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SUMMARY

Tissue microarrays (TMAs) measure tumor-specific protein expression via high-density immunohisto-
chemical staining assays. They provide a proteomic platform for validating cancer biomarkers emerging
from large-scale DNA microarray studies. Repeated observations within each tumor result in substantial
biological and experimental variability. This variability is usually ignored when associating the TMA
expression data with patient survival outcome. It generates biased estimates of hazard ratio in proportional
hazards models. We propose a Latent Expression Index (LEI) as a surrogate protein expression estimate
in a two-stage analysis. Several estimators of LEI are compared: an empirical Bayes, a full Bayes, and a
varying replicate number estimator. In addition, we jointly model survival and TMA expression data via
a shared random effects model. Bayesian estimation is carried out using a Markov chain Monte Carlo
method. Simulation studies were conducted to compare the two-stage methods and the joint analysis in
estimating the Cox regression coefficient. We show that the two-stage methods reduce bias relative to the
naive approach, but still lead to under-estimated hazard ratios. The joint model consistently outperforms
the two-stage methods in terms of both bias and coverage property in various simulation scenarios. In
case studies using prostate cancer TMA data sets, the two-stage methods yield a good approximation in
one data set whereas an insufficient one in the other. A general advice is to use the joint model inference
whenever results differ between the two-stage methods and the joint analysis. Copyright q 2008 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

DNA microarray technology has enabled expression measurement of thousands of genes simul-
taneously, providing a platform for rapid screening of genomic biomarkers in cancer. Translating
these discovery-type findings into clinical relevance is a more challenging task. Gene expression
profiling studies using spotted cDNA arrays or Affymetrix GeneChip arrays often yield a few
hundred candidate cancer genes that are associated with a phenotype. Only a small portion of
these will be eventually validated for the corresponding expression changes at the protein level.
The advent of tissue microarray (TMA) technology has provided a proteomic platform for such
validation studies to find clinically useful biomarkers. TMA experiments measure tumor-specific
protein expression via high-density immunohistochemical staining assays, allowing simultaneous
evaluation of hundreds of patient samples in a single experiment [1]. Since their initial develop-
ment, TMA-based expression studies have quickly become an integral part of cancer biomarker
development [2–4].

A typical tissue array slide comprises up to 1000 tiny biopsy tissue elements, which we will
refer to as cores, with multiple cores corresponding to repeated sampling from the same tumor.
Expression measures on these replicate cores constitute the TMA core-level data. These can display
substantial within-subject variability for both biological and experimental reasons. Biologically,
for tumors that are highly infiltrative and heterogeneous in nature (e.g. prostate tumors), protein
expression pattern can be quite variable. For example, cell proliferation genes often exhibit local-
ized high expression within a tumor, indicating elevated aggressiveness and metastatic potential
in the corresponding areas. Replicate sampling from various regions of the tumor is therefore
important in capturing the underlying heterogeneity within a tumor. Experimental sources of the
variability can come from a combination of probe affinity, measurement imprecision, and further
missing data due to insufficient sampling. Without appropriately accounting for these variabilities,
the noise-prone measurements tend to attenuate the prognostic value of a potential biomarker
in predicting disease outcome. The lack of a model-based approach for TMA core-level expres-
sion data to effectively model the intra-tumor variation has motivated us to carry out a full
investigation.

A good analogy for understanding TMA data structure is from probe-level data generated
by the Affymetrix GeneChip arrays. GeneChip arrays measure gene expression at the mRNA
transcripts level. The probe-level data refer to the replicate expression measures on a set of 16–
20 small oligonucleotide probe sets derived for a target gene. The biological variation comes
primarily from these oligonucleotide probe sequence variants, whereas experimental variations
arise during the process of slide printing, hybridization, and optical reading. Li and Wang [5]
reported that the variation of a specific probe across multiple arrays could be considerably
smaller than the variance across probes within a probe set. Modeling Affymetrix probe-level
data has generated much attention [5, 6] as the technology has become more mature and widely
used.

