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ABSTRACT

The theory of current collection of a moving cylindrical probe is inves-
tigated. Volt-ampere relations are derived for two distinct cases: (i) The
general-ion current for accelerating collector potential and its special
cases, including general-ion current to the stationary probe, orbital-motion-
limited current to the moving and the stationary probes, and sheath-area-
limited current to the moving and the stationary probes; and (ii) The general-
electron current for retarding collector potential and its special cases, in-
cluding general-electron current to the stationary probe and random-electron
current to the moving and the stationary probe. Orientation of the cylinder
with respect to the drift velocity vector is taken into account. Volt-ampere
characteristics are included for illustrating the functional behavior of the

current relations.
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1. INTRODUCTION

As the study of the ionosphere has progressed through the years, refine-.
ments made in vertical sounding equipment and analysis techniques have exposed
the more complex nature_of the ionosphere and thus demonstrated the necessity
for more direct measurements. Such measurements became possible after World
War IT with the advent of sounding rockets. The University of Michigan inves-
tigators suggested the use of Langmuir probes for such measurements, and in
1946 and 1947 three successful V-2 flights carried such probes in their pay-
load. However, the design and location of the probes were dictated by the
other instruments used, and consequently there was much uncertainty in the
data. This uncertainty was attributed to:

(a) failure of the probes to approximate any ideal geometry;

(b) overlapping of the sheath of the electrode with that of the rocket;

(c) perturbations in the density distribution of the particles caused

by the high velocity of the rockets; and

(d) contamination of the region around the rocket by rocket gases.

In view of the uncertain results obtained in these earlier attempts to
use rocket-mounted probes, complete ejection of the probe from the rocket was
considered necessary to reduce the ambiguities substantially. Two different
probe configurations answering these regquirements have been developed: a
Dimbbell-shaped bipolar probe,l’2 which in more recent flights was combined
with cylindrical Langmuilr probes; and a combination spherical ion trap and

cylindrical Langmuir probe.’ In recent years, with the advent of multi-
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experimental satellites, single cylindrical Langmuir probe experiments are
also gaining popularity. In all these experiments, as is normal for rocket-
borne probes, the rocket velocity exceeds the characteristic velocity of the
lons for much of the flight. Thus the data obtained indicate strong effects
of the probe velocity on the ion current collected by the device, thereby
drawing attention to the need for a theoretical development which would permit
the volt-ampere relation to be predicted as a function of the probe velocity,
and would thus aid in the reduction of the data from the flights.

Mott-Smith and LangmuirlL

published their classic paper on probe theory
in 1926, in which they derived the volt-ampere characteristics for spherical,
cylindrical, and planar probe geometries. In their treatment they assumed a
stationary plasma having a Maxwellian distribution, and did not consider the
effect of drift velocities except for the case of electron current collection
by a thin cylindrical probe whose axis was at a right angle to the drift
velocity. It is, therefore, necessary to investigate the general theory of
current collection, particularly in regard to high probe velocities and col-
lectors of various sizes. In this report the aim is fulfilled for cylin-

drical collectors only. The problem of moving spherical collectors was

treated by the author in an earlier report.5



2. THEORY OF CURRENT COLLECTION OF MOVING CYLINDRICAL PROBES

2.1 GENERAL CONSIDERATIONS

When a cylindrical electrode 1s immersed in a plasma consisting of pos-
itive ions and electrons having Maxwellian velocity distribution, the result-
ing collisions of the charged particles with the probe cause it to assume an
equilibrium potential with respect to the plasma such that the net current to
the collector is zero. If the medium is in thermal equilibrium, which means
that the mean energies of the lons and electrons are equal, then the magnitude
of the equilibrium potential is mainly determined by the square root of the
ion-to-electron mass ratio and the resulting polarity of the probe is negative.
The collector potential causes a region of positive charge to build up about
the probe in which electrons are repelled and positive lons are attracted.

Such a region is commonly called a positive-ion-sheath. The boundary of the

sheath is defined as that distance beyond which the charged particles expe-
rience negligible force due to the probe potential.

Since the primary purpose of this study is to evaluate the effects of
the sheath upon the current collection when the probe is moving, some assump-
tion in regard to the sheath configuration is necessary. Although the cylin-
drical shape of the sheath will not be maintained at high probe velocities,
no sufficiently precise model is available which will Jjustify empirically or
theoretically any other shape. Therefore, as a first-order approximation a

cylindrical sheath is assumed.



