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Chapter 1 

Introduction 

1. 1. Analytical Rheology for Polymer Melts 

The molecular nature of polymers, which consist of long chains of covalently bonded 

atoms, was first introduced by Staudinger in the 1920s. Prior to his work, polymers were 

generally understood as aggregates of “colloids”, and it took more than a decade for the 

scientific community to widely accept this concept. With this change in perspective on 

polymers and their growing industrial importance along with the World War II, many 

researchers became interested in how the molecular structure of a polymer affects its flow 

behavior when processed in melt state.1,2  

Dilute polymer solutions, in parallel with melts, have been also extensively studied for 

the purpose of characterizing the chain dimensions, architectures, and dynamics of an 

isolated single polymer chain in solution at different length scales by using many 

different analytical methods such as osmometry, light scattering, size exclusion 

chromatography, NMR, IR, and rheometry. Figure 1.1 illustrates how the conformation 

of a polymer chain in a dilute solution under shear flow strongly affects its shear-

dependent rheology. Polystyrene (PS) solutions with Mw =13.6 million g/mol in two 

different solvents, decalin (Θ solvent) and toluene (good solvent), show a drastic 

difference in shear thinning behavior as a polymer chain in a good solvent is very 
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sensitive to hydrodynamic interaction through shear flow while the one in a Θ solvent is 

not, due to its free-draining effect.   

 

 

Figure 1.1. Normalized intrinsic viscosity η[ ]/ η[ ]0  versus Deborah number Ý γ λ  of dilute 
polystyrene (PS) solutions in decalin and toluene.3 The numbers in the parentheses are 
the molecular weight of PS, and M stands for million g/mol. 

 

In addition to characterizing the structure and rheology of a given polymer, single-site 

metallocence catalysts, which contain a metal-carbon site where an olefin can insert itself 

for addition polymerization, makes possible to control the molecular structure of a 

polymer.1 Thus, we can not only predict the flow properties of a polymer with a given 

molecular structure, but also control the molecular structure of a polymer to obtain 

desired flow properties. Furthermore, we can check whether the synthesis has been 

successful. This is called analytical rheology, and it gives us a solid basis for constructing 

a relationship of molecular structure-flow property as shown below in Figure 1.2. Each of 

these figures represents the storage and loss moduli of a molten polymer with a different 
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molecular structure, such as linear and comb. These polymers are synthesized with 

single-site metallocene catalysts, and the molecular structures are checked to see whether 

the desired structure has been created. These plots show that (1) storage and loss moduli 

reveal the molecular structure of a polymer, and (2) rheology can be used as an easy and 

cost-effective analytical tool for probing the molecular structure as well as other 

spectroscopic methods. 

 

(a) polybutadiene ( Mw=201k g/mol)       (b) polybutadiene ( Ma =10.3k, Mb =123k g/mol) 

Figure 1.2. Storage and loss moduli of polybutadiene melts with different chain 
architectures. Dots and lines respectively represent experimental data and theoretical 
predictions. 4,5 (b) Ma  and Mb  respectively stand for the molecular weight of the arm and 
backbone of the “comb” polymer. 
 

1.2. Analytical Rheology for Semidilute Polymer Solutions 

Polymer melts rheology has been playing a main role in polymer processing with the 

development of plastics industry for the past decades. However, the rheology of polymer 

chains in non-dilute solutions has not been studied as extensively as polymer melts, 

despite their ubiquity and commercial importance in chemical and materials processing. 

In fact, the research on liquid has not progressed as much as that on solid and gas, 

because the first experimental methods and devices were developed to interpret the 

structure of these two states. In addition, although solid and gas, which are at two 
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opposite extremes in the molecular order, were extensively investigated by theory and 

mathematics, liquids represent a compromise between order and disorder and have 

hampered a comprehensive theoretical treatment.6 In the same way, semidilute solutions, 

which reside in the middle of concentration spectrum, needs a good compromise between 

two extremes-melts and dilute solutions by elucidating the underlying physics.  

Here are some examples of materials and studies where polymers in non-dilute 

solutions play main roles in forming and maintaining the desired viscoelastic properties 

of the systems.  

• Dough: gluten, a mixture of two proteins, gliadin and glutenin, is responsible for 

the elasticity of kneaded dough. Wheat flour with high gluten content is used for 

breads, whereas flour with lower gluten content is used for cakes; composition of 

high molecular weight polymer dictates the texture. 

• Hemorheology: blood plasma is the largest single component of blood making up 

more than a half of total blood volume, and its protein content is necessary to hold 

the serum within the vessels.  

• Inks: in modern inkjet printing, jets and droplets are formed at extremely high 

speeds with the liquids experiencing very high shear rates. The fluids contain 

significant amount of polymer and/or particulates having complex rheological 

properties.  

• Biophysics: semiflxible polymers form cytoskeleton, a network of dynamic 

structures that give animal cells mechanical integrity. Thus, the viscoelastic 

behavior of F-actin, a major component of these proteins, has been experimentally 

investigated using microrheology such as dynamic light scattering, diffusing wave 



 5

spectroscopy, and video particle-tracking. This research, in turn, has drawn 

significant attention on the links between cytoskeleton and mechanical models of 

entangled rods.  

• Microrheology: along the same line with cytoskeleton, linear viscoelastic 

behavior of colloidal particles dispersed in polymer solutions, a representative 

example of viscoelastic media, is crucial to understanding suspensions of 

particles; see Figure 1.3.7 

      

Figure 1.3. Schematic of particle dynamics in a viscoelastic medium. a  and ξ  
respectively represent the diameter of a colloid particle, and the correlation length, or the 
mesh size of the polymer solution.7 

 

Non-dilute solutions are broken down into two different regimes according to the chain 

dimension of polymers: semidilute and concentrated solutions. Since the chain dimension 

of polymers in concentrated regime is identical to that of melts, we are going to have 

more focus on semidilute solutions in this dissertation. As shown in Figure 1.4, 

semidilute solutions are defined as the solutions of which concentrations exceed the 
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overlap concentration c*  as polymer chains start overlapping and interacting with each 

other.   

 

        (a) c < c*        (b) c ≅ c*   (c) c* < c  

Figure 1.4. Classification of polymer solutions according to the extent of interactions of 
polymer chains.8  
 

The biggest challenge in dealing with semidilute polymer solutions compared to 

polymer melts or dilute solutions is that we need to consider both polymer-solvent 

interaction and polymer-polymer interaction simultaneously while there exists only one 

kind of interaction for both polymer melts and dilute polymer solutions: polymer-

polymer interaction for melts, and polymer-solvent interaction for dilute solutions. In 

other words, polymer chains in solution interact thermodynamically through their 

interaction potential, and hydrodynamically through flows mediated by solvent.7 De 

Gennes’ blob model is employed to construct the universal scaling of rheological 

properties of polymer solutions based on the relationship of polymer chain size with its 

length summarized in Figure 1.5. More detail will be covered in the following chapters. 
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Figure 1.5. A schematic diagram of the polymer chain length scale with its number of 
monomers in a very good solvent (ν=0.588). R, ξ, ls, and bK respectively represent the 
end-to-end distance, the correlation blob size, above which excluded volume interaction 
and hydrodynamic interactions are cancelled out, the swelling length, a length scale 
below which thermal fluctuation dominates over excluded volume interaction, and the 
Kuhn length.   
 
1.3. Universal Scaling of Polymer Solutions 

Chemically identical polymers with the same molecular weight but different topologies 

often have completely different rheology. Conversely, chemically different polymers 

with similar topologies show similar diffusive and/or convective motions upon 

stress/strain.9 This is called dynamic similarity, and has been demonstrated for polymer 

melts and colloidal aggregations.10 By using this concept, we can obtain a physical 

insight into some seemingly different systems. For example, the Himalayas arose from 

the Indian plains as sub-continents of India and Asia collided, which is analogous to 

piling-up of peanut butter by spreading knife. Even though the viscosity and time scales 
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are quite different, the essential geometry and dynamics can be considered the same. This 

is the basis of universal scaling of polymeric liquids under stress or strain; once the 

number of thermodynamically and hydrodynamically independent units, or correlation 

blobs, are determined for a polymer chain in semidilute solution, we should be able to 

predict the rheological properties of this semidilute solution based on the comparison 

with polymer melts having the same number of monomers. The following chapters will 

investigate this hypothesis in detail. 
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Chapter 2 

The Scaling of Zero-shear Viscosities of Semidilute Polymer 
Solutions with Concentration 

 
 

Abstract 
 

To test the universality of the dependence of zero-shear viscosity on concentration for 

both flexible and locally semiflexible polymers in good solvents, we collected multiple 

literature data sets and measured the zero shear viscosity of λ-phage DNA over a range of 

semidilute concentrations. We found that all experimental data above a critical 

concentration c /ce > 0.5  fall on a single empirical curve given by 

ηp /ηRouse = 43 ± 2( )× c /ce( )3.12±0.05  and this scaling law is in good agreement with the 

theoretical one, ηp /ηRouse ≈ c /ce( )2.4 /(3ν −1)  with ν the excluded volume exponent, 

ηp = η0 −ηs the polymer contribution to the zero shear viscosity of the solution with η0  

the zero-shear viscosity and ηs  the solvent viscosity, ηRouse  the hypothetical Rouse 

polymer viscosity, and ce  the entanglement concentration of the polymer solution.8,12,13 

This scaling law provides a basis for estimating viscosities for arbitrary semidilute 

entangled polymer solutions from a knowledge of the solvent viscosity, the entanglement 

molecular weight in the melt, the excluded volume exponent, the second virial coefficient, 

and the intrinsic viscosity.  
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2.1. Introduction 

Graessley1 classified polymer solutions into five different regimes according to 

concentration and molecular weight; see Figure 2.1. There are well-established 

rheological theories for three of these regimes, namely the Zimm model for dilute 

solutions, the Rouse model for concentrated but not entangled solutions, and the Doi-

Edwards model for concentrated entangled solutions and melts. Although not strictly 

appropriate, the other two regimes have been described by applying the Rouse model to 

semidilute unentangled solutions3-9 and the Doi-Edwards model to semidilute entangled 

solutions.3,4,6-9  

 

Figure 2.1. Classification of polymer solutions in terms of concentration and molecular 
weight1 
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The application of the Rouse model to semidilute unentangled solutions is reasonable 

because the hydrodynamic interactions and the excluded volume effects are screened out 

in these solutions. Raspaud et al.8 and Musti et al.10 published scaling plots of zero-shear 

viscosities versus concentration in the semidilute unentangled and entangled regimes for 

polystyrene, polyisoprene, and polybutadiene in good solvents and T2 phage DNA in 

buffered water, which is a good solvent for DNA, and showed that a common universal 

plot is obtained for all of them.  

The theoretical basis of universal dynamic scaling in semidilute solution is the “blob” 

theory,5,11 in which a polymer is thought of as a chain of N/g hydrodynamically 

independent blobs, where N is the degree of polymerization and g is the number of 

monomers in a blob, and the blob size is set by the condition that the polymer within the 

volume of a single blob belongs primarily to a single chain, while regions of space larger 

than a blob contain monomers from multiple polymer molecules. Thus, within a single 

blob, the polymer does not “know” that it is not in a dilute solution, and the dynamics are 

described by the dilute solution theory of Zimm, in which hydrodynamic interactions 

dominate. On scales larger than a blob, the polymer interacts hydrodynamically with 

other polymers, which screen out internal hydrodynamic interactions. If the chains are not 

so concentrated as to be entangled, the dynamics on scales larger than the blob size are 

therefore described by the Rouse theory.  In fact, if one takes the “blob” to be a rescaled 

“monomer” of the chain, then on length scales larger than a blob, a semidilute solution 

can be described as a melt of chains of blobs.3-9 This rescaling of the effective 

“monomer” size implies that the concentration of the polymer and its length (or 

molecular weight) can be collapsed into a single scaling parameter, which is just the 
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concentration c divided by the critical polymer overlap concentration c* ≡
M

NARg
3 , where 

M is the polymer molecular weight, NA is Avogadro’s number, and Rg is the radius of 

gyration of the polymer.  Thus, if we draw a plot of ηsp  against c /c* , where 

ηsp ≡ η −ηs( )/ηs  is the specific viscosity, the explicit effect of the polymer length 

disappears (i.e., it is submerged into the value of c*; see Figure 4 in ref. 8). However, if 

the number of blobs in a chain surpasses the number needed for the chains to become 

entangled, a single scaling parameter is no longer sufficient, since the number of blobs 

needed to produce one entanglement depends on the microscopic chemical nature of the 

polymer. In the semidilute entangled regimes, we therefore must employ the 

entanglement concentration ce  as another scaling parameter to obtain universal scaling 

behavior that is independent of chemical species.  

In summary, the dynamics of the semidilute regime have been addressed by resorting to 

well-established theories for dilute solutions and entangled concentrated solutions or 

melts using scaling laws to normalize concentration and viscosity. If entanglements are 

absent, the specific viscosity plotted against concentration reduced by the overlap 

concentration will not be affected by the chemical nature of the chain, but will be weakly 

affected by the number of blobs per chain, ηRouse = ηs N /g( ) . As the concentration 

increases and reaches the point c = ce , where the reduced degree of polymerization, N/g, 

equals the number of blobs per entanglement, ne , the rescaled dynamics starts to be 

controlled by the chemical nature of each chain, which determines ne  for entangled 

polymers. For entangled melts, we have η /ηRouse ≈ M / Me( )2.4 ,8,12,13 since the zero-shear 

viscosity scales as η ≈ M / Me( )3.4  in the entangled regime6,14 and the Rouse viscosity is 
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proportional to M . In semidilute solutions, the number of entanglements per chain 

N /g
ne

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  scales as N / g

ne
=

c
ce

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 /(3ν −1)

. Since N /g
ne

 in semidilute solutions takes the place 

of M / Me  for melts, we have for the former ηp /ηRouse ≈ c /ce( )2.4 / 3ν −1( ).  

 

2.2. Experimental Data 

To test universal scaling thoroughly, we have collected literature data to compare to the 

scaling curve of Raspaud et al.8 The data include polystyrene in benzene, polystyrene in 

tricresyl phosphate, poly (ethylene oxide) in water, polyisoprene in cyclohexane, and 

polybutadiene in cyclohexane. In addition to these literature data, we shall here measure 

the zero-shear viscosity versus concentration for λ -DNA in Tris-EDTA buffer solution. 

In the following, we explain the experimental method for rheological measurement of 

these solutions. 