Similarly, in TMA experiments, modeling within-tumor protein expression heterogeneity is an
important problem. In these tissue-based experiments, the variation across core samples within a
tumor can be substantially larger than the variation observed across subjects. Etzioni et al. [7]
used a compositional analysis to model such heterogeneity and compared the proportion of cells
stained at different intensity levels between normal and tumorous tissues. In this study, we focus on
the effect of modeling intra-tumor variation in the context of predicting patient survival outcome.
In a latent variable modeling framework, we assume that an underlying ‘true’ expression value
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predicts survival. In real experiments, this ‘true’ expression cannot be precisely measured due to
sampling variabilities and measurement imprecision. Instead, we observe the core-level expression
measurements that are subject to these measurement errors. In a two-stage method, we adapt ideas
from measurement error modeling and propose a Latent Expression Index (LEI) to approximate
the underlying true value and focus on its behavior in proportional hazards models. We adapt an
empirical Bayes (EB) estimator [8] to (1) incorporate important clinical parameters such as Gleason
score and pathological stage of the tumor and (2) adjust for the varying number of cores. We further
establish a joint model for TMA core-level data and survival outcome via a shared random effect.
There is a large literature on joint modeling of longitudinal data and survival [9–16]. These methods
have been developed predominantly for modeling survival and CD4 counts in AIDS patients; here
their application to TMA data in cancer biomarker studies is novel. Using both simulations and
two published TMA data sets, we compare the performances of the naive, two-stage LEI and the
joint model approach in obtaining parameter estimates and associated inference.

The article is organized as follows. Section 2 specifies notation and models for the TMA core-
level expression data and for the patient survival data. Section 3 introduces LEI and its use in a
two-stage method. Section 4 presents the joint modeling approach and the Bayesian estimation
framework. Simulation results to compare the performances of these methods are then discussed
in Section 5. Case studies using two prostate cancer TMA data sets are presented in Section 6.
Further discussion can be found in Section 7.

2. MODEL SPECIFICATION

Measurement model for the TMA core-level data

Let X∗
i be the latent expression value for a biomarker in tumor i, i=1, . . . ,n. Assume that the

observed TMA core-level measurement for the j th core in the i th tumor is

Xi j = X∗
i +Ui j , j =1, . . . ,ri , i=1, . . . ,n, (1)

where we assume X∗
i ∼N(�x∗,�2x∗). The mean �x∗ is a linear function of clinical covariates:

�x∗ =�0+hZ′
i , where Zi =(Z1i , Z2i , . . . , Z pi ) constitutes a row vector of p clinical parameters

characterizing histologic and pathologic features of the tumor, and h=(�1, . . . ,�p) is the associated
p-dimensional row vector of effect sizes. In this model, Ui j represents the variation of the ri
core-level expression measurements about the ‘true’ value X∗

i . We assume that Ui j is i.i.d. N(0,�2u)
and independent of X∗

i .

Survival model

Let the observed survival time for patient i(i=1, . . . ,n) be Ti =min(Yi ,Ci ), where Yi is the time
from diagnosis to disease recurrence; Ci is the time to censoring which is independent of Yi , and
�i =1{Yi<Ci } is the censoring indicator. Under the Cox proportional hazards model, the hazard
rate for patient i is

�(t)=�0(t)e
�∗X∗

i +bZ′
i (2)

where �0(t) is the baseline hazard function, �∗ is the regression coefficient associated with the
‘true’ protein expression, and b=(b1, . . . ,bp) is the row vector of coefficients associated with the
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vector of clinical variables Z′
i . We also consider a parametric Weibull regression model with the

following form for the hazard function:

�(t)=�t�−1e�0+�∗X∗
i +bZ′

i (3)

3. TWO-STAGE PLUG-IN METHOD

Given the rare disease assumption and the assumption that the measurement error Ui j has no
predictive value, i.e. �(t |Xi , X∗

i )=�(t |X∗
i ), Prentice [17] introduced the induced hazard rate func-

tion for Cox regression model with covariates measured with error. When normality is assumed
for the error distribution, a first-order bias-correction method is to replace X∗

i with its conditional
mean

�(t |Xi )=�0(t)e
�∗E[X∗

i |Xi ,Zi ]+bZ′
i (4)

and estimate �∗ by maximizing the corresponding partial likelihood. Here Xi =(Xi1, Xi2, . . . , Xiri )

denotes the vector of observed expression measures for tumor i . Note that the regression calibration
model in (4) is an approximation to the true model in (2) due to the rare disease assumption
and the omission of a higher-order term implicit in (2). Details of such first-order bias-correction
methods can be found in [17, 18]. Define the LEI to be an estimate of the conditional mean,
LEIi = Ê[X∗

i |Xi ,Zi ], for each subject i . A two-stage plug-in method can be described by the
following algorithm: (1) compute LEIi (i=1, . . . ,n) as a surrogate expression estimate that adjusts
for measurement error and (2) apply the Cox or Weibull regression model using LEIi to obtain an
estimate of �∗ and the associated standard error.