2.1.1 Ion Current

In evaluating the effects of the sheath on the ion current collection,

three distinct cases are encountered throughout the range of possible values

of T/Nr2, where T is the mean temperature, N is the particle number demsity,

and r is the radius of the collector.

(&)

(b)

When T/Nr® £ 5 x 10'6, the ion current collected by the electrode

is termed "sheath-area-limited." In other words, all the ions that
enter the sheath from the ambient plasma reach the collector, Math-
emgtically this condition of collection is achieved by letting

a/r + 1, where a is the shéath radius.

When T/Nr2 2,10'3, the ion current collected is termed "orbital-
motion-limited." Ton collection under this condition is dependent
only upon the net voltage across the sheath and is practically in-
<fiepe1r1dentlL of the sheath radius. Mathematically this may be ex-
pressed by letting a/r + «.

6 < T/Nr2 < 10'5, the ion current collected is termed

When 5 x 107
"intermediate." In this case the probability of collecting an ion

is dictated by both the sheath radius and the net voltage across

the sheath.

As seen from the foregoing discussion the sheath-area-limited and the

orbital-motion-limited conditions of ion collection ¢éonstitute the asymptotic

extremes of the general case. It should also be noted that the ranges of

T/Nr2, where each class of ion collection is implied, are subject to some:

change when the probe is moving with high drift velocity. However, for a



stationary probe these figures are generally accurate.

2,1.2 Electron Current

In the case of electron current collection which is indepeéendent of the
sheath radius,6 essentially two distinct cases are encountered throughout the
range of possible negative collector potential.

(a) When the collector potential, V, is near zero with respect to the

plasma, the electron current collected under this state is termed
"random. "

(b) When a finite negative collector potential exists with respect to
the plasma, the probability of an electron's reaching the collector
is dictated by V, and the current collected by the electrode is
termed "general.,"

Since in most ionosphere experiments the probe velocities never even come
close to the mean velocity of the electrons, the probe motion has little ef-
fect on the electron current collection and can be neglected. However, the
probe motion must be taken into account in the case of negative lon collection
because of the heavier mass and hence the low mean velocity. For this reason
the theory developed here takes account of probe velocity for both the ion
and electron collection cases, but in the discussion of volt-ampere charac-

teristics (Section 3) the velocity effect on electron current is neglected.

2.1.3 Sign Convention
In deriving the current functions for ions and electrons when the col-

lector potential is either accelerating or retarding for any of the particles,



it is expedient to refer to the actual polarities of the collector and of fhe
particles. Therefore in considering the trajectories of the charged particles
in the sheath the polarities of both the particles and the collector are re-
tained and a proper selection of the signs is made in setting up the current

equations.

2.2 TRAJECTORY OF A CHARGED PARTICLE IN THE SHEATH

Let "a" be the radius of the sheath concentric with the cylindrical col-
lector of radius "r" and length "L" (L >> r). Consider the moving probe such
that its axis is perpendicular to the plane of the paper, as shown in Fig. 1.
Let p and uyx be the relative tangential and normal velocity components re-
spectively of a charged particle (*e), at the sheath edge in a plane normal
to the axis of the probe. Iet p, and u, be the corresponding quantities near
the collector surface. Then from the laws of conservation of energy and angu-

lar momentum we have:

2(xe) (£V)
P2 +ug = pZ +uf+ B e— (1)
ap = PP, (2)
-e

+e /_:'/‘/
.__/—7---.-\\ N

W\

\

| \

N
~_1

’/
e

+e

Fig. 1. Trajectory of a charged particle in the sheath.
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where e is the unit charge, V is the collector potential with respect to the
plasma, and p is the closest point of approach of the particle to the col-
lector. In Eq. (1) when we consider a positive ion (+e) encountering a neg-
ative collector potential (-V), the product (+e)(-V) —which represents gain

in energy in the sheath-~becomes negative, and in accordance with the physical
situation that product must be subtracted from the right-hand side of Eq. (1).
In this way we can consider other cases of particle-field interaction and
select the proper signs when required. Further consideration of Eqgs. (1) and
(2) suggests that only those particles will reach the collector for which

ux >0, u§ > 0. If we substitute Eq. (2) in Eqg. (1) for p,, put u, = O,

P = p,, o =r, and rearrange the terms we obtain

e - r22 E‘% ) e(ier)n(tv)] (3)

al-r

Equation (3) thus describes the condition necessary for the collection of a
charged particle for a given collector potential and dimension.