 

2.2.1. Sample Preparation 

We purchased λ -DNA from Invitrogen; as purchased the DNA is stocked in a storage 

buffer, 10 mM Tris-HCl (pH 7.4), 5 mM NaCl, and 0.1 mM EDTA. Before we perform 

an experiment, we need to warm up the λ-DNA solution to 65 °C for 10 minutes and 

quench it to bring it back to its linear form, since while stored at 4°C, λ-DNA has 

tendency to make linear aggregates as well as circular structures due to the presence of 

cohesive overhangs.15 For this fixed-length DNA, the only parameter we can manipulate 

is the concentration. To control the concentration, we use a lyophilizer to dry out the 
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sample without damaging the DNA itself, keeping the solution well below the freezing 

point to keep it from melting during the lyophilizing process, which can cause part of 

solution to spill out of the vial. Before the λ-DNA solution was put into a lyophilizer, we 

constructed a calibration curve to control the concentration of the λ-DNA. Assuming that 

the as-received concentration of the stock λ-DNA solution is correct, we made five 

individual λ-DNA solutions with different concentrations by dilution. UV absorbance at 

each concentration was measured with the Agilent 8453 UV spectrophotometer in the 

range of 0.3~1.0 optical density where the relationship between concentration and 

absorbance follows the Beer-Lambert law, A = εbc , where A is the UV absorbance at the 

wavelength of 258 nm in arbitrary units, ε the molar absorptivity in Lg-1cm-1, b the path 

length of the cuvette in cm, and c the concentration of the solution in g/L. We obtained a 

calibration curve with ε=21.4±0.1 Lg-1cm-1, b=1.0 cm, and the concentration of the stock 

λ-DNA solution, c=0.308 g/L. Based on this curve, we measured the concentration of 

each λ-DNA solution. This value of ε agrees well with the widely accepted value of 20 

Lg-1cm-1 for double stranded DNA in water, indicating that the supplier’s report λ-DNA 

concentration was correct.16,17  

 

2.2.2. Rheometry 

The range of concentrations that we can study is determined by the sensitivity of the 

rheometer. We used the Contraves Low Shear 30, since it is designed specially for low-

viscosity fluids, and is sensitive enough to measure a zero-shear viscosity of around 2 cP 

at a shear rate of 0.017 1/s.  Figure 2.2 shows a schematic diagram of the Contraves 

rheometer. The measuring principle of this concentric-cylinder device is as follows. The 
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inner bob is suspended by a torsion wire. A light beam reflected by a mirror attached to 

the bob is detected by a photocell and amplified while the cup is rotating. The amplified 

signal goes into the compensation system. The current required to zero this point is 

proportional to the reaction moment and therefore a function of the viscosity. The 

instrument measures the compensating torque needed to keep the torsion wire at its null 

position; hence at steady state there is no compliance of the torsion wire that needs 

correction.18  

 

Figure 2.2. Schematic diagram of Contraves Low Shear 30 
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To determine with confidence the zero shear viscosity of a sample, we need to obtain a 

constant viscosity over a range of at least one decade of shear rate. With bob radius of 

Ri=5.5 mm, cup inner radius of Ro=6 mm, bob length of L=20 mm, and bob underside 

cone angle α =20° (see Figure 2.2), the lowest shear rate at which the Contraves Low 

Shear 30 can detect the signal is 0.017 1/s. Thus it is necessary that the crossover shear 

rate at which shear thinning transitions to the zero-shear plateau be greater than 0.17 1/s. 

From this, we can estimate that for λ-phage DNA, the highest concentration we can 

measure is about 0.7 g/L (see Figure 2.3). One disadvantage of the rheometer is that it 

takes at least 30 minutes to run one experiment and the filling volume is small (1.5 ml), 

so that blocking water from evaporating during rheometry is an important task. 

To minimize evaporation, we put a kimwipe tissue soaked with buffer solvent in the 

cylinder-shape container surrounding the cup-and-bob system, and checked how much 

evaporation occurred both by repeating the measurement at the first shear rate at which 

the viscosity was obtained after all other data were measured on that sample, and by re-

measuring the concentration with UV spectrophotometry after unloading the sample. The 

results showed that our method of blocking evaporation is reliable, with changes in 

concentration less than 5 %. All rheometry experiments with λ-DNA were carried out at 

25.0±0.3˚C. 
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Figure 2.3. Dependence of shear viscosity on shear rate for λ -DNA solutions for several 
concentrations at 25.0±0.3˚C. The lines are the fits of the Carreau-Yasuda model with 
parameters of the fit given in Table 2.1. 

 

2.3. Results and Discussion 

2.3.1. Determining the Zero-shear Viscosity 

Carreau-Yasuda model 

Our measured shear viscosities for λ -DNA solutions are shown in Figure 2.3, along 

with fits of the Carreau-Yasuda model, which is  

                                               η −η∞

η0 −η∞

= 1+ λÝ γ ( )a[ ]n−1( )/ a
                                           (1) 

where η0  is the zero-shear-rate viscosity, η∞  is the infinite-shear-rate viscosity, λ  is a 

time constant where 1/ λ  is the critical shear rate at which viscosity begins to decrease, 

(n-1) is the power law exponent (since it describes the slope of η −η∞( )/ η0 −η∞( ) in the 
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power-law region) and a is a dimensionless parameter that describes the width of 

transition between the zero-shear-rate region and the power-law region. We have chosen 

this model because it is quite flexible in fitting the non-Newtonian behavior of η Ý γ ( ) over 

a wide range of shear rates.  

The fits to the Carreau-Yasuda equation were obtained using simulated annealing, 

which is a nonlinear iterative random search procedure with adaptive moves along the 

coordinate directions. It permits uphill moves using a Metropolis algorithm, and is thus 

able to avoid becoming trapped in local minima and can find the global best fit.19 We 

used the fits to the Carreau-Yasuda model to determine the zero-shear viscosity, although 

a reasonable value can also be obtained from the viscosity at the lowest measured shear 

rate; see table 2.1. There exists a clear trend in the dependence of all five parameters of 

the Carreau-Yasuda fits on concentration. However, we found for one concentration, 

c=0.28 g/L, that there were large deviations from this trend, unless we dropped the data 

points at shear rates of 0.20 and 0.38 1/s where the data appear to show a small 

discontinuity. Once these two data points were dropped, the parameters for c = 0.28 g/L 

followed the monotonic trends observed for the other concentrations, except for the 

parameter a, as shown in Table 2.1. These results indicate that the five-parameter 

Carreau-Yasuda model has as many parameters as can be meaningfully fit to our data. 

We also fit our data with a three-parameter model, the Cross model, but this model did 

not give good fits to the zero-shear viscosity and so we pursued it no further here.  
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Table 2.1. The parameter values of the Carreau-Yasuda curvefit to shear thinning curve 
of λ -DNA solution for various concentrations.  For the concentration c = 0.28 g/L, the 
data in the shear rate range 0.20-0.38 s-1 were omitted when fitting the parameters, since 
the parameters were highly sensitive to slight noise in the these few data point; see 
discussion in text.   

 
c (g/L) η0  (cP) η∞  (cP) λ  (s) a N 
0.21      15   0.47   0.55 1.7 0.60 
0.28     47 1.3 1.1 1.1 0.42 
0.39   110 1.6 2.1 1.6 0.37 
0.50   230 2.8 2.3 1.3 0.26 
0.60   650 3.3 4.1 1.2 0.19 
0.72 1300 4.0 5.7 1.3 0.15 

 

2.3.2. The Zero-shear Viscosities of λ-DNA Solutions and the 
Universal Dependence on Concentration 

 

In order to reveal the effect of chain length on rheological behavior, first we need to 

define the chain dimensions of each polymer. There are at least four dilute solution 

properties associated with the size of the polymer chain. These include the radius of 

gyration, Rg , the second virial coefficient, A2 , the intrinsic viscosity, η[ ]0 , and the 

diffusion coefficient D0 . In dilute polymer solutions, for scaling purposes each polymer 

coil is thought of as a hard sphere whose interior is shielded from the flow due to 

hydrodynamic interactions.20 Thus, we can express the contribution of suspended 

polymer molecules on viscosity by using the Einstein formula: 

                                                       η0 −ηs = 2.5ηsφ                                                    (2) 

where η0  is the zero shear viscosity, ηs the solvent viscosity and φ  the equivalent “hard 

sphere” volume fraction of polymer chains in solution. If we divide both sides of Eq. (2) 

by the mass concentration, c, then we have the following equation with φ = νVper  and 

c = νMw /NA  where Vper  is the “pervaded volume” or volume occupied by a hard sphere 
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representation of the polymer molecule, Mw  is the weight-averaged molecular weight, 

NA  Avogadro’s number, and ν  the number density of coils: 

                                                    η[ ]0 = 2.5
NAVper

Mw

                                                      (3)  

To define a viscometric radius Rv  of the polymer, we take  

                                                      Vper =
4π
3

Rv
3                                                          (4) 

Then, from Eqs. (3) and (4), we obtain the viscometric radius of the polymer coil as: 

                                                  Rv =
3 η[ ]0

Mw

10πNA

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 3

                                                   (5) 

Once we know the ratio of Rv  to Rg , we can extract η[ ]0 from Rg , or Rg  from η[ ]0. The 

average experimental ratio of Rv  to Rg  is 0.76 for linear polymers in good solvents (see 

Table 6.1 in ref. 20).  This value can also be obtained by combining Eq. (5) and the 

Flory-Fox parameter21 Φ =
η[ ]0

Mw

63 / 2 Rg
3 =1.9 ×1023 where Φ has been determined by Monte 

Carlo simulation for bead-spring chains with excluded volume interactions,22 while the 

ratio of Rv  to Rg  derived by renormalization group (RG) theory for long chains in good 

dilute solvents is 0.73.20,23 Using 0.76 for the ratio of Rv  to Rg , we have the following 

relationship. 

                                                        Mw

NARg
3 =

4.6
η[ ]0

                                                        (6) 

The effective radius of a polymer coil can also be defined using the second virial 

coefficient A2 . For a hard sphere, A2 =
4NAVper

M 2 , where Vper =
4πRt

3

3
, and Rt  is the 
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thermodynamic radius of an equivalent hard sphere model of the polymer.22 Hence we 

have 

                                                   Rt =
3A2Mw

2

16πNA

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 3

                                                     (7) 

In the same way as for Rv , we can use the universal ratio of Rt  to Rg  obtained for good-

solvent conditions and the definition  

                                                       c* ≡
Mw

NARg
3                                                            (8) 

to obtain c*Mw A2 for a given polymer species. For various synthetic polymers in various 

good solvents,22 we get an average value of 0.68 for Rt /Rg . Then,  

                                            c* ≡
Mw

NARg
3 =

5.3
Mw A2

                                                       (9) 

To organize literature data, we need some parameters that were not measured 

experimentally, and therefore we use the above universal ratios to estimate them. For 

example, the radius of gyration of λ -phage DNA has been measured to be 500 nm24 and 

the molecular weight is 3.15 ×107 g/mol, giving us c* , but the second virial coefficient 

was not reported. Hence, we use Eq. (9) to get Mw A2  with c*from Eq. (8). 

In normalizing the viscosity and the concentration of polymer solutions, we have 

several choices. To normalize the concentration, we can use a coil-coil “overlap” 

concentration, which has been defined variously as 

            c* ≡
Mw

NARg
3  (see Eq. (8))  or cη

* ≡
1

η[ ]0

 or  cA
* ≡

1
Mw A2

                               (10) 

Raspaud et al.8 normalized the polymer viscosity as ηp /ηRouse  with ηRouse = ηs c /cη
*( )1/ 3ν −1( )

 

and normalized concentration as c /ce  with ce = cA
* ne

3ν −1. Note that they chose the overlap 
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concentration cη
* ≡1/ η[ ]0  for ηRouse , but to compute ce , cA

* ≡1/ MA2( )  was used, even 

though consistency would seem to require using the same definition of crossover 

concentration to rescale both the viscosity and the concentration. They used different 

definitions of the overlap concentration for these two rescalings because they thereby 

attained a better collapse of data for multiple polymers onto the same scaling curve. We 

will therefore follow this procedure as well.   

From the scaling curves of many polymer-solvent systems with excluded volume 

exponent lying above 0.5 (where ν=0.5 corresponds to a theta solvent) up to 0.588 

(corresponding to good solvent conditions), we can draw the conclusion that the linear 

rheological properties of any polymer-good solvent system can be predicted by using a 

plot of normalized viscosity vs. normalized concentration for a fixed solvent quality, e.g., 

for “good” solvents. However, since the “good” solvent limit is often not completely 

achieved and the solvent quality varies somewhat with polymer-solvent pair, the plots 

can be expected to show some scatter, even though we have attempted to account for 

varying solvent quality by using literature values of parameters, such as Rg  and A2 or 

computing these from literature values of the excluded volume exponent ν  (which 

ranged from 0.530 to 0.585); see Table 2.2. Nevertheless, there is a clear power-law 

scaling of ηp /ηRouse = 43 ± 2( )× c /ce( )3.12±0.05  for c /ce > 0.50  (see Figure 2.4). The 

scaling exponent is robust. If we change the lower limit of concentrations included in the 

fit, the value of the exponent remains constant at around 3.12 to within ±0.01 for any 

lower limit from c/ce  = 0.5 up to c/ce =1.0. This result is roughly consistent with the 

expected scaling ηp /ηRouse ∝ c /ce( )2.4 / 3ν −1( ) = c /ce( )3.1  for entangled semidilute solutions 
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Table 2.2. Scaling parameters for various polymer-solvent pairs at various temperatures   

polymer solvent temp
(°C) ref.a ν b Mw  

(106 g/mol) 
Rg  
(nm) 

c* c 

(g/L) 
η[ ]0 

(L/g) 
Mw A2 
(L/g) ne

d ce
e 

(g/L) 

T2 phage DNA buffered 
water 30 1 0.577f 105g 1000h 0.174 30i 30j 16k 0.25

λ-phage DNA buffered 
water 25 0.577f 31.5 500l 0.419 13m 13i 16k 0.60n 

poly (ethylene 
oxide) 

water 
 

25 2 0.583o 

 
0.333 36o 

 
12.2 0.376p 

 
0.482q 

 
100r 

 
65.3

 

4.00 110 5.0 0.7t 1.27 39.3 polystyrene 
 

benzene 
 

30 3 0.583s 

 1.24 54 12.9 0.3t 0.52
185

96.0 

polystyrene 
 

tricresyl 
phosphate 

25 4 0.530u 

 
1.80 53v 

 
19.7 0.206u 

 
0.256j 

 
185 81.4

 

0.17 18.8y 42.50 0.066x 0.125 185 402.3
0.42
1.26
2.89

32.2y 

61.8y 

101.3y 

20.91
8.86
4.62

0.129x 

0.293x 

0.547x 

0.253
0.598
1.148

197.9
83.9
43.7

3.84 120.0y 3.70 0.677x 1.434 35.0

polystyrene 
 
 
 
 
 
 

benzene 
 
 
 
 
 
 

35 5 0.583x 

 

 

 

 

6.77
20.6

168.1y 

325.9y 
2.37
0.99

1.035x 

2.385x 
2.239
5.362

22.4
9.4

0.94 54 9.9 0.470 0.650 51 polyisoprene 
 

cyclohexane 
 

30 3 0.580s 

0.31 28 23.5 0.210 0.300
112

109 

polybutadiene cyclohexane 30 3 0.583s 0.96 53 10.7 0.6 0.610 38 25 

 
a 1=ref. 10; 2=ref. 25; 3=ref. 8; 4=ref. 26; and 5=ref. 27 
b excluded volume exponent, ν = a +1( )/3 with a  the Mark-Houwink exponent 
c overlap concentration, c* = Mw / NA Rg

3( ) with NA  Avogadro’s number 
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d number of monomers between entanglements, ne = Me /m0  with Me  the entanglement molecular weight, and m0  the monomer 
molecular weight 
e entanglement concentration, ce = ne

3ν −1( ) / Mw A2  
f ref. 28-31  
g ref. 32 
h determined by scaling using λ -DNA with Rg = 500 nm 24 and Rg ~ Mw

ν  with ν=0.57729  
i ref. 33 
j calculated from Eq. (9), c* =

5.3
Mw A2

 and using c* =
Mw

NA Rg
3

20  

k calculated from ne = ce × Mw A2( )1/ 3ν −1( )  with ce = 0.25 g / l8,10  
l ref. 24 
m For identical polymer species at the same or similar temperature, the value of η[ ]0c*  is the same irrespective of molecular weight 
within 10% error.8 Hence, we can use η[ ]0 = 5.2 /c*  from T2 phage DNA data 
n determined from ce = ne

3ν −1 / Mw A2( ) with ne = 16k, ν = 0.577f, and Mw A2 = 13j 
o Rg = 0.0215Mw

0.583±0.031 nm34  
p Rv /Rg = 0.84  for linear polymers in good solvents20,23  
q A2 =1.84 ×10−2 Mw

−0.20±0.06 mL ⋅ mol /g234  
r Me = 4400 g /mol 35  
s ref. 36 
t ref. 8 
u ref. 37; The excluded volume exponent is insignificantly higher than 0.5. See the text. 
v Rv /Rg = 0.74  for linear polystyrene solutions over the range of 105 ≤ M ≤106 (see Table 6.1 in ref. 20) 
w Rg = 0.012Mw

0.585 nm 38  
x η[ ]0 = 7.8 ×10−6 Mv

0.75
 (L/g)39  

y Rg =1.45 ×10−2 Mw
0.595  (nm)40 
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in good solvent with ν=0.588. Note that even though tricresyl phosphate is only 

marginally better than theta solvent, its data point remains on the single universal curve. 