In the following section, we describe methods for computing LEI for TMA data. These include
an EB estimator conditional on clinical covariates, a full Bayes (FB) approach and a varying
replicate number (VRN) method as an extension to adjust for the number of cores per tumor.

3.1. Methods for computing LEI

3.1.1. EB and FB estimators. Express (1) as a mixed effects model

Xi j =�0+hZ′
i +�i +Ui j (5)

where �i ∼N(0,�2x∗). To make a connection between (5) and (1), X∗
i is the unobserved ‘true’

protein expression level, which can be expressed as X∗
i =�0+hZ′

i +�i . Subsequently, �i , which is
normally distributed with mean zero and variance, has the interpretation of a mean centered ‘true’
protein expression level. The EB estimator can then be derived as

LEIebi = �̂i X̄i +(1− �̂i )(�̂0+ ĥZ′
i ) (6)

where �̂i ≡ �̂2x∗(�̂2x∗ + �̂2ur
−1
i )−1 is the attenuation factor [18]. Parameter estimates {�̂0, ĥ, �̂2u, �̂2x∗}

can be obtained by fitting a mixed effects model as described in (5), using a restricted maximum
likelihood approach [19, 20].

The EB estimator conditions on the set of parameter estimates derived from the data. The
uncertainty of these estimates are not accounted for in LEIeb. For this reason, we also consider an
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FB estimator, LEIfbi , where standard conjugate hyperprior distributions are adopted: �−2
u ,�−2

x∗ ∼
�(r0,�0). The FB estimator

LEIfbi = �̃0+ h̃Z′
i + �̃i

is then based on the posterior inference from model (5) where {�̃0, h̃, �̃i } are the posterior means
given the data.

3.1.2. The VRN method. In a typical TMA construction, Ki cores are placed on the array for
each tumor i . However, not all of the measurements {Xi1, . . . , XiKi } are available. Several reasons
contribute to a varying number of replicate measure. These include heterogeneous tissue compo-
sition and technical defects such as image corruption. The expression measurement from non-
tumorous tissue types or a corrupted image is typically considered unsuitable for an outcome
analysis and excluded. Let Mi j =0, j =1, . . . ,Ki indicate that the j th core from the i th tumor
is lost due to the aforementioned reasons and Mi j =1 if it is available. Expression measures are

retained for ri ≡∑Ki
j=1 Mi j cores, where ri varies across tumor samples and possibly depends

on covariate Zi . We consider ri to follow a binomial distribution given Ki and P(Mi j =1) with
possible over-dispersion. Assuming independence and homogeneity across j for Mi j , we adopt a
logistic mixed effects model:

logitP(Mi j =1)=	0i +wZ′
i (7)

where 	0i ∼N(	0,�
2
	), Zi =(Z1i , Z2i , . . . , Zgi ) is the vector of g clinical covariates that can be the

same or different from those in (5), and w=(	1,	2, . . . ,	g) is the associated vector of coefficients.
Therefore

ri ∼Binomial

(
Ki , pi = e	0i+wZ′

i

1+e	0i+wZ′
i

)
(8)

The expression index under the VRN model is then derived by averaging over all the possible
values of (ri ,Ki ). In particular,

LEIvrni = E(ri ,Ki )E[X∗
i |Xi ,Zi ,ri ,Ki ]

=
R∑

s=1

s∑
m=0

{
�̂2x∗m

�̂2x∗m+ �̂2u
X̄i + �̂2u

�̂2x∗m+ �̂2u
(�̂0+ ĥZ′

i )

}

×
⎛⎝ s

m

⎞⎠( e	̂0i+ŵZ′
i

1+e	̂0i+ŵZ′
i

)m(
1

1+e	̂0i+ŵZ′
i

)s−m

P̂(Ki =s) (9)

Here R is taken to be maxi Ki . An additional assumption for the above is that the expression
measures do not correlate with ri or Ki . Parameter estimates {�̂0, ĥ, �̂2u, �̂2x∗} can be obtained by
fitting a mixed effects model as described in (5). A logistic mixed effects model in the form
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of (7) was fitted to obtain {	̂0i , ŵ}. Estimation is via methods described in [21, 22]. The empirical
proportions were used for P̂(Ki =s).

