]. Arf6 represents the best characterized isoforms of the Arf 

GTPase family [379]; however, its involvement in insulin-stimulated glucose transport is 

controversial [82, 380-384], as is the mechanism by which insulin may regulate its 

activity [381, 383-385]. This is further complicated by two recent studies suggesting that 

activation of Arf6 by its GEF protein cytohesin regulates upstream signaling directly 

emerged from the insulin receptor [386, 387].  On the other hand, the effectors of Arf 

proteins have been shown to regulate different steps in Glut4 trafficking.  
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Several studies have suggested a requirement for the Golgi-localized γ-ear-containing 

Arf-binding proteins (GGA) of coat adaptor proteins in the biosynthetic sorting of 

insulin-responsive Glut4 vesicles [30, 78, 79]. GGA proteins are able to associate with 

Arf proteins, clathrin, and the cytosolic tails of intracellular transport receptors, thus 

mediating formation of Clathrin-coated carriers for specific cargo proteins [30, 76, 77].  

Expression of a dominant-interfering GGA mutant inhibited insulin-stimulated GLUT4 

translocation and GST–GGA fusion proteins were found to bind to GLUT4-containing 

transport vesicles but did not directly bind to GLUT4 itself [78, 79]. Moreover, siRNA-

mediated knockdown of GGA before GLUT4 expression completely prevented insulin-

stimulated translocation of newly synthesized Glut4 [78]. Additionally, GGA’s role in 

Glut4 vesicle sorting may depend on the peripheral Golgi protein Golgin-160 [388]. 

Taken together, these data indicate that GGA may play a role in assemble clathrin-coated 

carrier vesicles for Glut4.  

 

Another protein that may mediate Clathrin coat assembly during Glut4 trafficking is 

ACAP1, a GTPase-activating protein of Arf6 [389]. Interestingly, ACAP1 also functions 

as an Arf6 effector to interact with both clathrin coats and cargo proteins including TfR 

[390], β-1 integrin [391], as well as Glut4 [82]. Indeed, siRNA-mediated depletion of 

ACAP1 or Arf6 inhibits insulin-stimulated glucose transport [82]; consistent with the 

idea that Arf GTPases regulate coat assembly via adaptor protein binding [379]. 

Additionally, specific phospholipids such as PI (4,5)P2 may also play a role in membrane 

recruitment of the adaptor proteins for coat assembly [76, 77]. This idea coincides with 
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the report that phospholipase D, an Arf6 effector that increases the levels of phosphatidic 

acid and eventually PI (4,5)P2, may be involved in Glut4 trafficking [392-394].  

 

Rab family proteins 

The human genome contains almost 70 Rabs and Rab-like proteins, which constitute the 

largest sub-family of Ras super-family GTPases [395, 396]. These Rab GTPases are 

localized and activated at distinct membrane-bound compartments and regulate various 

aspects of vesicle transport [123, 177, 396]. Consistent with this notion, several Rab 

proteins have been suggested to participate in distinct steps in insulin-stimulated Glut4 

trafficking [68, 321]. 

 

First line of evidence suggesting the involvement of Rab GTPases in Glut4 trafficking 

came from localization studies. Multiple Rab proteins, including Rab4, Rab5, Rab10, and 

Rab11 have been reported to co-purify with Glut4-enriched vesicular membranes [48, 58, 

287, 397]. Among these GTPases, Rab4 and 11 have been implicated in regulating 

endocytic recycling of membrane proteins to the plasma membrane in various systems 

[123, 395]. Moreover, the plasma membrane localization of both GTPases in adipocytes 

or cardiomyocytes is increased by insulin stimulation [220, 398, 399]. Over-expression of 

the wild-type and mutant form of Rab4 has been shown to block insulin-stimulated 

glucose transport [400-402]. Furthermore, Rabip4, a FYVE domain containing protein 

that interacts with both Rab4 and 5, has been implicated in Glut4 trafficking, though the 

precise role of the protein in this process remains to be determined [403, 404]. The 

requirement of Rab11 in insulin action remains controversial, due to inconsistent results 
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obtained using dominant negative form of the GTPase [380, 405]. However, it has been 

reported that Rab11 is required for the sorting of GLUT4 from endosomes to the 

specialized compartment, and thus for the insulin-induced translocation to the cell surface 

[406]. This suggests the importance of the general endosomal pathway in the specialized 

trafficking of GLUT4 that is regulated by insulin signaling [406]. Furthermore, Rab11 

may also participate in the action of a 72 kD inostiol polyphosphate 5-phosphatase, which 

has been implicated in insulin stimulated PI(3)P production and plasma translocation of 

Glut4 [405]. The GTPase Rab10 has recently been implicated in Glut4 trafficking, as a 

downstream target of Akt substrate AS160 [295]. Rab10 has been shown to regulate 

trafficking to the basal-lateral membrane in MDCK cells, possible via the endocytic 

compartments [407, 408]. However, the exact role of Rab10, as well as its effector 

proteins, in insulin-stimulated glucose transport remains to be determined. 

 

Besides Rab11, the intracellular dynamics of Glut4 vesicles may also be controlled by 

another GTPase Rab31, a Rab5 subfamily GTPase implicated in trans-Golgi network 

(TGN)-to-endosome trafficking [373]. Rab31 is a downstream target of Gapex-5, via the 

VPS9 domain of the latter protein [372]. Overexpression of Rab31 blocks insulin-

stimulated Glut4 translocation, whereas knockdown of Rab31 potentiates insulin-

stimulated Glut4 translocation and glucose uptake. Furthermore, insulin reduces Rab31 

activity by recruiting Gapex-5 to the plasma membrane, thus permitting Glut4 vesicles to 

translocate to the cell surface [372]. In this regard, identification of Rab31 effectors 

involved in insulin-stimulated glucose transport will be of great interest. 
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Rab5 is a multi-functional GTPase that regulates the endocytosis of proteins from the cell 

surface, homotypic fusion of early endosomes, formation of clathrin-coated endocytic 

vesicles, motility of early endosome on microtubules, and turnover of phospholipids 

[395]. Numerous downstream effectors of Rab5 have been identified, as key machineries 

that directly regulate specific steps in endocytic trafficking [409]. Although the role of 

most Rab5 effectors has not been tested in Glut4 trafficking, insulin stimulation appears 

to modulate both the localization and the activity of the GTPase [108, 410]. Micro-

injection of an anti-Rab5 antibody blocked internalization of plasma membrane localized 

Glut4; suggesting Rab5 regulates the endocytosis of Glut4 [108]. On the other hand, 

APPL1, a Rab5-interacting protein that also binds to the adiponectin receptor as well as 

Akt kinase [411], has recently been reported to regulate the exocytosis of Glut4 [411, 

412]. Furthermore, Rab5 is able to regulate phosphoinositide turnover by directly 

interacting with PI 5- and PI 4-phosphatases and stimulating their activity both at the 

endocytic compartments as well as the plasma membrane[413], a process potentially 

important for insulin-stimulated Glut4 trafficking [414, 415]. Hence, the exact role of 

Rab5 in glucose transport is only being unveiled and future studies on the functions of 

this GTPase in insulin action are of high interest. 

 

SUMMARY 

 

After almost twenty years since the Glut4 transporter was first cloned, our knowledge of 

the mechanisms by which insulin regulates its function is still limited. Although there is 

substantial evidence that insulin activates at least two parallel signaling pathways that 
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govern the trafficking of Glut4, the detailed mechanistic actions of the signaling cascades 

are not completely understood [100, 255]. On the other hand, among the many transport 

machineries implicated in Glut4 trafficking, few have been shown to be direct targets of 

insulin [26, 68]. In this regard, key to this question is to identify signaling intermediates 

that directly modulates the function of transport machineries [100, 321]. Delineation of 

the actions of these intermediate proteins, as well as the means by which insulin regulates 

the activity of these proteins, is likely to yield much information on how insulin is able to 

exert its unique action in stimulating glucose transport. Growing evidence suggests that 

members of the small GTPase family may represent such signaling intermediates. This 

thesis focuses on the action of the GTPase RalA, which directly interacts with the 

vesicle-tethering complex known as the exocyst. In Chapter 2, I will discuss the role of 

RalA and the exocyst in regulating a subset of endocytic recycling pathway particularly 

during a process called cytokinesis. In chapter 3, I will present evidence that RalA 

regulates insulin-stimulated endocytic recycling of Glut4 via the interactions between the 

exocyst and the molecular motor Myo1c. In Chapter 4, I focus on delineating the 

molecular architecture of the exocyst under the regulation of RalA. In Chapter 5, I will 

briefly discuss the potential mechanism of RalA activation, as well as a negative 

feedback loop that uncouples RalA from the exocyst. Taken together, these studies 

suggest RalA serves as an important intermediate that links upstream signaling to the 

exocyst during insulin-stimulated Glut4 trafficking and a few other processes. 
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Chapter 2 

 

RalA-Exocyst Dependent Recycling Endosome Trafficking is Required for the 

Completion of Cytokinesis. 

 

 

Introduction 

 

Cytokinesis is a crucial process in which the cytoplasmic constituents of the mother cell 

are divided into two identical daughter cells, ensuring the fidelity of cell division. 

Cytokinesis proceeds via distinct steps, including assembly of the actomyosin contractile 

ring, formation of the ingressing cleavage furrow, and cell cleavage or abscission [1]. 

Membrane trafficking is important for all steps of cytokinesis and is directly required for 

sealing off the abscission site where cells undergo the final separation [2]. Recycling 

endosome-derived vesicle trafficking plays an essential role in the terminal stages of 

cytokinesis, possibly under the control of the centrosome [3]. However, the mechanisms 

underlying this polarized delivery of vesicles from the recycling endosomes during 

abscission remain poorly understood.  

 

The exocyst is an evolutionarily conserved vesicle tethering complex, comprised by 

eight subunits including Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84 [4]. 
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This complex has been proposed to mediate the initial recognition between the exocytic 

vesicles and the target membrane, thereby contributing to the specificity and efficiency of 

certain vesicular transport processes [5]. Recent insights into structure of the exocyst 

have shed light on the architecture and function of this complex, suggesting that the 

exocyst assembles into an overall rod-like structure, in the process bridging the vesicles 

to their target membrane [5, 6]. Consistent with this notion, the exocyst has been found to 

concentrate on “hotspots” on the plasma membrane where exocytosis actively takes place, 

and has been implicated in different types of membrane trafficking including polarized 

growth in yeast, neurite growth in the nervous system, glucose transport in fat cells and 

basal-lateral trafficking in epithelial cells [4]. Interestingly, in S. cerevisiae and S. pombe, 

the exocyst complex localizes to the cleavage furrow and is essential for membrane 

delivery during cytokinesis [7-9]. However, the role of the exocyst in cytokinesis is 

poorly understood in mammalian cells, in which the exocyst has a more specialized yet 

complex function.  

 

Ral GTPases (RalA and RalB) have been the focus of special attention for their roles in 

regulating exocyst function in eukaryotic cells. Upon activation, Ral can bind two 

exocyst subunits, Sec5 and Exo84. RalA has higher affinity for these proteins than does 

RalB [10]. While the molecular mechanisms remain elusive, this unique interaction 

pattern may enable RalA to regulate the assembly of the exocyst during vesicle targeting, 

as Sec5 and Exo84 seem to have different cellular localizations [11] . Nevertheless, 

although RalA has been reported to regulate exocytosis in several scenarios, the 

generalized function of this ubiquitously expressed small GTPase in vesicle trafficking 
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remains largely unknown. Importantly, RalA has also been implicated in signaling 

pathways controlling cell cycle progress, cell morphology, and oncogenic transformation 

[12]. A recent report highlights the oncogenic function of RalA, but not RalB, and the 

involvement of the exocyst in RalA-induced cellular transformation [13]. However, it is 

not clear whether RalA-mediated vesicular trafficking is directly involved in cell cycle 

progression.  

 

Here we present data suggesting a critical role for RalA and the exocyst in targeting RE-

derived trafficking during the completion of cytokinesis in mammalian cells. RalA is RE-

associated and re-localizes to the cleavage furrow and later the abscission site. The 

exocyst, through a spatially and temporally regulated association with key cytokinetic 

structures, regulates the targeting of RalA-containing vesicles from RE. Disruption of this 

process leads to late stage cytokinesis failure.  

 

 

Results 

 

Active Ral GTPase is localized on the pericentrosomal membrane and at the 

centrosome. To explore the function of the Ral GTPase, we generated an eYFP-tagged 

Ral-binding domain (RBD) of Sec5 to probe the localization of active Ral in vivo. In 

contrast to previous studies in polarized MDCK cells [14, 15], the fluorescent fusion 

protein mainly decorated the perinuclear region in the cytoplasm of quiescent Cos-1 cells 

rather than the plasma membrane (Figuew 2.1A, upper panel). We noticed that this  
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Figure 2.1 Active RalA is localized on the pericentrosomal membrane and at the 
centrosome. (A-B) Cos-1 cells expressing eYFP-tagged Sec5 RBD (A), RalBP1 RBD (B) 
were stained using α-tubulin (red) antibody. RBDs (green) localize around and at the 
centrosome in interphase cells (upper panel), and the abscission site in cytokinetic cells 
(lower panel). (C) eYFP-Sec5 RBD T11A shows a disorganized punctate staining when 
expressed in COS-1 cells. (D) Affinity of the RBD constructs with RalA. Cos-1 cells 
were transfected with RalA and indicated eYFP-constructs, lysed, and subjected to 
immunoprecipitation using an anti-FLAG antibody. IP and lysates were blotted with 
FLAG or GFP antibody after SDS-PAGE. (E) eGFP-RalA localizes around and at the 
centrosome in Cos-1 cells as visualized by pericentrin (blue) and α-tubulin (red) staining. 
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fluorescent protein also localized to the nucleus, as GFP is known to non-specifically 

diffuse throughout the cytoplasm and nucleus. The nuclear-localized fluorescent RBDs, 

however, may be isolated from Ral in the cytoplasm due to the presence of the nuclear 

envelope, and thus cannot function as probes for activated Ral. Interestingly, in ~20% of 

the transfected cells, Sec5 RBD decorated one or two bright dots near the nucleus. Co-

staining with alpha-tubulin reveals that Sec5 RBD localized to the centrosome in 

interphase cells, as well as the centrosome-related abscission site in cells undergoing 

cytokinesis (Figure 2.1A, lower panel). The same results were obtained with the RBD 

from RalBP1, another Ral-interacting protein (Figure 2.1B). Nevertheless, Sec5 RBD 

T11A showed a distinct localization and did not concentrate at the peri-centrosomal 

region (Figure 2.1C), due to its substantially lower affinity for active Ral (Figure 2.1D). 

Taken together, the data indicate that endogenous Ral can be activated at the centrosomal 

and pericentrosomal membranes.  

 

Several recent studies have implicated Ral GTPase in vesicle trafficking [12], although 

the exact mechanism remains to be elucidated. We found that ectopically expressed RalA 

also co-localized with eYFP-RBDs in the same pericentrosomal tubule-vesicular 

structures, suggesting that a large fraction of active RalA associates with intracellular 

membranes in addition to the plasma membrane (data not shown). Indeed, we observed 

that wild type RalA localized to the vesicular structures surrounding the 

centrosome/microtubule organization center (MTOC) and associated with the 

microtubule filament (Figure 2.1E).  
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RalA is a Recycling endosome (RE)-localized GTPase that re-localizes during cell 

division. Despite the general notion that RalA can localize to the exocytotic vesicles in 

some specialized cells such as neurons and platelets [12], the exact subcellular 

localization of this widely expressed GTPase is unclear. The pericentrosomal localization 

of RalA closely resembles the Golgi apparatus or the recycling endosome, two organelles 

often organized around the MTOC. Consistent with a study in polarized MDCK cells by 

Feig and colleagues [10], we observed that RalA co-localized with the recycling 

endosome markers Transferrin Receptor (TfR) and partially with Rab11 in non-polarized 

Cos-1 cells, but poorly with GM130 or γ-adaptin, which decorate the cis and trans Golgi 

membrane, respectively (Figure 2.2A). In addition, disruption of the microtubule network 

by nocodazole or inhibition of vesicle flow by tannic acid [16] abolished the 

pericentrosomal localization of RalA, whereas disassembly of Golgi by Brefeldin A had 

little effect (Figure 2.2B).  