However, further data for solutions with solvents only marginally better than theta will be 

required to establish that such solutions follow the same good-solvent scaling.  

 

Figure 2.4. Master scaling curve of normalized zero shear viscosities of polymer 
solutions against normalized concentrations. M stands for the weight-averaged molecular 
weight, C for degrees Celsius, TE for Tris-EDTA, PEO for poly (ethylene oxide), PS for 
polystyrene, TCP for tricresyl phosphate, PI for polyisoprene, and PB for polybutadiene. 
ηp is the polymer contribution to zero shear viscosity, ηRouse is the hypothetical Rouse 
viscosity, and ce is the entanglement concentration. See text for detail. 
 

Raspaud et al.8 used the same excluded volume exponent, ν=0.588 for all three 

polymer species. But, when we include more polymer-solvent pairs, and use the 

appropriate excluded volume exponent corresponding to each pair (including the solvent-
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polymer pairs considered by Raspaud et al.8) we find the scaling law mentioned above, 

ηp /ηRouse = 43 ± 2( )× c /ce( )3.12±0.05 .From this scaling law, the zero-shear viscosity for an 

arbitrary polymer-solvent pair at a given concentration can be estimated, once the values 

of the solvent viscosity, ηs, the intrinsic viscosity, η[ ]0, the excluded volume exponent, 

ν , the number of blobs per entanglement, ne = Me / M0  with Me  the entanglement 

molecular weight and M0  the monomer molecular weight, and the second virial 

coefficient, A2 are given.  If the intrinsic viscosity or the second virial coefficient or both 

are unavailable from experiments but the radius of gyration, Rg  is known, we can extract 

these values from Eqs. (6) and (9) respectively.  

 

2.4. Conclusion 

We have measured the viscosities of aqueous λ -phage DNA solutions at 25.0±0.3˚C 

with concentrations between the overlap concentration c*  and the entanglement 

concentration ce  as functions of shear rate with the Contraves rheometer. In addition, we 

collected sets of zero-shear viscosity versus concentration data for various polymer-

solvent- systems described in the literature. After normalizing the viscosity with the 

Rouse viscosity and the concentration using the entanglement concentration, all data lie 

approximately on a single universal curve with a power law scaling, 

ηp /ηRouse = 43 ± 2( )× c /ce( )3.12±0.05  for c /ce>0.5.  Moreover, the values of ηRouse and ce 

can be obtained from the polymer radius of gyration, the excluded volume exponent ν, 

the entanglement molecular weight in the melt Me, and the solvent viscosity ηs so that a 
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prior estimates of zero-shear viscosities for entangled polymer solutions can be made for 

any polymer in a good solvent. 

We note the content of this chapter is reproduced with permission from Journal of 

Rheology (copyright 2005, 2007 American Institute of Physics). 
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Chapter 3 

Universal Scaling of Linear and Nonlinear Rheological 
Properties of Semidilute and Concentrated Polymer Solutions 

 
Abstract 

 
While it has been previously demonstrated that the concentration dependence of the 

zero-shear viscosity of most semidilute polymer solutions in good solvents follows a 

universal scaling law derived from the de Gennes “blob” concept,1-3 we here examine 

more thoroughly the validity of the blob model in predicting both linear and nonlinear 

rheological properties of semidilute polymer solutions. To do so, we perform both 

oscillatory and steady shear rheometry on polystyrene (PS) solutions in tricresyl 

phosphate (TCP) with three nearly monodisperse molecular weights at six values of the 

reduced concentration c /ce , where c e  is the entanglement concentration. Bidisperse 

polystyrene solutions with molecular weights in a fixed ratio of long to short chain length 

at the same c /ce are also explored as a first step to confirm the validity of the universal 

“blob” model scaling for polydisperse polymer solutions. At the same c /ce  below a 

critical value of around 2.0 for our PS/TCP solutions, linear and nonlinear rheological 

functions are successfully superimposed after the modulus and the frequency (or shear 

rate) of each solution are respectively normalized with the concentration-dependent 

plateau modulus GN
0 , and the equilibration time τ e, scaling  obtained from the de Gennes 

scaling relationships using the literature value of the solvent-quality exponent ν =0.53.4 
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However, once the polymer volume fraction exceeds the “swelling volume fraction” φs , 

above which the polymer takes on a random walk configuration on all length scales even 

in a good solvent, this universal scaling breaks down and the polymer conformation 

appears to be governed by Colby-Rubinstein’s scaling laws for Θ solutions. We estimate 

that all polybutadiene solutions in phenyl octane (a good solvent) from Colby et al.5 are 

above φs  and can be scaled using Θ solvent scaling laws for concentrations ranging all 

the way up to the melt, showing that the rheological properties of melts and solutions 

above φs  follow the same universal behavior. In general, using the “blob” model for 

semidilute solutions and the Colby-Rubinstein scaling for concentrated solutions provides 

a way to obtain the entanglement density, which can be defined as N /Ne φ( )  for 

concentrated solutions, with Ne φ( ) the concentration-dependent number of monomers 

per entanglement.  At a fixed value of c /ce or, equivalently, the entanglement density 

N /Ne φ( ), linear and nonlinear rheological properties for polymer solutions collapse onto 

universal curves. 

 

3.1. Introduction 

While the rheological properties of both polymer melts and dilute polymer solutions 

have been extensively studied, the rheology of semidilute polymer solutions has received 

less attention, even though many commercially useful polymer solutions, such as 

polyelectrolytes, emulsions, gels, and personal care products, are semidilute. One 

possible reason for this is that semidilute solutions are “theoretically inconvenient” 

because for them both polymer-polymer and polymer-solvent interactions need to be 
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considered simultaneously.  However, progress can be made using the concept of the 

excluded volume “blob,” or correlation blob, first suggested by Edwards6 and developed 

in detail by de Gennes.1 This model assumes that excluded volume interactions and 

hydrodynamic interactions are important on length scales smaller than that of the 

correlation blob in a good solvent, but are screened on larger length scales.  Analysis of 

the relative contributions of thermal energy, excluded volume interactions, and 

entanglement interactions indicates the existence of four different polymer concentration 

regimes each with different concentration scaling laws governing chain configuration 

and/or dynamics.7-9 These four regimes are separated from each other by the three 

transitional concentrations c*, ce, and cs = ρpolymerφs  with ρpolymer  the polymer density, 

which are discussed shortly.   While thorough investigations of thermodynamic 

properties, such as osmotic compressibility measured by light scattering, have been 

carried out, rheological properties, which are affected by hydrodynamic, frictional, and 

entanglement interactions, have not been quite as thoroughly studied.2,7 However, in the 

early 1980s, Marin et al.10 were among the first to study the universality of the linear 

viscoelastic behavior of concentrated polymer solutions and melts. Focusing on the 

similarity in rheological properties in the low frequency region of the complex moduli, 

they proposed time-chain length, and time-concentration superpositions in plots of 

JN
0 G* versus η0JN

0ω , where JN
0  is the plateau creep compliance, G*  is the complex 

modulus, η0  is the zero-shear viscosity, and ω  is the frequency. Here, JN
0  scales as 1/GN

0  

with GN
0  the plateau modulus, and thus η0JN

0  can be considered to be a measure of the 

longest relaxation time. These superposition principles suggested that effects of chain 

length and concentration can be effectively subsumed into the plateau modulus and the 
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relaxation time, which allows one to collapse G′ and G″ curves for different molecular 

weights and concentrations into a universal plot in the low frequency region. But these 

early superposition methods were phenomenological, yielding simple, but unexplained, 

power-law relationships relating the modulus and time or frequency shift factors to the 

concentration or molecular weight.   

About a decade ago, however, Raspaud et al.2 presented a pioneering study of 

rheological scaling laws based on the “correlation blob” model by de Gennes.1,11,12 This 

work drew on a series of seminal papers that used light scattering to demonstrate the need 

for an additional concentration scaling parameter, the entanglement concentration ce  

other than the overlap concentration c* .13-15 Raspaud et al. measured zero-shear 

viscosities of three different polymer/solvent pairs and successfully placed almost all 

their experimental points on a single master curve of η /ηRouse = 60 × c /ce( )3.4 , where η is 

the zero-shear viscosity of the polymer solution, ηRouse  is the hypothetical Rouse viscosity 

for an unentangled polymer solution of the same molecular weight, ce  is the 

concentration at which the entanglement effect begins, and c  is the concentration of 

polymer in weight per unit volume. Expanding on this by using data for eleven additional 

polymers, Heo and Larson3,16 created a master curve which for c /ce > 0.5 yielded a best-

fit power law of 

ηp /ηRouse = 43 ± 2( )× c /ce( )3.12±0.05 .          (1) 

Here, for an entangled semidilute solution, ηp ≡ η −ηs  with ηs  the solvent viscosity, 

ηRouse = ηs c /cη
*( )1/ 3ν −1( )

, where cη
* ≡1/ η[ ]0  with η[ ]0  the intrinsic viscosity, and ν  the 
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excluded volume exponent. The entanglement concentration ce  is defined as ce ≡ cA
* ne

3ν −1 

where cA
* ≡1/ Mw A2( ) with A2 the second virial coefficient.2,3  

Here, we will explore more broadly the dynamic similarity of semidilute polymer 

solutions at the same value of c /ce  by comparing frequency and shear-rate-dependent 

viscoelastic properties. We first compare the reduced complex moduli (G' /GN
0  & G"/GN

0 ) 

against reduced frequency (ωτ e ) of polystyrene (PS)/tricresyl phosphate (TCP) solutions 

with the same value of c /ce . Here, τ e  is the “equilibration time”, which is the Rouse time 

of an entanglement “tube” segment, which we will discuss in more detail below. Then, 

we compare the reduced zero-shear viscosity (ηp /ηRouse ) and the reduced first normal 

stress coefficient (ψ1 / ηRouseτ e( )) against reduced shear rate ( Ý γ τ e) for these solutions, again 

at constant values of c /ce .  

We will then discuss a transition to the concentrated solution regime, which occurs at 

concentrations above a “swelling” volume fraction φs . In addition, we will present a 

procedure for determining the proportionality coefficient K1  relating the equilibration 

time of the Doi-Edwards tube theory for polymer melts17 τ e, DE , to the equilibration time 

derived from the scaling theory for entangled concentrated solutions8 τ e, scaling : 

    τ e, DE = K1τ e, scaling .                       (2) 

Through this relationship, we can plot the complex moduli of concentrated solutions and 

melts against the same renormalized frequency ωτ e, DE  and thereby test whether entangled 

polymer melts are dynamically equivalent to concentrated solutions.  
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3.2. Theory 

Geometric self-similarity in molecular conformation is the foundation for the static 

scaling theory of semidilute polymer solutions. In a semidilute solution, whose 

concentration exceeds the polymer overlap concentration c* , the “correlation blob size” ξ 

can be defined as the distance scale below which a given polymer molecule is more likely 

to contact itself, due to chain connectivity, than to contact another polymer chain. Thus, 

the polymer conformation at small length scales, below the correlation blob size, remains 

the same as in a dilute solution, for which polymer excluded volume effects are 

important. But, as the length scale expands beyond the size of a single correlation blob, 

the excluded volume effect is progressively screened by interactions of the chain with 

other chains. Thus, inside a correlation blob, the polymer coil is swollen in a good 

solvent, while on length scales larger than the correlation blob, the chain conformation 

resembles that of a melt, for which excluded volume is screened out. Hence, the chain in 

a semidilute solution can be thought of as a “melt of correlation blobs” with each 

correlation blob acting as a rescaled monomer, and the conformation of a chain as a 

whole follows the random-walk formula, R2 ≈ N /g( )ξ 2 with R the end-to-end distance, 

N  the number of monomers per chain, and g  the number of monomers per correlation 

blob.2,11 Since the dynamics of polymer chains in the dilute regime are governed by the 

Zimm model,19 and the portion of the chain inside the correlation blob behaves as though 

it is in the dilute regime, the longest relaxation time of a polymer chain segment inside a 

correlation blob τ blob  should be  

       τ blob ≈
ξ 2

Dblob

≈
ξ 2

kBT /ζ blob

≈
ηsξ

3

kBT
,                                 (3) 
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where the diffusion coefficient of a correlation blob is Dblob ≈ kBT /ζ blob , and the friction 

coefficient of a correlation blob is ζ blob ≈ ηsξ  according to the Stokes-Einstein relation. 