In a relatively balanced TMA array where the number of replicate measures ri does not vary
much across subjects, �i ≡�2x∗(�2x∗ +�2ur

−1
i )−1 is an approximately constant adjustment factor.

The amount of shrinkage in LEIeb toward the overall mean depends primarily on the ratio of the
within- to between-subject variation in that particular data set. In our example, however, ri is a
highly variable quantity. It exerts a larger role in determining how much weight LEIebi gives to a
particular subject’s data relative to the estimated population mean. The motivation for LEIvrn is to
provide a replicate number-averaged expression estimate that alleviates the variability induced by
ri in the EB estimator.

4. JOINT MODELING OF SURVIVAL AND TMA CORE-LEVEL DATA

The two-stage approaches described above are attractive for their simplicity and straightforward
interpretation. They require minimal computation and can be easily implemented using existing
statistical packages. However, there are major limitations for the two-stage method [23]. First,
the two-stage method involves a first-order approximation and ignores the second-order term

�∗2�2(X∗
i |X) in the induced hazard rate function (4). As we will illustrate in the simulation study,

such an approximation works well when �∗ is close to zero, but otherwise leads to sizeable bias
in �̂∗. Second, parameter estimates in the second stage do not account for the uncertainty in
estimating LEI in the first stage. The associated standard error for �̂∗ will be over-optimistic. Given
these considerations, it is desirable to make inference based on the joint likelihood of the failure
time and TMA expression data. In this article, we adopt a shared random effect model to induce
correlation between the TMA data and the survival outcome.

Given the measurement model specified in (5) for the TMA data, we express the proportional
hazards model for the survival outcome as

�(t)=�0(t)exp(bZ′
i +�∗�i ) (10)

The parameter �i constitutes a shared random effect that connects the measurement model (5) and
the survival outcome model (10). The expression data and survival times are then assumed to be
independent given �i . The joint likelihood of the observed data {Ti ,�i ,Xi } and the random effects
�i is therefore

LJoint=
n∏

i=1
f (ti ,�i |�i ,zi )×

n∏
i=1

f (xi |�i ,zi ) f (�i )= LSURV×LME (11)

where

LME =
n∏

i=1

(
ri∏
j=1

1√
2
�2u

exp

{
− (xi j −�0−hZ′

i −�i )2

2�2u

})
1√

2
�2x∗
exp

{
− �2i
2�2x∗

}

LSURV =
n∏

i=1

L∏
l=1

�dll exp

( ∑
i∈Dl

bZ′
i +�∗�i

)
exp

(
−�l

∑
i∈Rl

�ile
bZ′

i+�∗�i

) (12)
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We used a piecewise constant hazards model in which the time axis is partitioned into L disjoint
intervals, I1, . . . , IL , where Il =[al−1,al) with a0<ti and aL>ti for all i=1, . . . ,n. Assume a
constant baseline hazard in the lth interval, �0(t)=�l for t ∈ Il . Rl is the set at risk at the beginning
of interval l; dl is the number of failures in interval l; and �il =min(ti ,al)−al−1.

Alternatively, a parametric Weibull model can be assumed for the survival outcome using the
following hazard function:

�(t)=�t�−1 exp(b0+bZ′
i +�∗�i ) (13)

When �=1, the above reduces to exponential distribution with constant failure rate exp(b0+bZ′
i +

�∗�i ). The survival time component of the joint likelihood in (12) is then replaced by

LSURV=
n∏

i=1
{�t�−1

i e�(b0+bZ′
i+�∗�i )}�i exp(−e�(b0+bZ′

i+�∗�i )t�i ) (14)

In a Bayesian estimation framework, the following prior distributions are specified for the model
parameters:

(�∗,�0,�,b0,b) ∼ N(�0,�
2
0)

(�−2
u ,�−2

x∗ ) ∼ �(r0,�0)

(�,�l , l=1, . . . , L) ∼ �(r0,�0)

(15)

The prior choices in (15) render proper noninformative prior distributions with the hyperpa-
rameters chosen to achieve large variances (wide spread). In particular, �0=0,�20=10000,r0=
0.001,�0=0.001. The values of r0 and �0 are set to be small to impose noninformativeness
(although there have been criticisms that the resulting posterior distributions remain highly sensi-
tive to the choice of r0 and �0). We had tested different sets of values for r0 and �0: (0.1, 0.1),
(0.01, 0.01), and (0.001, 0.001). When the sample size is moderate to large, the variance estimates,
�̂u and �̂x∗ , are well behaved and not significantly affected by the choice of r0 and �0. Samples
from the posterior distribution are obtained using Markov chain Monte Carlo (MCMC) methods.
In the likelihood function of (11), the Bayesian estimation procedure treats �i as missing data and
imputes it at each MCMC iteration via posterior sampling from the conditional distribution of �i
given the rest of the variables. One then proceeds with the likelihood function in (11) as if �i were
observed.

