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Summary

Case-control designs are widely used in rare disease studies. In a typical case-control study, data are
collected from a sample of all available subjects who have experienced a disease (cases) and a sub-
sample of subjects who have not experienced the disease (controls) in a study cohort. Cases are over-
sampled in case-control studies. Logistic regression is a common tool to estimate the relative risks of
the disease with respect to a set of covariates. Very often in such a study, information of ages-at-onset
of the disease for all cases and ages at survey of controls are known. Standard logistic regression
analysis using age as a covariate is based on a dichotomous outcome and does not efficiently use such
age-at-onset (time-to-event) information. We propose to analyze age-at-onset data using a modified
case-cohort method by treating the control group as an approximation of a subcohort assuming rare
events. We investigate the asymptotic bias of this approximation and show that the asymptotic bias of
the proposed estimator is small when the disease rate is low. We evaluate the finite sample performance
of the proposed method through a simulation study and illustrate the method using a breast cancer
case-control data set.

Key words: Age-at-onset; Asymptotic bias; Bootstrap; Case-cohort; Case-control; Rare
disease.

1 Introduction

Case-control designs are widely used as a cost-effective vehicle to study risk factors of a rare disease.
In a typical case-control study, data are collected from all available subjects who have experienced a
certain disease (cases) and a sub-sample of subjects who have not experienced the disease (controls)
in a study cohort. Cases are oversampled in case-control studies. Since the outcome-based biased
sampling nature can be ignored (see e.g. Prentice and Pyke, 1978), logistic regression is commonly
used to estimate the associations of the presence/absence of the disease and a set of covariates mea-
sured by odds ratios as approximations of relative risks.

Age-at-onset of disease for all the cases and age at the survey for all the selected controls are often
known in case-control studies where incident cases are recruited. A traditional analysis is to use age
as a covariate in logistic regression. A model that handles time-to-event data would be more natural
and appropriate, however, since it uses the information in the data more efficiently than simply dichot-
omizing subjects according to the presence/absence of the disease at a certain time point (see e.g. Cox
and Oakes, 1984, Chapter 1), especially when censoring is present for controls on ages-at-onset and
censoring times vary between subjects.
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If each case in a case-control study has one or more age matched controls whose ages are the same
as the age at disease of the case, then the regression parameters of exposure variables in a Cox model can
be estimated using the conditional likelihood method proposed by Prentice and Breslow (1978). Such a
conditional likelihood method has recently been extended to family studies with correlated failure times,
see Li, Yang, and Schwartz (1998), Hsu et al. (1999), and Shih and Chatterjee (2002), among others.

Many case-control studies are not age-matched, and yet the information of age-at-onset of disease is
available. Our research is motivated by a breast cancer case-control study conducted at the University
of Michigan (Beebe, 2002). The study consisted of 204 incident cases and 246 controls who were
postmenopausal women. The major question of interest was how a woman’s weight change was asso-
ciated with the risk of breast cancer. The investigators collected ages at the breast cancer diagnosis for
cases and ages at the survey for controls, but ages were not individually matched between cases and
controls. For this type of unmatched (only for age) case-control studies, which is widely used in
epidemiologic research, the conditional likelihood approach does not apply unless a very fine post hoc
stratification on age and other continuous confounders can be reasonably applied, see Breslow and
Day (1980) and Neuh�nser and Becher (1997).

In this article, we propose to analyze such case-control age-at-onset data using a modified case-
cohort method by treating the group of controls as an approximation of a subcohort under the assump-
tion of a low population disease rate. The proposed method does not involve any post hoc stratifica-
tion. In a case-cohort study (see e.g. Prentice, 1986; Self and Prentice, 1988), complete information is
collected for all cases and all subjects in a subcohort that is a random sub-sample of the study cohort.
The intuition behind treating case-control data as approximated case-cohort data is that the number of
cases in the subcohort is close to zero for a rare disease study. We refer to Langholz and Goldstein
(1996) for an overview of case-control, case-cohort and other risk set sampling methods.

We introduce the proposed method in Section 2. In Section 3, we perform an asymptotic bias
analysis of the proposed method and show that the asymptotic bias of the relative risk estimator is
very small when the disease rate is low, which is a common assumption underlying case-control de-
signs. Numerical examples are given in Section 4. Simulations show that the proposed method works
well for finite samples. We apply the method to the Michigan breast cancer case-control study, fol-
lowed by discussions in Section 5. We use a nonparametric bootstrap method for variance estimation.
As we point out in Section 5, our approach is ready to be extended to covariate matched case-control
designs and family studies.