However, at length scales larger than ξ , excluded volume and hydrodynamic interactions 

should be screened out by the presence of the other chains, and so, if the chains are not 

entangled, their behavior should follow the Rouse theory,20 yielding the longest Rouse 

relaxation time, 

τ Rouse ≈ τ blob N /g( )2.           (4) 

In the unentangled regime, the elastic shear modulus GRouse  and the Rouse viscosity 

ηRouse  are respectively 

GRouse ≈
kBT

N /g( )ξ 3 ,           (5) 

and 

 ηRouse ≈ ηs N /g( ).           (6) 

As the concentration increases even higher and exceeds the entanglement concentration 

ce , the entanglement effect comes into play, and the dynamics of the polymer chains are 

then controlled by the tube diameter according to the Doi-Edwards tube model.17 Hence, 

the tube diameter should be controlled by the size of a correlation blob ξ  and the number 

of correlation blobs per entanglement strand ne , and since the correlation blob is a 

renormalized monomer, ne  should be almost the same as the number of monomers per 

entanglement Ne  for the same polymer species in melt state.2 The Rouse time required 

for a sub-molecule large enough to fill one “tube segment” to relax gives the time scale 

τ e . Therefore, if these three parameters, ne , ξ , and τ e , are determined, we can compare 

the linear and nonlinear rheology of different semidilute linear polymer solutions by 
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using ξ  and ne  to normalize the modulus, and τ e  to normalize the frequency (or shear 

rate).  Here, neξ
3  is related to the plateau modulus of a semidilute solution by the 

classical rubber elasticity theory18 as  

GN
0 ≈ kBT / neξ

3( ).           (7) 

Because correlation blobs in semidilute solutions fill the space as monomers in melts do, 

the volume fraction of polymer in the solution φ  is equal to the volume fraction of 

monomers in a single correlation blob of volume ξ 3:   

   φ ≈ gb3 /ξ 3 ,            (8) 

where b is the statistical segment length, and ξ ≈ bgν  from the expression for the radius 

of a coil containing g  monomers, while ν  is the excluded volume exponent  for the 

polymer/solvent pair. Thus, the above implies that g  scales as φ1/ 1−3ν( )and ξ  scales as 

φν / 1−3ν( ), leading to  

      GN
0 φ( ) ≈ GN

0 1( )φ 3ν / 3ν −1( ),           (9) 

where GN
0 1( ) is the plateau modulus of the melt. 

This scaling exponent for GN
0  is identical to that for the dependence of osmotic 

pressure π  on the volume fraction of a semidilute solution as shown in Figure 3.1:  

π ~ φ 3ν / 3ν −1( ).          (10)   

 

 



 

 40

10-1

100

101

102

103

104

105

10-3 10-2 10-1 100

PS/toluene
PS/cyclohexane

O
sm

ot
ic

 p
re

ss
ur

e,
 π

 [P
a]

Volume fraction, φ
 

Figure 3.1. Osmotic pressure for polystyrene (PS) in toluene at 25°C (a good solvent) 
and in cyclohexane at the Θ temperature, 35°C. Solid lines denote experimental data of 
PS/toluene22, and dashed lines denote those of PS/cyclohexane.21  

 

Thus, if the modulus follows the same concentration scaling law as the osmotic pressure, 

the “dilution exponent” α  in the relationship GN
0 ~ φ1+α  should range from 1.31 for good 

solvents to 2.0 for Θ solvents.  However, many experimental measurements on polymer 

solutions7,23--26 seem to support the conjecture of Colby and Rubinstein12 that the 

“dilution exponent” α  in the relationship GN
0 ~ φ1+α  is 4/3 for Θ solvents, which gives no 
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practical difference from the value, α =1/ 3ν −1( )=1.31  for good solvents with 

ν = 0.588; see Figure 3.2.   
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Figure 3.2. Plateau modulus against volume fraction of nearly monodisperse polystyrene 
solutions in Aroclor 124825,26 (open diamonds and open triangles), n-butyl benzyl 
phthalate23 (open squares), and in tricresyl phosphate24 (filled circles).  The line is a least-
squares fit to all data.  

 

These results, and experimental data on polymer solutions of various solvent qualities, 

suggest that the dilution exponent α  is almost independent of solvent quality.  But many 

of the experiments that were within the semidilute regime and believed to support the 

”universality” of the dilution exponent α  (such as polystyrene solutions in Aroclor 1248 



 

 42

in Figure 3.2, for which ν = 0.567) are not useful for exploring the effect of solvent 

quality on the plateau modulus because they are too close to being in the good-solvent 

limit ( ν ≅ 0.588 ), for which the blob theory gives a dilution exponent of 1.31 

(=1/ 3ν −1( )), essentially identical to the value proposed for a theta solvent by Colby and 

Rubinstein. Thus, for such polymer/solvent pairs, there is no strong difference between 

the Colby-Rubinstein scaling and the predictions of the blob theory. It is true that there 

are some solutions studied that have intermediate solvent quality; an example is 

polystyrene (PS) solutions in tricresyl phosphate (TCP), for which ν = 0.53, and therefore 

1/ 3ν −1( ) =1.7. Although this value of α  is different enough from α  = 1.31 to provide a 

good test of the de Gennes blob-theory scaling of plateau modulus with concentration, the 

concentrations studied so far lie mostly outside of the semidilute regime, and are instead 

within the concentrated regime (φ ≥ 0.25; see filled circles in Figure 3.2), where the blob 

theory does not apply. Hence, a thorough test of the Colby-Rubinstein conjecture requires 

that we measure the dependence of the plateau modulus on polymer concentration in the 

semidilute (i.e., relatively low concentration) regime using a polymer in a marginally 

good solvent. We will discuss this further in the Results and Discussion section.  

The characteristic time constant τ e, scaling , which, after the plateau modulus, is the 

second essential parameter for scaling, corresponds to the Rouse relaxation time of an 

entanglement strand. We can use Eq. 4, namely τ Rouse ≈ τ blob N /g( )2 , to obtain an 

expression for the equilibration time from the correlation blob relaxation time:   

              τ e, scaling φ( ) ≈ τ blob Ne φ( )/g φ( )[ ]2
≈

ηs

kBT
ξ φ( )3 Ne φ( )/g φ( )[ ]2

,       (11) 
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where Ne φ( ) is the number of monomers per entanglement strand at volume fraction φ , 

and Ne φ( )/g φ( ) is essentially equal to ne ,2 the number of correlation blobs needed for an 

entanglement. Since the radius of gyration of a polymer chain in a dilute solution scales 

with the number of monomers per chain as Rg ≈ Nν , the correlation blob size ξ  at a 

concentration c  above the overlap concentration c*  also follows this relationship ξ ≈ gν , 

where c* ≈ N /Rg
3  and c ≈ g /ξ 3 . Thus, c /c* ≈

g /ξ 3

N /Rg
3 ≈ N /g( )3ν −1  since ξ /Rg ≈ g /N( )ν , 

leading to ξ ≈ Rg c /c*( )ν / 1−3ν( )
. ( Rg  is the radius of gyration of the polymer in dilute 

solution, not in semidilute solution.) Therefore, from Eq. 11, we can write the 

equilibration time of a semidilute solution in terms of c /c* as 

τ e, scaling =
ηs

kBT
Rg

3 c /c*( )3ν / 1−3ν( )
ne

2.        (12) 

In the Results and Discussion section, we will plot our experimental normalized linear 

complex moduli, G' /GN
0 , G"/GN

0  against ωτ e , and our experimental nonlinear normalized 

steady shear functions, ηp /ηRouse , ψ1 / ηRouseτ e( ) against Ý γ τ e , where ψ1 is the first normal 

stress coefficient, and Ýγ  is the shear rate. 

 

3.3. Experimental Materials and Methods 

3.3.1. Materials 

We purchased nearly monodisperse polystyrene (PS) samples from Tosoh Bioscience 

and Polymer Laboratories; the part number (batch number) and weight-average molecular 
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weight of each sample are given in Table 3.1. Tricresyl phosphate (TCP) is used as a 

marginally good solvent for PS with excluded volume exponent ν = 0.53.4 

 

Table 3.1. Nominal and actual molecular weights of polystyrene samples 

Vendor 
Part No. 

(Batch No.) 

Nominal Mw
 

(106 g/mol) 

Actual Mw
 

(106 g/mol) 

Standard Error 

(106 g/mol) 

F-128 1.09 1.28 0.01 

F-288 2.11 2.53 0.08 Tosoh 
Bioscience 

F-550 5.48 6.62 0.06 

20144-13 2.35 2.68 0.06 Polymer 
Laboratories 20146-15 4.74 5.56 0.10 

 

* All weight-average molecular weights were measured with a Wyatt DAWN EOS 
static light scattering goniometer. 

 

3.3.2. Sample Preparation 

3.3.2.1. Weight-average Molecular Weight Measurements 

We selected six different reduced concentrations within the semidilute regime, namely 

c /ce =0.77, 1.22, 1.65, 1.85, 2.50, and 3.00, where ce  is related to molecular weight 

through ce = cA
* ne

3ν −1  where the overlap concentration here is based on the polymer 

thermal radius Rt = 3A2Mw
2 / 16πNA( )[ ]1/ 3

,3,31 and in turn, cA
* ≡1/ Mw A2( ) ~ Mw

1−3ν ,2,3 since 

Rt  is proportional to the radius of gyration.3,32 Hence, determining the correct molecular 

weight is an essential step prior to measurements. Since we use polystyrene samples from 
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two different vendors, we need to check the absolute weight-average molecular weights 

of these samples using the same device by the same person to ensure consistency. Values 

of Mw  in Table 1 represent the absolute molecular weights measured by small angle 

static light scattering with a Wyatt DAWN EOS; see Figure 3.3.  

 

Figure 3.3. Sample Zimm plot of 1.28×106 g/mol polystyrene in toluene at room 
temperature. Here, θ , c , R θ( ) , and K  respectively denote the detection angle, the 

concentration of a sample in g/ml, the excess Rayleigh ratio, and K =
4π 2

NA

n0
2

λ0
4

dn
dc

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

 with 

NA  the Avogadro’s number, n0 the solvent refractive index, λ0 the vacuum wavelength 
of incident light, and dn /dc  the refractive index increment. Note that a negative “stretch 
factor,” -2230, has been used for enhanced interpretability. We employed a “Berry plot” 
for 2.53×106 g/mol and 6.62×106 g/mol polystyrene, since this method of plotting is 
recommended for polymers with the molecular weight higher than 1 million g/mol.  

 

3.3.2.2. Preparation of Solutions 

We prepared the samples by mixing PS and TCP in dichloromethane (DCM). Even 

though TCP is a thermodynamically good solvent for PS, dissolving PS in TCP is a 

kinetically slow process due to relatively high viscosity of TCP (58 cP at 25°C). For this 
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reason, we use DCM as a co-solvent that helps PS chains dissolve faster by increasing the 

solvent volume, and by reducing the viscosity of the solution. After complete blending of 

these three components on a roller overnight, we evaporate most of DCM in a fume hood 

and completely remove the remaining DCM by placing the samples in a vacuum oven for 

about three weeks until less than 0.001 g of weight loss occurs over two consecutive 

days. 

 

3.3.2.3. Measuring Rheological Properties with Bubble-free 
Samples 
 

We used an ARES LS (Rheometrics) with 25.0 mm diameter parallel plates to obtain 

the linear and nonlinear viscoelastic properties of semidilute PS/TCP solutions at a 

temperature of 25.0±0.1°C controlled using a water bath. Due to the relatively long 

relaxation times of PS/TCP solutions, when a sample was removed from a container and 

loaded on the bottom plate of the fixture, air bubbles easily got trapped inside the sample. 

To remove them, we first placed the bottom plate, on which the sample was loaded, into a 

vacuum oven and held it at 60°C for several hours. Then, we applied a vacuum to burst 

any remaining bubbles. In addition, air bubbles can become trapped in a sample when the 

upper plate is driven into the sample when setting the gap. Lowering the upper plate 

faster than the relaxation time of a sample does not give the polymer chains enough time 

to rearrange themselves under stress, which creates an uneven surface, capturing air 

between upper plate and the surface of the sample. Thus, additional care was taken when 

lowering the upper plate.  
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3.4. Results and Discussion 

3.4.1. Nearly Monodisperse Polystyrene Solutions 

Here, we test the dynamic similarities of semidilute nearly monodisperse polystyrenes 

(PS) of three different molecular weights in tricresyl phosphte (TCP). Tables 3.2 and 3.3 

list all necessary parameters for computing the Rouse viscosity ηRouse φ( ), the plateau 

modulus GN
0 φ( ), and the equilibration time τ e, scaling φ( ) of each solution. Here, ηRouse φ( ) is 

calculated from ηRouse φ( )= ηs c /cη
*( )1/ 3ν −1( )

 with cη
* ≡1/ η[ ]0 , where η[ ]0 is the intrinsic 

viscosity of the polymer. 

 

Table 3.2. The parameters of polystyrene (PS)/tricresyl phosphate (TCP) solutions at 
25°C; the zero-shear viscosity of TCP ηs , the number of correlation blobs per 
entanglement for PS/TCP solutions ne , the excluded volume exponent for PS/TCP 
solutions ν , the dilution exponent α  for PS/TCP solutions, the plateau modulus of PS 
melt at 180°C GN

0 1( ), and the densities of PS and TCP at 25°C, ρPS  and ρTCP . 

ηs 

Pa⋅s 
ne

a ν b α c 
GN

0 1( )d 

Pa 

ρPS  

g/L 

ρTCP  

g/L 

0.058 185 0.53 1.7 2.23×105 1060 1160 
 

a ref. 2 
b the excluded volume exponent is calculated as ν = a +1( )/3 from the Mark-Houwink 

exponent, a  in η[ ]0 = 4.2 ×10−5 Mw
0.59  (L/g) from data in the molecular weight range of 

2×105-2×106 g/mol.4 We assume that this same excluded volume exponent applies to our 
samples, including those with molecular weight higher than two million g/mol.  

c  α  is computed from the relationship, α =1/ 3ν −1( ). 

d GN
0 1( ) is calculated from GN

0 1( )= 4 /5( )ρRT / Me
28 
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Table 3.3. Parameters of polystyrene (PS) of three different molecular weights in 
tricresyl phosphate (TCP): the weight-average molecular weight Mw , the intrinsic 
viscosity η[ ]0, the radius of gyration Rg , the overlap concentration c* , the second virial 
coefficient multiplied by the molecular weight Mw A2 , and the entanglement 
concentration ce  of each PS sample. 

Mw  

g/mol 

η[ ]0
a 

L/g 

Rg
b 

Nm 

c* c 

g/L 

Mw A2
d 

L/g 

ce
e 

g/L 

1.28×106 0.168 43.9 25.2 0.258 84.3 

2.53×106 0.252 62.9 16.9 0.386 56.4 

6.62×106 0.444 104.8 9.55 0.680 32.0 
 

a η[ ]0 = 4.2 ×10−5 Mw
0.59  (L/g)4  

b Rv /Rg = 0.74  for linear PS solutions over the range 105 ≤ Mw ≤106 .31 Here, the 

viscometric radius of the polymer chain Rv  is calculated as Rv =
3 η[ ]0

Mw

10πNA

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 3

with NA  

Avogadro’s number, and Rg =
3 η[ ]0

Mw

10πNA

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 3

/0.74 3 

c c* ≡
Mw

NARg
3  

d Mw A2 = 6.5 /c* for PS in good solvents 2 

e ce ≡ 1/ Mw A2( )ne
3ν −1.2,3  

 

Now, we can compare rheological data of PS/TCP solutions, using τ e, scaling  as a 

“relative” equilibration time for comparing data for PS/TCP solutions with varying 

concentration and molecular weight. We measured linear rheological properties for 

c /ce=0.77, 1.22, 1.65, 1.85, 2.50, and 3.00, which are tabulated in Table 3.4 and shown 

in Figure 3.4.  
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Table 3.4. Volume fraction φ , equilibration time τ e, scaling  calculated from Eq. (12), and 
the plateau modulus GN

0 φ( )= GN
0 1( )φ1+α  for each PS/TCP solution at various molecular 

weights Mw , and reduced concentrations c /ce .  