Next we will consider the Maxwellian velocity distribution of the par-
ticles with respect to a coordinate system which is fixed in the plasma and
then view the same distribution function from a coordinate system which is

fixed on the moving probe. The latter we will term "the superimposed Max-

wellian,"

2,3 SUPERIMPOSED MAXWELLTAN DISTRIBUTION
Consider an oblique view of the cylindrical sheath as shown in Fig. 2.
Let x', y', z' be a set of three orthogonal axes fixed in space representing

in direction and magnitude the three components uy, u&, uj of the particle

7



W sin @ cos B

Fig. 2. Velocity space coordinates at the sheath surface.

velocity, respectively. Let x, y, 2z be another set of three orthogonal axes,
parallel to the first one, fixed on the moving probe, and representing in
direction and magnitude the three relative components uy, uy, uz of the par-
ticle velocity, respectively. Choose y-axis along the axis of the cylinder
as shown. If W is the probe velocity and © the angle between W vector and y-
axis, then the components of W superimposed on uk, Uy, uz are W sin © cos B,

W cos ©, W sin © sin B, respectively. In other words,

Uy = uy + Wsin © cos B
Uy = u& + W cos © (%)
Uz = u, +Wsin 6 sin B

where B is the azimuth angle of W with respect to x-axis.
Let N be the number density of one kind of particle in the plasma, T the

mean temperature, and m its mass; then the Maxwellian velocity distribution



of the particles with respect to the stationary coordinate system is

N - l | —
f(uﬁc,u&,ué)duﬁcdug’dué ) (nC2) 3/2 exp\‘- @ (upB+ u§,2 + uézj dugdusduy (5)
m
where Cp i1s the most probable velocity of the particles defined as Cp =
N2kT/m, k being the Boltzmann's constant. With respect to the moving system
the distribution function (5) is modified in a way determined by the linear
transformations of the velocity components given in Egs. (4). Thus for the
moving system the new distribution function is
F(uy,Uy,uz,B) duxduydu, = ———E;§7§ exp [} 2; {}ux - W sin @ cos 6)2
(Cr) ‘m

2 2
+ (uy - Wcos ) + (uz - W sin © sin B).}} duxduydug, (6)
which represents the superimposed Mexwellian veloclty distribution.

2.4 GENERAL-ION-CURRENT FUNCTION FOR AN ACCELERATING POTENTIAL (-V)

In Fig. 2 consider an infinitesimal strip of area (L a dB) on the sheath
surface. The number of ions with velocity ranges between uyx and uxtduy, uy
and uy+duy, and uy and uy,+du, that are expected to cross the infinitesimal

area per unit time is given by
LauyF(uy , Uy, Uz ,B) duxduydu,dp (7)

On multiplying Eq. (7) with the ionic charge and integrating between the
proper limits we obtain the following equation for the ion current collected

by the moving probe.

27 A 00 0o P,
I; = Iae Jf ‘ JF ux Fuy,uy,uy,B) duyduydu,dp (8)
B=0 ux=0 uy==c0 ug==p;

9



In Eg. (8) the limits of uy range from -w to « because we have assumed
that L >> r. The limits of uzy are from -p, to P, because if in a plane normal
to the cylinder uyx is the radial component at the sheath surface, then ugy
represents the tangential component for which the trajectory (3) determines
the values of iplu

It is trivial to iﬁtegrate Eq. (8) for B and Uy Integration with re-
spect to ug is carried out in Appendix A. The final result, in terms of the

sum of two single integrals, is given in Eq. (9).

(o]

kT Ll- -k2 f l/ e . 82
I: = /——— NeAn — e ‘ s(s2+ e I.(2ks)ds
1 211131‘ AC \/—TE . ( v) 0( )

ad

1+ 2 70ﬁ 2
+ 70 2 =8
s< e I,(2ks)ds (9)
78 “o

where
K = Asin e
A o= W/ey = WASKT/m
TV = eV/kT
A: = 2mrL (area of the collector)

and s is the new variable.

For obtaining numerical values it is expedient to perform numerical in-
tegration of (9). However, it is desirable to present the analytical solu-
tion for the sake of completeness. Appendix B contains the elementary steps

involved in arriving at the solution of Eq. (9) given in Eg. (10).