 

Nocodazole is able to disrupt the peri-centrosomal localization of both recycling 

endosomes and the Golgi apparatus, separating these organelles into geographically 

distinct structures. We used this approach to further define the localization of RalA. As 

expected, RalA precisely co-localized with TfR in peripheral vesicular structures, but not 

with GM130 (Figure 2.2C), suggesting a preferred localization of RalA to the recycling 

endosome but not to Golgi. Furthermore, endogenous RalA partially overlapped with the 

TfR and Rab11, but not with the early endosome marker EEA1, the Golgi protein 

Syntaxin-6, or the cytosolic protein Akt in a linear opti-prep gradient (Figure 2.2D). 

Notably, RalA also co-fractionated with Rab4, another GTPase known to regulate  
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Figure 2.2 RalA is a recycling endosome (RE)-localized GTPase that re-localizes 
during cell division. (A) RalA co-localizes with TfR and Rab11, but not with γ-adaptin 
or GM130. Cos-1 cells transfected with eGFP-RalA WT were stained with antibodies 
against indicated proteins (red). (B) Nocodazole or tannic acid, but not BFA treatment, 
dramatically changes the localization of RalA. Cos-1 cells transfected with eGFP-RalA 
WT were treated with 33μM nocodazole for 2 hours (upper panel), or 0.5% tannic acid 
for 10 minutes (middle panel), or 5 ug/ml Brefeldin A (BFA) for 2 hours (lower panel) 
and stained with antibodies against indicated protein. (C)Nocodazole treatment causes 
RalA to localize to punctuate structures that co-localizes with TfR, but not GM130. (D) 
Cellular fractionation profile of RalA. Cos-1 cells were homogenized and the post 
nuclear supernatant was separated using a linear 10-20-30% opti-prep gradient. Equal 
volume of each fraction was loaded on a 4-20% SDS-PAGE gel. Distribution of different 
proteins was determined by Western blot. (E) Cell cycle-dependent re-localization of 
RalA. Cos-1 cells expressing eGFP-RalA WT were stained with α-tubulin (red) antibody 
to determine the stages in cell cycle.  
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endosome recycling, suggesting the similar properties of the vesicular membranes 

marked by these GTPases. Taken together, we conclude that RalA localizes to a subset of 

recycling endosomes in both polarized and non-polarized cells, suggesting an important 

role of RalA in regulating vesicle trafficking via the endocytotic recycling route. 

 

Interestingly, we observed that RalA underwent cell cycle-dependent re-localization 

(Figure 2.2E) similar to certain RE proteins involved in vesicle trafficking during 

cytokinesis [17, 18]. Co-staining of cells with α-tubulin revealed that RalA localized 

predominantly to the plasma membrane in mitosis, during which endosome recycling 

stops. However, upon initiation of anaphase, RalA was targeted to the ingestion furrow 

and later the intracellular bridge. Moreover, during the final step of cytokinesis, RalA 

localized to the abscission site, indicating a role for RalA in vesicle trafficking during the 

completion of cytokinesis.  

 

The exocyst is spatially and temporally localized during the cell cycle. RalA has been 

implicated in polarized trafficking through its interaction with the exocyst complex, 

which plays an essential role in vesicle targeting during cytokinesis in lower organisms 

[7-9]. We thus postulated that the exocyst complex may also facilitate polarized vesicle 

trafficking during mammalian cytokinesis. Immuno-fluorescence microscopy showed a 

punctate localization throughout the cell for the exocyst subunit Sec8, which accumulated 

in the juxtanuclear region where it co-localized with the centrosome marker pericentrin. 

During mitosis and cytokinesis, Sec8 associated with the mitotic apparatus including the  
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Figure 2.3. The exocyst is spatially and temporally regulated during the cell cycle. 
(A) Cell cycle dependent re-localization of Sec8. Cos-1 cells were stained using 
antibodies against Pericentrin (green) and Sec8 (red). Sec8 localizes to the centrosome 
during interphase, and then concentrates on mitotic spindles (mitosis), central spindles 
(anaphase), and the midbody (cytokinesis). (B) Subcellular localization of Exo70. Cos-1 
cells were stained with Pericentrin (green) antibody and Exo70 (red) antiserum. (C) Cos-
1 cells were transfected with HA-Sec5 full length and stained with antibody against 
Pericentrin (green) and HA (red). Cytokinetic cells with different expression level of 
Sec5 were shown. (D) Biochemical evidence that the exocyst associates with the 
midbody. Midbody isolation was performed according to standard methods [19] with 
cytokinetic CHO cells or unsynchronized cell as control. Total cell lysate and pellets of 
the above experiment were subjected to SDS-PAGE, followed by Western blot for 
indicated proteins. 
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spindle poles, and in cytokinetic structures including the central spindles and the 

midbody (Figure 2.3A). The same results were obtained using a different Sec8 antibody 

(data not shown). Another exocyst protein, Exo70, is also localized around and at the 

centrosome and later the midbody (Figure 2.3B), as is the over-expressed exocyst protein 

Sec5 (Figure 2.3C) and Sec8 (data not shown). Notably, ectopic expression revealed that 

the exocyst proteins are enriched in the abscission site, indicating that the exocyst may 

also regulate vesicular trafficking to the abscission site of the dividing cells. This 

enrichment was not visualized by endogenous protein staining, possibly due to epitope 

masking, a common technical difficulty in midbody staining. A recent proteomics study 

profiling midbody-associated proteins revealed that the exocyst subunit Sec3 is 

associated with the midbody [19]. Indeed, we found that the exocyst proteins and RalA 

are present in biochemically isolated midbody from synchronized CHO cells (Figure 

2.3D), further suggesting that these proteins may participate in membrane trafficking 

during cytokinesis.   

 

Disruption of RalA-exocyst function causes late stage cytokinesis failure. The 

dynamic re-localization of RalA and the exocyst to cytokinetic structures led us to 

investigate their potential roles in cell cycle progress. We observed that over-expression 

of RalA in Cos-1 cells leads to a moderate increase of bi-nucleated cells (Figure 2.4A, 

upper panel), a phenotype commonly resulting from cytokinesis failure. However, we 

also observed that a significant fraction of the cells form two-cell syncytia connected by 

microtubule bundles, and one cell body shrinks and often detaches from the culture 

substrate (Figure 2.4A, lower panel and Figure 2.4B). To investigate this phenomenon in 
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detail, we performed live cell imaging on Cos-1 cells over-expressing eGFP-RalA 

(Figure 2.4C). We found that upon initiation of cytokinesis, RalA was transported to the 

intracellular bridge in vesicular bodies and also localized to the plasma membrane of the 

cleavage furrow, similar to what was visualized in fixed cells. As cytokinesis proceeds, 

RalA associates with the abscission sites localized at the center of the intracellular bridge. 

However, the cells remain interconnected for a long period of time (≥6 hours after 

initiation of cytokinesis), as determined by the persistent abscission site marked by 

eGFP-RalA, and finally one cell collapses, possibly due to the increased cellular tension 

or triggering of apoptosis after failed cytokinesis [20].  

 

To further address the function of RalA and the exocyst in cytokinesis, we used siRNA-

mediated knockdown to deplete cellular expression of RalA and Sec8 in HeLa cells. The 

efficiency of the knockdown was verified by fluorescent oligos (data not shown) and 

Western blot (Figure 2.4D). When examined by immuno-fluorescence microscopy, both 

Sec8 and RalA knockdown in HeLa cells led to an increased number of bi-nucleated cells. 

However, a significant percentage of cells formed syncytia with two, three, or four cells 

that are connected with prolonged yet stretched intracellular bridges (Figure 2.4E, F). 

These multi-cell syncytia may arise from failed cytokinesis following a second round of 

mitosis of the individual cells, since one of the connected cells can re-enter mitosis. 

Taken together, the data indicate that disruption of the RalA-exocyst function leads to a 

late stage cytokinesis failure, likely resulted from incomplete abscission.  
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Figure 2.4 Disruption of RalA-exocyst function results in late stage cytokinesis 
failure. (A) Over-expression of RalA leads to formation of binucleated cells (upper panel) 
and cell syncytia with persistent intracellular bridge (lower panel). Cos-1 cells were 
transfected with eGFP-RalA for 36 hours, and stained with α-tubulin (red) antibody. (B) 
Percentage of cells that form syncytia when RalA was over-expressed. (C) Live cell 
images were taken on Cos-1 cells expressing eGFP-RalA at 30 seconds interval. Arrow 
indicates the abscission site at the middle of the intracellular bridge. (D) HeLa cells were 
transfected with 100 nM of the indicated siRNA oligos and lysed in SDS contained buffer. 
Cellular protein levels were determined by Western blot following SDS-PAGE. (E) HeLa 
cells transfected with indicated siRNA oligos were stained with antibodies against 
Pericentrin (green), α-tubulin (red). The nucleus was visualized by DAPI (blue); images 
were taken on an epi-fluorescence microscope. The arrows indicate the persistent 
intracellular bridges connecting daughter cells together. (F) Percentage of the cells after 
siRNA transfection showing cell cycle defects. Cells were categorized into binucleated, 
cytokinetic or syncytia, or undetermined if the cells are too close to be determined.  
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Discussion 

 

Membrane trafficking is an essential but poorly understood step in cytokinesis [3]. We 

report here a critical role of the exocyst, as well as its interacting GTPase RalA, in 

directing membrane trafficking to the key cytokinetic structures in mammalian systems. 

Our data suggest that besides fulfilling a general need for membrane addition, the exocyst 

may mediate the delivery of a specific set of vesicles to the abscission site.  

 

The data described here support the idea that RE-derived membrane trafficking is crucial 

for the completion of cytokinesis [3, 18], and points to a novel mechanism underlying 

this polarized vesicle delivery event. We found that RalA is localized and activated on 

RE and RE-derived vesicles. Moreover, RalA is spatially and temporally regulated during 

cell division, coupled with the re-localization of exocyst proteins to cytokinetic structures. 

Disruptions of RalA or exocyst function lead to similar cell cycle defects. Taken together, 

these results suggest a role of the exocyst in targeting RE-derived vesicles via its 

interaction with RalA. This is somewhat different from the originally proposed function 

of the exocyst in regulating post-Golgi secretion/exocytosis, and may reflect cross-talk 

between the secretory pathway and endocytic recycling pathway during cytokinesis. On 

the other hand, several recent papers report the association of exocyst proteins with the 

RE-localized adaptor AP-1B in polarized cells [21], and the interaction between Rab11 

and Sec15 [22], as well as the presence of Sec10 on RE membrane [23]. Hence, we 

reason that this regulatory function in RE trafficking may also represent the adaptation of 

the exocyst to a more specialized vesicle trafficking route.  
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These data lead to the hypothesis that the exocyst targets RalA-localized vesicles to key 

cytokinetic structures. Indeed, we found that the exocyst protein Sec8 dictates the 

function of Sec5, which in turn bridges RalA to the compartments marked by Sec8 

(unpublished observation).  However, the events upstream of this polarized vesicle 

delivery are not completely understood, as both Sec8 and Sec5 seem to be mobilized in a 

RalA-independent manner. The classic Rappaport experiment [24] and additional recent 

studies indicated that the centrosome is able to influence polarized vesicle trafficking 

from the RE [18, 25, 26]. We find that both RalA and the exocyst are associated with the 

centrosome, whereas disruption of their function causes defects in the late stage of 

cytokinesis, similar to defects resulting from a loss of centrosome function. This 

relationship between the centrosome and the exocyst was also suggested by a recent 

study (26). Interestingly, many centrosomal proteins have been reported to associate with 

central spindles and/or the midbody [19, 27, 28]. These data further suggest that the 

exocyst is the molecular link that directs RalA-containing vesicles to the centrosome and 

centrosome-related structures. This idea coincides with a recent study by Gromley et al., 

who reported that the exocyst complex is recruited to the midbody by the MT motor 

protein MKLP and the centrosomal protein centriolin [29]. It is also noteworthy that other 

RE-related proteins, such as FIP3 [18] and Dynamin II [28], show localization and 

function similar to the exocyst. Therefore, it will be interesting to learn whether they 

function in a parallel or linear pathway in endocytotic recycling.  
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The mechanisms controlling mammalian cell abscission are poorly studied. Nevertheless, 

several groups have suggested that the centrosome plays a crucial role in the completion 

of cytokinesis, likely via its transient re-localization to the future abscission site [30-32]. 

This repositioning may direct a specific set of vesicles to seal off the abscission site or 

facilitate recruiting key signaling proteins [33]. It is tempting to hypothesize that the 

exocyst may provide the essential specificity of this process. One possibility is that RalA, 

via the exocyst, may regulate the delivery of a group of proteins essential for abscission. 

Interestingly, two recent reports [18] demonstrated the role of Rab11 and Arf6 in 

cytokinesis, along with the involvement of the exocyst. Hence, the abundance of RE-

localized GTPases that are involved in cytokinesis suggests that they regulate different 

pools of vesicles derived from RE. On the other hand, it is also possible that RalA itself 

may have a signaling role in cell separation. In correlation with our finding that active 

RalA localizes to the centrosome and the abscission site, Wu et. al. reported that Aurora-

A, a centrosome-localized kinase essential for cell cycle regulation, is able to activate 

RalA [34]. In addition, RalBP1, a Ral effector containing a Rho GAP domain, was first 

identified as a centrosome antigen [35]. These observations may recapitulate the 

signaling pathways regulating cell separation in yeast [36], raising an intriguing 

hypothesis that the repositioning of the centrosome may bring spatially segregated 

signaling molecules together at a specific time during the cell cycle.  

 

In summary, we have demonstrated an important role for the mammalian exocyst in 

completion of cytokinesis, by targeting RE-derived vesicle trafficking through its 

interaction with the GTPase RalA. In addition, our results suggest a potential mechanism 
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by which the centrosome may control the terminal stage of cytokinesis. Since RE-

mediated trafficking is also implicated in other polarized cellular events and regulated 

exocytosis in specialized cells [37], it will be interesting to investigate how the exocyst 

may facilitate these trafficking events in response to the specific signal cues. 

   

Materials and Methods 

 

Constructs- Full length Sec5 was obtained from a 3T3-L1 cDNA library by PCR, and 

completely sequenced, then cloned into the pKH3 vector [38]. Sec5 RBD (1-120) and 

RalBP1 RBD (397-519) were cloned into peYFP-C1 vector (BD biosciences). Sec5 RBD 

T11A was generated using site directed mutagenesis (Stratagene). RalA variants were 

cloned into pK-Flag vector or peGFP-C3 vector (BD biosciences).  

 

Cell culture, transfection, and inhibitors- Cos-1 and Hela cells were grown in Dulbecco’s 

modified Eagles’s medium (DMEM) supplemented with 10% fetal bovine serum and 100 

U ml-1 streptomycin (GIBCO). CHO cells were grown in DMEM/F-12 medium 

supplemented with the 10% fetal bovine serum and 100 U ml-1 streptomycin. Cos-1 cells 

were transfected using Fugene 6 (Roche) according to the manufacturer’s directions. All 

chemicals and inhibitors were from Sigma. Cells were treated at 37oC with 33μM 

nocodazole for 2 hours, 2μM cytochalasin D for 1 hour, 2μM Brefeldin A for 2 hours, or 

0.5% tannic acids for 10 minutes.  
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Immunofluorescence and antibodies- Cells were grown on glass coverslips and washed 

with PBS before fixation. After fixation with methanol at -20oC for 3 minutes, cells were 

re-hydrated in PBS, and then blocked with 1% BSA and 1% chicken albumin. For RBD 

experiments, cells were fixed with 10% formalin at room temperature for 10 minutes, 

neutralized with 100 mM Glycine/PBS, and then permeablized with 0.5% Tx-100 before 

blocking. RalA localization remains the same in different fixation conditions. Primary 

antibodies used were α-tubulin (1:500, mAb), Flag (1:500, rabbit IgG), and γ-

adaptin(1:200, mAb) from Sigma; Pericentrin (1:100, rabbit IgG) from Abcam; TfR 

(1:500, mAb), Rab11 (1:50, rabbit IgG) from alpha Diagnostic; GM130 (1:100, mAb) 

from BD biosciences; Sec8 (1:100, mAb) from Stressgen; HA (1:500, mAb or rabbit IgG) 

from Santa Cruz biotechnology. Monoclonal anti-Exo70 was described previously (18). 