Nominal c /ce  =0.77 Nominal c /ce  =1.22 

Mw  

g/mol 
φ  

Actual 

c /ce  

τ e, scaling

s 

GN
0 φ( ) 

Pa 

ηRouse  

Pa 

Mw  

g/mol 
φ  

Actual 

c /ce  

τ e, scaling

s 

GN
0 φ( ) 

Pa 

ηRouse  

Pa 

1.28×106 0.061 0.77 0.0206 118 3.33 1.28×106 0.094 1.18 0.0065 373 6.87 

2.53×106 0.040 0.76 0.0626 39 3.27 2.53×106 0.065 1.22 0.0176 138 7.27 

6.62×106 0.024 0.78 0.2711 40 3.41 6.62×106 0.036 1.20 0.0844 29 7.10 

Nominal c /ce  =1.65 Nominal c /ce  =1.85 

Mw  

g/mol 
φ  

Actual 

c /ce  

τ e, scaling

s 

GN
0 φ( ) 

Pa 

Mw  

g/mol 
φ  

Actual 

c /ce  

τ e, scaling

s 

GN
0 φ( ) 

Pa 

1.28×106 0.131 1.65 0.0026 925 1.28×106 0.146 1.84 0.0020 1,237 

2.53×106 0.089 1.67 0.0075 324 2.53×106 0.098 1.84 0.0058 419 

6.62×106 0.049 1.63 0.0369 66 6.62×106 0.056 1.86 0.0259 94 

Nominal c /ce=2.50 Nominal c /ce=3.00 

Mw  

g/mol 
φ  

Actual 

c /ce  

τ e, scaling

s 

GN
0 φ( ) 

Pa 

Mw  

g/mol 
φ  

Actual 

c /ce  

τ e, scaling

s 

GN
0 φ( ) 

Pa 

1.28×106 0.199 2.50 0.0009 6,398 1.28×106 0.239 3.00 0.0005 9,547 

2.53×106 0.133 2.50 0.0025 2,632 2.53×106 0.160 3.00 0.0016 3,937 

6.62×106 0.075 2.50 0.0117 756 6.62×106 0.091 3.00 0.0071 1,131 
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(a) Nominal c /ce =0.77 
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(b) Nominal  c /ce=1.20 
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(c) Nominal  c /ce=1.65 
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(d) Nominal  c /ce=1.85 
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(e) Nominal c /ce=2.50 
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(f) Nominal c /ce=3.00 
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Figure 3.4. Plots testing “universal scaling” of the linear viscoelastic properties of 
semidilute monodisperse polystyrene (PS)/tricresyl phosphate (TCP) solutions. In each 
plot, normalized storage and loss moduli, G' /GN

0  and G"/GN
0  are plotted against 

normalized frequency, ωτ e, scaling  at a given nominal c /ce. The small differences in values 
of c /ce  within each figure are recorded in the legends. Filled circles, open squares, and 
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open circles respectively represent the storage and loss moduli of 1.28×106 g/mol, 
2.53×106 g/mol, and 6.62×106 g/mol PS solutions. 

 

We were able to measure nonlinear rheological functions for only c /ce=0.77 and 1.22 

due to edge fracture at volume fractions higher than about 10%.32,33 Even so, for these 

solutions, excellent superposition is obtained in plots of the nonlinear functions 

ψ1 / ηRouseτ e, scaling( ), and ηp /ηRouse  against Ý γ τ e, scaling , except for low shear-rate regions; see 

Figure 5. This can be attributed to poor torque values since the lower limit of the 

transducer (Force Rebalance Transducer, 2K FRTN1 for high range) is 2 g ⋅ cm.  

 

(a) Nominal c /ce =0.77                                  (b) Nominal c /ce  =1.22 

  

Figure 3.5. “Universal scaling” of the nonlinear viscoelastic properties of semidilute 
monodisperse PS/TCP solutions. The normalized first normal stress coefficient 
ψ1 / ηRouseτ e, scaling( ) and the normalized steady shear viscosity ηp /ηRouse  are plotted against 
the normalized shear rate, Ý γ τ e, scaling , at two nominal values of c /ce , where the Rouse 

viscosities for these two concentrations are computed from ηRouse = ηs c η[ ]0( )1/ 3ν −1( )
 as 

given earlier in this section, and are tabulated in Table 3.4. Filled and open diamonds, 
respectively, represent the normalized first normal stress difference coefficients of 
6.62×106 g/mol and 2.53×106 g/mol PS solutions. Filled and open circles, respectively, 
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represent the normalized steady shear viscosities of 6.62×106 g/mol and 2.53×106 g/mol 
PS solutions.  

 

In Figure 3.4, G' /GN
0  and G"/GN

0  are plotted against ωτ e, scaling  for PS of three different 

molecular weights in TCP at various c /ce’s, ranging from 0.77 to 3.00. At relatively low 

c /ce , namely c /ce =0.77, 1.22, 1.65, and 1.85, we have excellent collapse with only 

slight discrepancies in the terminal region. However, the shapes of the G"/GN
0  curves 

between the terminal and the high-frequency regions begin to deviate from each other 

with increasing c /ce , indicating the gradual breakdown of the universality based on the 

“blob” model within the semidilute regime. Thus, the superposition of the complex 

moduli starts to break down when the reduced concentration exceeds c /ce=2.0 for nearly 

monodisperse PS/TCP solutions. This breakdown of “universal” scaling for semidilute 

solutions is also observed with the binary blends of two different molecular weights of PS 

in TCP, as will be presented below. These findings imply that the definition of the 

plateau modulus obtained from blob theory and classical rubber elasticity theory, 

GN
0 ≈ kBT / neξ

3( ) with ξ ≈ Rg c /c*( )ν / 1−3ν( )
 can only be used up to a reduced concentration 

of about c /ce =2.0 for our solutions, which corresponds roughly to polymer volume 

fractions higher than about 15%.  

This breakdown in de Gennes blob-theory scaling laws occurring at polymer volume 

fractions higher than about 15% can be ascribed to a transition from the semidilute to the 

concentrated regime. As explained by Milner,9 with increasing concentration, the 

correlation blob size ξ  shrinks, eventually down to the size of the “thermal blob” ls , 

below which the conformation of polymer chain follows random-walk scaling even in a 

good solvent, as shown in Figure 1 of Hayward and Graessley.34 The thermal blob size is 
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the length scale at the energy associated with excluded volume interactions reaches the 

thermal energy, which for reasons of entropy maximization favors the random walk. 

Milner called this length scale “swelling length” because the excluded volume swelling 

effect sets in above this length. The swelling volume fraction φs  at which the blob size 

equals the swelling length, is estimated using φs = NsΩ0 / ls
3, where Ns is the number of 

monomers in a chain of thermal blob size ls , and Ω0 is the volume of a monomer. One 

can simplify this using the “packing length” lp , which depends only on polymer stiffness 

and bulkiness, and is independent of solvent; it is defined as lp = NΩ0 /R2 N( ) . Since 

R2 Ns( )= ls
2 = Nsb

2 , we have lp = NsΩ0 / Nsb
2( ), and in turn, we obtain 

φs = lp / ls.          (13) 

Note that the weaker the solvent (i.e., the closer it is to being a theta solvent), the larger 

the swelling length is, and the smaller is the swelling concentration. However, since Eq. 

(13) is a scaling relationship with an unknown prefactor of order unity,9 we cannot 

calculate directly the swelling concentration for PS/TCP.  Nevertheless, we note that 

Milner’s calculated value of φs = 0.24  for polystyrene-benzene is not too far from the 

volume fraction (around 0.15) at which we see a breakdown in superposition based on the 

correlation blob, and we expect the swelling concentration for our system, PS/TCP, to be 

smaller than for PS/benzene, since benzene is a better solvent for PS than is TCP. Milner 

also nicely summarized the proposed concentration scaling relationships for the tube 

diameter a φ( ) , the number of monomers per entanglement Ne φ( ) , and the plateau 

modulus GN
0 φ( ), above and below φs , respectively based on Colby-Rubinstein conjecture 

for Θ solutions, and de Gennes’ blob model for polymer solutions in a good solvent, with 
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the prefactors chosen to match the scaling relationships at the crossover point. (We will 

give Milner’s scaling relationships in the next section.)   For our PS/TCP solutions, we do 

not have enough data above the swelling concentration to test the Colby-Rubinstein 

scaling behavior.  However, other data in the literature allows us to check this scaling 

behavior above φs , and so we examine these data in the next section.  

 

3.4.2. Melt vs. Solution Rheology 

As alluded to in previous section, Milner9 proposed the following crossover between 

scaling relationships for the tube diameter a φ( ) for concentrated solutions (φs < φ ≤1) for 

which Colby-Rubinstein scaling applies, and semidilute entangled solutions (φe < φ < φs), 

for which de Gennes blob scaling applies, with φe  the volume fraction corresponding to 

ce ,  

a φ( )=
a 1( )φ−αc / 2, φ > φs

a 1( )φs
−α / 2 φ /φs( )ν / 1−3ν( ), φ < φs

⎧ 
⎨ 
⎩ 

.                     (14) 

Note that in the semidilute regime, this scaling law for a φ( ) is the same as the de Gennes 

scaling law for the blob size ξ φ( ). Since for entangled solutions in the semidilute regime, 

GN
0 ≈ kBT / a2ξ( ), while the de Gennes scaling is GN

0 ≈ kBT /ξ3 , these two scaling laws are 

identical.    

The exponent α c  should take on the value, α c = 4/3 = 1.33 in Θ solvents, according to 

the Colby-Rubinstein conjecture. As Milner notes, however, above the swelling 

concentration φs , in any solvent, the polymer configuration is a random walk on all 

length scales, and hence the Colby-Rubinstein Θ solvent scaling applies for all polymer-
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solvent systems above φs , and the dilution exponent α  should therefore take on the 

universal value α c  above φs . Nevertheless, in what we use α c  as a slightly polymer-

solvent-system specific parameter since many experiments have shown values of αc  that 

differ slightly (by a few percent at most) from 1.33.  

We obtain the number of monomers per entanglement at a volume fraction φ  from 

Milner,9 

Ne φ( )=
Ne 1( )φ−αc , φ > φs

Ne 1( )φs
−αc φ /φs( )1/ 1−3ν( ), φ < φs

⎧ 
⎨ 
⎩ 

.        (15) 

Here, Ne φ( )= Me φ( )/ M0  with M0  the monomer molecular weight, and 

Me φ( )= 4 /5( )ρφRT /GN
0 φ( ) . Thus, the modulus scales as GN

0 ∝φ /Ne ∝φ1+α . In the 

concentrated region, φ > φs, α  = αc  ≈ 1.33, while in the semidilute regime, φ < φs, we 

recover the de Gennes scaling where α =1/(3ν −1) , and GN
0 ∝ φ3ν /(3ν−1) .  Since the 

correlation blob size ξ  is proportional to φν / 1−3ν( )  within the semidilute regime (below 

φs), and the excluded volume effect due to solvent is screened out at any length scale 

above ls  when the volume fraction goes above φs , we have 

ξ φ( )=
bφ−1, φ > φs

bφs
−1 φ /φs( )ν / 1−3ν( ), φ < φs

⎧ 
⎨ 
⎩ 

,        (16) 

and  

     g φ( )= φξ 3 /b3 =
φ−2, φ > φs

φs
−2 φ /φs( )1/ 1−3ν( ), φ < φs

⎧ 
⎨ 
⎩ 

.                  (17)  

Finally, from Eqs. 15 and 17, we obtain a formula for the number of blobs per 

entanglement Ne φ( )/g φ( ): 
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                                         Ne φ( )/g φ( )=
Ne 1( )φ 2−αc , φ > φs

Ne 1( )φs
2−αc , φ < φs

⎧ 
⎨ 
⎩ 

.                              (18) 

Note that the coefficients of the equations are chosen to satisfy continuity of the variables 

at φ = φs  and φ =1. For example, at φ =1, the correlation blob size is equal to the 

statistical segment length b  from R2

0
= Nb2 = N 1( )/g 1( )[ ]ξ 1( )2 , and the number of 

monomers per blob g  is unity.  

The above can be summarized as follows.  For a very good solvent with ν  = 0.588, the 

dilution exponent below the swelling concentration φs  is α =1/ 3ν −1( )≈ 1.31, while 

above φs , the exponent is almost the same, α  = αc = 1.33.  Thus, for a very good solvent, 

the dilution exponent is essentially constant across the whole concentration range, as 

observed experimentally.  For a marginally good- solvent system, like PS/TCP (for which 

ν  = 0.53), α  is larger ( α ≈1.7), and α  can approach α  = 2 as the solvent quality 

approaches Θ  quality. However, as the solvent quality worsens, the swelling 

concentration drops, and the range of concentration over which α  can exceed α c  

diminishes.  When the Θ  condition is reached, then the Colby-Rubinstein argument 

applies for essentially all concentrations above dilute and α  = αc  = 1.33. Thus, the 

dilution exponent exhibits a non-monotonic behavior: for both very good and Θ solvents, 

α  is essentially constant at a “universal value” of around 1.3-1.33 over the entire 

concentration range, while for marginally good solvents, the exponent is higher than this 

at low polymer concentrations only. As illustrated in Figure 3.6, if we start at some 

intermediate solvent quality and worsen the quality, the magnitude of the deviation in the 

exponent at low concentrations from the “universal value” increases, but the range of 

concentrations over which this deviation occurs shrinks to zero as the solvent quality is 
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worsened towards the theta condition. On the other hand, if we increase the solvent 

quality, the range of concentrations over which there is a deviation from the “universal 

exponent” increases, while the deviation itself shrinks nearly to zero when the solvent 

becomes very good. Thus, the same scaling behavior is reached at both end points ( Θ and 

very good solvent quality), but in different ways.  This rather subtle, and non-intuitive, 

behavior has led to confusion in the literature regarding whether or not the dilution 

exponent has a universal value for all polymer/solvent pairs over all concentrations.  

 

 

Figure 3.6. Schematic of the scaling of plateau modulus GN
0 φ( )of polymer solutions with 

three different excluded volume exponents, namely ν =0.57, 0.53, and 0.51, versus 
volume fraction φ . See text for detail. 
 
 
3.4.2.1. Nearly Monodisperse 1,4 Polybutadiene Melts and 
Solutions in Phenyl Octane  
 

In principle, once the reduced concentration c /ce  exceeds unity, the solution is 

entangled, and the blob theory for a semidilute polymer solution or the Colby-Rubinstein 
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scaling for a concentrated polymer solution implies that such a solution ought to be 

“dynamically equivalent” to a melt having the “same” entanglement density. For 

semidilute or concentrated entangled solutions, the degree of entanglement can be 

measured by the ratio c /ce , while for melts, it is usually measured by the ratio, M / Me  

(or N /Ne) of the molecular weight, M  to the molecular weight between entanglements 

Me . We will call this latter ratio the “entanglement density,” and will show in what 

follows that it can also be defined for semidilute solutions, once the dilution exponent is 

determined. In addition to establishing a common measure of entanglement density for 

solutions and melts so that “dynamically equivalent” entangled solutions or melts can be 

identified, the frequency and modulus must be appropriately rescaled, so that data for 

both solutions and melts can be plotted using common reduced variables.  