10



o0

2 ‘ Jy B
I, = ‘}-2—%1' NeAq % e " ev Z .(_%\_{-.Y.)__ r‘ [n + g’ ‘V‘(l+7§) Jan(2k ﬁ)

n=0

1+y2 2n
+ J-——ng ). g ) e 3, %27 (10)
- :
n=0

where fur(v,x) and XJ(V,X) are the incomplete gamma functions bearing the fol-

lowing relationship

[o]

r' (v,x) = f et ¢Vl gt = r' (v) —X’(v,x)

b
and Jn(x) is the Bessel function of order n,

In order to visualize the effects of the sheath upon the current collec-
tion, let us define a normalized current, In, which is simply the collected

current, I, divided by the current which would have resulted without the

sheath., Mathematically

I, = —L (11)

kT NeAC

g

2mi

Thus, in the normalized form, the general-ion-current equation (10) be-

comes

oo
2 -k2 ,evz 5 NT)”

Ing = NP oy [1 [n + %, V(1+73) 1 g,(k NT)

n=0

1+y2 (20

7o n=0

When the probe velocity is small compared with the most probable velocity
of the ions—in other words, when A is small or when the probe is moving with

its axis pointing in the direction of the velocity vector, © = O—then k = 0.

11



Under these conditions it can be shown that Eq. (12) reduces to

1+y2 T
Inilm»O = yao erf(y V) + e erfc [NW(1+y3) ] (13)
o

which, therefore, represents the general-ion-current function when Kk = 0. 1In

Eg. (13) error functions are defined as usual:

X

o 42
erf(x) = - U[‘ et at

o]

(o]

) .2
erfe(x) = JF— Jf et at
T VYx

L

Equation (13), which was previously derived by Langmuir ' in 1926, has
been used in various studies of plasmas involving space charge tubes as well
as low speed probes in the ionosphere measurements of temperature and density.
With modern high speed rockets, which during most of their trajectories ex-
ceed the most probable velocity of the ions, it has become necessary to take
into account the probe motion. In such a case Eq. (12) must be used.

Because the cylindrical Langmuir probe is usually operated in the orbital-
motion-limited mode, this particular case is examined in detail. As a special
case of the general-ion-current function given in Eq. (12) we can deduce the
orbital-motion-limited ion current function by letting 1) since
7o =r2/(a2-r2) . However, it is much simpler to let 7o > 0 in Eq. (9),
which is the general-ion-current function still in the integral form, than
to taeke the limit of Eq. (10) as such. Similarily, in deducing the sheath-
area-limited ion current function it is easier to let y, + « in Eg. (9) than

in Eq. (12).

12



2.4.1 Orbital-Motion-Limited Ion Current Function
By letting a/r + 0 or, correspondingly, by letting 75 + 0 in Eg. (9), we
obtain the ion current function which is independent of the sheath radius. It

can be easily proven that when Yo T 0, Eq. (9) reduces to

2ms

o
K2 1/2 _a2
Ino = Iil = jJ;—— NeAo : u[\ s(s2+7) / e I,(2ks)ds
700 f o
(1k)
Solution of the above integral is given in Appendix C. The final result

in the normalized form is

00 3

o+ ), B [ son @ () e

n=0

(15a)

In a more sophisticated form Eq. (15a) may be written as
oo
2 T-k2 kA7)
o = e Z (_Z;'_)_r\ (2 + 2, Wag(2eNT)  (150)

where Jh(x) and Jn+3/2 (x) represent the Bessel functions of index n and n +

3/2, respectively, and f1(n + %,'V) is the incomplete gamma function.
For a stationary probe or when © = O, the current function (14) assumes

a simpler form:
2
InOIK_>O = J—; VT + e erfe W) (16)

For values of V> 5, Eq. (16) can be approximated by

2 = J1+7 (17)

13



Equations (16) and (17) are well known and have been used extensively in

laboratory plasma studies.l’br

As mentioned above, however, in the study of
the ionosphere by means of probes carried by sounding rockets or satellites,

the probe motion makes it imperative to use Eq. (15a) or (15b).

2.4.2 gheath-Area-Limited Ion Current Function

The sheath-area-limited condition is attained when all the ions that
enter Phe sheath reach the collector. Mathematically, the functional repre-
sentation of the current can be obtained by letting a/r > 1 or Yo T @ in Edq.

(9). The limit of Eg. (9) when 7,> ® ylelds

o]

KT Lo k2 Jf 5 -g2
I, =.|—=TNe a/r e s° e I.(2ks)ds 18)
g '\’Emﬂ Ac (a/r) N A ol (
After solving the above integral, the normalized sheath-area-limited current

is given by

e"“z [(1+k3) Io(k2/2) + K5T1,(k2/2) ] (19)

=i
i
el R

ns

where I (x) and I;(x) are the modified Bessel functions of the order of zero
and one, respectively.