5. SIMULATION

5.1. Simulation setup

The additive measurement error model in (5) with one covariate Z1i is used to simulate the
expression measure Xi j , i=1, . . . ,n and j =1, . . . ,ri . In this model, �0=0 and �1=1. Furthermore,
�i ∼N(0,1), Ui j ∼N(0,0.5). The covariate Z1i is simulated from a N(0,1) distribution. The total
number of cores sampled, Ki , takes values in {1,2, . . . ,12} with P(Ki =6)=0.4, P(Ki =1)=
·· ·= P(Ki =5)=0.1, and P(Ki =7)=·· ·= P(Ki =12)= 1

60 , mimicking the proportions from the
actual tissue array data set used in this study. We simulate the number of repeated measures
ri ≡∑Ki

j=1 Mi j from a Binomial(Ki , pi ), where pi =1−
1/Ki such that the missing proportion

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:1944–1959
DOI: 10.1002/sim



MODELING TISSUE MICROARRAY DATA 1951

equals 
. The survival time Ti is simulated from a proportional hazards model in the form of (2)
with �0(t)≡1 and �∗ =1 or 2. An additional covariate Z1i is further assumed to associate with Ti
with the coefficient being one. The censoring time is simulated from an independent exponential
distribution that results in a 30 per cent censoring proportion. Results are summarized over 100
such simulated data sets each of a sample size n=200. In general, we assigned parameter values
in the simulation to mimic those for the real data sets.

Computation of LEIeb,LEIvrn were carried out using the PROC MIXED and the IML procedure
in SAS (SAS Institute, Cary, NC). LEIfb and the joint models were implemented using OpenBUGS
via the R interface BRugs [24, 25]. We ran two chains with 1000 burn-in and 1000 updates per
chain for the MCMC convergence.

5.2. Simulation results

The simulation results are summarized in Table I. For �∗ =1 in the survival models, the naive
approach (using X̄i as a surrogate expression) attenuates the true effect size by around 25 per cent.
The coverage probability of a nominal 95 per cent confidence interval of �̂∗ is 0.10 at best. The
two-stage methods (LEI) achieved a considerable bias correction by adjusting for the measurement
error in the LEI imputation. The joint modeling approach gives the best estimate �̂∗ =1.03 and a
coverage probability of 95 per cent compared with the truth.

Next a larger effect size is simulated (�∗ =2). The bias in the two-stage approaches due to
the first-order approximation is evident. Overall the two-stage methods generate less biased �̂∗’s
compared to the naive estimate. Nevertheless, these are 15–25 per cent smaller than the true �∗. The
coverages are poor for the two-stage approaches. The joint modeling approach should be advocated
in this scenario for inference. Note that the joint model estimates of �∗ are slightly greater than 2,
especially under the Weibull distribution. This may be driven by the prior distributions adopted for
the parameters under the Bayesian estimation scheme. We have observed that such a difference
disappears when the sample size gets larger.

Table I. Simulation study. Results are summarized over 100 simulated data sets each of n=200.

Weibull Proportional hazards

�̂∗ ŝ.e.(�̂∗) s.d.(�̂∗) Coverage �̂∗ ŝ.e.(�̂∗) s.d.(�̂∗) Coverage

�∗ =1 X∗ 1.01 0.08 0.08 0.96 1.01 0.08 0.08 0.97
Naive 0.75 0.07 0.08 0.10 0.75 0.07 0.08 0.09
LEIeb 0.93 0.08 0.09 0.85 0.93 0.08 0.09 0.87
LEIfb 0.93 0.08 0.09 0.85 0.93 0.08 0.09 0.88
LEIvrn 0.97 0.09 0.10 0.89 0.96 0.09 0.10 0.87
Joint model 1.03 0.11 0.11 0.95 1.03 0.11 0.11 0.95