With this in mind, we now examine an extensive set of data for nearly monodisperse 

1,4 polybutadiene (PBd) solutions in phenyl octane (PhO) and melts of PBd of various 

molecular weights, published by Colby et al.5 To plot these data on a universal scale, we 

use the parameters for PBd melts that Likhtman and McLeish28 determined by fitting the 

data of PBd melts at 28°C of Baumgaertel et al.35 with the Likhtman-McLeish (LM) 

theory. They thereby determined the values GN
0 =1.47 ×106 Pa , Me =1.93×103 g/mol 

(note that Me  was used as an independent fitting parameter, not calculated from 

Me = 4 /5( )ρRT /GN
0 ), and τ e, DE = 4.9 ×10−7 s . Here, we have shifted slightly τ e, DE  at 

28°C to the value τ e, DE = 5.66 ×10−7 s  at 25°C using the WLF equation with the 

parameters C1 = 3.48, C2 =163K, and T0 =25°C.5 The plateau modulus of a PBd/phenyl 

octane (PhO) solution at 25°C scales as follows: 
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GN , PBd
0 φ( )= GN , PBd

0 1( )φ 2.29 .             (19) 

This scaling relation was determined from experimental measurements of the plateau 

modulus of PBd/PhO solutions against volume fraction.5   

Because the glass transition temperature of this solution at any volume fraction is at 

least 100K lower than the experimental temperature 298K we can use the Fox equation, 

1/Tg φ( )= φ /Tg , polymer + 1− φ( )/Tg, solvent .   Here, the glass transition temperature of bulk PBd 

is Tg, PBd =174K and that of PhO is Tg, PhO =152K. Thus the glass transition temperatures 

of the solutions are in the narrow range between 152K and 174K, well below the 

temperatures at which the measurements were made (25°C) and thus the polymer has a 

similar monomeric friction coefficient in all solutions and the melt. Colby et al.5 were 

able to obtain complex moduli of PBd/PhO solutions ( Mw=925,000 g/mol, Mw / Mn<1.1, 

and 50% cis 1,4, 42% trans 1,4, and 8% vinyl) at various volume fractions from 0.03 up 

to unity. The swelling volume fraction φs  for PBd-PhO solutions can be bounded from 

above by the value found for PBd in the good solvent cyclohexane, which is 0.045. Note 

that PhO is a poorer solvent than cyclohexane for PBd (ν = 0.609 for PBd/cyclohexane,9 

while ν =0.554 for PBd/PhO5) implying that PBd/PhO solution has a longer swelling 

length, and in turn smaller swelling volume fraction ( φs = lp / ls ), than does 

PBd/cyclohexane since the packing length is independent of solvent quality.  From this, 

we estimate that φs  for PBd/PhO solutions should be significantly less than 0.045. 

Therefore, we can safely treat all PBd/PhO solutions of Colby et al.5 as concentrated 

solutions with ν = 0.5  and α =1.29 .  This is a remarkable fact for polybutadiene 

solutions. Even though many researchers7,36,37 have demonstrated that the dilution 

exponent of PBd solutions in marginally good to good solvents is independent of solvent 
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quality in seeming contradiction to de Gennes’ scaling theory, it turns out that this is not 

because there is no difference in dilution exponent between good solvent and Θ solvent 

within the semidilute regime, but instead is because the volume fractions of almost all 

PBd solutions studied actually belong to the concentrated regime, not the semidilute 

regime. For polystyrene solutions, where φs  is much larger (around 0.15-0.25), the 

volume fractions used in our studies presumably cover both semidilute and concentrated 

regimes. Consistent with this, we showed in the last section that the de Gennes’ scaling 

law collapses our PS/TCP data in the semidilute regime, where we used a dilution 

exponent of α= 1.7, based on the excluded volume exponent, rather than the exponent 

near 1.3, while superposition based on the exponent α  =1.7 gradually breaks down with 

increasing volume fraction.  

To relate τ e, scaling  with τ e, DE  at a volume fraction that lies in concentrated regime, we 

take advantage of the fact that Colby et al.5 obtained both PBd melt and solution data at 

the same temperature of 25°C. Thus, we can match the formula for τ e, DE  for a PBd melt 

to that for a PBd solution simply by setting the “solution” volume fraction to φ =1, and 

requiring the two formulas to give the same answer. We use the value of τ e, DE  of a PBd 

melt that Likhtman and McLeish obtained by fitting their model (the Likhtman-McLeish 

(LM) model) to the experimental melt data of Baumgaertel et al.36 by LM model,28  

giving τ e, DE = 5.66 ×10−7 s .  Now we can obtain τ e, scaling φ( ) for a PBd solution with the 

volume fraction ranging φs < φ ≤1 from Eqs. (11), (16) and (18), 

τ e, scaling =
ηs

kBT
ξ 3 Ne φ( )/g φ( )[ ]2

=
ηs

kBT
b3Ne

2 1( )φ1−2αc .        (20) 
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Comparing τ e, DE = 5.66 ×10−7 s  and τ e, scaling 1( )= 8.68 ×10−8 s thus gives us the prefactor, 

K1 = 6.52  in τ e, DE = K1 ⋅ τ e, scaling  for this particular polymer-solvent pair without 

adjustable parameters. Since we have a series of G' and G" curves for PBd melts and 

solutions available, we are now able to compare these functions for varying M / Me  for 

melts and solutions, plotted as: G' /GN
0 & G"/GN

0  versus ωτ e, DE .  τ e, DE φ( )= K1 ⋅ τ e, scaling φ( ) 

and GN
0 φ( ) are tabulated in Table 3.5, and the plots are shown in Figure 3.7, with filled 

symbols representing solutions and open symbols melts.   

 

Table 3.5. The equilibration times and the plateau moduli of a series of PBd/PhO 
solutions ( Mw = 9.25 ×105 g/mol). Here, we employ Ne φ( )= Ne 1( )φ−αc  to compute the 
number of monomers per entanglement at a volume fraction φ .    

φ  
N /Ne φ( ) K1 ⋅ τ e, scaling φ( )

s 

GN
0 φ( ) 

Pa 

0.021     3.4 7.03×10-4 2.58×102 

0.027     4.6 3.82×10-4 4.50×102 

0.062   13.3 5.19×10-5 2.83×103 

0.140   37.9 7.88×10-6 1.76×104 

0.280   92.8 1.82×10-6 8.39×104 

0.488 184.1 7.15×10-7 2.93×105 

1.000 479.3 5.66×10-7 1.47×106 
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Figure 3.7. Normalized complex moduli, G' /GN

0  and G"/GN
0  against normalized 

frequency, ωτ e, DE , for nearly monodisperse polybutadiene (PBd) melts and solutions. 
Here, τ e, DE  for PBd solutions is computed from τ e, DE = K1 ⋅ τ e, scaling , K1 = 6.52, and Eq. 
(20), with αc = 1.29, and Ne 1( ) = 35.7 (see Table 3.5). Filled symbols denote G' /GN

0  and 
G"/GN

0  for PBd melts with Mw=9.25×105, 2.01×105, 0.97×105, 0.44×105, and 0.21×105 
g/mol,36 and open symbols denote PBd solutions with Mw =9.25×105 g/mol at volume 
fractions of 0.488, 0.280, 0.140, 0.062, 0.027, and 0.021.5  
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Note in Figure 3.7 that treating all solutions and melts as “concentrated solutions” puts 

all data (melts and solutions) into a simple progression. As N /Ne φ( ) increases, either 

because of increased molecular weight of increased concentration (and therefore lower 

Ne φ( )), the transition to terminal behavior occurs at a lower reduced frequency.  Note 

also that a melt and a solution with almost the same value of N /Ne φ( ) (open and filled 

squares) have almost identical G' and G" curves. Unlike PS/TCP solutions, for PBd/PhO 

solutions a single scaling relationship for the dependence of the plateau modulus on φ , 

GN
0 φ( )= GN

0 1( )φ 2.29 , is observed to hold at volume fractions from 100% down to 3%.5 

Note that the loss moduli of PBd/PhO solutions show a slight indication of an “early” 

upturn at high frequencies, which is not present in the melt. If real, and if the “early” 

upturn continues at higher frequencies, then there may be a significant, and unexplained 

difference between solutions and melts at high frequency.  

From the data of Figure 3.7, we can extract a reduced crossover frequency, ωXτ e, DE  by 

extrapolating the data for G' /GN
0  and G"/GN

0  in the terminal region where G'∝ω  and 

G"∝ω 2 up to the reduced frequency where G' /GN
0  crosses G"/GN

0 . From the crossover 

frequencies of a series of PBd solutions, we get a scaling relationship between the 

reduced crossover relaxation time, τ X /τ e, DE =1/ ωX τ e, DE( ) and N /Ne ; see Figure 3.8.  
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Figure 3.8. The reduced crossover relaxation time of polybutadiene (PBd) melts and 
PBd/phenyl octane (PhO) solutions versus the number of entanglements per molecule: 
N /Ne  for melts and solutions. Here, we employ Me 1( )=1.93 ×103 g/mol from Likhtman 
and McLeish28  to obtain Ne 1( )= Me 1( )/ M0 with M0 = 54  g/mol the monomer molecular 
weight of PBd. For solutions, we use the scaling law Ne φ( )= Ne 1( )φ−αc =(1.93×103/54) φ-

1.29.  Filled circles represent PBd melts ( N /Ne=10.7, 22.9, 50.3, 104.2, and 479.3) and 
open diamonds represent PBd/PhO solutions of Mw =9.25×105 ( N /Ne =3.4, 4.6, 13.3, 
37.9, 92.8, 184.1, and 479.3).   

 

Figure 3.8 shows us the similarities between melts and solutions. The best-fit power-

law slope of the line for melts is 3.27±0.09 and that for solutions is 3.09±0.05, which 

suggests that, almost to within experimental error, an entangled concentrated solution is 

essentially the same as a “melt of correlation blobs.”  
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3.4.3. Extension to Binary Blends 

Most synthetic polymers have broad molecular weight distributions and some 

polydispersity is inevitable even when synthesizing nearly monodisperse linear polymers 

through anionic polymerization. Since polydisperse systems are both more common and 

more relevant commercially, we would like to encompass polydispersity within the 

“universal scaling” law.  

Binary blends of monodisperse polymers provide a first step to confirm the validity of 

the  “blob” model scaling for polydisperse polymer solutions. Comparing both linear and 

nonlinear rheological responses of one binary blend with another having the same ratio of 

short- to long-chain molecular weight and the same c /ce  should determine the validity of 

the universal scaling for polydisperse semidilute solutions that are not monodisperse. 

Here, we base c /ce  on the weight average molecular weights of the short and long 

chains, each of which occupies 50 weight % of the polymer; see Table 3.6.  

 

Table 3.6. Weight-average molecular weights and parameters of two binary blends of PS 
samples in TCP 

 Molecular weights and ratios Parameters of short chain polymer 

 
Mw, short  

g/mol 

Mw, long  

g/mol 

Mw, long /
Mw, short  

ν a 
η[ ]0

a 

L/g 

Rg
b 

nm 

c* c 

g/L 

Mw A2
d 

L/g 

ce
e 

g/L 

Blend 1 1.28×106 2.68×106 2.09 0.53 0.17 43.87 25.19 0.26 84.32 

Blend 2 2.68×106 5.56×106 2.07 0.53 0.26 64.90 16.29 0.40 54.52 

a η[ ]0 = 4.2 ×10−5 Mw
0.59  (L/g)4  
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b Rv /Rg = 0.74  for linear PS solutions over the range 105 ≤ Mw ≤106 .31 Here, the 

viscometric radius of the polymer chain Rv  is calculated as Rv =
3 η[ ]0

Mw

10πNA

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 3

with NA  

Avogadro’s number, and Rg =
3 η[ ]0

Mw

10πNA

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 3

/0.74 3 

c c* ≡
Mw

NA Rg
3  

d Mw A2 = 6.5 /c* for PS in good solvents 2 

e ce ≡ 1/ Mw A2( )ne
3ν −1.2,3  

 

As illustrated in Figures 3.9 and 3.10, two binary blends with almost the same ratio of 

short to long chain molecular weight and the same c /ce  show excellent agreement in 

both linear and nonlinear rheological responses with exceptions for c /ce=2.50 and 3.00, 

just as was the case for monodisperse PS/TCP solutions. This allows us to further extend 

the universal scaling from blob theory to polydisperse polymer solutions.  
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Figure 3.9. Superposition of linear viscoelastic properties of two binary blends of 
PS/TCP solutions at six different values of c /ce : (a) c /ce =0.50, (b) c /ce =1.00, (c) 
c /ce=1.50, (d) c /ce=2.00, (e) c /ce=2.50, and (f) c /ce=3.00. Filled circles and diamonds 
respectively represent the normalized storage and loss moduli of the solutions with equal 
mass fractions of Mw, short =1.28 ×106 g /mol and Mw, long = 2.68 ×106 g /mol. Open circles 
and diamonds respectively represent the normalized storage and loss moduli of the 
solutions with Mw, short = 2.68 ×106 g /mol  and Mw, long = 5.56 ×106 g /mol .  τ e, scaling  is 
based on the weight average molecular weight of long and short chains.  

 

 

(c) (d) 

(e) (f) 
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Figure 3.10. The same as Figure 3.9 except for nonlinear viscoelastic properties: (a) 
c /ce=0.50, and (b) c /ce=1.00.  

 

3.5. Conclusions 

We have explored the “universal scaling” of rheological properties of semidilute linear 

polymer solutions based on the “blob” model for semidilute solutions and based on the 

conjecture of Colby-Rubinstein for concentrated solutions.12 Starting with nearly 

monodisperse polystyrene solutions where “universal scaling” has already been 

confirmed for the zero-shear viscosity,3 we have tested the dynamic similarity of the 

frequency-dependent linear viscolelastic properties of polystyrene solutions, 

polybutadiene solutions and melts, and of binary blends of two monodisperse polystyrene 

solutions, as well as the shear-rate-dependent nonlinear properties of polystyrene 

solutions. We found that for polystyrene solutions in TCP, “universal scaling” using the 

de Gennes semidilute blob concept, which gives GN
0 φ( )= GN

0 1( )φ 3ν / 3ν −1( )  and 

τ e, scaling = ηs /kBT( )Rg
3 c /c*( )3ν / 1−3ν( )

ne
2  as scaling parameters, allows us to collapse all 

linear and nonlinear data, for both monodisperse and bidisperse solutions, at 
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concentrations in the semidilute range, where the semidilute range for this 

polymer/solvent pair lies below a volume fraction of around 0.15, which is roughly 

consistent with our estimated value of the “swelling concentration” φs  identified by 

Milner. This swelling concentration is the concentration at which the size of a correlation 

blob at a volume fraction ξ φ( ), equals that of thermal blob ls . For polymer chains at 

volume fractions below φs  there is a range of length scales over which the polymer is 

swollen in a good solvent, while above φs  they follow random walk configurations at any 

length scale.  At higher concentrations of PS in TCP, near the value we estimate for φs , 

the semidilute scaling laws based on the above formulas fail to collapse the PS/TCP data.  