For stationary probe or when € = 0, Eqg. (19) reduces to

Bl

InS I k>0 (20)

Of course, the current is obtained by multiplying Eq. (20) with the normaliza-

tion constant defined in Eq. (11).

1k



2.5 GENERAL-ELECTRON-CURRENT FUNCTION FOR RETARDING POTENTIAL

This section contains the derivation of the general-electron-current func-
tion for the case in which the electrons in the sheath encounter a retarding
potential.

In Eq. (8) the lower limit of the radial velocity component uy of the ion
was zero for the accelerating collector potential. When an electron enters
the sheath and experiences a retarding potential, then the least radial ve-
locity component, uj;, necessary for its collection is JEE§7E . Hence, in
integrating the right-hand side of Egq. (8) the lower limit of ux = u; =‘J§E§7ﬁ
must be used. Also, in the trajectory relation (3), care must be exercised
in selecting the proper sign of eV; in this case the sign is clearly positive
since both e and V are negative.

The integral expression for the general-electron current, Ig, is, there-

fore, given by
2w o oo P,
Lae Jf J[ Jf JF ux F(ux,uy,uz,B)duxduydug dp (21)
o 1 % '_pl
where the symbols have their usual meaning.

The solution of Eq. (21) is discussed in Appendix C. The final result

in the normalized form is given below,

o

Ine = expl- (T#k%)] z -E-%(n/ VI 1n(26WT)  (22)
n=0 (n!)72

where In(x) is the modified Bessel function of the first kind and nth order.
The series converges very rapidly for small values of k; for instance, when

k = 0.3, the first three terms of the series gives the result correct to

15



within four parts in ten thousand. Equation (22) was also derived by Mott-

Smith and Lamgmm‘.z:‘,LL

except that their result was for the case of orientation
angle 6 = 90°.

Since Eq. (22) is derived for the case in which the collector potential,
V, is negative, the probe veloecity, which never even begins to approach the

most probable velocity of the electrons, can always be ignored. Consequently,

for k = 0, Eq. (22) reduces to

-

Inelw_)O = € (23)

When the ion current to the collector which is at positive potential with
respect to the plasma is considered, for A > 1, Eq. (22) must be used. Equa-

tion (23) for the retarded ion current holds only when A = O or & = O.

2.5.1 Random-Electron-Current Function
When V is negligibly small, in other words, when the collection of elec-

trons is random, it can be shown that Egs. (21) and (22) reduce to
-k
T = ™ [(1062) To(2/2) + £2I,(x2/2) ] (2b)

where I, represents the normalized random electron current.
For k & 0, which is always true in the case of electrons, Eq. (24) be-

comes

Imc'lm_>o = 1 (25)

Comparison of Eq. (24) with the sheath-area-limited ion current function

(19) shows that the two cases differ functionally from each other only by the

16



factor (a/r).
In Section 3 we will use the current functions in predicting the volt-

ampere characteristics of the cylindrical probe.

17






3. DISCUSSION

Since in practice Langmuir probe characteristics are usually interpreted
in the voltage range which is negative with respect to the plasma, the cur-
rent characteristics will be presented for this range only. In other words
we need consider only the accelerated ion and the retarded electron currents.

A close examination of Eq. (12) for the accelerated general-ion current
shows that the equation contains two parameters, 7s and V, which are not in-
dependent of each other. Since by definition y, =+r2/(82-r2) and T = eV/KT,
an independent relation between (a/r) and V to solve for one of these two
parameters is needed in conjunction with Eq. (12) to obtain the actual ion

current characteristics.

3.1 ORBITAL-MOTION-LIMITED CURRENT CHARACTERISTICS

Since the orbital-motion-limited current, Eq. (15a) or Eq. (15b), is in-
dependént of (a/r), we do not need an independent relation, as we need for
the general case, to solve for a/r as a function of V.

In order to obtain the ion current characteristics for a given collector
radius and ion density, we first multiply Eq. (15b) with the normalization con-

stant given in Eq. (11). Thus

f kT
I = Er?l-;r NehAe Ipg (26)

where I, represents the orbital-motion-limited current and Ino is given by

Eq. (15a) or (15b). Since the right-hand side of Eq. (26) is a function of

19



the probe velocity A and of the orientation angle 6, we fix A and parameterize
@. Figure 3 illustrates the normalized ion current drawn versus V for A = 1
and ©® = 0, 45°, 90°. The curve for @ = 0° also describes the stationary probe

characteristic, i.e., A = 0. This, of course, follows from the fact that

(k = A sin ©) = O when either A = 0 or @ = 0. Similarly in Figs. 4 and 5,

which are drawn-for A =2 and A = % respectively, both © = O curves correspond
to the stationary probe case. As ohe would expect, and as is demonstrated in
Figs. 4 and 5, the orientation effect is relatively pronounced at higher probe
velocities,