Alexa-Fluor conjugated goat anti-mouse/rabbit secondary antibodies, Alexa-Fluor 

conjugated Phalloidin, and Vector Shield mounting medium were from Molecular Probe. 

The following antibodies were used in biochemical assays: RalA, Rab4, Nek2, EEA1 

mAbs were from BD biosciences; rabbit anti-Exo84 was from Orbigen; rabbit anti-Sec10 

was kindly provided by Dr.Wei Guo (University of Pennsylvania). 

 

Western blots- Cells were washed with PBS and lysed for 30 minutes at 4oC in buffer 

(buffer A) containing 100mM Tris (pH 7.5), 1% NP-40, 135mM NaCl, 1mM EDTA, 

1.0mM sodium orthovanadate, 10mM NaF, and protease inhibitor tablets (Roche). The 

lysates were subjected to SDS-PAGE and transferred to nitrocellulose. Individual 

proteins were detected with specific antibodies and visualized by blotting with HRP-

conjugated secondary antibodies.   

 94 



 

Midbody prep- CHO cell midbody prep was performed according to a previous study 

[19]. The pellet fraction of interphase cells and cytokinetic cells treated with taxol and 

jasplakinolide were subjected to SDS-PAGE and blotted with specific antibodies. 

 

Opti-prep gradient- Cos cells were washed with PBS, homogenized in HES buffer 

(20mM Hepes pH 7.4, 1mM EDTA, 250 mM Sucrose) 10 times with a ball bearing 

homogenizer (Wheaton), and spun at 3,000g for 3 minutes to generate post-nuclear 

supernatant (PNS).  To generate a 10-20-30% continuous gradient, 1.2 ml PNS was 

mixed 1:1 with 60% iodixanol (Opti-Prep), and layered under 1.3 ml 20% iodixanol and 

1.2 ml 10% iodixanol, respectively. The gradient was spun at 72,000 rpm in a fixed angle 

NVT90 rotor for 3 hours at 4oC and fractionated into 25 fractions. Equal volume of each 

fraction was loaded in SDS-PAGE. 

 

siRNA knockdown- The following siRNA oligos (Invitrogen) were used. RalA: 5’-

CCAAGGGUCAGAAUUCUUU-3’ (oligo-1 sense), 5’-

GCUAAUGUUGACAAGGUAU-3’ (oligo-2 sense); Sec8: 5’- 

CCUUGAUACCUCUCACUA U -3’ (oligo-1 sense), 5’- GCUUUCUCCAAUCUUUCU 

A -3’ (oligo-2 sense); Control oligos with medium GC content or fluorescent labeling 

were also from Invitrogen. 100 nM oligos were transfected into Hela cells using 

oligofectamine according to the manufactory’s instruction. After 3 days, cells were 

trypsinized and re-plated at low density, and a second round of knockdown was 
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performed. Cells were either harvested in SDS-PAGE sample buffer for Western blot or 

fixed for immuno-fluorescent microscopy.  

 

Time-lapse microscopy- Cos cells expressing eGFP-RalA were treated with 100 nM 

nocodazole for 16 hours.  The mitotic cells were harvested by centrifuge and released 

into cell cycle for 30-40 minutes before being imaged at 370C using an upright 

fluorescent spinning disk microscope (Leica). Images were taken under a 63X oil lens at 

30 second intervals.   
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Chapter 3 

 

The Activation of RalA is Required for Insulin Stimulated Glut4 Trafficking to the 

Plasma Membrane via the Exocyst and the Motor Protein Myo1c 

 
 
Introduction 

 

Insulin stimulates glucose transport in fat and muscle cells through a process of regulated 

vesicle recycling, in which the insulin-responsive glucose transporter Glut4 is translocated 

from intracellular sites to the plasma membrane [1, 2]. In the basal state, Glut4 undergoes 

endocytosis via endocytic compartments and is subsequently sorted into specialized storage 

vesicles that rapidly translocate to the plasma membrane upon insulin stimulation. These 

vesicles then dock and fuse at specific sites on the plasma membrane, resulting in 

extracellular exposure of the transporter. Despite much attention, the precise mechanisms 

that link insulin signaling to these trafficking events remain poorly understood [3]. 

 

We recently demonstrated that the exocyst complex plays a pivotal role in insulin-stimulated 

glucose transport by facilitating the docking of Glut4 vesicles to the plasma membrane [4, 5]. 

The exocyst is an evolutionarily conserved vesicle tethering complex comprised of eight 

subunits [6, 7]. The assembled complex mediates the initial recognition between exocytic 

vesicles and the target membrane, under the control of integrated signal inputs from different 
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small GTPases that are spatially regulated [8]. In yeast, Rho family GTPases anchor part of 

the exocyst on the plasma membrane through Exo70p and Sec3p; whereas the vesicle-

localized GTPase Sec4p recruits other components to the exocytic vesicles via its effector 

Sec15p [6, 9, 10]. Sec4p also forms a complex with the unconventional myosin motor 

Myo2p and its light chain Mlc1p, which then deliver the vesicles along a cytoskeletal track 

[10-14]. 

 

Despite its conserved presence through evolution, whether the exocyst may adopt similar 

schemes to regulate vesicle targeting in eukaryotes remains uncertain [15, 16]. A mammalian 

functional homolog of Sec4 that regulates exocyst-mediated vesicle targeting has not yet 

been identified; and even less is known about the involvement of the cytoskeleton and 

molecular motors. In adipocytes, activation of TC10 on the plasma membrane in response to 

insulin mobilizes at least part of the exocyst [4, 17], a process essential for the docking and 

fusion of Glut4 vesicles [4, 5]. However, the mechanisms by which Glut4 vesicles are 

directed to and recognize the exocyst remain unknown. Central to this question is whether a 

second, vesicle-localized G protein may integrate signaling from the insulin receptor, and 

subsequently coordinate transport machineries, including the exocyst and motor proteins, for 

Glut4 delivery. 

 

The small GTPase RalA has emerged as a convergent point of cellular signaling and 

vesicular trafficking [18]. Ral GTPases (RalA and RalB) interact with the exocyst 

subunits Sec5 and Exo84 [19-21]; RalA has higher affinity for these proteins than does 

RalB [22]. Recent studies have reported the regulatory role of RalA, but not RalB, as well 
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as the involvement of the exocyst, in varied processes, including E-cadherin exocytosis 

[22], oncogenic transformation [23], and cytokinesis[24-26]. Here we report that insulin-

stimulated glucose transport requires the activation of RalA and its interactions with both 

the exocyst complex and the unconventional myosin Myo1c complex.  

 

Results 

 

RalA resides in Glut4 vesicles. While the exocyst complex is required for the trafficking 

of specialized Glut4 storage vesicles in response to insulin, how the vesicle recognizes 

exocyst components is unknown.  To identify proteins that might be involved in 

vesicle:exocyst recognition, we screened for vesicular-localized GTPases that might 

fulfill some of these roles [16] in adipocytes by pull down, followed by western blotting.  

RalA, but not Arf6 or Rab11, specifically precipitated the exocyst proteins including 

Sec5 and 8, Exo84 and Exo70 in a GTP-dependent manner in both 3T3-L1 adipocytes 

and primary mouse adipocytes (Figure 3.1A).  

 

RalA has been reported to localize to vesicles derived from the recycling endosome [22, 

24], an organelle implicated in the sorting of insulin-responsive Glut4 vesicles [27]. To 

test whether RalA may associate with Glut4 vesicles, low density microsome (LDM) 

fractions were prepared from 3T3-L1 adipocytes treated without or with insulin, and then 

further fractionated on opti-prep density gradients to separate different pools of 

intracellular vesicles. Glut4 was separated into two peaks; the first (peak 1) was only 

found in untreated cells, indicating that this population of Glut4 vesicles translocated to  
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Figure 3.1. RalA is a Glut4 vesicle associated GTPase connecting the native exocyst 
complex. (A) RalA, but not Arf6 or Rab11 interacts with the adipocyte exocyst. Cell 
lysates prepared from 3T3-L1 adipocytes (upper) or primary adipocytes (lower) were 
incubated with Glutathione beads coupled with the indicated GST-fusion proteins that 
were pre-loaded with GDP or GTPγS. Bound proteins were subjected to SDS-PAGE and 
Western Blotting (WB). (B) RalA co-fractionates with an insulin-responsive Glut4 
population. Low density microsome (LDM) fractions prepared from 3T3-L1 adipocytes 
treated without or with insulin for 10 minutes were fractionated using a self-generated 
Opti-prep gradient. Fractions were subjected to SDS-PAGE starting from light density 
fractions and WB. The first lane represented LDM fractions. (C) RalA is present in 
affinity purified Glut4 membranes. LDM fractions prepared from 3T3-L1 adipocytes 
were incubated with the indicated antibodies pre-coupled to Protein A/G beads. After 
washing extensively, bound proteins were eluted with detergent, subjected to SDS-PAGE, 
and WB. (D) RalA co-localizes with Glut4. 3T3-L1 adipocytes were transfected with 
plasmids encoding mRFP-RalA and Glut4-eGFP, and stimulated without or with insulin 
for 30 minutes. Cells were fixed and subjected to confocal microscopy; compiled images 
of individual cells from different fields were presented for illustration purposes. Arrows 
indicated co-localization. (E) Quantification of cells in (D) with plasma membrane (PM) 
localization of RalA. n= 4 x 100. (F) Endogenous RalA translocates to the PM in 
response to insulin. Left: 3T3-L1 adipocytes were homogenized after stimulation without 
or with insulin for 20 minutes. Cell homogenates were fractionated using a self generated 
Opti-prep (10-20-30%). Right: fractions of plasma membrane (in the box) and Endo/TGN 
(the peak fraction and the neighboring two) were pooled and subjected to SDS-PAGE on 
the same gel, followed by WB analysis. 
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the plasma membrane in response to insulin.  The second peak was less insulin sensitive.  

RalA co-fractionated with the first Glut4-containing pool of vesicles, as did the v-

SNARE VAMP2, which regulates plasma membrane fusion of Glut4 vesicles (Figure 

3.1B). Both RalA and VAMP2 disappeared in response to insulin, indicating that these 

proteins may physically associate with Glut4 vesicles. To further explore this possibility, 

we immuno-purified Glut4 vesicles from LDM fractions of 3T3-L1 adipocytes with three 

different antibodies.  RalA was present in each preparation of these immunopurified 

vesicles, but not in those found with control antibodies (Figure 3.1C). We also examined 

the localization of Glut4 and RalA by microscopy.  3T3-L1 adipocytes were transfected 

with an mRFP-tagged RalA construct and an eGFP-tagged Glut4 construct.  mRFP-RalA 

co-localized with Glut4-eGFP in perinuclear regions in un-stimulated 3T3-L1 adipocytes. 

Insulin promoted the translocation of both proteins to the plasma membrane (Figure 3.1D, 

E). Consistent with these observations, fractionation of 3T3-L1 adipocyte homogenates 

revealed that endogenous RalA relocated to plasma membrane fractions upon insulin 

stimulation, as did Glut4 and VAMP2 (Figure 3.1F). Taken together, these data suggested 

that RalA associates with insulin-responsive Glut4 vesicles. 

 

RalA is activated by insulin, a step required for targeting Glut4 to the plasma 

membrane. The association of RalA with Glut4 vesicles led us to investigate whether 

insulin may regulate the activity of the G protein, and whether its activity state plays a 

role in Glut4 trafficking. 3T3-L1 adipocytes were treated with insulin for up to 60 

minutes and at different doses, and RalA activity was assessed by pull down with an 

immobilized Ral binding domain (RBD) of RalBP1.  Insulin stimulated the activation of 
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RalA in a time and dose-dependent manner, with maximal activation occurring at about 5 

minutes (Figure 3.2A, B). Intriguingly, insulin activation of RalA was blocked by pre-

treatment of cells with wortmannin, an inhibitor of PI 3-Kinase that is critical for insulin-

stimulated Glut4 translocation (Figure 3.2C).   

 

To determine whether activation of RalA is necessary for insulin-stimulated glucose 

transport, we introduced wild type, constitutively active (G23V), and dominant negative 

(S28N) forms of RalA into 3T3-L1 adipocytes, and assayed 2-deoxy-glucose uptake after 

stimulation with insulin. The expression of all three proteins was verified by Western 

Blotting, and was without effect on insulin-stimulated tyrosine phosphorylation, Erk 

phosphorylation, or Akt phosphorylation (Figure 3.2D). While wild-type and 

constitutively active RalA mutants had no effect on insulin-stimulated glucose uptake, 

dominant negative RalA produced a ~ 40% reduction in the effect of the hormone (Figure 

3.2E). A similar inhibitory effect was observed after expression of RalA (G26A), another 

dominant negative mutant form of RalA (data not shown). Considering the 50-60% 

transfection efficiency achieved in these experiments, these results indicated that the 

activity of RalA is required for the stimulation of glucose uptake by insulin. 

 

To further examine the effects of these mutants on Glut4 trafficking, we co-expressed the 

RalA constructs with a Myc-Glut4-eGFP reporter, in which a triple Myc tag was 

introduced into the exo-facial loop of Glut4 to monitor its extracellular exposure after 

vesicle docking and fusion. Consistent with the glucose uptake assay, dominant negative 

RalA inhibited insulin-stimulated Glut4 translocation as well as its subsequent fusion  
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Figure 3.2. Activation of RalA by insulin is involved in targeting Glut4 to the plasma 
membrane. (A) Time course of RalA activation by insulin. 3T3-L1 adipocytes were 
stimulated as indicated and lysed. Cell lysates were subjected to pull down using GST-
RalBP1 RBD. RalA from the pulldown, or total RalA and pAkt in the lysates were 
determined by WB following SDS-PAGE separately. The experiment shown was 
representative of five independent experiments. About 1-3% of total cellular RalA was 
present in the pulldown. (B) Dose-dependent activation of RalA by insulin. 3T3-L1 
adipocytes were treated with indicated doses of insulin for 5 minutes. An assay similar to 
that described in (A) was performed to determine the level of active RalA. The 
experiment shown was representative of three independent experiments. (C) RalA 
activation by insulin is wortmannin-sensitive. 3T3-L1 adipocytes were pre-treated with 
100 nM wortmannin for 30 minutes, and then stimulated with insulin as indicated. An 
assay identical to that described in (A) was performed. The experiment shown was 
representative of five independent experiments. (D) Expression of RalA of different 
forms has no effects on proximal insulin signaling. 3T3-L1 adipocytes were 
electroporated with plasmids encoding proteins indicated. Cell lysate were subjected to 
SDS-PAGE and WB. (E) Dominant negative RalA inhibits insulin-stimulated 2-deoxy-
glucose (2-DG) uptake. 3T3-L1 adipocytes expressing the indicated proteins were 
subjected to a 2-DG uptake assay. Asterisk: p < 0.001. The experiment shown was 
representative of four independent experiments. (F) Dominant negative RalA inhibits 
Glut4 trafficking. 3T3-L1 adipocytes were co-transfected with plasmids encoding myc-
Glut4-eGFP and indicated RalA mutants. Cells were stimulated without or with insulin 
for 30 minutes, fixed without permeablization, stained with Myc antibody, and examined 
by confocal microscopy. (G, H) Quantification of cells in (E) that had plasma membrane 
rim staining of GFP or Myc. Asterisk: p<0.001. n = 3 x 100 for both basal and stimulated 
states.  
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with the plasma membrane (Figure 3.2F), as quantified by the plasma membrane rim 

localization of both GFP and Myc in non-permeablized cells (Figure 3.2G). In contrast, 

the wild-type and constitutively active mutants were without effect. 