�∗ =2 X∗ 2.05 0.12 0.12 0.95 2.03 0.11 0.10 0.94
Naive 1.13 0.08 0.10 0 1.18 0.08 0.11 0
LEIeb 1.51 0.11 0.13 0.03 1.58 0.11 0.13 0.06
LEIfb 1.48 0.11 0.12 0 1.55 0.10 0.12 0.04
LEIvrn 1.62 0.11 0.14 0.19 1.70 0.11 0.15 0.30
Joint model 2.16 0.27 0.30 0.89 2.07 0.19 0.20 0.93
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6. CASE STUDY IN PROSTATE CANCER

6.1. Data description

In this study, we consider two prostate tumor TMA data sets. The �-methylacyl CoA racemase
(AMACR) is a peroxisomal and mitochondrial enzyme that plays an important role in fatty acid
metabolism. AMACR has been shown to consistently overexpress in prostate tumors [26]. Rubin
et al. [4] profiled AMACR protein expression using a TMA constructed on 203 prostate tumors
from a surgical cohort who underwent radical prostatectomy at the University of Michigan as a
primary therapy for clinically localized prostate cancer diagnosed between 1994 and 1998. They
found that AMACR is a significant predictor of the prostate-specific antigen (PSA) failure in these
203 patients.

The second biomarker evaluated in this study is BM28. BM28 encodes a highly conserved mini-
chromosome maintenance protein (MCM) that is involved in the initiation of genome replication.
Bismar et al. [27] profiled a total of 41 genes (including BM28) in a TMA-based proteomic
study. They identified that a 12-gene model showing the expression combination of the 12 genes
significantly associates with tumor progression and PSA failure in a set of 79 men following
surgery for clinically localized prostate cancer. The expression level of BM28 however did not
show significant prognostic value in their analysis. We chose BM28 to evaluate the possibility of
it being a false negative biomarker due to measurement error.

For the AMACR data, an average of Ki =5.5 (range: 2–12) tissue core specimens were taken
from each tumor sample and placed on a tissue array for immunohistochemical staining. After
initial diagnostic evaluation of each core, an average of 29 per cent (range: 0–86 per cent) of the
cores were excluded due to reasons discussed earlier, leading to 5.5 per cent missing subjects.
The BM28 data have a similar tissue array design. A quantitative imaging analysis of the staining
intensity was obtained using the ACIS II (Chromavision, San Juan Capistrano, CA) system. The
intensity level ranges from 0 to 255 chromogen intensity units and is transformed using the natural
logarithm (one unit added to avoid taking logarithm of 0) and normalized to have mean zero and
standard deviation one. Disease recurrence is defined as a serum PSA increase >0.2ng/mL after
radical prostatectomy. Censored observations are those free of the recurrence at the time of last
follow-up.

6.2. Measurement error and regression attenuation in TMA data analysis

Figure 1 illustrates a considerable amount of measurement error in the core-level expression data
from the two TMA experiments. In the AMACR data, methods-of-moments estimates of the
variance components are �̂2u =0.46 and �̂2x∗ =0.54. In the BM28 data, the methods-of-moments
estimates of the variance components are �̂2u =0.62 and �̂2x∗ =0.21. The within-subject variation
is almost three times the between-subject variation.

In a Cox proportional hazards model context, we did a simple simulation where X∗
i ∼N(0,1),

�∗ =1. A naive estimator X̄i =r−1
i

∑ri
j=1 Xi j—the average core-level expression for tumor i—is

used as the surrogate expression to replace X∗
i in (2). We simulate situations where measurement

error is small (�2u=0.1), moderate (�2u=0.5), and large (�2x∗ =1). Figure 2 shows various degrees of
regression attenuation in the estimate of �∗ as a function of replicate number ri and the amount
of error �2u . When the parameter values are set to resemble the AMACR data, the naive estimate
of �∗ is approximately 30 per cent smaller than the true value. With the current TMA construction
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Figure 1. Variance plots to represent the within-subject variation in the TMA core-level expression
data. (a) The AMACR data: estimates of the variance components are �̂2u =0.46 and �̂2x∗ =0.54 and

(b) the BM28 data: estimates of the variance components are �̂2u =0.62 and �̂2x∗ =0.21.
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Figure 2. A simulation demonstration of the bias in Cox regression coefficient estimate as a function of
the number of repeated measures ri . The average bias with a 95 per cent CI over 100 simulated data sets

of sample size n=200 is plotted.

protocol specifying three cores per subject due to economic and tissue-preservation reasons, and
a great amount of within-subject variability routinely observed in the core-level expression data,
Figure 2 effectively conveys the importance of modeling measurement error in TMA data. In the
following two sections, we implement the measurement error models to demonstrate how statistical
inference differs from the previous results.