Figure 6 illustrates the stationary probe characteristic, A = 0, in which
the net current is drawn versus the applied difference of potential 3V be-
tween the collector and the reference, for T = 1600°K and N = 107 panticles/
ce. Of course for A = O, no orientation effect is involved. Figure 7 is
drawn for A = 1 and the range of © as shown. Here, as one would expect, the
orientation effect is visible mostly in the positive ion current region. Fig-
ure 8 demonstrates the similar behavior at A = 2, where the orientation ef-
fect is even more pronounced.

Thus, in reducing the ion density from experimental data, it is evident
from Figs. 7 and 8 that the effects of orientation must be considered. For
instance, we must know the measured current, probe velocity, O, V, and as-
sumed values of T and ion mass to determine the ion density from Eq. (26).

Figure 9 illustrates the electron current characteristic for A = 2 and

for all 6. Since the net ion current component for all © is small compared

with the electron current component, the orientation angle has a negligible
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Fig. 6. A predicted volt-ampere characteristic of a stationary thin cylin-
drical Langmuir probe, under typical F, region conditions, showing pri-
marily the ion saturation region of the current characteristic.
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Fig. 7. A predicted volt-ampere characteristic of a cylindrical probe
illustrating the effect of orlentation upon the ion current character-
istic at a fixed velocity ratio, A = 1.
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Fig. 8. A predicted volt-ampere characteristic of a cylindrical probe
illustrating the effect of orientation upon the ion current character-
istic at a fixed velocity ratio, A\ = 2.
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Fig. 9. A predicted volt-ampere characteristic of a cylindrical probe show-
ing primarily the electron current region of the curve from which the elec-
tron temperature may be derived.
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effect on determination of the electron temperature. Thus with the help of
Eq. (25) we can determine the electron temperature by plotting the natural
logarithm of the electron current versus the applied voltage. Rearrangement

of Eq. (23) for the electron temperature yields Eq. (27):

d
where subscript e refers to the electron parameters.

3.2 SHEATH-AREA-LIMITED CURRENT CHARACTERISTICS
For the extreme case in which all the ions that enter the sheath reach
the collector, the current function given by Eq. (19) is dependent on (a/r)
and Kk only. For this reason we do not need an independent relation to solve
for the current, as we do in the case of the general-ion-current function (12).
In Fig. 10, which illustrates the functional behavior of Eg. (19), f(k)
is drawn versus A with © parameterized. Since f(k) alone represents the
random-current function, Fig. 10 is also representative of the random-electron-
current function, which is inherently independent of "a." For electrons, how-
ever, A is nearly zero even for the satellite velocities; hence the curve for
© = 0 in Fig. 10 represents the relevant electron-current characteristic,
Functionally the behavior of the random-electron-current function is exactly

the same as that of the sheath-area-limited ion current function.
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APPENDIX A

POLAR TRANSFORMATION OF THE GENERAL-ION-CURRENT FUNCTION
FOR ACCELERATING POTENTIAL (-V)

It can be shown by plotting ux, p; as rectangular coordinates of a point

that Eq. (3), when V is negative and e is positive, reads:

re 2eV,
ri = (v + 5
a2-r2

This equation is a hyperbola whose semi-axes are
2eV,1/2 ] &2 _2eV\Y2
(=) (7= -1, il

on the p, and ux axes respectively. Since integral (8) is an even function
of uy, it is sufficient to show only one branch of the hyperbola. This is
illustrated in Fig. 11 where ¥, =~r2/(a2-r2) . After integrating Eq. (8)

for B and uy, we have

LIN o 1 V1 e [ (u2rud)
ae «Kke
R To ot o () (ae1)

Uy
R
SV AAANRANY

Fig. 11. Hyperbola generated in velocity-space
coordinate system by p, as a function of ug.
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and the domain of integration is the one enclosed by the hyperbola shown

shaded in Fig. 11. Let

uX/Cm = 8 cos V|
uz/Cy = P,/Cpn = s siny (a-2)
duydu, = C§ s ds dy

Now divide both sides of Eq. (3) with €2, obtaining

2

PC-;; - 2 (@ (4-3)

where V = 2eV/mCﬁ = eV/kT, the normalized voltage (not to be confused with the

normalized current).

