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SUMMARY

In this paper, we present fluctuation-splitting schemes that can capture an isolated shock over a suitably
oriented single triangular element and also recognize a rarefaction. A particular focus is on the evaluation
of the fluctuation (or the cell residual): a one-parameter-family quadrature rule is employed to evaluate
the fluctuation, which endows the fluctuation with a wave recognition capability. The parameter value is
chosen based on the nature of the nonlinear wave passing through the element, and then the resulting
fluctuation is distributed to the nodes. This strategy, combined with various distribution schemes, defines
a family of adaptive-quadrature fluctuation-splitting schemes. The results demonstrate the superior ability
of the new schemes in handling nonlinear waves compared with standard fluctuation-splitting schemes
that cannot capture shocks over a single element and also admits nonphysical shocks unless some kind
of entropy fix is incorporated. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluctuation-splitting (or residual-distribution) schemes are multidimensional upwinding schemes
that have been developed mainly for unstructured triangular/tetrahedral meshes [1–7]. These
schemes are based on cell residual (fluctuation) with variables stored at nodes and consist of
two steps: compute the flux balance (fluctuation/residual) over an element; distribute it to the
nodes of the element to bring changes to the nodal variables. Note that both steps are based on
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complete elements, not on lower-dimensional components such as faces or edges (as in the finite-
volume methods). This element-wise operation enables multidimensional physics to be directly
taken into account, and this is one of the advantages of the fluctuation-splitting schemes over the
finite-volume schemes.

Despite many superior features over the conventional finite-volume schemes, however, existing
fluctuation-splitting schemes cannot capture a shock over a single element and also admits nonphys-
ical shocks. A form of entropy fix has been reported by Sermeus and Deconinck [8]. Their method
is based on modifying the wave speeds in the distribution matrices. This generalizes the one-
dimensional entropy fix of Harten and Hyman [9]. In this work, we take a different approach and
develop a method that can compute entropy-satisfying expansions as well as capture a shock over a
single element, focusing on the evaluation of the fluctuation. In the development of the fluctuation-
splitting schemes, the effort has been put mainly in the development of the distribution coefficients
while the fluctuation itself has been evaluated exclusively with the conservative linearization [10].
Some recent works focus on more general quadrature rules to evaluate the fluctuation, in order
to make it possible to apply the fluctuation-splitting schemes to general systems of equations
for which the exact linearization may not be possible [11], or to achieve higher order accuracy
[5, 12]. In [13], the authors also use the term ‘adaptive quadrature’ but with a different sense. They
increase the accuracy of the numerical quadrature in nonsmooth regions to restore conservation
to a nonconservative method. Our quadrature is always second order and conservative but adapts
to make a correct distinction between shocks and rarefactions. This paper explores yet another
possibility of using quadrature formulas for fluctuations to control the wave recognition property
of the fluctuation-splitting schemes. For the Euler equations, a one-parameter family of quadrature
rules is employed to evaluate the fluctuation. The resulting fluctuation is given flexibility to handle
different kinds of flow features by the freedom to choose the parameter. The parameter value is
chosen based on the nature of the nonlinear wave that is present inside the element. In order to
detect such waves (shocks or rarefactions), a multidimensional way of detecting nonlinear waves
is also devised.

Section 2 gives an overview of the fluctuation-splitting schemes with a particular emphasis on
those that can distribute the fluctuation evaluated by a general quadrature rule. Section 3 describes
the quadrature rule for the fluctuation and its properties. Section 4 discusses a way to detect
shocks/expansions and to assign the parameter. Section 5 shows results. Section 6 concludes
the paper.

2. FLUCTUATION-SPLITTING SCHEMES

We consider solving sets of conservation laws of the form

ut +�x f+�yg=0 (1)

where u is a vector of conservative variables, in the domain divided into a set of triangles {T }. In the
fluctuation-splitting schemes, the first step is to compute the fluctuationUT for all triangles T ∈{T }:

UT =−
∫
T
ut dV =

∫
T
(�x f+�yg)dV (2)

which is evaluated by a certain quadrature rule. This is the focus of this paper and will be
discussed in detail in the next section. The second step is to distribute the fluctuation, in a way
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that reflects multidimensional physics, to the nodes to suggest changes in the nodal variables.
This results in the following update formula at node j :

un+1
j =unj −

�t

Vj

∑
T∈{Tj }

UT
i (3)

where

UT
i =BT

j U
T (4)

and {Tj } is a set of triangles that share the node j , �t= tn+1− tn is a global time step, Vj is
the measure of the median dual control volume, and BT

j is the distribution matrix that assigns
the fraction of the fluctuation sent to node j within triangle T . We consider only conservative
schemes characterized by ∑

j
BT

j = I (5)

where I is the identity matrix. Various such distribution matrices are available. They are all based
on the so-called inflow matrix and its characteristic decomposition is defined by