6.3. AMACR expression and biochemical recurrence in prostate cancer

In prostate cancer, Gleason score, pathologic stage, and tumor size are among the most important
clinical parameters. We include these as clinical covariates Zi to adjust in the measurement
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model (5), the replicate number model (7), and the survival outcome model (10). In the measurement
model, �̂TumorSize=0.32 with an associated standard error of 0.13, indicating a marginal association
of tumor size with AMACR expression level. In the replicate number model, 	̂TumorSize=0.72
with an associated standard error of 0.16, which is consistent with our expectation that a larger
tumor sample provides more abundant number of cores.

Table II lists the estimates and associated standard errors (posterior standard deviation) of �∗
in the outcome model. The measurement error adjustment has significantly improved upon the
naive estimate. The error-adjusted �̂∗ is around 0.75 (ŝ.e.(�̂∗)=0.26), approximately 31 per cent
larger in absolute value than the naive estimate, which is 0.57 (ŝ.e.(�̂∗)=0.20). The amount
of attenuation in �∗ is quite consistent with what we conclude from the simulated data sets in
the previous section. In this data set, the two-stage methods (LEIeb, LEIfb, and LEIvrn) perform
equally well as the joint modeling approach. The simplicity and computational efficiency of LEI
serves as a satisfactory core-level expression index for AMACR. However, as mentioned earlier,
the two-stage methods are based on a first-order approximation, the accuracy of which is largely
driven by the size of �∗ and the ratio of within-subject variation to between-subject variation. As
will be shown in the other data example, the two-stage methods will not be always a suitable
approach.

Kaplan–Meier curves are useful as a graphical representation of the prognostic value of a
biomarker. We examined these plots by dividing the subjects into different risk groups based on
the values of AMACR expression estimates derived under each method. In Figure 3(a), subjects
with AMACR high, median, and low expression groups based on LEIvrn and the joint model
estimates (C and D, respectively) are significantly better separated in terms of the probability of
recurrence-free survival when compared with that using the naive mean estimates (A).

Table II. A case study using prostate cancer TMA data sets.

Weibull Proportional hazards

�̂∗ ŝ.e.(�̂∗) �̂∗ ŝ.e.(�̂∗)

AMACR (n=203) Naive −0.573 0.201 −0.571 0.198
LEIeb −0.761 0.266 −0.751 0.266
LEIfb

∗ −0.753 0.262 −0.752 0.263
LEIvrn −0.735 0.260 −0.737 0.258
Joint modeling∗ −0.742 0.268 −0.745† 0.268

BM28 (n=52) Naive 0.828 0.414 0.900 0.399
LEIeb 1.051 0.519 1.146 0.494

LEIfb
†

1.457 0.564 1.493 0.504
LEIvrn 1.034 0.552 1.151 0.537
Joint modeling∗ 1.753 0.766 1.592† 0.600

∗Estimation is based on MCMC methods, where we sampled two chains each with 10 000 burn-in and 10 000
updates.

†We used J =5 and 3 intervals for the piecewise exponential distribution in the AMACR and BM28 data
set, respectively. The estimate of the Weibull shape parameter is �̂=0.71, and �̂=0.97 from the joint modeling
for the AMACR and BM28 data set, respectively.
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Figure 3. Kaplan–Meier plots of prostate cancer recurrence. Patients are categorized into risk groups
based on the protein expression level of (a) AMACR and (b) BM28 profiled using TMAs. The expression

estimates are based on the A. Naive, B. LEIeb, C. LEIvrn, and D. Joint model.

6.4. BM28 expression and biochemical recurrence in prostate cancer

The measurement model indicates a marginal association of pathologic stage of the tumor with
BM28 expression: �̂PathStage=0.59(ŝ.e.(�)=0.22). The replicate number model again suggests a

strong dependence on the size of the tumor: 	̂Tumorsize=1.12(ŝ.e.(	̂)=0.43).
In Table II, the differences under various models are more discernable in these data sets.

First, the Weibull and piecewise exponential model overall generate slightly different results given
a small sample size (n=52). Second, the EB estimate differs substantially from the FB LEI
estimate. It is probably due to the large uncertainties in the parameter estimates that determine
LEIeb. Finally, the bias introduced by the first-order approximation is prominent here. Both the
coefficient �∗ and the noise ratio in this data set are much larger in magnitude compared with
the AMACR data example. In this case, the two-stage methods alleviate regression attenuation,
only to a limited extent. The joint model should be used for parameter estimation and associated
inference.