 

To further explore the role of RalA in insulin action, siRNA-mediated knockdown was 

carried out to deplete cellular RalA. Three different siRNA oligos against RalA  

were used to achieve approximately 90% knockdown of the protein (Figure 3.3A, data 

not shown). Depletion of RalA had no apparent effect on insulin-stimulated tyrosine 

phosphorylation or Akt phosphorylation (data not shown). However, addition of the 

siRNA oligos to 3T3-L1 adipocytes attenuated insulin-stimulated 2-deoxy-glucose uptake 

in a trend that correlated with the level of RalA reduction (Figure 3.3B), with the second 

oligo sequence being the most effective. Considering that Glut4 only accounts for a 

portion of glucose uptake in 3T3-L1 adipocytes due to the presence of Glut1 transporter 

and knockdown cannot eliminate cellular function of the target protein, the inhibition of 

glucose uptake from RalA knockdown is likely to represent a major blockage of insulin 

action. We then employed an inhibitory probe, comprised of Sec5 RBD and the C-

terminal targeting motif of RalA, to block the downstream of activated RalA. Expression 

of this probe also led to a significant inhibition of glucose uptake (Figure 3.3C). 

Moreover, knockdown of Sec5 and Exo84, the two exocyst subunits that interact with 

RalA, also inhibited glucose uptake in response to insulin (Figure 3.3D), consistent with 

what was previously reported for other exocyst proteins in regulating Glut4 exocytosis 

[5], further suggesting that the unification of the exocyst is required for glucose transport.  
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Figure 3.3. Loss of RalA attenuates insulin stimulated glucose transport.  (A,B) Loss 
of RalA inhibits insulin-stimulated glucose uptake. 3T3-L1 adipocytes transfected with 
the indicated siRNA oligos were subjected to WB (A) using indicated antibodies and 2-
DG uptake assay (B). Asterisk: p<0.003, double asterisks: p<0.0005. The experiment 
shown was representative of three independent experiments. (C) Inhibition the 
downstream of activated RalA blocks insulin-stimulated glucose uptake. Adipocytes 
transfected with vector or Sec5-RBD fused with C-terminus of RalA were subjected to 2-
DG uptake assay as described above. Asterisk: p<0.0005. The experiment shown was 
reprehensive of three independent experiments. (D) Loss of Sec5 or Exo84, the two 
exocyst subunits interacting with RalA, inhibits insulin stimulated 2-deoxy-glucose (2-
DG) uptake. 3T3-L1 adipocytes transfected with the indicated siRNA oligos were 
subjected to 2-DG uptake assay. Radioactive 2-DG incorporation was determined after 
normalizing to protein concentration. Asterisk: p<0.02, double asterisks: p<0.001. (E) 
Loss of RalA inhibits trafficking of Myc-Glut4-eGFP. 3T3-L1 adipocytes stably 
expressing Myc-Glut4-eGFP were transfected with control or RalA siRNA oligos. After 
insulin treatment, cells were fixed without permeablization, stained with Myc antibody, 
and examined by confocal microscopy. (F) Quantification of (D). GFP or Myc 
fluorescent signals of cells in (D) were quantified with fluorescent spectrometer. Error 
bars represented standard deviation mean from eight replicated samples for each 
condition tested. The experiment shown was representative of three independent 
experiments. (G) Restoration of Glut4 trafficking from RalA knockdown by re-
introducing RNAi-resistant RalA. 3T3-L1 adipocytes were infected first with lentiviruses 
expressing control or RalA knockdown shRNA for 6 days, and then with lentiviruses 
expressing RFP or mRFP-RalA. ShRNA expressing were monitored by expression of 
GFP. After starvation, cells were stimulated as indicated, and processed for immuno-
fluorescence to stain endogenous Glut4 (red). Expression of cDNA was monitored by 
RFP signal (pseudo-colored in blue) (H) Quantification of cells with Glut4 rim staining 
in (G). Error bars represented standard deviation from 4 different experiments. Asterisk: 
p<0.001, n = 4 x 100 for both basal and insulin-stimulated states. 
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To quantitatively study the role of RalA in insulin-stimulated Glut4 trafficking, we 

employed an adipocyte line in which Myc-Glut4-eGFP was stably expressed. RalA 

knockdown inhibited insulin-stimulated plasma membrane insertion of Glut4 (Figure 

3.3E), as determined by total Myc staining without cell permeablization versus eGFP 

fluorescence (Figure 3.3F). Taken together with the dominant interfering mutant 

experiments presented above (Figure 3.2E-G), these data suggested a required role 

foRalA in Glut4 trafficking, likely in both the translocation and docking of Glut4 vesicles. 

 

We finally examined whether the defects in Glut4 trafficking from RalA knockdown can 

be reversed by re-introducing RalA. Due to the different time course of RNA interference 

and cDNA expression, we employed a lentiviral system to achieve stable knockdown 

over time. Viral infection was then monitored by the expression of eGFP that was 

encoded in the same viral construct. Insulin-stimulated translocation of endogenous Glut4 

to the plasma membrane was similarly inhibited in adipocytes expressing shRNA against 

RalA, but not in control cells (Figure 3.3G, upper panel). The defects in RalA 

knockdown cells could be reverted by re-introducing the RNAi-resistent cDNA of RalA 

(Figure 3.3H) tagged with mRFP, but not with mRFP alone, while both proteins had little 

effects on Glut4 in control cells (Figure 3.3G, lower panel). Taken together, the data 

further strengthened the required role of RalA in insulin action to regulate Glut4 

trafficking.  

 

The Myo1c motor associates with RalA. The involvement of RalA in Glut4 

translocation and docking is reminiscent of the yeast protein Sec4p, which coordinates 
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the function of the exocyst and myosin motor in exocytosis [6, 10-14]. Several lines of 

evidence support the involvement of motor proteins in transporting Glut4 vesicles along 

the cytoskeletal track [28-30], raising the possibility that they may cooperate with the 

exocyst during Glut4 trafficking. To identify additional proteins that may associate with 

RalA, we employed Mass Spectrometry following a co-immunoprecipitation experiment 

using a FLAG-RalA stable cell line. One protein was identified by both MS and MS/MS 

analysis as Myo1c, an unconventional myosin that is thought to associate with and 

transport Glut4 vesicles [29, 30] (Figure 3.4A). This interaction was confirmed by 

reciprocal co-immunoprecipitation with recombinant proteins (Figure 3.4B). The 

interaction between Myo1c and RalA in adipocytes was independent of the nucleotide 

binding status of RalA (Figure 3.4C). 

 

To delineate the domains in Myo1c that mediate its interaction with RalA, we generated a 

series of Myo1c truncation mutants (Figure 3.4D), and performed co-

immunoprecipitation experiments.  These studies revealed that the IQ domains of Myo1c 

are required for interacting with RalA (Figure 3.4E). Both the lipid-binding tail domain 

and IQ domains of Myosin I proteins have been implicated in mediating recruitment of 

the unconventional Myosins to membrane compartments, while the latter cases appear to 

involve calcium-sensitive Myosin light chains [31-34]. Consistent with this possibility, 

we found that the interaction between GST-RalA and Myo1c in adipocytes is sensitive to 

calcium (Figure 3.4F), suggesting the involvement of the light chain of Myo1c.  These 

data raised the possibility that RalA may serve as a cargo receptor for Myo1c, linking the 

molecular motor to the Glut4 vesicle.  
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Figure 3.4. The Myo1c motor interacts with RalA.   (A) Identification of RalA binding 
protein as Myo1c by Mass Spectrometry (MS). Control or FLAG-RalA stable cell lines 
were lysed and subjected to immuno-precipitation (IP). Bound proteins were separated 
using SDS-PAGE; protein bands were sliced and subjected to both MS and MS/MS 
analysis. (B) Confirmation of the Mass Spectrometry results with recombinant proteins. 
Cos cells were transfected with plasmids encoding indicated proteins, and subjected to IP 
with indiated antibodies. Bound proteins were subjected to SDS-PAGE and WB. (C) 
Nucleotide-independent interaction between RalA and Myo1c in adipocytes. 3T3-L1 
adipocytes transfected with the indicated RalA constructs were lysed and subject to IP 
using FLAG antibody. Bound proteins were subjected to SDS-PAGE and WB. (D) 
Schematics of Myo1c truncation mutants. (E) Mapping Myo1c domains that mediate 
RalA interaction. Cos cells expressing the indicated constructs were lysed, and subjected 
to IP using HA antibody. Bound proteins were subjected to SDS-PAGE and WB. (F) 
Calcium-sensitive interaction between GST-RalA and Myo1c. 3T3-L1 adipocytes were 
lysed with buffers containing 1mM CaCl2 or EDTA, and incubated with the indicated 
GST-fusion proteins coupled to GSH beads. Bound proteins were subjected to SDS-
PAGE and WB. (G) Sub-cellular localization of Myo1c and RalA. Cos-1 cells were 
transfected with eGFP-RalA wild type and RFP- Myo1c full length (FL) or Myo1c (IQT), 
fixed, and subjected to fluorescent microscopy. In lower panel, cells were treated with 
500 nM Jasplakinolide for 1 hour.  
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When examined by microscopy, RFP-tagged full length Myo1c largely co-localized with 

eGFP-RalA on membrane ruffles on the plasma membrane (Figure 3.4G, upper panel). 

However, deletion of the Myo1c motor domain resulted in co-localization with RalA on 

vesicular membranes, and reduced the plasma membrane localization of RalA (Figure 

3.4G, middle panel). These observations suggested a transient association between 

Myo1c motor and RalA-vesicles when active transport is present during endocytic 

recycling. Indeed, treatment of cells with Jasplakinolide induced formation of excess rod-

like actin filament of different length; both RalA and Myo1c localized on these filaments 

throughout the cell (Figure 3.4G, lower panel). 

 

Calmodulin regulates Myo1c function in glucose transport. Studies in yeast have 

suggested that the transport of Sec4-localized vesicles by Myo2 is controlled by a Myo2 

light chain, Mlc1 [35], which directly interacts with the first two proteins to form a 

ternary complex [14]. Although it remains unclear whether this ternary complex is solely 

responsible for Myo2 recruitment, disruption of its formation prevented Myo2 from 

transporting exocyst-targeted vesicles. This led us to hypothesize that Myo1c, like many 

molecular motors including kinesins and dyneins particularly, operates in complex with 

the light chains to recognize cargo receptors in regulating Glut4 trafficking. To evaluate 

this possibility, we expressed HA-tagged Myo1c in adipocytes, and searched for 

associated proteins via Mass Spectrometry as described above. We identified Calmodulin 

as an interacting light chain for Myo1c in adipocytes (Figure 3.5A). Co-

immunoprecipitation experiments with Myo1c mutants confirmed that this interaction is 

also mediated via Myo1c IQ domains (data not shown). Interestingly, Calmodulin, like 
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Myo1c, also interacted with RalA in a nucleotide-independent manner (data not shown), 

as previously reported [36, 37].  

 

As a myosin light chain, Calmodulin adopts different molecular conformations in its 

calcium-bound or free form, thus regulating the overall structure of the Calmodulin-

Myosin complex [32]. It has been suggested that in the case of the unconventional 

myosin Myosin-V, calcium-bound Calmodulin leads to an “active” extended 

conformation of the motor complex, permitting cargo loading and transport initiation [38]. 

Consistent with this, we found that calcium-bound Calmodulin formed a stronger 

interaction with Myo1c in a pull down assay using recombinant Calmodulin, compared 

with the calcium-free form (Figure 3.5B). We thus performed in vitro assessment to test 

whether Calmodulin may facilitate the association between RalA and Myo1c. Indeed, 

GST-RalA only interacted with in vitro translated HA-Myo1c in the presence of calcium 

bound recombinant Calmodulin (Figure 3.5C). Taken together with the calcium-sensitive 

nature of Myo1c-RalA interaction (Figure 3.3F), these data indicated that calcium-bound 

Calmodulin may enhance the surface accessibility of the Myo1c motor complex, thus 

facilitating RalA interactions and the recognition of cargo vesicles.  

 

To test this possibility in more detail, we evaluated the effects of the Calmodulin 

inhibitor trifluoperazine (TFP), which interacts with calcium-bound Calmodulin and 

prevents it from interacting with other proteins. Treatment of cells with TFP blocked the 

interaction between Myo1c and RalA (Figure 3.5D). Notably, addition of this compound 

to adipocytes has also been shown to block insulin stimulated plasma membrane  
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Figure 3.5. Calmodulin regulates Myo1c function in glucose transport.  (A) 
Identification of Calmodulin as a Myo1c Light Chain in adipocytes. 3T3-L1 adipocytes 
were transfected with the indicated constructs and subjected to IP using HA antibody 
after lysis. Proteins in immunoprecipitates were separated by SDS-PAGE and subjected 
to MS and MS/MS analysis. (B) Calcium-dependent interaction between Calmodulin and 
Myo1c. 3T3-L1 adipocytes were lysed with buffers containing 1mM CaCl2 or EGTA. 
Cell lysates were then incubated with the indicated proteins coupled to beads. Bound 
proteins were analyzed by WB following SDS-PAGE. (C) Calcium-bound Calmodulin is 
required for RalA-Myo1c association in vitro. GST or GST-RalA coupled on beads was 
incubated with in vitro translated HA-Myo1c in the absence or presence of purified 
Calmodulin, in either EGTA or Calcium containing buffer. Bound proteins were 
subjected to SDS-PAGE and WB. (D) The Calmodulin inhibitor TFP inhibits RalA-
Myo1c interaction. Cos cells expressing the indicated constructs were treated without or 
with TFP for 20 minutes and subjected to anti-HA IP after lysis. Bound proteins were 
then analyzed by WB following SDS-PAGE. (E) TFP mis-localizes Myo1c from plasma 
membrane in adipocytes. 3T3-L1 adipocytes were treated with or without 50 μM TFP for 
20 minutes, and then stimulated with or without insulin for 20minutes before fixation. 
Cells were stained with Myo1c antibody and subjected to microscopy. (F)  Loss of 
Calmodulin inhibits insulin-stimulated glucose uptake. 3T3-L1 adipocytes transfected 
with the indicated siRNA oligos were subjected to 2-DG uptake assay. Note that oligo-1 
failed to deplete Calmodulin, as shown in Figure 5f. Asterisk: p<0.003. The experiment 
shown was representative of three independent experiments. (G) Knockdown of 
Calmodulin is without effect on proximal insulin signaling. 3T3-L1 adipocytes 
transfected with the indicated siRNA oligos were treated without or with insulin for 30 
minutes and lysed. Cell lysates were subjected to SDS-PAGE and WB. 
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translocation of Glut4, but not Glut1, suggesting a selective role of Calmodulin in insulin 

action [39]. Besides inhibition of Glut4 trafficking (data not shown), we also found that 

TFP treatment inhibited the localization of endogenous Myo1c to the plasma membrane 

(Figure 3.5E), reinforcing the regulatory role of Calmodulin on Myo1c in Glut4 

trafficking.  Furthermore, these data were consistent with the hypothesis that Myo1c, in 

complex with Calmodulin, recognizes RalA as a cargo receptor on Glut4 vesicles. We 

next depleted Calmodulin by siRNA-mediated knockdown as an alternative means to 

disrupt the Myo1c-RalA complex, followed by evaluation of insulin-stimulated glucose 

transport.  Loss of Calmodulin resulted in a 40-50% inhibition of 2-deoxy-glucose uptake 

stimulated by insulin (Figure 3.5F). This inhibition appeared to correlate with the 

Calmodulin expression level, and was not due to any detectable blockade of proximal 

insulin signaling events (Figure 3.5G). The data is consistent with the proposed role of 

Calmodulin in insulin-regulated glucose transport, although we cannot rule out the 

involvement of other long term effects of Calmodulin knockdown.  