2 The Modified Case-Cohort Method

2.1 The case-control age-at-onset data

Consider a case-control study with n subjects. To follow the traditional notation used in case-cohort
data analysis as described in Section 2.2, let Di ¼ 1 if subject i is a case and 0 if a control, and Yi be
his/her age and Zi be a vector of other covariates. Note that Yi is age at disease diagnosis if subject i
is a case and age at the survey if a control. Standard logistic regression has been commonly used for
analyzing such case-control data using Di as a binary outcome and age Yi and covariates Zi as inde-
pendent variables in the light of the results of Prentice and Pyke (1978). Specifically, such a logistic
model can be written as

logit ðpiÞ ¼ b0 þ b1Yi þ b02Zi; ð1Þ

where pi is the probability of being a case given a subject is sampled into the case-control sample.
The results of Prentice and Pyke (1978) show that parameters ðb1; b

0
2Þ are the odds ratios and can be

estimated by fitting such a logistic regression to the case-control data, which are approximations of
the population relative risks.

Since this traditional logistic regression uses the dichotomous disease status Di as an outcome and
does not fully use age-at-onset information of cases and censoring information of controls Yi, instead,
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the age-at-onset variable (subject to censoring) Yi is used as a covariate in (1). Given such informa-
tion, it is more natural to analyze such data as survival data by treating age-at-disease-onset as a
survival outcome and case-control status as a censoring indicator. A major difficulty of such an analy-
sis is the presence of biased sampling with unknown selection probabilities in case-control data where
cases are oversampled. To overcome this, we view such data as an approximation of data from a case-
cohort study assuming the population disease rate is low and propose an analysis using a modified
case-cohort method.

2.2 The estimation method of a case-cohort study

We first briefly review the estimating method of Self and Prentice (1988) for a case-cohort study, then
show how it can be modified to analyze case-control age-at-onset data in the next subsection. Suppose
a underlying study cohort consists of m independent subjects, where m is usually unknown in a case-
control study. The disease status is known for every subject in the cohort. In a case-cohort study,
complete information including covariates and event time subject to censoring is collected for all
cases and all subjects in a random subsample of the study cohort, the so-called subcohort. Note that
the cases in the subcohort are a subset of all the cases and hence the intersection of the subcohort and
the set of cases may not be empty.

To be comparable to the case-control study described in the previous subsection, we assume there
are n subjects in the case-cohort study. For subject i, let Yi � min ðTi;CiÞ be the observed time where
Ti is the failure time and Ci is the censoring time, Di � I ðTi � CiÞ the failure indicator, and Zi a
vector of covariates. Assume the population follows the Cox model

lðt j ZÞ ¼ l0ðtÞ exp ðqZÞ: ð2Þ
where lð�Þ is the hazard function and l0ð�Þ is the baseline hazard function of the failure time. Self and
Prentice (1988) proposed to estimate the regression coefficients q by solving the following estimating
equation

1
m

Pm
i¼1

Ð
Zi �

P
j2SC IðYj � tÞZj exp ðq0ZjÞP

j2SC IðYj � tÞ exp ðq0ZjÞ

( )
dNiðtÞ ¼ 0 ; ð3Þ

where SC denotes the subcohort, NiðtÞ � DiI ðYi � tÞ is the failure counting process for subject i, and
m is the total number of subjects in the underlying study cohort. A detailed discussion of m is given
in the next subsection. Self and Prentice (1988) proved that the estimator obtained from Eq. (3) is
consistent and asymptotically normal. If SC is the entire cohort, Eq. (3) becomes the partial likelihood
estimating equation for cohort data.

The subcohort SC in Eq. (3) is a simple random sample of the study cohort. One can easily see that
the ratio inside the integral of Eq. (3) is an estimator of the following quantity

E0 fIðY � tÞZ exp ðq0ZÞg
E0 fIðY � tÞ exp ðq0ZÞg ; ð4Þ

where E0 denotes the expectation taken under the Cox model (2) at the true parameter value. The
uniform consistency of the ratio in Eqs. (3) to (4) can be shown by standard empirical process argu-
ments under the assumptions in the Appendix (see e.g. van der Vaart and Wellner, 1996).

2.3 The modified case-cohort method for the case-control age-at-onset data

If we let P be the joint distribution of a single observation from the underlying population and P1 and
P0 be the conditional distributions of the observation given D ¼ 1 and D ¼ 0, respectively, then a
case-control study consists of two independent random samples from P1 and P0, respectively, whereas
a case-cohort study consists of two random samples (can be overlapped) from P1 and P, respectively.
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In a case-cohort study, the sample from P (subcohort) is used to estimate (4), which is given in
Eq. (3).