Ki = 1
2 (A,B) ·ni , K±

i =RiK
±
i (Ri )

−1 (6)

where A= �f
�u , B= �g

�u , ni =(nxi ,n
y
i ) is the scaled inward normal vector opposite to the node i , the

columns of Ri are the right eigenvectors of Ki , and K is the corresponding diagonal matrix of
the eigenvalues. In this work, we use the nonlinear matrix N -scheme of Csik et al. [11]

UT
i =K+

i (ui −uin) (7)

where

uin =−
(∑

i
K−

i

)−1(∑
i
K+

i ui −UT
)

(8)

and also the matrix LDA scheme,

BT
j =K+

j

(∑
i
K+

i

)−1

(9)

The former is used when the monotonicity is important while the latter is used when the linearity-
preserving property is important. The primary reason for these, however, is that both of these
schemes can distribute the fluctuation independently of how it is evaluated. We need this property
because we are going to compute the fluctuation in an adaptive manner.

Note that there exist typically twice as many triangles as nodes in a triangular mesh, and hence
there are twice as many fluctuations as nodal solutions. This results in a highly overdetermined
problem, and, therefore, the fluctuation UT cannot be made to vanish everywhere. To equalize
the number of unknowns and the number of equations, we define a nodal residual at every node
by taking a weighted average of the fluctuations over the triangles that share the node. However,
it is reasonable to assume that the fluctuations are small at convergence, and usually they are. In
this sense, the distribution step may be thought of as minimizing the fluctuations by rendering
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appropriate changes to the nodal variables. In fact, this is precisely the case for the least-squares
scheme [14] in which BT

j is the negative gradient of the fluctuation with respect to the nodal
variables, and this also applies to the LDA scheme that is known to be a variant of the least-squares
scheme. On the basis of this particular viewpoint, in this work, we design the fluctuation-splitting
schemes in terms of how the fluctuation is defined rather than how to distribute it.

3. QUADRATURE FORMULA

We consider conservation laws for which each component of the fluxes is a bilinear function of
the components of a certain set of variables w

f(w)=wtCw, g(w)=wtDw (10)

where C and D are constant symmetric third-order tensors, and the superscript t denotes the
transpose. This structure includes the Euler equations of compressible inviscid flow if w is taken
to be Roe’s parameter vector [15]. Note that we have

Aw(w)= �f
�w

(w)=2wtC (11)

Bw(w)= �g
�w

(w)=2wtD (12)

Fluctuation over a triangle defined by the vertices 1–2–3 is

U123 =
∫ ∫

123
[�x f(w)+�yg(w)]dx dy (13)

=
∮
123

[f(w)dy−g(w)dx] (14)

Along each edge, there is a class of simple quadrature formulas [16] defined by

F12 =
∫ 2

1
f(w)dy=

∫ 2

1
wtCwdy

= (y2− y1)
[
wt
1Cw2+ �

2
(w2−w1)

tC(w2−w1)
]

(15)

where � is a parameter to be assigned. Clearly, the formula is second-order accurate for any �. If
we assume, although we do not have to, that the same value is assigned to � for all edges, then
by collecting contributions from all edges, and arranging, we arrive at

U123 = 1

2

∑
i

[Aw(w̃�)n
x
i +Bw(w̃�)n

y
i ]wi

− �

2
[(Aw(w3)n

x
2+Bw(w3)n

y
2)w1

+(Aw(w1)n
x
3+Bw(w1)n

y
3)w2

+(Aw(w2)n
x
1+Bw(w2)n

y
1)w3] (16)
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ADAPTIVE-QUADRATURE FLUCTUATION-SPLITTING SCHEMES 5

where

w̃� = �

2
(w1+w2+w3), �= 3

2

(
2

3
−�

)
(17)

It follows immediately from this that the choice �= 2
3 corresponds to the so-called conservative

linearization [10], which has been almost exclusively the choice of previous investigations.
Suppose that two of the nodes of a triangle happen to be in the same state, say w1=w2=wc

(see Figure 1). Then, we have

U123 = (y3− y2)
[
wt
2Cw3+ �

2
(w3−w2)

tC(w3−w2)
]

+(y1− y3)
[
wt
1Cw3+ �

2
(w1−w3)

tC(w1−w3)
]

+(y2− y1)wt
1Cw2

−(x3−x2)
[
wt
2Dw3+ �

2
(w3−w2)

tC(w3−w2)
]

−(x1−x3)
[
wt
1Dw3+ �

2
(w1−w3)

tD(w1−w3)
]

−(x2−x1)wt
1Dw2 (18)