For φ > φs, we can extract the expressions for two normalizing parameters for universal 

scaling using the Colby-Rubinstein conjecture for Θ solutions): GN
0 φ( )= GN

0 1( )φ1+αc  and 

τe, scaling = ηs /kBT( )b3Ne
2 1( )φ1−2αc , where α c  is around 1.3 for any solvent quality. 

While we do not have enough data for PS/TCP at concentrations above φs  to test these 

scaling laws, we were able to use data from Colby et al.5 for polybutadiene in phenyl 

octane to test and confirm these relationships for the concentrated regime over a wide 

range of concentrations all the way up to the melt, since the value of φs  for these 

polybutadiene solutions appears to be very low. Thus, scaling theory for polymer 

solutions is confirmed for all viscoelastic data we have examined, as long as we 

recognize the crossover from semidilute concentrations, where the de Gennes blob theory 

holds, to the concentrated regime where the Colby-Rubinstein exponent seems to be valid. 

The melt state is thus viewed as just a special case of “concentrated solutions,” and there 

is no behavior we could identify that is distinctive to solutions, except possibly at the 

very highest frequencies, where solutions seem to show an early “upturn” in G", before 
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such an upturn is seen in the melts. Near the crossover between semidilute and 

concentrated solutions, no simple scaling is likely to apply, although if the crossover 

concentration were known precisely, it might even be possible to superimpose data from 

above the crossover onto the data below it, by using prefactors Milner obtained by 

imposing continuity on the scaling quantities at the crossover concentrationφs . 
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Chapter 4 

Semidilute Solution Rheology for  
Turbulent Drag Reduction Phenomenology 

 
Abstract 

 
 

As an application of universal scaling of semidilute polymer solutions, we investigated 

the shear-dependent rheological properties of poly (ethylene oxide) solutions for reducing 

turbulent drag in boundary layer on the wall-surface. Even though drag reduction 

research begins with dilute solutions, we need to also consider semidilute regime because 

relative drag reduction to Newtonian flow increases with the square root of 

concentration,1 and formation of aggregates of polymers diminishes the overlap 

concentration at which semidilute regime begins; see Figure 4.1. Non-Newtonian flow 

with a long chain polymer dissolved in it shows a significant drop in friction as the 

polymer chain in the flow suppreses turbulence with increasing Reynolds number. But, 

there exists an upper limit to the maximum drag reduction we can get, which is called 

Maximum Drag Reduction line (MDR). Beyond the onset Reynolds number for drag 

reduction, the friction dramatically reduces until it reaches MDR; the higher the absolute 

slope, the more quickly we obtain MDR.  
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Figure 4.1. Schematic of the concentration effect on the relative drag reduction to 
Newtonian flow. Beyond the onset of drag reduction in Reynolds number, polymer 
solutions with higher concentration will reach the maximum drag reduction more quickly. 
 
 
4.1. Introduction 
 

Since the relaxation time scale of polymers can be comparable to that of eddy in flow, 

polymer chains can have an impact on the macroscopic flow properties of polymer 

solutions. Drag reduction is one of these examples, which have been extensively studied 

in many disciplines since Toms (1949)2; high extensional viscosity near the wall due to 

stretching of polymer by turbulence disrupts eddy momentum transport in the wall 

normal direction resulting in drag reduction. As the molecular conformation of a polymer 

chain in a flow determines the probability of interaction with neighbor polymer chains, 

polymers with linear structure and higher molecular weight (around 106 g/mol) have 

greater chances of entanglement leading to higher proportion of reduction in drag at a 

given concentration.3 Due to this, commercial poly (ethylene oxide), Polyox WSR 301, 
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308, N60K with molecular weight of 4 million, 8million, and 2 million g/mol have been 

commonly used for drag reduction research. To describe the dynamics of these poly 

(ethylene oxide) (PEO) solutions, Finitely Extensible Nonlinear Elastic model with 

Peterlin’s closure (FENE-P), a reasonable compromise between reality and simplicity, 

was used. Even though this model is only capable of obtaining the longest relaxation time 

of the polymer in solution as compared to FENE model with multiple relaxation time 

spectra, a single relaxation time is known to be sufficient to qualitatively capture the 

features of turbulent drag reduction in the near-wall region.4,5 Shown below is the FENE-

P constitutive equation. 

        S
∇

+
1
λ

S
1− trS( )/R0

2 − R0
2 /b( )I

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0          (1) 

where S = RR  with R  the vector between two beads (the angular brackets indicate a 

configuration average), λ  is the longest relaxation time of the polymer solution, R0  is the 

maximal possible extension of the polymer chain, b is a measure of the extensibility of 

the polymer chain modeled as a dumbbell, formulated b = HR0
2 /kBT  with H  the spring 

constant, and kB  the Boltzmann constant. In steady shear flow, the shear-dependent 

viscosity η can be predicted using this constitutive equation as given below. 

η = ηs + ηp = ηs + νkBT ⋅ λ ⋅
b

4λ2 Ý γ 2b2( )1/ 3 ⋅ Δ1
1/ 3 + Δ 2

1/ 3( )                               (2) 

where, ηp  is the polymer contribution to the zero-shear viscosity,  

ηs the solvent viscosity, 

ν  is the number of polymer chains in a unit volume,  
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Δ1 =1+ 1+
2 b + 3( )3

27λ2 Ý γ 2b2  and Δ 2 =1− 1+
2 b + 3( )3

27λ2 Ý γ 2b2 . 

Here, ηp,ηs, b, and λ  are the fitting parameters of FENE-P equation. With this equation, 

in principle, we obtain not only steady shear viscosity, but also the first normal stress 

difference and the storage and loss moduli, which are the essential rheological properties 

of polymer solutions. Thus, determining the above-listed fitting parameters is a foremost 

task for characterizing the flow of drag-reducing polymer solutions.  

 

4.2. Sample Preparations 

We prepared WSR301 and WSR308 PEO solutions of highest required concentration 

with HPLC grade water. To prevent shear degradation, we dissolved PEO powder in 

water by rotating the solution-containing bottles on a roller at 3~6 rpm. We allowed 48 

hours for dissolution using this method. After this, we diluted some of the samples by a 

factor of 2 and 4 to get solutions with lower concentrations.  

 

4.3. Steady Shear Viscosity Measurements 

As explored by Toms (1949)2, dilute polymer solutions with only a few parts per million 

can effectively reduce the drag up to 80%. It is also well known that longer polymer 

chains lead to more reduction in drag due to early overlap and entanglement effect at a 

given concentration. To confidently determine the zero-shear viscosity of a dilute 

polymer solution, we need at lease one decade of low shear rate plateau region. Thus, 

Contraves Low Shear 30 rheometer (Contraves) with bob radius of Ri=5.5 mm, cup inner 
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radius of R0 =6 mm, bob length of L=20 mm was used for the shear rates up to 100 (1/s). 

As explained in Chapter 2, this rheometer is sensitive enough to measure a zero-shear 

viscosity of around 2 cP at a shear rate of 0.017 (1/s).6 Two more rheometers, AR1000 

and ARES (by Shaqfeh group at Stanford University) were also used for higher shear 

rates; see Figure 4.2.   
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Figure 4.2. Shear-dependent viscosities of WSR301 PEO solutions at four concentrations 
with three different rheometers. The concentrations shown next to the rheometer used in 
the legend correspond to the shear-dependent viscosities from top to bottom. 
 

As illustrated in Figure 4.2, these results are reasonably consistent with each other from 

three different rheometers. The pronounced upturn at high shear rates by AR1000 results 

from elastic instability, of which onset is dependent on the geometry of a fixture. 
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4.4. Constitutive Equations 

4.4.1. FENE-P Fitting with Simulated Annealing 

We used Simulated Annealing (SA) method to obtain the fitting parameters of FENE-P 

to experimental data. SA is a heuristic algorithm for approximating the global optimum 

of a given function inspired by thermodynamic annealing in metallurgy. This procedure 

is robust because uphill moves are allowed by Metropolis acceptance probability, 

p = exp − E1 − E2( )/kBT[ ], to avoid getting trapped in local minima.7,8  

 

Figure 4.3. FENE-P fitting (dashed lines) with b  and ηs  fixed to the combined 
experimental data of WSR 301. Note that we were not able to acquire the FENE-P fit to 
4000 ppm data due to the lack of sufficient plateau region. 
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It is reasonable to fix two fitting parameters b and ηs because they physically mean the 

extensibility and the solvent viscosity, which are not supposed to vary over shear rates. 

However, we were not able to obtain a reasonably good fit to the combined experimental 

data set with these two parameters fixed as demonstrated in Figure 4.3; the zero-shear 

viscosities of WSR 301 samples are consistently higher than the FENE-P predictions. 

Although the viscosities of solutions at different concentrations are supposed to converge 

to the viscosity of its solvent at high shear rates, we observe that the “solvent viscosity” 

grows with concentration of a solution. 

 

4.4.2. Modified FENE-P 

To overcome the aforementioned anomalous behavior of shear dependent viscosities of 

PEO solutions, D. T. Walker fit data for all concentrations of a given polymer 

simultaneously with cleverly chosen power-law functional forms for the relaxation time 

λ , the polymer contribution to zero-shear viscosity ηp , and the “solvent viscosity” ηs.   

ηp = ηw η[ ]0c( )n
        (3) 

       ηs = ηw + ηw η[ ]0c( )m
        (4) 

              λ = a η[ ]0c( )k
                   (5) 

         b = 5.23×10−3 Mw                                                   (6) 

Here, ηw is the viscosity of water, η[ ]0 is the intrinsic viscosity of a PEO solution, and 

n, m, a,  and k  are the fitting parameters of modified FENE-P model. The “solvent 

viscosity” obtained from this fit is not the water viscosity, but another variable that grows 
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with polymer concentration. It actually represents an apparent high-shear rate plateau 

viscosity obtained at shear rates of 1000 s-1 or so. To see how these viscosities for PEO 

compare with those of other polymer solutions, we employed the “universal scaling 

curve” for the zero-shear viscosity as a function of concentration.6 To construct this curve, 

we collected multiple data sets of zero-shear viscosity versus concentration for semidilute 

polymer solutions in good solvents both from literature and from our own experiments. 

We found that all experimental data including a non-aggregated PEO solution9 above a 

critical concentration c/ce > 0.5 fall on a single empirical curve given by 

ηp /ηRouse = 43 ± 2( )× c /ce( )3.12±0.05  with ν the excluded volume exponent, ηp = η0 −ηs the 

polymer contribution to the zero shear viscosity of the solution with η0  the zero-shear 

viscosity and ηs  the actual solvent viscosity, and with ηRouse = ηs(c[η]0)1/(3ν −1)  the 

hypothetical Rouse polymer viscosity, and ce = ne
3ν −1 / Mw A2( )  the entanglement 

concentration of the polymer solution; see Figure 4.4. Here, ne  is the number of “blobs” 

per entanglement and can be obtained from ne ≅ Ne ≡ Me / M0  with Ne  the number of 

entanglements per molecule in melts, Me  the entanglement molecular weight, and M0  

the monomer molecular weight. 6, 10-13  

We now wish to place the data for PEO solutions on this plot.  To get the entanglement 

crossover concentration, ce , we need the entanglement molecular weight, Me  for which 

two values for PEO have been given in the literature, namely 1624 g/mol14 and 4400 

g/mol.15  
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Figure 4.4. Experimental data points of semidilute polymer solutions in good solvents 
lying on a single universal plot, ηp /ηRouse = 43 ± 2( )× c /ce( )3.12±0.05  

 

In Figure 4.5, it is shown that the zero-shear viscosities of low-molecular-weight, 

presumably non-aggregated PEO solutions studied by van Zanten et al.,9 collapse better 

onto the universal curve with the choice with Me =4400 than with Me  =1624. However, 

the zero-shear viscosities of WSR 301, 308 and N60K from Walker’s fits, using 

Me =4400 and the intrinsic viscosity of Bailey et al. (1959)16 do not fall on the universal 

curve; see the black filled symbols on Figure 4.6. Use of the other value of Me =1624 

brings the PEO zero-shear viscosities closer to the universal curve but they still lie well 

above it.  
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Figure 4.5. Comparison Non-aggregated PEO ( Mw = 3.33×105 ) solutions with two 
different entanglement molecular weights, Me =4400 g/mol (black filled circles) and 
Me =1624 g/mol (gray filled circles).  

 

Studies by the Solomon, Hanratty, and others indicate that PEO molecules of high 

molecular weight (above a million) are aggregated in aqueous solution and this is 

consistent with the high value of the zero-shear viscosity relative to the expected value 

for non-aggregated solutions given by universal curve.  However, we note that the 

“solvent viscosities” for these solutions, which are the filled red symbols on Figure 4.6 

and are calculated by Eq. 4 (illustrated in Figure 4.7), fall on the universal curve. 
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Figure 4.6. Comparison of zero-shear viscosities (black filled symbols) and "solvent 
viscosities" (gray filled symbols) of WSR 301 (circles), 308 (diamonds), and N60K 
(triangles) on the universal curve.  

 

This indicates that when these solutions are sheared, the aggregates are either broken 

down or their contribution to the viscosity is suppressed, so that the apparent “solvent 

viscosity” for these solutions is the actual zero-shear viscosity that these solutions would 

have if they were not aggregated.  
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Figure 4.7. Modified FENE-P fitting by utilizing Eqs. 3-6. 

 

4.5. Future Direction 

High values of zero-shear viscosities and growing solvent viscosities indicate 

aggregation of polymers in semidilute regime. When these solutions are sheared, the 

aggregates are either broken down or their contribution to the viscosity is suppressed. 

Thus the apparent “ solvent viscosity” for these solutions is the actual zero-shear 

viscosity that these solutions would have, if they were not aggregated. 

This work motivates the need to explore the structure of PEO solutions to elucidate the 

mechanism of aggregate formation and breakage. 
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Chapter 5 

Summary and Future Work 

5. 1. Summary  

In this dissertation, we have tried to establish the relationship of a polymer chain 

conformation in solution and the rheological properties of this solution in the light of de 

Gennes’ blob scaling. The dimension and dynamics of a polymer chain is significantly 

affected by its thermodynamics, such as excluded volume interaction between polymer 

segments. Even though the excluded volume exponent (ν  in Rg ~ Mν ) for a polymer 

solution does not seem to change considerably over solvent quality (ν =0.5 for polymers 

in Θ solvent and ν =0.588 for asymptotically good solvent), the magnitude of difference 

will be enormous with high molecular weight polymers as illustrated in Figure 5.1. An 

imaginary polymer chain with 1010 monomers of size 1 cm in four different interactions 

are shown; in poor solvent, the chain fits a classroom, in Θ solvent, it fits a campus, in 

good solvent, it fits the size of a city, and the contour length of a chain will be a quarter 

of the distance to the moon.  
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Figure 5.1. Dimension of a polymer chain in solution according to the quality of solvent 
used; see text.1  
 

Therefore, we suggested that the true solvent quality, which is determined from 

intrinsic viscosity measurement η[ ]0 = KM a  with K  and a = 3ν −1 the Mark-Houwink 

parameters, should be taken into account when dealing with chain dimension in 

semidilute regime. For linear polymers, as long as the number of correlation blobs is the 

same, the dynamic similarity is expected, and has been tested by linear and nonlinear 

rheological measurements.   