Figure 3(b) plots the Kaplan–Meier curves using different expression estimates. The 5-year PSA
recurrence-free survival probability is 0.95 (ŝ.e.=0.05) versus 0.58 (ŝ.e.=0.10) for low and high
BM28 expression estimated by the joint model. Adjusting for measurement error in this data set
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Figure 4. Comparison of the naive expression estimates ((a), (c)) and the joint model expression estimates
((b), (d)). The top panel depicts the comparison in the AMACR data, the bottom panel depicts the

comparison in the BM28 data. The survival times are plotted on the x-axis.

has made a dramatic change in the conclusion about the prognostic value of BM28 compared with
the naive method.

6.5. Improved expression estimates

Figure 4 compares the naive and the joint model expression estimates, plotted against the survival
time on the x-axis. The mean expression ± two standard deviations is plotted for each individual.
Two improvements under the joint model are clear: (1) the noise, represented by the error bars,
is greatly reduced via the joint modeling and (2) the mean expression levels are distributed more
tightly around a regression line, accentuating the relationship between the TMA expression data
and survival time.

7. DISCUSSION

In TMA data analysis, statistical methods often focus on downstream models in predicting disease
outcome assuming X̄i is a sufficient expression summary measure [28, 29]. Relatively little attention
has been paid to the modeling of within-tumor variation in these TMA experiments. As we have
shown in this paper with real data examples, analysis ignoring intra-tumor variation can lead to
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false negative results, causing a tremendous waste of valuable tissue resource and experimental
costs. In this study, we propose and compare a two-stage approach and a joint model to analyze
TMA data in a measurement error framework. The two-stage approach computes a LEI in the
first stage and then associates the LEI with patient survival information using a proportional
hazards model in the second stage. We further adjust for clinical/pathological covariates Zi and the
number of repeated measures (Ki ,ri ) per each tumor to improve the efficiency of the expression
estimates.

Although the two-stage approach is attractive for its simplicity, interpretability and straight-
forward computation, practitioners need to be aware of the associated statistical limitations. As
we discussed earlier, the regression calibration approach is an approximation of the true model
which reduces bias relative to the naive method but still leads to under-estimated �∗. In addi-
tion, the survival information is not used in the first stage to compute LEI, which can cause bias
and efficiency loss in estimating �∗ in the second stage. Finally, the uncertainty of estimating
the LEI quantity is not assimilated in the second stage, leading to over-optimistic standard error
estimates. For a review of this topic, see Tsiatis and Davidian [23]. In simulation studies, we
show that the two-stage methods reduce bias relative to the naive approach in estimating the Cox
regression coefficient, but still lead to under-estimated �∗. The joint analysis, however, outper-
forms the two-stage methods in terms of the bias and coverage property in various simulated
scenarios. In case studies, we applied the error methods to prostate TMA data sets where the
two-stage approach and the joint analysis generate (1) very similar results in the AMACR data
set and (2) disparate results in the BM28 data set. Although the first case study demonstrates a
scenario where the two-stage approach is a good approximation to the true model, the second one
suggests where such approximation is not so accurate (the higher-order term cannot be ignored
when �∗ is a large value). Inference should be based on the joint analysis whenever results
differ.

A final notion is regarding the impact of the technology advancement on TMA data analysis.
Recent advances in quantitative assessment of the immunohistochemical staining provide precise,
objective, and reproducible protein expression measurements. Compared with the conventional
pathologist scoring on an ordinal scale, the Chromavision system used in our data examples enables
quantification of the antigen level on a continuous scale, free of the subjectivity associated with
pathologist-based visual scoring system. We should point out that the Chromavision system not
only quantifies the amount of protein expression but also provides a more accurate measure of
the percentage of tissue that express the protein. A statistical problem of interest is to extend our
model to incorporate the percentage information when summarizing the expression profile of a
tumor. Another quantitative system, AQUA [30], which stands for automated quantitative analysis,
measures fluorescence signals, leading to higher sensitivity to very low antibody concentrations. In
addition, it allows the separation of tumor from stromal elements and the sub-cellular localization
of signals for a co-localization of the antigens in different cell compartments. As the technology is
becoming more and more refined, statistical models underpinning both biological and experimental
issues are in great need.
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