 

Coordination between the exocyst and Myo1c regulates Glut4 trafficking to the 

plasma membrane. Genetic studies in yeast have revealed that the combination of Myo2 

and exocyst partial loss-of-function mutants resulted in synthetic lethality [40, 41], 

suggesting that vesicle delivery and docking are closely coupled by these proteins for 

efficient transport [11]. We thus hypothesized that efficient Glut4 trafficking may also 

require concerted actions between Myo1c and the exocyst, in the process ensuring the 

velocity and specificity of transport. To test this, we set out to determine whether 

disruption of Myosin and the exocyst together may augment inhibitory effects on glucose 
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transport. We first employed dominant negative mutants of Myo1c and Sec5. 

Overexpression of the Myo1c C-terminus, Myo (IQT) [29] and Sec5 Ral binding domain 

(RBD) [19] together led to a synergistic inhibition of insulin-stimulated 2-deoxy-glucose 

uptake in 3T3-L1 adipocytes, compared to expression of either of the mutants alone 

(Figure 3.6A). Similar results were obtained with siRNA-mediated knockdown (Figure 

3.6B), in which cellular Sec5, Myo1c, or both were partially depleted (Figure 3.6C), 

implying that these proteins may coordinate with each other in regulating Glut4 vesicle 

targeting. Consistent with this idea, we found that the fast exchanging mutant (F39L) of 

RalA induced vesicular localization of HA-Sec5. Moreover, both proteins co-localized 

with endogenous Myo1c on membrane ruffles on the plasma membrane (Figure 3.6D, 

upper panel). However, the Myo (IQT) fragement, which lacked the motor domain, 

decorated intracellular tubule-vesicular structures where both RalA and Sec5 were 

localized (Figure 3.6D, lower panel). Taken together, these data suggest that Myo1c 

could recognize RalA-resided vesicles bound with some exocyst subunits, further 

indicating a cooperative effort of these two complexes in targeting RalA-associated 

vesicles. 

 

To further determine the molecular basis of this process, we tested whether some of the 

exocyst complex may physically associate with the Myo1c complex, thus bridging Glut4 

vesicles to the assembled exocyst complex prior to vesicle fusion with the plasma 

membrane. We employed two approaches to capture the association of these proteins. 

First, we introduced into cells a constitutively active mutant of RalA (G23V) to induce its 

interaction with the exocyst.  We then lysed cells and incubated lysates with Calmodulin-  
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Figure 3.6. Coordination between the exocyst and Myo1c regulates Glut4 trafficking 
to the plasma membrane. (A) Synergistic inhibition of insulin-stimulated glucose 
uptake by Myo1c (IQT) and Sec5 RBD. 3T3-L1 adipocytes expressing the indicated 
constructs were subjected to 2-DG uptake assay. Asterisk: p<0.004. The experiment 
shown was representative of three independent experiments. (B) Synergistic inhibition of 
insulin-stimulated glucose uptake by Myo1c and Sec5 knockdown. 3T3-L1 adipocytes 
were transfected with the indicated siRNA oligos and subjected to 2-DG uptake assay. 
Asterisk: p<0.001. The experiment shown was representative of four independent 
experiments. (C) WB of knockdown. 3T3-L1 adipocytes transfected with the indicated 
siRNA oligos were subjected to SDS-PAGE and WB after lysis. (D) Co-localization of 
RalA, Sec5, and Myo1c. Cos-1 cells were transfected with eGFP-RalA F39L, HA-Sec5, 
or Myo1c (IQT) when indicated. Cells were fixed, stained with HA or Myo1c antibody 
and subjected to microscopy. (E) Calcium-sensitive interaction of Calmodulin, RalA, and 
the exocyst complex. Cos cells transfected with the indicated constructs were lysed with 
buffers containing calcium and EGTA. Cell lysates were incubated with Calmodulin 
beads, and bound proteins were determined by WB after SDS-PAGE. (F) Myo1c 
interacts with the exocyst. 3T3-L1 adipocytes were cross-linked by the cell permeable 
crosslinker DSP, lysed in SDS containing buffer. Cell lysates were subjected to IP with 
the indicated antibodies, and immunoprecipitates were analyzed by WB after SDS-PAGE. 
(G) Hypothetical model of the role of RalA, the exocyst, and the Myo1c complex in 
insulin-stimulated Glut4 trafficking. 
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coupled beads. Consistent with the observation that calcium-bound Calmodulin mediates 

the association between Myo1c and RalA; calcium-activated Calmodulin interacted with 

RalA, and subsequently with the exocyst proteins (Figure 3.6E). As an alternative 

approach to stabilize protein-protein interactions, we performed a crosslinking 

experiment in non-starved 3T3-L1 adipocytes using the cell permeable cross-linker DSP. 

Myo1c was found to associate with the exocyst complex in a co-immunoprecipitation 

experiment using three different antibodies (Figure 3.6F). Taken together, these data 

suggested a possible mode of action in which the exocyst complex and the Myo1c 

complex cooperate with each other in targeting Glut4 vesicles to the plasma membrane 

(Figure 3.6G). 

 

Discussion 

 

Insulin-stimulated glucose transport involves the concerted actions of different cellular 

machineries that regulate distinct steps in Glut4 vesicle trafficking [1-3]. Here we present 

evidence that the translocation of Glut4 vesicles and their subsequent docking with the 

plasma membrane are closely coupled, through coordination between the Myo1c motor 

complex and the exocyst complex, in a manner that is regulated by the small GTPase 

RalA. 

 

RalA interacts with the adipocyte exocyst complex in a GTP-dependent manner, and 

undergoes activation in response to insulin.  Moreover, RalA also interacts with a motor 

complex containing Myo1c, although the latter interaction is GTP-independent.  
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Disruption of the function of RalA or of any of its interacting proteins in these complexes 

attenuates insulin-stimulated glucose transport. The role of RalA is reminiscent of the 

function of the yeast GTPase Sec4p, which links the yeast exocyst complex with the 

unconventional myosin complex Myo2p/Mlc1p during vesicle transport [6, 10, 12-14]. 

RalA may coordinate the activity of a molecular motor and vesicle tethering complex, in 

the process ensuring the velocity and specificity of Glut4 vesicle transport. Taken 

together with the regulation of mammalian exocyst by activated TC10 on the plasma 

membrane, the data further supports the intriguing scheme in which the exocyst is 

bridged to plasma membrane and vesicles via spatially segregated activation of different 

G-proteins. This nevertheless demonstrates the extremely conserved nature of 

fundamental vesicle trafficking processes. It is also noteworthy that the yeast exocyst has 

been linked to the plasma membrane SNARE complex via Sec1p [42]; and that the 

homologous proteins, including Munc18c and Syntaxin 4, are known to mediate the 

fusion of Glut4 vesicles [3]. Therefore, it is intriguing to speculate that the exocyst may 

also couple the Syntaxin 4-Munc18c complex to facilitate the plasma membrane fusion of 

Glut4 vesicles. 

 

Our study supports the requirement of the Myo1c motor in delivery of Glut4 vesicles.  In 

previous studies this molecular motor was detected in Glut4 vesicles and proposed to 

deliver them to the cell membrane [29]. Knockdown of Myo1c or overexpression of 

dominant negative forms of the protein blocks insulin-stimulated glucose transport [29, 

30].  The binding of calmodulin to Myo1c infers a regulatory role as the Myosin light 

chain in this process, suggesting the requirement for a functional myosin complex. 

 124



Calmodulin modulates the association between RalA and Myo1c through the IQ motifs, 

in a manner that is dependent on calcium binding to Calmodulin. These results are 

consistent with the hypothesis that Calmodulin may regulate cargo loading and transport 

initiation of the Myosin motor, further suggesting that Myo1c may recognize RalA as a 

cargo receptor on Glut4 vesicles. Importantly, these infer potential regulatory 

mechanisms for Myo1c cargo recognition, which might be controlled by signals that lead 

to oscillation of calcium concentration or modification on calcium. Both light chain 

modification and cargo binding have been implicated in regulating myosin motility [38], 

raising the question of whether these may contribute to the relocation of Myo1c in 

response to insulin [29].  

 

Despite adopting similar regulatory schemes which involve spatial regulation of different 

G-proteins and motor complexes in vesicle targeting, the mammalian exocyst appears to 

have a more specialized function than its yeast counterpart. Besides regulating Glut4 

trafficking, evidence suggests that the eukaryotic exocyst is involved in endocytic 

recycling stimulated by extracellular signals [43], but not secretion or general endocytic 

recycling [44, 45]. Hence, it is tempting to speculate that activation of RalA is part of the 

signaling pathways that permit the mobilization of exocyst in physiological settings. In 

this regard, delineating the precise mechanism that activates RalA will be of interest. Our 

observation that RalA activation by insulin is PI 3-kinase dependent may indicate the 

existence of a putative Ral GEF or GAP protein that is regulated by PI 3-kinase signaling; 

similar to the scenario that has been proposed for the Rab GAP AS160 [46]. Alternatively, 

RalA may be activated locally when it is being transported to the specific sites on the 
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plasma membrane, in a manner resembling the activation of vesicle-associated ARF6 

[47].  

 

Recent studies indicate that PI 3-kinase signaling may control the docking and fusion 

steps of Glut4 vesicles, while PI 3-kinase independent signals may regulate the 

translocation of Glut4 towards the plasma membrane and the subsequent docking step, 

likely also involving cytoskeletal proteins [4, 29, 48]. However, whether and how these 

signaling pathways may converge remains poorly understood. Our data suggest that 

Glut4 vesicle docking/tethering by the exocyst complex may represent one convergent 

point of insulin signaling pathways, via activation of the two GTPases TC10 and RalA at 

different cellular compartments.  

 

 

Materials and Methods 

 

Constructs- Full length Myo1c was obtained from a 3T3-L1 cDNA library by PCR, 

completely sequenced, and then cloned into a pKH3 vector. Myc-Glut4-eGFP constructs 

was a generous gift from Dr. Jonathan Bogan (Yale). RFP cDNA was kindly provided by 

Dr. Roger Tsien (UCSD). Other constructs have been described previously[24]. 

 

Cell culture, transfection, and inhibitors- Cos-1 and CHO-IR cells were maintained as 

described previously [49]. Culture of 3T3-L1 pre-adipocytes and differentiation were 

performed as described [5]. Cos-1 cells were transfected using Fugene 6 (Roche). 
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Electroporation of adipocytes, isolation of mouse primary adipocytes, and viral infection 

of CHO-IR have been described previously[49]. Dithiobis(succinimidyl)propionate (DSP) 

was obtained from Pierce. Calmodulin conjugated beads were from Stratagene. Other 

chemicals and inhibitors were purchased from Sigma.  

 

Immunofluorescence and antibodies- Cells were plated on glass coverslips and washed 

with PBS before fixation with 10% formalin at room temperature for 10 minutes. After 

neutralizing with 100 mM Glycine/PBS, cells were permeablized with 0.5% Tx-100, and 

then blocked with 1% BSA and 1% chicken albumin. When indicated, cells were stained 

without detergent permeabilization. Rabbit anti-Myo1c was kindly provided by Dr. Peter 

Gillespie (Oregon Health & Science University). Other primary antibodies used were: 

Glut4 (1:100, rabbit IgG) from alpha Diagnostic; α-6 Integrin (1:200, rat mAb) from BD 

biosciences; Myc (1:500, mAb or rabbit IgG) from Santa Cruz biotechnology. Alexa-

Fluor conjugated goat anti-mouse/rabbit secondary antibodies, Alexa-Fluor conjugated 

Phalloidin, and Vector Shield mounting medium were from Molecular Probe. The 

following antibodies were used in biochemical assays: VAMP2 (1:500, mAb) from 

Synaptic System; pTyr 4G10 (1:2000, mAb) and Calmodulin (1:500, mAb) from Upstate; 

pAkt (1:500, pAb) and pErk (1:2000, mAb) from Cell Signaling. Goat anti-Glut4 was 

purchased from Santa Cruz Biotechnology; mouse anti-Glut4 was purchased from 

Biogenesis. Other antibodies have been described before [24]. 

 

Fractionation and Glut4 membrane purification- Homogenization of 3T3-L1 adipocytes 

and generation of post-nuclear supernatant (PNS) or low density microsome (LDM) 
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fractions were performed as described previously [5]. To further resolve the LDM 

fraction, LDM pellets were resuspended, mixed with Opti-prep to generate a start 

solution (12% iodixanol), and spun in a NVT-90 rotor for 75 minutes. Whole cell 

fractionation with 10-20-30% opti-prep has been described previously [24]. To purify 

Glut4 enriched membranes, adipocyte homogenates were spun at 50,000g to clear the PM 

and HDM membranes, and incubated with different antibodies that were pre-conjugated 

to protein A/G beads. After extensive washing, purified membrane proteins were eluted 

with 1% SDS and 1% Tx-100 without reducing agents.  

 

Biochemical assays and western blotting- Cell lysis, co-immunoprecipitation and western 

blotting were performed essentially as described previously[49]. When indicated, EDTA 

was omitted from lysis buffer and 1mM CaCl2 was supplemented. Additional information 

could be found in supplementary information. Nucleotide loading of GST-GTPases was 

achieved by incubating proteins with 50 mM GDP or GTPγS after stripping with EDTA. 

Loading was stopped by addition of 10 mM MgCl2. For RalA activation assay, cell were 

lysed in pulldown buffer (100mM Tris (pH7.5), 1% NP-40, 0.1% Deoxycolate, 130 mM 

NaCl, 5mM MgCl2, 1mM Na3VO4, 10 mM NaF, supplemented with complete protease 

inhibitor (Roche)). Cell lysates were cleared by spinning at top speed for 10 minutes on a 

bench-top centrifuge, and then passing through a 0.22 μM filter. After normalizing 

protein concentrations by Bradford assay, cell lysates were mixed with GST-RalBP1 

agarose beads (Upstate) for 30-45 minutes. After washing, proteins on beads and cell 

lysates were subjected to WB analysis to determine the level of active RalA. in vitro 

translation of HA-Myo1c was performed using TNT Sp6 protein expression system 
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(Promega) according to the manufacturer’s instruction. in vitro binding was performed 

similarly as previously reported. Briefly, GST-RalA coupled on beads was first mixed 

without or with 5μg of purified Calmodulin (Sigma) in buffer containing 50mM Tris, pH 

7.5; 200 mM KCl; 1mM MgCl2; 0.1% Tx-100; and 10% Glycerol) in the presence of 1 

mM CaCl2 or EGTA, 50μl of in vitro translocation product was then added. After 1h 

incubation at 4 0C, beads were washed three times, and bound proteins were subjected to 

SDS-PAGE and western blotting. Crosslinking of adipocytes was performed similarly as 

previously reported [6]. Briefly, after washing with PBS, adipocytes were treated with 

200μg/ml DSP for 30 minutes at room temperature. Cells were extracted with buffer 

containing 1% SDS after cross-linking was quenched, and cell lysates were diluted 10 

times after incubating at 55 0C for 10 minutes. Co-immunoprecipitation was performed as 

described above.  