Substitute Eq. (A-2) in Eq. (A-3) to obtain

Vv, = sinfl'J;%(52+V)/sg(l+7g) (A-L)

This means that if we divide the hyperbolic domain shown in Fig. 11 into two
regions, Ry and Rp, then Eq. (A-L4) yields the ¢ variance in region Ro with re-
spect to the hyperbola. Thus the limits of integration of Eqg. (A-1) in region

Ro are

O0<Sv¥ <V

7Oﬁ§s<oo (A-5)

and in region R; the limits are



Insert the polar transformation of the coordinates given in Egs. (A-2)
and the limits of integration given by Egs. (A-5) and (A-6) in Eg. (A-1) to

obtain

-2 2 T |
I = LINae ¢y ™" .[yﬂszcos ¥ e 571 (2ks)ds dy +~Z/ s2cos | e'3210(2ns)ds d%}
R2 Rl

which, on integrating with respect to ¢ and rearranging the terms, becomes

T C [ 2
I - o teho = e | ste2en/® e 1(ene)as
- .
OJ_V
1+y2 7~f€
, % ° 2 e752 1 (2ks)ds (A-7)
‘\' 78 o)

This corresponds to Eq. (9) given in Section 2.k.
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APPENDIX B

STEPS INVOLVED IN ARRIVING AT THE SOLUTION OF THE
GENERAL-ION-CURRENT FUNCTION

There are two integrals given in Eq. (9) which we desire to solve. In

the first integral

oo

S B R T (B-1)
2o
Put
s2+VTV = t
gds = at
2
to obtailn
1 v 7
L= e £3/2 o=t 1 (2 VT )at (B-2)
(1+72)
and expand the Bessel function. Thus
% o0
1 v k2K f 1/2 k -t
I, = 5 e £t/ 7(1-V) ™t dt (B-3)
k= V(1475

Binomial expansion of the term (tJV)k'in the integrend of (B-3) yields

o0

2k k-n r o0 +
I, = ':eL' Tz Z % f gy (B-1)

k_o n_o k.! k"n) 'Il. v(l+7§)

Now according to the definitions of the incomplete gamma functions7

W( V,X)
P (v,x)

1l
é\?
e
(0]
1
d.
ct+
o)
d.
~~
o
1
U1
p g

1
Q“‘v
8
]
1
C'-
(ol
<
i
(o)
‘_|.
~
i
&



the right-hand side of Eq. (B-L4) may be written as

1 .V_ K:2k( -V)k-n
I, = = V(1+y2 -
2 kZOnZ—O k!(k-n) !n! P[IH (73] (51

In Eq. (B-7) use the following lemms :8

0

ZZ Alk,n) = z A(k+n,n) (B-8)

k=0 n= k,n=0

Thus we obtain

L= 2 ——— [ n+2, 3] (39)

(k+n) lkin!

[o0]
v K2k+2n(_v)k
T
k,n=
Since the Bessel function of order n is defined as

2k+n
7.(2) z (- k'( 2/2)

o (n+k) !

Then Eq. (B-9) after summing with respect to k may be written as
1.V Kﬁ
L, = Se }: / ) rj[ + = 2, V(1+y/3 ) 1n( 2k NV) (B-10)
n=0
Hence Eq. (B-10) is the solution of integral (B-1), the first integral of Eq.

(9). Similarly, the second integral of Eq. (9) may be solved as follows:

7V )
Io = Jf s2 ™% I (2ks)ds
o)
= 2n 7IO\/E: 2
= }: K jp ant2 _-S
= D 8 e ds
CHLEA
n=0
(o]

‘/“70 n+1/2 ot gt
o

(n'
0

[n]
1l

Using the definition (B-5) of the incomplete gamma function we obtain



an 3 .
12=-;'Z(—2—5-2X“(n+2,7§w (B-11)
n=0

Thus Eq. (B-11) provides the solution for the second integral of Eq. (9).

37






APPENDIX C

SOLUTION OF THE ORBITAL-MOTION-LIMITED ION CURRENT INTEGRAL

The required integral to be solved is Eq. (1k4), which is given by

o0

I = u/‘ s(sg+v)l/2 e_sz Io(2ks)ds (c-1)
o

where we have omitted the factor exp (-Ke)h/‘J; .

There are various ways of solving Eg. (C-1). We will choose two methods
which provide the solutions in power series; one of the two can be computed
easily. But before proceeding further, it would be expedient to define Whét
is called a "confluent hypergeometric function."