Zero-shear viscosity, which is a measure of the resistance of a fluid to shear strain in 

terminal region, was first employed to test the dynamic similarity of flexible synthetic 

polymers and semiflexible DNA solutions. As shown in Chapter 2, we verified that a 

universal scaling law exists for normalized zero-shear viscosities versus normalized 

concentrations.  
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Second, the complex moduli, and shear dependent viscosity and first normal stress 

coefficient of monodisperse polymer solutions, in general, turned out to follow another 

universal scaling law. However, we had to determine the correct value or range of the 

swelling volume fraction φs  at which a polymer chain dimension shifts in scaling relation 

because the thermal fluctuation becomes dominant over swelling effect of polymers in a 

good solvent as volume fraction of polymer increases. We demonstrated two different 

cases of polymers: polystyrene/tricresyl phosphate and polybutadiene/phenyl octane 

solutions. Since there is no sharp transition in scaling relation, determining precise value 

of φs  from rheological measurements is very difficult. Therefore, we examined a 

potential range of volume fractions where universal scaling starts to break down, and 

choose one volume fraction that makes the plots look good without violating the order of 

G′ or G″ location with regard to the entanglement density. In addition, two bidisperse 

polymer solutions with almost the same ratio of long to short chain were investigated as a 

first step for exploring polydiperse systems.     

Third, semidilute solution rheology for turbulence drag reduction was studied as an 

application of universal scaling of zero-shear viscosities with concentrations. Since 

FENE-P fitting model did not work for WSR 301 and WSR 308 PEO solutions with 

anomalous behaviors such as much higher zero-shear viscosities than predicted by 

FENE-P, and the growing “solvent viscosity” with concentration, modified fitting 

parameters were suggested. These anomalies indicate aggregation of PEO in semidilute 

regime, in parallel with two peaks observed in the distribution function of dynamic light 

scattering data. When these solutions are sheared, the aggregates are either broken down 

or their contribution to the viscosity is suppressed. Thus, the apparent “solvent viscosity” 
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for these solutions is the actual zero-shear viscosity that these solutions would have, if 

they were not aggregated.  

 

5.2. Future Work 

To construct the universal scaling incorporating two different scaling regimes by 

utilizing Milner (2005)’2s formulas, we need to develop more precise methods for 

evaluating the swelling volume fraction φs  not only from scaling relation, but also with a 

prefactor subsumed in it. Besides this, as indicated in Chapter 3, when the monomeric 

friction factors of a polymer segment and the solvent are substantially separated, polymer 

solutions have growing friction with volume fraction even in semidilute regime. These 

findings are in contrast with de Gennes’3 assumption that the friction difference within 

semidilute regime is negligible. Thus, if we become able to locate the correct value of φs , 

and estimate an appropriate value of monomeric firction for a correlation blob in a 

polymer solution, we would expect more perfect version of universal scaling relation. 

Furthermore, it will relocate the data points of the universal scaling plot of zero-shear 

viscosities with concentrations because zero-shear viscosity is affected by the friction 

factor as demonstrated in Colby et al. (1991),4 and some of the excluded volume 

exponents that we used for polymer/solvent pairs need to be changed depending on which 

scaling regime the solution belongs to. More comprehensive dynamic light scattering 

study is also required to unravel the aggregation phenomena of semidilute PEO solutions.  

Potential applications of this universal scaling relationship include the mapping of the 

molecular weight and concentration of initial polymer solutions with the morphologies of 

electrospun fibers. There exist numerous electrospinning process parameters such as 
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conductivity, flow rate, the distance between tip and collector, and so on, which are 

combined to govern the final morphology of a fiber.5 Therefore, we possibly obtain a 

different morphology with a different combination of process parameters listed above, 

even though we employ the same initial polymer concentration. To establish the 

structure-property relationships of a polymer/solvent pair for electrospinning, instead of 

considering this large number of potential combinations of process parameters, we need 

to determine a range of each parameter with which electrified jet is induced. Then, we 

decide a set of process parameters that allow us to explore several different morphologies 

depending on the concentration and molecular weight of a polymer in solution. We 

expect that the universal dependence of zero-shear viscosity of a polymer solution on its 

concentration can characterize the initial number of correlation blobs, and the normalized 

viscosity ηp /ηRouse  tells us the morphology of the final product.   

Scaling of diblock copolymer solutions would be another good application of “blob” 

scaling model. In melt, a diblock copolymer self-assembles to form a certain morphology 

according to the length ratio of two components. In solution, we expect that counting the 

number of correlation blobs for each component can predict the morphology that the 

block copolymer solution might take. In order to prove this idea, we can do rheological 

measurements on these solutions by increasing the length of one component with the 

other fixed within the boundary where a single morphology dominates. And, we can 

check whether the same scaling relationship as in melt state exhibits. 
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Appendix 
 

Combined Universal Scaling of Polystyrene 
Solutions in Tricresyl Phosphate 

 
As illustrated in Chapter 3, there exists gradual breakdown of de Gennes’1 universal 

scaling as the volume fraction goes above about 15% of polystyrene (PS) solutions in 

tricresyl phosphate (TCP). This is presumably because of the transition in scaling regime 

from semidilute, which follows de Gennes’ (DG) blob scaling, to concentrated, which 

follows Colby-Rubinstein (CR) scaling relation2. Although we are not allowed to 

pinpoint the exact value of the swelling volume fraction φs , which separates DG and CR 

regimes, we would like to investigate how the storage and loss moduli of PS/TCP 

solutions with different values of φs  align in the order of entanglement density N /Ne  

with N  the number of monomers, and Ne  the number of monomers needed for a polymer 

chain in solution to have an entanglement.  

 

1. Entanglement Density 

The entanglement density of a polymer chain in a good solvent is  

N /Ne φ( )=
N /Ne 1( )[ ]φs

αc φ /φs( )1/ 3ν −1( ), φ < φs

N /Ne 1( )[ ]φαc , φs < φ

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
,                                       (1) 
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where, αc  is the universal dilution exponent, of which value is 4/32, ν  is the excluded 

volume exponent ranging from 0.5 to 0.588 depending the solvent quality, and Ne φ( ) is  

Ne φ( )=
Ne 1( )φs

−αc φ /φs( )1/ 1−3ν( ), φ < φs

Ne 1( )φ−αc , φs < φ

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
          (2) 

 

2. Normalizing Parameters  

To align the storage and loss moduli of PS/TCP solutions at 25°C those of PS melts at 

180°C on the same plot, we need to normalize their time and modulus. 

Equilibration time, the normalizing parameter for time scale is represented as 

            τ e, scaling =

ηs

kBT
b3Ne

2 1( )φs
1−2αc φ /φs( )3ν / 3ν −1( ), φ < φs

ηs

kBT
b3Ne

2 1( )φs
1−2αc , φs < φ

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

,                            (3) 

where ηs the solvent viscosity, kB  the Boltzmann constant, and b the effective monomer 

step length.  

For the plateau modulus, the normalizing parameter for modulus is expressed as 

   GN
0 φ( )=

GN
0 1( )φs

1+αc φ /φs( )3ν / 3ν −1( ), φ < φs

GN
0 1( )φ1+αc , φs < φ

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
.          (4) 

Table A.1 lists the values of all parameters that we employ to calculate the entanglement 

density and normalizing parameters, and Table A.2 itemizes the volume fraction, 

molecular weight, equilibration time, and plateau modulus in the descending order of 

entanglement density N /Ne φ( ) with three different swelling volume fractions: φs=0.09, 

0.12, and 0.15. For polybutadiene (PBd) solutions in phenyl octane (PhO), K1 is used as a 

constant that links τ e, scaling  and τ e, DE  since the friction factors of this polymer, and that of 
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the solvent are very close, leading to no significant change of friction with volume 

fraction. However, in case of PS/TCP solutions, K1  becomes a function of volume 

fraction once it exceeds a certain volume fraction beyond which the solvent viscosity no 

longer dominates the friction of a correlation blob. This change in friction with volume 

fraction of polymer results from the large difference between the glass transition 

temperatures of PS and TCP, which affects the friction (Tg, PS = 373K  and Tg,TCP = 210K ). 

Thus, we estimate the value of K1 φ( ) by matching the high frequency Rouse region of the 

loss modulus of a solution with that of melts. We then obtain a correlation between K1 φ( ) 

φ , which we fit by an exponential and apply this formula to get the value of 

τ e, DE φ( )= K1 φ( )τ e, scaling φ( ) for each polymer solution.  

 

Table A.1. Parameters for calculating Eqs. (1)-(4). 

kB  
m2 ⋅ kg ⋅ s−2 ⋅ K−1 

T 
K 

αc  ηs 
cP  

ν a bb 

nm 
GN

0 1( )c 

Pa 
Ne 1( )d 

1.38×10-23 289 4/3 58 0.53 0.67 2.23×105 125 
a ref. 3 
b ref. 4 
c ref. 5 
d Ne 1( )= Me 1( )/ M0 with Me 1( )=12,960 g /mol4 and M0 =104 g /mol  
 
Table A.2. Entanglement density and normalizing parameters depending on different 
swelling volume fraction. 
 
(1) φs = 0.09: K1 φ( )= 0.7881⋅ exp 8.1111φ( ) 

N /Ne φ( ) φ  Mw  
106 g /mol  

τ e, scaling φ( ) 
s 

GN
0 φ( ) 
Pa 

20.9 0.091 6.62 5.37×10-3 8.31×102 
17.0 0.160 2.53 5.59×10-3 3.10×103 
15.1 0.075 6.62 8.34×10-3 4.95×102 
14.6 0.239 1.28 6.08×10-3 7.90×103 
13.3 0.133 2.53 3.80×10-3 2.01×103 
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11.5 0.199 1.28 4.86×10-3 4.12×103 
9.2 0.056 6.62 1.96×10-2 2.25×102 
8.8 0.098 2.53 6.32×10-3 9.87×102 
7.7 0.089 2.53 7.51×10-3 7.85×102 
7.6 0.146 1.28 4.88×10-3 2.50×103 
7.4 0.049 6.62 3.38×10-2 1.57×102 
6.6 0.131 1.28 3.90×10-3 1.94×103 
4.5 0.065 2.53 1.40×10-2 3.37×102 
4.4 0.036 6.62 4.31×10-2 6.85×101 
4.2 0.094 1.28 6.78×10-3 8.96×102 
2.2 0.024 6.62 9.63×10-2 2.30×101 
2.1 0.061 1.28 1.04×10-2 2.84×102 
2.0 0.040 2.53 3.24×10-2 9.10×101 

 

(2) φs = 0.12: K1 φ( )= 0.7881⋅ exp 8.1111φ( ) 

N /Ne φ( ) φ  Mw  
106 g /mol  

τ e, scaling φ( ) 
s 

GN
0 φ( ) 
Pa 

18.9 0.091 6.62 8.56×10-3 6.39×102 
17.0 0.160 2.53 8.38×10-3 2.63×103 
14.6 0.239 1.28 1.02×10-2 6.72×103 
13.6 0.075 6.62 1.80×10-2 3.79×102 
13.3 0.133 2.53 7.13×10-3 1.71×103 
11.5 0.199 1.28 6.56×10-3 4.38×103 
8.3 0.056 6.62 3.70×10-2 1.73×102 
8.2 0.098 2.53 1.34×10-2 7.80×102 
7.6 0.146 1.28 1.03×10-2 2.13×103 
7.0 0.089 2.53 1.51×10-2 6.02×102 
6.6 0.049 6.62 6.81×10-2 1.20×102 
6.6 0.131 1.28 7.31×10-3 1.65×103 
4.1 0.065 2.53 3.00×10-2 2.58×102 
3.9 0.036 6.62 9.55×10-2 5.25×101 
3.9 0.094 1.28 1.50×10-2 6.97×102 
2.0 0.024 6.62 2.07×10-1 1.76×101 
1.9 0.061 1.28 2.52×10-2 2.17×102 
1.8 0.040 2.53 7.19×10-2 6.97×101 

 

(3) φs = 0.15: K1 φ( )= 0.6118 ⋅ exp 9.5611φ( ) 

N /Ne φ( ) φ  Mw  τ e, scaling φ( ) GN
0 φ( ) 
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106 g /mol  s Pa 
17.5 0.091 6.62 5.98×10-3 6.93×102 
17.0 0.160 2.53 1.40×10-3 3.10×103 
14.6 0.239 1.28 7.16×10-4 7.90×103 
12.7 0.133 2.53 2.15×10-3 1.93×103 
12.6 0.075 6.62 1.01×10-2 4.12×102 

11.5 0.199 1.28 9.71×10-4 5.16×103 
7.7 0.056 6.62 2.21×10-2 1.87×102 
7.6 0.098 2.53 4.90×10-3 8.47×102 
7.5 0.146 1.28 1.67×10-3 2.48×103 
6.4 0.089 2.53 6.35×10-3 6.53×102 
6.3 0.131 1.28 2.24×10-3 1.85×103 
6.1 0.049 6.62 3.17×10-2 1.31×102 
3.8 0.065 2.53 1.48×10-2 2.80×102 
3.6 0.036 6.62 7.28×10-2 5.70×101 
3.6 0.094 1.28 5.48×10-3 7.57×102 
1.8 0.024 6.62 2.17×10-1 1.91×101 
1.7 0.061 1.28 1.76×10-2 2.36×102 
1.7 0.040 2.53 5.48×10-2 7.57×101 

 

Figures A.1-3 illustrate how the scaling plots change with different choice of swelling 

volume fraction φs . The sequence of entanglement densities shown in legends is in the 

order of descending terminal time. Therefore, one can easily check whether the 

entanglement density calculated from Milner’s expression leads to the proper monotonic 

ordering of the rescaled G" ω( ) curves along the frequency axis as N /Ne φ( ) is varied. 
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Figure A.1. Normalized loss modulus versus normalized frequency of PS melts and 
PS/TCP solutions with φs = 0.09. Filled and open symbols respectively represent melts 
and solutions 
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Figure A.2. Normalized loss modulus versus normalized frequency of PS melts and 
PS/TCP solutions with φs = 0.12. Filled and open symbols respectively represent melts 
and solutions. 
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Figure A.3. Normalized loss modulus versus normalized frequency of PS melts and 
PS/TCP solutions with φs = 0.15. Filled and open symbols respectively represent melts 
and solutions 
 
 



 

 106

In general, the entanglement densities of PS/TCP solutions seem to be underestimated, 

while the rescaled plateau moduli are overestimated. There appears to be no value of φs  

that brings rescaled G" φ( ) curves for all solutions and melts data into a simple monotonic 

progression with increasing N /Ne φ( ). 
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