 

siRNA knockdown, 2-DG uptake, and statistics- Electroporation of adipocytes with 

siRNA (Stealth, Invitrogen) and insulin-stimulated 2-Deoxyglucose uptake were 

performed as previously reported [5]. Control oligo 

(GCGCCAAGCUUAGACGAUGAGCUUU) was designed as to not targeting any 

sequences in the mouse genome. The following oligos are used to target specific proteins:  

ACAAGCCCAAGGGUCAGAAUUCUUU (RalA-1 sense) 

GCGCGCCAACGUUGACAAGGUAUUU (RalA-2 sense) 

UAACUAUGUGGAGACGUCUGCUAAA (RalA-3 sense) 

GGCAGAAUGGAUGUCUGCGAGUAAA (Sec5 sense) 

CGUCAAAGACAAUCCGCCCAUGAAA (Exo84 sense) 
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GAGCAGAUUGCUGAAUUCAAGGAAG (CaM-1 sense) 

GAAUUCAAGGAAGCUUUCUCCCUAU (CaM-2 sense) 

AAGACACAGAUAGCGAAGAAGAGAU (CaM-3 sense) 

ACAGUGUGACUGGGUUUCUGGAUAA (Myo1c Sense) 

For lentiviral knockdown construct, shRNA sequences (Sense: 5’- 

GATCCCCGCCAACGTTGACAAGGTATTTCAAGAGAATACCTTGTCAACGTTG

GCTTTTTGGAAA; anti-sense: 5’-

AGCTTTTCCAAAAAGCCAACGTTGACAAGGTATTCTCTTGAAATACCTTGTCA

ACGTTGGCGGG were generated based on the stem sequence of siRNA RalA-2 

(GCGCGCCAACGUUGACAAGGUAUUU. Overlapping sequences were underlined), 

which gave the most efficient knockdown. The annealed DNA oligos were ligated into 

pSilencer vector (Ambion). The knockdown cassette were isolated by polymerase chain 

reaction using 5’-TTTTTCTAGAGTTTTCCCAGTCACGAC and 5’-

TTTTCTCGAGGAGTTAGCTCACTCATTAGGC as primers, and introduced into viral 

vector using XbaI and XhoI sites. Insertion was fully sequenced by automatic sequencing 

(University of Michigan). 

Glucose incorporation was determined after normalizing with protein concentration 

measured by the Bradford assay. Standard t-test (2-tailed) was performed to analyze the 

data. For 2-DG uptake assays, error bars represented standard deviation mean from three 

replicated samples for each condition tested. Error bars elsewhere represented standard 

deviation from at least three independent experiments. 
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Lentiviral work- Lentiviral expression system in adipocytes has been described before 

[49]. FG12 lentiviral vector for shRNA delivery was kindly provided by Dr. David 

Baltimore. shRNA sequences were first ligated into pSilencer vector (Ambion). 

Adipocytes were first infected with FG12 virus for 6 days, and then infected with virus 

expressing either mRFP or mRFP-RalA for 3-4 days before they were processed for 

experiments. 
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Chapter 4 

Dissecting the Architecture of the Exocyst with RalA Mutants  

 

Introduction 

 

Insulin stimulates glucose uptake into cells in muscle and adipose tissue by promoting the 

rapid translocation of the glucose transporter Glut4 to the plasma membrane [1]; a 

process governed by several signaling cascades and facilitated by numerous transport 

machineries [2, 3]. Furthermore, insulin-stimulated Glut4 trafficking represents one of 

the best characterized models of regulated endocytic recycling [4], which can be readily 

monitored in specialized, post-mitotic insulin-responsive cells such as the 3T3-L1 

adipocytes [2]. While the exact mechanisms governing the specificity and efficiency of 

this vesicle transport event remain to be fully elucidated, recent studies have implicated 

the vesicle tethering complex exocyst in this process [5-7].  

 

The exocyst is an evolutionarily conserved protein complex comprised of eight subunits, 

including Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84 [8]. The primary 

function of the exocyst is to bridge exocytic vesicles to their target sites on the plasma 

membrane, and perhaps also to facilitate the subsequent membrane fusion process [9]. 

Recent structural studies on yeast exocyst proteins have provided important insights into 

the function of this complex [8]. Many exocyst subunits consist of long helical coiled-coil 
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domains that adapt to an overall rod-like structure; thus suggesting that the exocyst 

complex may assemble into a stretched structure. This may enable the complex to engage 

exocytic vesicles from a relatively long range, in the process mediating their initial 

plasma membrane recognition with flexibility and perhaps reversibility [8].  In this regard, 

the exocyst has been implicated in a variety of vesicle targeting events in different 

organisms from yeast to mammals [10]. Moreover, the exocyst may also coordinate with 

other transport machineries including the myosin motors, the SNARE complex and their 

regulatory proteins, thus contributing to both the specificity and efficiency of certain 

vesicle transport processes [9, 11].  

 

Genetic studies in eukaryotic systems suggest that the exocyst is primarily involved in 

trafficking through the recycling endosome, rather than secretory pathways [12-15]. 

Consistent with this notion, studies in cellular models have also supported the role of the 

mammalian exocyst in polarized endocytic recycling to the leading edge of migrating 

cells [16], the sites of phagocytosis in macrophages [17], as well as the abscission sites in 

cytokinetic cells [18, 19]. While these suggested a widely conserved function of the 

exocyst, further dissection of the mechanisms in these systems has been challenging, 

partly due to the secondary effects that arose from cell cycle arrest upon disruption of 

exocyst in dividing cells [18, 19].  This has limited our understanding in the architecture 

of the mammalian exocyst complex, as well as its assembly in specific trafficking 

processes.  
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Recent studies have indicated a key role of small GTPases in the assembly and 

mobilization of the exocyst [11]. In budding yeast, the exocyst is targeted to specific sites 

on the plasma membrane by Rho family GTPases; whereas Sec4 triggers the assembly of 

the exocyst complex on secretory vesicles [20]. The mammalian exocyst interacts with 

TC10 at the plasma membrane [5]; and Arf6 [21], Rab11 [22], or RalA [23] on vesicles. 

Among these GTPases, RalA has received much attention, as activated RalA directly 

interacts with two exocyst subunits, Sec5 and Exo84 [24], and thus has been proposed to 

regulate the assembly of the exocyst [25]. Nevertheless, how the interactions of both 

subunits contribute to the assembly or the function of the exocyst during vesicle targeting 

remains uncertain. Moreover, recent structural studies suggest that, unlike what was 

originally proposed, Sec5 and Exo84 appear to be competitive binding partners for RalA 

[26, 27]. Hence, further delineation of the action of RalA will yield much insight into the 

mechanism by which the exocyst facilitates certain transport events. 

 

We recently reported that RalA serves a required role for insulin-stimulated glucose 

transport, by coordinating the function of both the exocyst and the molecular motor 

Myo1c [28]. In this study, we further investigated the role of RalA in organizing the 

exocyst in the regulation of glucose transport. By utilizing RalA mutants specifically 

uncoupled from one of its downstream effectors, we found that the two RalA effectors, 

Sec5 and Exo84, are both required for the exocyst function and further that each belongs 

to a sub-complex with overlapping subunits including Sec10, Sec15, and Exo70. The 

Sec5 branch also consists of a stable sub-complex containing Sec5, Sec6, and Sec8; 

whereas the remaining subunit Sec3 may serve as a potential link to the SNARE protein 
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Syntaxin4. Taken together, these data revealed an unexpected organization of the 

mammalian exocyst complex, and point to a potential mechanism by which this vesicle 

tethering complex exocyst is coupled to the SNARE proteins that mediate vesicle fusion. 

 

Results 

 

Active RalA promotes glucose uptake via exocyst interactions. We initially observed a 

small enhancement in insulin-stimulated Glut4 plasma membrane localization after 

overexpression of active RalA (G23V) was eletroporated into 3T3-L1 adipocytes [28]. 

However, the transfection efficiency and heterogeneity of the expression level in these 

experiments prevented us from further investigating the phenomenon. To address these 

issues, we employed the lentiviral expression system, which reportedly yielded at least 

95% infection efficiency in terminally differentiated mature adipocytes with little 

cytotoxicity [29]. After infection of cells with lentiviruses expressing red fluorescent 

protein (RFP), close to 100% cells were positive for RFP fluorescence (Figure 4.1A). The 

adipocytes were also positive for the staining of caveolin1 or the staining of adipocyte 

marker α6 integrin (Figure 4.1A), suggesting lentiviral infection in adipocytes is highly 

effective while having little effect in the morphology or differentiation state of the 

infected cells. Neither did we find any observable changes in insulin signaling or glucose 

transport by lentivirus infection (data not shown), as previously reported by others [29]. 

Introduction of active RalA (G23V) into adipocytes by lentiviral infection led to a ~2 fold 

increase in basal glucose uptake, and ~20-30% increase in insulin-stimulated transport, 

compared to control adipocytes infected with viruses expressing GFP (Figure 4.1B).  
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Figure 4.1 Active RalA promotes glucose uptake via its interaction with the exocyst 
(A) Efficient gene transduction in 3T3-L1 adipocytes with lentiviruses. Mature 
adipocytes infected with lentiviruses expressing red fluorescent protein (RFP, red) were 
subjected to immuno-fluorescent staining with α6 integrin (green) and Caveolin1 (blue) 
antibodies. The majority of the cells were positive for virus infection. (B) Active RalA 
promotes glucose uptake into 3T3-L1 adipocytes. Adipocytes infected with lentiviruses 
expressing GFP control or active RalA (G23V) were subjected to 2-deoxy-glucose (2-DG) 
uptake assay. Left, glucose uptake in the basal states; right, glucose uptake after insulin 
stimulation. Asterisk, p<0.05; double asterisk, p<0.001. Experiment shown is 
representative of five independent experiments. (C) Western blotting of cell lysates from 
the experiments in (B). The upper bands in RalA blot were FLAG-RalA G23V. (D) 
Active RalA promotes glucose uptake in adipocytes via exocyst interactions. 3T3-L1 
adipocytes were infected with lentiviruses expressing the indicated proteins and subjected 
to 2-DG uptake assay. Left, glucose uptake in the basal states; right, glucose uptake after 
insulin stimulation. ΔBP1, RalA G23VD49N that does not interact with RalBP1; 
Δexocyst, RalA G23VD49E that does not interact with the exocyst. Asterisk, p<0.05; 
double asterisk, p<0.001. Experiment shown is representative of three independent 
experiments. 
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Furthermore, this increase in glucose transport was not due to enhanced insulin signaling, 

as no detectable changes in Tyrosine phosphorylation (data not shown) or Akt 

phosphorylation were observed (Figure 4.1C). In addition, the expression level of the 

insulin-responsive glucose transporter Glut4 was not changed, although we observed a 

small decrease of the Glut1 transporter (Figure 4.1C), which mediates basal glucose 

uptake in 3T3-L1 adipocytes and displays minor insulin responsiveness. Taken together, 

these data suggest that active RalA promotes glucose transport via Glut4.  

 

This effect of active RalA resembles the gain-of-function phenotype in glucose uptake 

upon overexpression of several exocyst proteins in adipocytes [5, 7], leading us to test 

whether the enhancement in glucose transport by active RalA is dependent on the exocyst. 

To this end, we introduced point mutations [23] into active RalA to uncouple the G 

protein from its effector RalBP1 (D49N, also referred as ΔBP1), or the exocyst complex 

(D49E, also referred as ΔExocyst). Uncoupling active RalA from RalBP1 failed to 

abolish the gain-of-function effect in glucose uptake in either the basal or insulin-

stimulated states. However, when uncoupled from the exocyst, active RalA failed to 

promote glucose uptake in either case (Figure 4.1D), suggesting that the enhancement of 

glucose transport by RalA is dependent on its interaction with the exocyst.  

 

Both Sec5 and Exo84 are required for exocyst function. RalA directly interacts with 

two subunits of the exocyst, Sec5 and Exo84 [23, 24, 30]. However, how these 

interactions contribute to the organization and the function of the exocyst remains unclear 

[25]. Recent crystallographic studies have suggested that Sec5 and Exo84 occupy 
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different surface areas on the RalA protein but with overlapping interfaces (Figure 4.2A) 

[26, 27]. The different interaction modes would allow the generation of point mutations 

in RalA to disrupted one interaction but retain the other [26, 27], thus creating mutants 

that only mobilize one of two effectors in the exocyst. To this end, we introduced an 

E38R substitution into active RalA (G23V) to uncouple it from Sec5, or a K47E mutation 

that couples Exo84 from active RalA, based on the structural and biochemical work 

reported recently [26, 27]. Both forms of RalA uncoupling mutants showed little 

difference in activity state in vivo, as confirmed by interaction with GST-RalBP1 RBD 

(Ral-binding domain) in a pulldown assay (Figure 4.2B). As expected, RalAG23V/E38R 

was selectively uncoupled from GST-Sec5 RBD, while RalAG23V/K47R failed to 

interact with only GST-Exo84 RBD (Figure 4.2B).  

 

We introduced GFP control, active RalA, and these two uncoupling mutants of active 

RalA into adipocytes by lentiviral infection, and then assayed glucose uptake. 

Intriguingly, while active RalA was able to promote glucose transport as shown above, 

loss of either Sec5 binding or Exo84 binding abolished this effect of active RalA (Figure 

4.2C). Taken together with the fact that knockdown of either Sec5 or Exo84 inhibited 

insulin-stimulated glucose transport [28], the data suggested that these two RalA effectors 

both serve required and non-redundant roles in organizing the exocyst. 

 

Sec5 and Exo84 belong to different branches of the mammalian exocyst with 

overlapping subunits. The fact that Sec5 and Exo84 are non-redundant effectors of 

RalA in regulating exocyst function raised the possibility that these two subunits may  
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Figure 4.2 Both Exo84 and Sec5 are required for exocyst function. (A) Structural 
illustration of the interaction interfaces between Sec5 RBD and active RalA, or Exo84 
RBD and active RalA, respectively. Structures are derived from previous X-ray 
crystallographic studies [26, 27]. Δ5, RalA G23VE38R that does not interact with Sec5 
due to collision with R27 in Sec5; Δ84 RalA G23VK47E that does not interact with 
Exo84 due to collision with E269 in Exo84. (B) Verification of the RalA uncoupling 
mutants by effector domain pull down. Cos-1 cells were transfected with constructs that 
express the indicated RalA mutants and lysed. Cell lysates were subjected to pulldown 
experiments with Ral-binding-domains (RBDs) from RalBP1, Sec5, or Exo84. (C) Both 
Exo84 and Sec5 are required for promoting glucose uptake by RalA. 3T3-L1 adipocytes 
infected with lentiviruses expressing the indicated proteins were subjected to 2-DG 
uptake assay. Left, glucose uptake in the basal states; right, glucose uptake after insulin 
stimulation. Asterisk, p<0.05; double asterisk, p<0.001. Experiment shown is 
representative of two independent experiments. 
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belong to distinct sub-complexes that assemble into a holo-complex. However, this 

hypothesis was confounded by the observation that all the subunits of the mammalian 

exocyst could be co-purified as a single stable complex by chromatography or sucrose 

gradient [31]. We took a different approach to test whether the exocyst has different 

pools of sub-complexes, reasoning that if the exocyst always exists in a single complex, 

then either of the uncoupling mutants should still bring down the entire complex in a 

fashion similar to wild type RalA. Otherwise, these RalA mutants would interact with 

different groups of exocyst subunits, assuming the existence of different sub-complexes. 