Any solution of Kummer's confluent hypergeometric differential equation,

given as Eq. (C-2), is called a "confluent hypergeometric function.”9

d2y

X
axe

d
+ (b=x) Z= - ey = 0 (c-2)

The simplest solution of Eq. (C-2) is Kummer's hypergeometric function:

a(at+l) x2  a(at+l)(a+2) x3

a
F a.'b-x = 1l ++ x +
1F1(a;3b;x) 13 b(b+l) 2!  b(b+l)(b+2) 3!

o (c-3)

There are several notations in use for series (C-3). In this work it

will be denoted by

1Fi(asbsx) = }: %E%E %2 (c-4)
n=0 n

where (a), and (b), are the "factorial functions" defined as
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(2) l!(a+n)
5 T A (a)

(8+5-1)

J

a(a+l)(a+2) -+ (a+n-1) (c-5)

It is clear from the definition (C-5) that the factorial function is the gen-
eralized form of the gamma function.

The integral representation of the confluent hypergeometric function (C-k)
is

() ' ext a-1 b-a-1

P( ) (oom) t T(1-t) dt (c-6)
a b-a O

1Fi(asb;x) =

in which Re(b) > Re(a) > 0.
In the process of integrating Eq. (C-1) we will also use the following

8

lemma,

- . o
), ), BEm = ) ) (kun (c-1)

n=0 k=0 n=0 k=0
8

and Lengendre's duplication formula

Vi) = 27 @z + D) (c-8)

With this background we can proceed toward the solution of Eq. (C-1), in

which we substitute s2+V = Vy to obtain

_ /e er y/2 &V 1 (267351 ) ay

2
1
Now expand the modified Bessel function and break the integral into two parts.

Lo



Thus

/2
I = Yzé— e’ }: (- l) 2 [;/\ 1/2 1 y) e ydy \/\ 1/2 1-y) e-vyd%]
n=0 (n)
(¢-9)
Teke each integral in (C-9) separately:
n
. T3 (-0t [ kn/z oy
f v /31yt e Way = Z —————-f y e Vay
o _— (n=k) !k! “o
_ (0 D(os/2) (c-92)
B (n-k) 1kr  7T3/2
k=0

From the integral representation of the confluent hypergeometric function as
given by Eg. (C-6) we obtain the solution for the second integral in Eq.

fyl/a(l-y)n e Way = P(B/E»)r'(nﬂ) 1F1(3/2;n45/2;-7) (C-9b)

e CM(me5/2)

Substitute (C-9a) and (C-9b) in Eq. (C-9) to obtain
n
_ vs/g Z (-1 (-1t [ (er5/2)
n') -t (n-k) k! TEYY/2

r1(3/2)r1(n+l) 1F1(5/25n+5/25:fﬂ
‘[‘(n+5/2)

Lk 1D (143/2) (e T
I =
[z >: nt (nek) 1! 7T/ 2

=0 k=0
- P(3/2) z (-l)n(nﬁ)2n1F1(5/25n+5/2)5-V)]
n= n! [(n+5/2) (¢c-10)
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In Eq. (C-10) use Lemma (C-7) in the first part and expand the hypergeometric

function in the second part according to the definition (C-k4), obtaining

o0

2 o M (n+k) ! Kkt (ﬁ)k+3
] i (-1) n‘( ¢ ﬁ)2n+k+3/2 (-1) kr\ (k+5/2)£\/.'vt)j
n,k=0 P(n+k+5/ 2) 11 pkta/2ya/a

(c-11)

Now according to the definitions of the cylindrical and the spherical

Bessel functions, we have

a2n+k
Jg(2z) = Lnlz nik; (C-1la)
n=0
z (-1) n 2r1+k+:3/2
Jk+3/2( 2z) " '__i(n+k+5/2) (Cc-11Db)

Using (C-1la) and (C-11b) in Eq. (C-11) we obtain

- % [Z ——-L—(k+32 AT T(26 V)

z (-1)kl';('k+5/2) (ﬁ/m)kw/g

k=0

L

(26 NT) (c-12)

Ig+a/2

From Legendre's duplication formula, (C-8), we obtain

Vo Dexre) WV (eken):

o+
22 (k1) oZE*L g

[ (k+3/2)

ho



Hence

0

I - ’E[ 2 (21<+1))2 En/ﬁ)k 526 )

- ()F W (25 ﬁ)] (c-15)

Tera /2

Multiplication of Eq. (C-13) with the factor exp(-k2)4A x yields the
right-hand side of Eq. (15a).
The steps involved in obtaining the second solution of Eq. (14), given

by Eg. (15b), are shown in Appendix B.
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