Note that the terms proportional to � have identically vanished along the edge 1–2, i.e. the fluctuation
is independent of � for the edge along which the solution value is constant. The fluctuation further
simplifies to

U123=wt
�[�yC−�xD](wc−w3) (19)

where �()=()2−()1, and

w� = 2−�

2
wc+ �

2
w3 (20)

Now, with �=1, this discretization becomes precisely the Rankine–Hugoniot relation, with S being
the slope of the shock,

S[f(wc)−f(w3)]−[g(wc)−g(w3)]=
(
wc+w3

2

)t

(SC−D)(wc−w3)=0 (21)

provided the shock is parallel to the edge 1–2, i.e. S=�y/�x . This was originally shown in [16],
but it was not explicitly stated that this property is independent of � for the edge parallel to the
shock. This result shows that a shockwave can be spanned by a single element, and therefore
captured exactly, only if �=1. It also shows that the capturing element can be arbitrarily narrow,
so that the shock can be captured with arbitrarily high resolution. Of course, these properties are
not fully exploitable unless the mesh is made adaptive, and this is an aspect on which we are
not yet ready to report. Although Equation (21) coincides with the Rankine–Hugoniot condition
when �=1, it does not distinguish the direction of the jump and hence admits expansion shocks.
However, the nonphysical shocks can be avoided simply by taking a different value of �. This
parameter � is in fact closely related to the entropy production. A one-dimensional analysis for
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1

2

3

dy/dx=S

Figure 1. A shock passing through an element.

Burgers’ equation shows that the entropy function is conserved with �= 2
3 and reduced with �< 2

3 ,
thus ensuring physical solutions [16, 17].

4. ADAPTIVE QUADRATURE

To choose the value of � for a particular element, we need to know if the element is in a shock
or in a rarefaction or away from such nonlinear waves. For this purpose, we use the divergence of
the steady-characteristic speeds ∫

T
divkk dx dy= 1

2

∑
i
kki ·ni (22)

where kk has been assumed to vary linearly over the element and kki is the kth steady-characteristic
speed vector evaluated at node i . For the sake of convenience, in this work, we define the following:

�k =
∑

i k
k
i ·ni∑

i |kki ||ni |
(23)

in which the quantity in the denominator has been introduced to normalize �k such that

−1��k�1 (24)

We know that a shock is present if this quantity is negative (converging characteristic field) and a
rarefaction presents if positive (diverging characteristic field). This leads us to dividing the range
into three parts:

�=

⎧⎪⎪⎨
⎪⎪⎩

1, −1��k�−�

2
3 , −�<�k <�

0, ���k�1

(25)

We experimentally found that it worked well with �≈10−3.
For the Euler equations, there are two possible nonlinear waves in supersonic flows. Their

characteristic speeds are given by

k1=(u�−v,v�+u) (26)

k2=(u�+v,v�−u) (27)
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where �=√
M2−1 [18]. Note that

divk1=div(�q)−� (28)

divk2=div(�q)+� (29)

where q=(u,v) and �=�xv−�yu. This means that we detect and distinguish waves using a
combination of the divergence and the vorticity of the flow field. Note also that we have

(divk1)2+(divk2)2=[div(�q)]2+�2 (30)

This provides an interesting link between physical quantities and the existence of nonlinear waves.
In actual implementation, we first look at the Mach number at three vertices. We take �= 2

3 if
all of the nodes of an element are in a subsonic flow for which the acoustic system is elliptic and
there exist no steady characteristics. Also, we immediately take �=1 for the elements with both
subsonic and supersonic nodes as it indicates the presence of a strong shock running across the
element. For fully supersonic elements, we compute �k for k=1,2, take the larger of the two in
magnitude (the dominant wave), and then use (25) to determine the value of � for the element.

The resulting method will not be conservative if � is assigned element-wise because line integrals
do not cancel over an edge shared by two triangles with different �. This can be fixed by unifying
the value of � over such an edge whenever the line integral would be evaluated with different �
in the adjacent elements. In this work, we set �= 2

3 if either of the two �’s is 2
3 , and set �=1 if

either of the two �’s is 1.

5. RESULTS

For all results, the distribution matrices were evaluated as the arithmetic average of the parameter
vector over a triangle. For those with the adaptive quadrature, the parameter � was determined by
criterion (25) with �=3.0×10−3. All computations were performed with double precision.