We thus immuno-precipitated FLAG-tagged RalA constructs that were transfected into 

Cos cells, followed by western blotting to detect exocyst proteins (Figure 4.3A). As 

expected, the exocyst proteins co-precipitated with RalA in a GTP-dependent manner, 

and RalAG23V/E38R or RalAG23V/K47E failed to precipitate Sec5 or Exo84, 

respectively. This indicated that the exocyst exists in at least two branches that contain 

either Sec5 or Exo84.  Furthermore, the data also suggested that the branch containing 

Exo84 also contained Sec10, Sec15, and Exo70. Unexpectedly, while the Sec5-

containing branch included Sec6, Sec8, and Sec3, which were excluded from the Exo84-

containing branch, it also consisted of three overlapping subunits with the latter branch, 

including Sec10, Sec15, and Exo70 (Figure 4.3A). Although we cannot completely rule 

out the presence of Exo84 in the Sec5-containing branch, we reasoned that this branch 

may only contain a small amount of Exo84, which could be confirmed by silver staining 

of the proteins associated with the two uncoupling mutants after IP (Figure 4.3B).  
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Figure 4.3 Sec5 and Exo84 belong to different branches of exocyst sub-complexes 
with overlapping subunits. (A) Different but overlapping exocyst subunits interact with 
RalA uncoupling mutants. Cos-1 cells expressing the indicated FLAG-tagged RalA 
mutants were subjected to anti-FLAG IP and western blotting with the indicated proteins. 
(B) Exo84 is largely missing from the exocyst branch associating with the RalA Exo84-
uncoupling mutant. Silver staining of the associated proteins with indicated RalA mutants 
after anti-FLAG IP and SDS-PAGE. Red arrow: Exo84 (molecular weight: ~84 Kd); 
green arrow: Sec6 (Molecular weight: ~87 Kd). 
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Sec8, Sec6, and Sec5 form a sub-complex. The overlapping subunits in the two 

branches of the exocyst indicated these may serve as intermediates for the assembly of 

the holo-complex during vesicle targeting to the plasma membrane. Indeed, Exo84, along 

with Sec10 and Sec15, were reported to adapt a vesicular localization [25]. We thus 

focused on the set of subunits that were unique in the two branches of the complex, 

including Sec8, Sec6, Sec5 and Sec3, reasoning that these might link the exocyst to the 

plasma membrane. Knock down of Sec8 in 3T3-L1 adipocytes cells by siRNA led to 

decreased levels of Sec6 and Sec5 (Figure 4.4 A), but not Sec3, Exo70, or any of the 

other exocyst proteins (data not shown). Similar effects on Sec5 and Sec6 were observed 

with Sec8 knockdown using two additional siRNA oligos in Hela cells of human origin, 

but not with control oligos or two oligos against RalA (Figure 4.4B), suggesting that this 

phenomenon was not due to non-specific effects of RNAi. Furthermore, unlike Sec8, 

mRNA levels of Sec6 or Sec5 remained unchanged when transfected with a siRNA oligo 

against Sec8 (Figure 4.4C), confirming that the depletion of Sec6 or Sec5 induced by 

knock down of Sec8 is due to post-translational protein degradation rather than loss of 

mRNA. This effect is reminiscent of cases in which complex subunits undergo 

degradation when their interacting proteins are depleted by knockout or knockdown [32, 

33], and indicated that Sec5, 6, and 8 assembled into a sub-complex via direct 

interactions. Indeed, these three proteins associated tightly with each other in a co-

immunoprecipitation experiment (Figure 4.4D), compared with the other exocyst subunit 

Exo84. Taken together, these data suggest that Sec8, Sec6 and Sec5 form a stable sub-

complex. 

 

 147



 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 4.4 The exocyst subunits Sec8, Sec6, and Sec5 form a sub-complex independent of 
Ral activity. (A) Knockdown of Sec8 leads to depletion of Sec5 and Sec6, but not other 
exocyst proteins. 3T3-L1 adipocytes were transfected with 100 pmols of the indicated siRNA 
oligos and lysed in SDS containing buffer. Cellular protein levels were determined by western 
blotting following SDS-PAGE. (B) Knockdown of Sec8, but not RalA, leads to depletion of 
Sec6 and Sec5 in cells of human origin. Hela cells were transfected with 100 nM of the 
indicated siRNA oligos and lysed in SDS contained buffer. Cellular protein levels were 
determined by western blotting following SDS-PAGE. (C) Knockdown of Sec8 does not affect 
the mRNA levels of Sec6 or Sec5. Total RNA of Hela cells transfected with the indicated 
oligos were subjected to RT-PCR with specific primers for Sec8, Sec6, and Sec5. (D) Sec8 IP 
enriches Sec6 and Sec5, but not Exo84. Lysates of Cos-1 cells were immuno-precipitated using 
control or Sec8 antibody. IPs and total cell lysates were subjected to SDS-PAGE and western 
blot. 
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Sec8 controls the assembly of the Sec5/6/8 sub-complex Studies in yeast and flies have 

suggested that the exocyst builds up the vesicle:plasma membrane connection via subunit 

interactions that occur at different stages of vesicle targeting, with some subunits 

directing the localization of others [8, 14]. In this regard, we tested whether a hierarchy 

may also exist in the Sec5/6/8 complex. Interestingly, while knockdown of Sec8 

dramatically reduced Sec5 and Sec6, knockdown of Sec5 or Sec6 had no effect on 

cellular Sec8 levels, but led to decreased expression of each other (Figure 4.5A). These 

data suggest a hierarchy in which Sec8 may regulate the localization of Sec6 and 5, the 

latter of which recognizes RalA. Consistent with this notion, we found that Sec5 co-

localized with RalA both on the plasma membrane and the vesicular structures (Figure 

4.5B). On the other hand, knockdown of RalA was without effect on levels of Sec5, Sec6, 

or Sec8 protein, suggesting that the assembly of this sub-complex is independent of RalA. 

To further confirm this finding, we generated a series of Sec5 mutants (Figure 4.5C), and 

tested their interaction with endogenous Sec8. Mutant forms of Sec5 lacking the Ral 

binding domain, but not those lacking the coiled-coil domains, still interacted with Sec8 

(Figure 4.5E). In addition, we found that active mutants of RalA (G23V or F39L) were 

without out effect on the formation of a Sec5/Sec6/Sec8 sub-complex (data not shown). 

Taken together, these data supported the idea that Sec5, Sec6 and Sec8 pre-assemble into 

a sub-complex under the control of Sec8, possibly targeting RalA-localized vesicles to 

the plasma membrane.  

 

Sec5 bridges RalA to Sec8. Sec8 has been shown to associate with SAP97 [6], a 

scaffolding protein on the plasma membrane, via its C-terminal PDZ domain binding  
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Figure 4.5 Assembly of the Sec5/Sec6/Sec8 complex under the control of Sec8 but not 
RalA (A) Sec8 regulates the stability of Sec5, Sec6 protein. Hela cells were transfected with 
the indicated siRNA oligos, and lysed in SDS-containing buffer. Cell lysates were subjected to 
SDS-PAGE, followed by western blotting against the indicated proteins. (B) Sec5 co-localizes 
with RalA on both plasma membrane and intracellular vesicular structures. Cos-1 cells 
transfected with eGFP-RalA (green) and full length HA-Sec5 (red) were stained with HA 
antibody. (C) Schematic figures of Sec5 constructs used. All constructs were HA-tagged. (D) 
RalA-independent interaction between Sec8 and Sec5. Cos-1 cells were transfected with 
indicated constructs, lysed, and subjected to anti-HA IP. IPs and cell lysates were subjected to 
SDS-PAGE and western blotting using Sec8 and HA antibodies.  
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motif. This promoted us to further test whether Sec5 may bridge RalA to Sec8, as a direct 

mechanism by which RalA vesicles are targeted to the plasma membrane.  When 

assessed by co-IP, the interaction between wild type RalA and endogenous Sec8 was 

enhanced by modest over-expression of full length Sec5 or Sec5 1-400, but not Sec5 

mutants lacking the Ral binding domain (Figure 4.6A). Interestingly, the Sec5 ΔRBD 

mutant, which can interact with endogenous Sec8 but not RalA, failed to inhibit the 

interaction between RalA and Sec8. This data, together with the gain-of-interaction trait 

observed with wild type Sec5, suggest that Sec8 may exist in monomer in molar excess to 

Sec5, which in turn connects to RalA vesicles. We further tested whether Sec5 may 

modulate the distribution of some RE proteins via its interaction with RalA. A non-linear 

opti-prep gradient was generated to separate different membrane compartments based on 

their density in quiescent Cos cells. A fraction of RalA was concentrated in a high density 

fraction that is enriched with both the TfR and Sec8 (Figure 4.6B). Expression of wild 

type Sec5, but not Sec5ΔRBD, produced the enrichment of RalA in this fraction, 

accompanied by the movement of Rab11 and TfR, but not EEA1, Akt, or Sec8 (Figure 

4.6C), suggesting a selective effect of Sec5 on RE membranes where RalA resides. 

 

Sec3 potentially links the exocyst to the SNARE complex The idea Sec5, Sec6, and 

Sec8 exist in a sub-complex led us to investigate the potential role of Sec3, the remaining 

non-overlapping subunit in the two branches of the exocyst. When submitted to a BLAST 

search, we found that the N-terminus of Sec3 protein shared significant homology with 

Syntaxin-binding-protein 6 (Stxbp6) (Figure 4.7A), a protein previously shown to interact 

with Syntaxin1 [34]. Hence, it remains highly possibly that Sec3 represent a potential  
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Figure 4.6 Sec5 bridges RalA to Sec8. (A) Sec5 promotes the interaction between RalA and 
Sec8. Cos-1 cells were transfected with indicated constructs, lysed, and subjected to anti-
FLAG IP. IPs and cell lysates were subjected to SDS-PAGE and western blotting using the 
indicated antibodies. (B) Separation of low-density and high density membranes on a non-
linear gradient. Post nuclear supernatant of Cos-1 cell homogenate was mixed 1:1 with opti-
prep, and spun at 350,000g for 1 hour. Separation of membranes is determined by western 
blotting against Sec8, TfR, and RalA. (C) Sec5, but not Sec5ΔRBD redistributes RE proteins 
including RalA, Rab11, and TfR. Cos-1 cells were transfected with empty vector, Sec5 full 
length, or Sec5ΔRBD, and then fractionated according to what was described in (B). Total cell 
lysate, low density fraction (fraction 2), and high density fraction (fraction 9) of each gradient 
were subjected to SDS-PAGE and western blotting against the indicated antibodies. 
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link between the vesicle tethering complex exocyst and the vesicle fusion complex 

SNARE (Figure 4.7B).  

 

Discussion 

 

Insulin-stimulated glucose transport is a key physiological event that requires tight 

regulation to ensure the specificity and facilitate the efficiency of the process [2, 35]. In 

this regard, the trafficking of the insulin-responsive glucose transporter Glut4 is 

controlled by transport machineries that are governed by insulin [3, 36]. The exocyst 

represents a unique point of integration, by responding to the activation of TC10 and 

RalA [5, 28], two small GTPases regulated by insulin. However, the mechanisms 

underlining exocyst function remain unclear, as are the means by which GTPases 

regulate the dynamics of the complex [25]. We demonstrate here that RalA regulates the 

function of the exocyst in fat cells via both of its effectors, Sec5 and Exo84. Furthermore, 

the complex appears to be categorized into two branches containing either Sec5 or Exo84, 

but with overlapping subunits including Sec10, Sec15, and Exo70.   

 

The exact mechanisms by which the mammalian exocyst assembles into a functional 

complex remain controversial [31]. Our data supported the presence of sub-complexes of 

the exocyst. Intriguingly, we showed that the different pools of the complex may contain 

overlapping subunits, suggesting that these may represent intermediates that bridge 

different pools of the exocyst during the assembly of the holo-complex. Furthermore, 

Sec5, 6, and 8 assemble into a stable sub-complex under the control of Sec8, while Sec5  
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Figure 4.7 Sec3 potentially links the exocyst to the SNARE complex. (a) Alignments 
of the N-terminal domain of mouse Sec3 (Sec3 N) and Syntaxin-binding protein6 
(Stxbp6). (b) A proposed model for the architecture of the mammalian exocyst complex. 
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bridges RalA-localized membranes to Sec8. It is noteworthy that Sec8 has been shown to 

associate with a scaffolding protein of the MAGUK family on the plasma membrane [6, 

37]. Thus, the Sec5/6/8 sub-complex may directly contribute to the targeting of exocytic 

vesicles to their target sites on the plasma membrane. After being tethered by exocyst 

complex to target sites on the plasma membrane, the exocytic vesicles eventually 

undergo membrane fusion catalyzed by the SNARE complex [9, 38]. Over-expression of 

several exocyst subunits in adipocytes resulted in enhanced exocytosis of Glut4 [5, 7, 15]; 

a process that requires the action of SNARE proteins [2]. Thus, it is tempting to speculate 

that the function of the exocyst and the SNARE complex are coupled in some way. 

Though this has not been proven in higher organisms, studies in yeast have shown that 

the exocyst genetically and biochemically interacts with the SNARE proteins and their 

regulators [39]. Our data suggest that Sec3 could be the most far-reaching subunit in the 

complex towards the plasma membrane, making it an ideal candidate for connecting with 

t-SNARE proteins. Hence, it will be of interest to investigate whether Sec3 interacts with 

Syntaxin4 and modulates its function in the context of regulated exocytosis of Glut4. 

 

Materials and Methods: 

Constructs. Full length Sec5 was obtained from a 3T3-L1 cDNA library by PCR, 

completely sequenced, and then cloned into a pKH3 vector [5]. Truncated mutants of 

Sec5 were generated by PCR and then cloned into a pKH3 vector. Sec5 RBD-(1-120) 

was cloned into peYFP-C1 vector (BD biosciences). RalBP1 RBD (397-519) was also 

cloned into pGEX-4T2 vector (Pharmacia). RalA was cloned into a pK-FLAG vector or a 

peGFP-C3 vector (BD biosciences). Point mutations of RalA were generated using 
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Quickchange Site-Directed Mutagenesis kit from Stratagene, and completely sequenced 

at the University of Michigan Sequencing Core. 

 

Cell culture, transfection, and reagents. Cos-1 and HeLa cells were grown in Dulbecco’s 

modified Eagles’s medium (DMEM) supplemented with 10% fetal bovine serum and 100 

Unit/ml streptomycin (Invitrogen). Maintain and differentiation of 3T3-L1 pre-adipocytes 

were carried out as previously reported [40]. Cos-1 cells were transfected using Fugene 6 

(Roche Applied Biosciences) according to the manufacturer’s directions. All chemicals 

and hormones were from Sigma.  

 

Immunofluorescence and antibodies. Cells were grown on glass coverslips and washed 

with PBS before fixation. After fixation with -20oC methanol for 3 minutes, cells were re-

hydrated in PBS, and then blocked with 1% BSA and 1% chicken albumin. Primary 

antibodies used were α-6 integrin (1:200, rat mAb), Caveolin 1 (1:500, rabbit IgG) from 

BD biosciences; HA (1:500, mAb or rabbit IgG) from Santa Cruz biotechnology. Alexa-

Fluor conjugated goat anti-mouse/rabbit secondary antibodies, Alexa-Fluor conjugated 

Phalloidin and Vector Shield mounting medium were from Molecular Probe. The 

following antibodies were used in biochemical assays: RalA and EEA1 mAbs were from 

BD biosciences; tubulin mAb was from Sigma; Sec6 mAb was from Stressgen; rabbit 

anti-Exo84 was from Orbigen; anti-Sec5 mAb has been described before [41]. 

 

Immunoprecipitation and Western blot. Cells were washed with PBS and lysed for 30 

minutes at 4oC in buffer (buffer A) containing 100mM Tris (pH 7.5), 1% NP-40, 135 mM 
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NaCl, 1 mM EDTA, 1.0 mM sodium orthovanadate, 10 mM NaF, and protease inhibitor 

tablets (Roche Applied Biosciences). Cell lysates were incubated with 10-15 μl M2 anti-

FLAG beads (Sigma) or 4-8 μg of indicated antibodies for 2-4 hours at 40C before protein 

A/G agarose (Santa Cruz Biotechnology) was added for additional 2 hours. After 

washing with lysis buffer 3 times, beads were boiled in SDS-PAGE sample buffer. The 

eluates were subjected to SDS-PAGE and transferred to nitrocellulose. Individual 

proteins were detected with specific antibodies and visualized by blotting with HRP-

conjugated secondary antibodies.   

 

Opti-prep gradient. Cos cells were washed with PBS, homogenized in HES buffer 

(20mM Hepes pH 7.4, 1mM EDTA, 250 mM Sucrose) 10 times with a ball bearing 

homogenizer (Wheaton), and spun at 3,000g for 3 minutes to generate post-nuclear 

supernatant (PNS). The discontinuous gradient was generated by spinning PNS in 30% 

iodixanol at 72,000 rpm in a NVT90 rotor for 1 hour at 4oC, and then fractionated into 13 

fractions. To compare RalA distribution among different gradients, total input, same 

volume of faction 2 and fraction 9 of each gradient were loaded onto the same gel and 

subjected to WB. 

 

siRNA sequence and knockdown. siRNA oligos were ordered from Invitrogen. The 

following siRNA oligos against human nucleotides sequence were used. RalA: 5’-

CCAAGGGUCAGAAUUCUUU-3’ (oligo-1 sense sequence), 5’-

GCUAAUGUUGACAAGGUAU-3’ (oligo-2 sense sequence); Sec8: 5’-GCU UUC UCC 

AAU CUU UCU A-3’ (oligo-1 sense sequence), 5’-CCU UGA UAC CUC UCA CUA U-
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3’ (oligo-2 sense sequence); Sec6 5’-CCA GAU GUU UGA ACA GAA U-3’ (oligo-1 

sense sequence), 5’-GGA AGA CUA UUU CAA CGAU-3’ (oligo-2 sense sequence); 

Sec5: 5’-CCA AAU GAA GGG AUA CCA U-3’ (oligo-1 sense sequence), 5’-CCA 

ACA CAA GUG GAU CCU U-3’ (oligo-2 sense sequence). Stealth oligos against mouse 

Sec8 nucleotides sequences and control oligos were also from Invitrogen and have been 

published previously [40]. 100 nM oligos were transfected into HeLa cells using 

oligofectamine according to the manufactory’s instruction. SiRNA knockdown in 3T3-L1 

adipocytes was performed as previously described. Cells were either harvested in SDS-

PAGE sample buffer for Western blot or processed for microscopy.  

 

RT-PCR Total mRNA was extracted using RNeasy Mini kit from Qiagen according to the 

manufacturer’s instructions and normalized. RT reaction was carried out using reverse 

transcriptase from Invitrogen. The following DNA oligos were used for PCR. Sec8 

(2523): 5- CGA AGG CCT GGG CCA CCT GA-3’, Sec8 (end): 5’-CTA AAC GGT 

AGT TAT CTT CT-3’; Sec6 (start): 5’- ATG AAG GAG ACA GAC CGG GA-3’, Sec6 

(520): 5’-CGT GCT GCC AAA GTA GCC AT-3’; Sec5 (start): 5’- ATG TCT CGA TCA 

CGA CAA CC-3’, Sec5 (360): 5’-CCT GTC AGT GCG CAT ATC AT-3’.  

 

 161



Lentiviral work and glucose uptake- Lentiviral expression system in adipocytes has been 

described before [42]. Adipocytes were first infected with lentivirus in the presence of 

8μg/ml polybrene, and subjected to biochemical assays or glucose uptake after 3-4 days. 

Insulin-stimulated 2-Deoxyglucose uptake assay was performed as previously reported 

[40]. Glucose incorporation was determined after normalizing with protein concentration 

measured by the Bradford assay. Standard t-test (2-tailed) was performed to analyze the 

data. For 2-DG uptake assays, error bars represented standard deviation mean from three 

replicated samples for each condition tested. Error bars elsewhere represented standard 

deviation from at least three independent experiments. 
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Chapter 5 

Conclusions and Perspectives 

 

Insulin is the master regulator of glucose and lipid homeostasis.  One of its primary 

actions is to stimulate the transport of glucose into fat and muscle cells, a process 

mediated by the glucose transporter Glut4.  Insulin increases glucose uptake by 

stimulating the translocation of Glut4 from intracellular storage sites to the plasma 

membrane [1-3]. Defects in this action of insulin represent the first lesions in the 

development of type 2 diabetes, as well as being a primary symptom of the disease [3, 4]. 

In this regard, delineation of the exact mechanisms underlying insulin-stimulated Glut4 

trafficking will be crucial to developing new approaches for the prevention and treatment 

of diabetes and related disorders. Furthermore, the trafficking of Glut4 is one of the best 

models of hormone-regulated endocytic recycling, thus potentially shedding light on 

similar transport processes in many physiological scenarios [5, 6].  

 

One of the key traits of Glut4 trafficking is its robust insulin responsiveness [2]. To 

maximize the efficiency of this process, multiple transport machineries are mobilized 

upon the activation of insulin signaling pathways, which ensure the specificity of insulin 

action, and permit numerous opportunities for crosstalk from other pathways designed to 

modulate insulin action [7, 8]. One such example is the exocyst [9, 10], an 
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evolutionarily conserved vesicle tethering complex that works under the dual control of 

TC10 [9] and RalA [11], two GTPases activated by insulin signaling.  

 

The exocyst is comprised of eight subunits, including Sec3, Sec5, Sec6, Sec8, Sec10, 

Sec15, Exo70, and Exo84 [12]. Studies in yeast have revealed that these proteins 

assemble into a long targeting patch between exocytic vesicles and their target membrane, 

governed by direct interactions with at least two different GTPases anchored on either 

compartment [13]. Thus, the exocyst has been proposed to mediate the initial recognition 

between vesicle and plasma membrane with flexibility and reversibility, in a manner 

determined by the activity states of the GTPases [12]. Furthermore, the exocyst has been 

shown to co-operate with molecular motors as well as the SNARE proteins and their 

regulators in yeast [13]. In this regard, the exocyst may also contribute to the velocity of 

transport and facilitate the final fusion with the plasma membrane, thus serve as an 

integrative component during transport to the plasma membrane. 

 

Despite adopting a similar composition as its yeast counterpart, the exocyst in higher 

organisms shows significant differences. Firstly, the biological function of the exocyst 

appears to be more specialized [14], although its physiological functions remain to be 

fully established in specific settings. Secondly, the complex responds to a different set of 

GTPases, while their actions in exocyst-mediated transport have not been fully elucidated 

[15]. Thirdly, the organization of the complex appears to adapt to the different regulatory 

mechanisms [16]. Furthermore, whether or how the exocyst coordinates with other 

transport machineries in higher organisms is largely unknown. Work presented in this 
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thesis aims to fill some of the gaps in the knowledge highlighted above, primarily by 

focusing on the mammalian exocyst and the GTPase RalA. 

 

Chapter 2 of the thesis described the initial work involved in the characterization of the 

roles of RalA and the exocyst in vesicle transport. RalA localizes to the endocytic 

structures surrounding the centrosome, and re-localizes to cytokinetic structures during 

the cell cycle, as does the exocyst. Disruption of the function of either RalA or the 

exocyst leads to similar blockades in the final separation of two dividing cells during 

cytokinesis, possibly due to defects in vesicle transport to the sites of abscission. While 

the data suggest a functional connection between RalA and exocyst, further attempts to 

dissect this process will be challenging, largely due to the promiscuity of trafficking 

routes involved in cell division and the effects secondary to cell cycle arrest.   

 

Studies in Chapter 3 focus on the roles of RalA and the exocyst in the regulated endocytic 

recycling of Glut4 in response to insulin. RalA associates with Glut4-enriched vesicular 

membranes, and can interact with the native exocyst complex in adipocytes. Insulin 

regulates the activity of RalA in a PI-3 kinase-dependent manner. Disruption of the 

function of RalA inhibits insulin-stimulated glucose transport. A similar effect is 

observed upon loss of Sec5 or Exo84, two exocyst subunits directly interacting with RalA. 

Furthermore, RalA associates with Myo1c, a molecular motor previously implicated in 

Glut4 trafficking to the plasma membrane. This association is not dependent on the 

activity state of RalA, but can be modulated by Calmodulin, which functions as the light 

chain for Myo1c during glucose transport. Disruption of the function of Myo1c and the 
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exocyst together leads to a synergistic inhibition of insulin action, suggesting that these 

proteins coordinate with each other during insulin-stimulated glucose transport. While 

these data indicate a scheme in which RalA may function in a manner similar to the yeast 

GTPase Sec4, which localizes to the exocytic vesicles and couples the function of the 

exocyst and motor protein, the molecular mechanisms by which RalA regulates the 

dynamics of the mammalian exocyst remain to be determined. 

 

Experiments in Chapter 4 aim to analyze the architecture and assembly of the exocyst 

under the regulation of RalA. Constitutively active RalA promotes glucose uptake into 

adipocytes in both the basal and insulin-stimulated states, a process that requires both 

Sec5 and Exo84. However, these two subunits belong to different branches of the exocyst: 

the Exo84-containing branch also includes Sec10, Sec15, and Exo70, and the Sec5-

containing branch consists of Sec3, Sec6, Sec8 that are excluded from the former branch, 

and three overlapping subunits including Sec10, Sec15, and Exo70. Analysis of the 

unique subunits in the Sec5 branch uncovered a sub-complex comprised of Sec5, Sec6, 

and Sec8. Sec8 controls the assembly and stability of this sub-complex, and Sec5 bridges 

RalA to Sec8. Furthermore, the remaining non-overlapping subunit Sec3 process an N-

terminal domain that shows high homology to Syntaxin-binding-protein6, and thus may 

represent a potential link between the exocyst complex and the SNARE proteins. It will 

thus be interesting to test whether the N-terminal domain of Sec3 interacts with and 

modulates the function of Syntaxin4, the t-SNARE protein involved in plasma membrane 

fusion of Glut4 vesicles.  
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The mechanisms by which the exocyst exerts its function are only now being unraveled. 

A simple hypothesis, based on the fact that loss of almost every subunit in the complex 

leads to lethality in all the organisms tested, is that each subunit must serve non-

redundant functions. Hence, it is probably safe to hypothesize that this octameric 

complex is functionally coupled to multiple machineries during vesicle transport. One 

likely candidate is the fusion-catalyzing SNARE complex. It is noteworthy that loss of 

exocyst function in yeast also causes decreased assembly of the cognate SNARE complex 

[17]. Moreover, over-expression of several exocyst subunits in adipocytes leads to 

enhanced Glut4 exocytosis [9, 10]; a process that requires the function of the SNARE 

complex. In this regard, it would be interesting to test whether and how the exocyst is 

linked to SNARE proteins. One possibility, as described above, is that Sec3 may directly 

interact with Syntaxin4 via the N-terminal domain of the former protein. Alternatively, 

the yeast exocyst has been shown to interact with Lgl, an evolutionarily conserved 

protein implicated in the function of the SNARE complex [18]. Thus, it will be of interest 

to test these possibilities in physiological processes such as insulin-stimulated glucose 

transport. 

 

As the action of the exocyst is likely to precede that of the SNARE complex [12, 13, 17], 

an important implication is that the disassembly of the exocyst must also take place after 

the assembly of the complex, to allow the subsequent membrane fusion. Consistent with 

this hypothesis, blocking GTP hydrolysis of TC10 inhibits vesicle fusion, suggesting the 

involvement of GAP proteins that inactivate the GTPase [19]. In this regard, the 

interaction between RalA and the exocyst is likely to be negatively regulated by  
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Figure 5.1 Possible mechanism that terminates RalA-exocyst interaction by 
phosphorylation Upon binding to RalA, Sec5 undergoes phosphorylation that disrupts 
the local structure of Ral-Binding-domain, thus allowing RalA vesicles for subsequent 
fusion. The exocyst may undergo recycling for the next round of action. 
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additional mechanisms, as constitutively active RalA is still able to promote glucose 

transport as well as the exocytosis of a few other cargo proteins. In our attempts to 

identify the mechanisms that regulate the disassembly of the exocyst complex, we 

discovered a phosphorylation event on the RalA effector Sec5. Intriguingly, binding to 

RalA enhances this phosphorylation on Sec5, and a mutation that mimics 

phosphorylation on Sec5 dramatically decreased its binding affinity with RalA (Chen and 

Saltiel, unpublished results). Hence, phosphorylation of the RalA effector Sec5 may 

represent an attractive mechanism by which the exocyst undergoes disassembly during 

vesicle targeting (Figure 5.1).  

 

The mechanisms by which insulin regulates the activity state of RalA deserve further 

attention. One potential clue arose from the finding that the activation of RalA by insulin 

requires the activity of PI 3-kinase, thus implicating two possibilities. Firstly, based on 

the fact that the RalGPS family of RalGEFs only contain the PH and SH3 domain as 

regulator modules besides the GEF domain [20], it is possible that these GEF proteins 

may activate RalA in response to elevated PIP3 levels generated by activated PI 3-

kinases. Secondly, we have recently found that both RalA activity and glucose uptake can 

be elevated upon depletion of a GAP protein downstream of Akt (Leto and Saltiel, 

unpublished observations). Thus, insulin may produce the activation of RalA by 

negatively regulating the function of a Ral GAP.   

 

Despite much effort, the exact mechanisms underlying the assembly and architecture of 

the mammalian exocyst have only been addressed tentatively in this thesis. Studies on 

 171



this essential aspect of the complex are limited elsewhere, possibly due to its dynamic 

nature and a large number of possible interactions within the complex. Our data support 

the idea that the exocyst may assemble from different sub-complexes, and may provide 

clues for further investigation into the composition of the complex. In this regard, 

detailed structural studies may be required in the future to pave the way for understanding 

molecular mechanisms underlying the function of the exocyst.  

 

References 

 

1. Bryant, N.J., R. Govers, and D.E. James, Regulated transport of the glucose 
transporter GLUT4. Nat Rev Mol Cell Biol, 2002. 3(4): p. 267-77. 

2. Watson, R.T., M. Kanzaki, and J.E. Pessin, Regulated membrane trafficking of the 
insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev, 2004. 25(2): 
p. 177-204. 

3. Saltiel, A.R. and C.R. Kahn, Insulin signalling and the regulation of glucose and 
lipid metabolism. Nature, 2001. 414(6865): p. 799-806. 

4. Saltiel, A.R., New perspectives into the molecular pathogenesis and treatment of 
type 2 diabetes. Cell, 2001. 104(4): p. 517-29. 

5. Maxfield, F.R. and T.E. McGraw, Endocytic recycling. Nat Rev Mol Cell Biol, 
2004. 5(2): p. 121-32. 

6. Chieregatti, E. and J. Meldolesi, Regulated exocytosis: new organelles for non-
secretory purposes. Nat Rev Mol Cell Biol, 2005. 6(2): p. 181-7. 

7. Saltiel, A.R. and J.E. Pessin, Insulin signaling pathways in time and space. 
Trends Cell Biol, 2002. 12(2): p. 65-71. 

8. Saltiel, A.R. and J.E. Pessin, Insulin signaling in microdomains of the plasma 
membrane. Traffic, 2003. 4(11): p. 711-6. 

9. Inoue, M., et al., The exocyst complex is required for targeting of Glut4 to the 
plasma membrane by insulin. Nature, 2003. 422(6932): p. 629-33. 

10. Ewart, M.A., et al., Evidence for a role of the exocyst in insulin-stimulated Glut4 
trafficking in 3T3-L1 adipocytes. J Biol Chem, 2005. 280(5): p. 3812-6. 

11. Chen, X.W., et al., Activation of RalA is required for insulin-stimulated Glut4 
trafficking to the plasma membrane via the exocyst and the motor protein Myo1c. 
Dev Cell, 2007. 13(3): p. 391-404. 

12. Munson, M. and P. Novick, The exocyst defrocked, a framework of rods revealed. 
Nat Struct Mol Biol, 2006. 13(7): p. 577-81. 

13. Novick, P., et al., Interactions between Rabs, tethers, SNAREs and their 
regulators in exocytosis. Biochem Soc Trans, 2006. 34(Pt 5): p. 683-6. 

 172



14. EauClaire, S. and W. Guo, Conservation and specialization. The role of the 
exocyst in neuronal exocytosis. Neuron, 2003. 37(3): p. 369-70. 

15. Hsu, S.C., et al., The exocyst complex in polarized exocytosis. Int Rev Cytol, 2004. 
233: p. 243-65. 

16. Camonis, J.H. and M.A. White, Ral GTPases: corrupting the exocyst in cancer 
cells. Trends Cell Biol, 2005. 15(6): p. 327-32. 

17. Grote, E., C.M. Carr, and P.J. Novick, Ordering the final events in yeast 
exocytosis. J Cell Biol, 2000. 151(2): p. 439-52. 

18. Zhang, X., et al., Lethal giant larvae proteins interact with the exocyst complex 
and are involved in polarized exocytosis. J Cell Biol, 2005. 170(2): p. 273-83. 

19. Kawase, K., et al., GTP hydrolysis by the Rho family GTPase TC10 promotes 
exocytic vesicle fusion. Dev Cell, 2006. 11(3): p. 411-21. 

20. Rebhun, J.F., H. Chen, and L.A. Quilliam, Identification and characterization of a 
new family of guanine nucleotide exchange factors for the ras-related GTPase 
Ral. J Biol Chem, 2000. 275(18): p. 13406-10. 

 
 

 173