5.1. Supersonic flow over a triangular bump

The first test case is a supersonic flow over a triangular bump at Mach number of 1.69. The grid
is a regular triangular grid of size 100×50 nodes (see Figure 2). All cases here were computed
with the nonlinear matrix N -scheme (7). Figure 3(a)–(c) shows the Mach contours for cases with
�=1, �= 2

3 , �=0, respectively, for all triangles. It is clear from these that the choice of �=1
results in an expansion shock, �= 2

3 still suffers from an expansion shock although weaker, and
�=0 produces a correct expansion fan. See also Figure 4(a)–(c) shows the plots of Mach number
along a line passing over the waves at y=0.65, sampled from the corresponding results in Figure
3. Results with the adaptive choice of � are shown in Figures 3(d) and 4(d). As expected, we see
that the expansion fan is as cleanly computed as the one with �=0 everywhere. We point out that
in this adaptive case the residuals do not converge to machine zero, stagnating at the values of
order 10−7 in the L1 norm which is equivalent to three orders of magnitude reduction based on the
initial residuals, i.e. practically converged. Finally, we remark that the shock/expansion detection
mechanism works very well, accurately identifying elements in the shocks and the rarefaction as
shown in Figure 5.
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Figure 2. A blow-up of the grid used for the first test case.
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Figure 3. Results by the nonlinear N-Scheme with various types of fluctuations: (a) �=1;
(b) �= 2

3 ; (c) �=0; and (d) � adaptively assigned.

5.2. Shock reflection

The second test case is a shock-reflection problem. The boundary conditions are

⎡
⎢⎢⎢⎢⎣

�

M cos�

M sin�

p

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1

1.878327025

0

1

⎤
⎥⎥⎥⎥⎦ (31)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1–12
DOI: 10.1002/fld



ADAPTIVE-QUADRATURE FLUCTUATION-SPLITTING SCHEMES 9

x

M

1 2 3
1.4

1.6

1.8

(a)
x

M

1 2 3
1.4

1.6

1.8

(b)

x

M

1 2 3
1.4

1.6

1.8

(c)
x

M
1 2 3

1.4

1.6

1.8

(d)

Figure 4. Plots of Mach number along a line at y=0.65: (a) �=1; (b) �= 2
3 ;

(c) �=0; and (d) � adaptively assigned.
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Figure 5. Element-wise distribution of � over the domain.

for upstream, and

⎡
⎢⎢⎢⎢⎣

�

M cos�

M sin�

p

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1.44089676

1.52567142cos10◦

1.52567142sin10◦

1.67694833

⎤
⎥⎥⎥⎥⎦ (32)

for the upper boundary. A wall boundary condition is imposed on the bottom boundary. The grid,
shown in Figure 6, was generated such that edges are perfectly aligned with both an incoming
shock and its reflection. For this problem, we employed the LDA scheme (7). Two approaches are

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1–12
DOI: 10.1002/fld



10 H. NISHIKAWA

x
y

0 1 2
0

1

Figure 6. Grid for the shock-reflection test case. 21×11 nodes.
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Figure 7. Entropy contours. The LDA-Scheme with �= 2
3 .
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Figure 8. Entropy contours. The LDA-Scheme with adaptive �.

compared here: the LDA with �= 2
3 , the LDA with adaptive �. We start from the common initial

solution: the inflow condition is specified everywhere. Figure 7 shows the entropy contours for
the LDA scheme with the conservative linearization (�= 2

3 ). The solution is not particularly clean,
but this is not surprising for nonmonotone schemes such as the LDA. Figure 8 shows the entropy
contours obtained by the same LDA scheme but with � adaptively assigned for the fluctuation.
The solution is virtually exact with no spurious entropy whatsoever. As seen in Figure 9 where
the value of � is plotted element-wise, the elements in the shocks have been perfectly detected,
and a suitable value of �(=1) is assigned. And because these elements have a side parallel to the
shock, their fluctuations completely vanish, satisfying the Rankine–Hugoniot relation.
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Figure 9. Element-wise distribution of � over the domain.

6. CONCLUDING REMARKS

This paper has shown that the fluctuation-splitting schemes can be designed to recognize shocks
over a single element as well as to avoid nonphysical shocks by evaluating the fluctuation in an
adaptive manner. Results show significant improvement over the conventional schemes. Also, the
nonlinear wave detection algorithm has shown to work so well that it could be used alone for other
purposes, for example, to identify regions for grid refinement.

In this work, we first assigned the parameter � for all elements and then computed the fluctuations.
These two processes may be combined into a single-loop process to improve the efficiency. It
would also be possible to assign � edge-wise rather than element-wise because � does not have to
be the same within the element and it would eliminate the need to fix the conflicting � on edges
for conservation.

For shock capturing, the method would work best with an adaptive grid method because the
single-element shock capturing is possible only when one of the edges is aligned with the shock. One
strategy would be to generate shock-aligned elements by moving the nodes as well as computing
the solutions so as to minimize the fluctuations in the least-squares norm. In fact, this has already
been demonstrated for Burgers’ equation in [16]. We remark that we can apply such grid movement
only for limited regions by taking advantage of the excellent capability of the wave detection
algorithm.
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