For a rare disease, the probability of observing D ¼ 1 is very small, hence the number of cases
would be very small compared to the number of controls in a subcohort if it were available. We thus
can treat the group of all available controls in a case-control study as the controls arising from an
underlying subcohort SC. Under the rare disease assumption, we can use controls to approximately
estimate (4). In other words, we use P0 to approximate P for estimating (4). This view allows us to
treat case-control data as approximated case-cohort data and estimate the regression coefficients q by
approximating the ratio in the case-cohort estimating equation (3) using only controls.

Specifically, assuming the underlying population that the case-control data are generated from fol-
lows the Cox model (2), based on Eq. (3) we propose the following estimating equation for case-
control data

1
m

Pm
i¼1

Ð
Zi �

P
j2SC ð1� DjÞ IðYj � tÞ Zj exp ðq0ZjÞP

j2SC ð1� DjÞ IðYj � tÞ exp ðq0ZjÞ

( )
dNiðtÞ ¼ 0 ; ð5Þ

where m indicates the underlying cohort size, SC denotes the “underlying” subcohort, Yi is the age of
subject i, Di ¼ 1 if subject i is a case and 0 if a control. This notation is consistent with that in
Section 2.1. Note that (5) differs from the case-cohort estimating equation (3) by the additional factor
ð1� DiÞ in both the numerator and the denominator of the second term in the integrand. Since
1� Dj ¼ 1 for controls and 0 for cases, one can easily see that the numerator and the denominator of
the ratio on the left hand side of (5) only sum over controls and are hence fully determined by the
observed case-control data.

The underlying cohort size m is often unknown for case-control studies. Equation (5), however, is
completely determined since only the summands with dNiðtÞ ¼ 1 contribute to the left hand side of
(5) and all these subjects are cases and hence fully observed. We keep m in the formula just for
notational convenience and ease of describing asymptotic properties. For implementation purpose,
denoting the set of cases by C in the case-control sample, and the set of controls who are at risk for
case i by Ri, Eq. (5) can be simplified to

P
i2C

Zi �
P

j2Ri
Zj exp ðq0ZjÞP

j2Ri
exp ðq0ZjÞ

( )
¼ 0 :

In a case-cohort study, the proportion of the subcohort size in the whole cohort is needed for
estimating the variance of the estimator of q obtained from solving Eq. (3), see e.g. Self and Prentice
(1988). Such information, however, is usually unknown for a case-control age-at-onset data. We pro-
pose to use nonparametric bootstrap to estimate the variance of q̂q obtained by solving Eq. (5). We
generate bootstrap samples by resampling from cases and controls separately.

Note that estimating Eq. (5) can be deduced from Eq. (3.5) of Chen and Lo (1999) by taking the
population case percentage to be zero, which in fact can be traced back to the weighted estimating
method of Kalbfleisch and Lawless (1988). The asymptotic result of Chen and Lo (1999), however,
does not apply because (i) their corresponding asymptotic variance given in (3.6c) would contain a
division of 1=0 if a zero case percentage were plugged in, and (ii) their asymptotic variance in
(3.6c) seems to be incorrect since it yields an over 100% asymptotic relative efficiency (see the last
row of column 2 in their Table 1). The estimator obtained from their Eq. (3.5) should not be super-
efficient.

3 The Asymptotic Bias of the Modified Case-Cohort Estimator

It is of significant practical interest to investigate the performance of the case-cohort approximation
for case-control age-at-onset data. Here we study the asymptotic bias of the estimator obtained from
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Eq. (5). We consider a one-dimensional covariate here for notational simplicity. Denote by q̂q the solu-
tion of Eq. (5), and by q0 the true value of q. Let

hðt; qÞ ¼ E0fð1� DÞ IðY � tÞ Z exp ðqZÞg
E0fð1� DÞ IðY � tÞ exp ðqZÞg : ð6Þ

We show in the Appendix that the left hand side of the Eq. (5) is asymptotically equivalent to

1
m

Pm
i¼1

Ð
fZi � hðt; qÞg dNiðtÞ ¼

1
m

Pm
i¼1
fZi � hðYi; qÞg Di ; ð7Þ

which converges to

wðqÞ ¼ E0½fZ � hðY ; qÞg D� ð8Þ

in probability uniformly, where the expectation E0ð�Þ is taken under the true model that the data
ðY;D; ZÞ follow, i.e. the Cox model (2). The asymptotic limit q* of q̂q hence solves wðq*Þ ¼ 0.

Specifically, under the Cox model (2), let F0ð� j zÞ and G0ð� j zÞ denote the conditional distribution
functions of T and C given Z ¼ z, respectively, and f0ð� j zÞ and g0ð� j zÞ the corresponding density
functions. Let h0ð�Þ be the density function of Z. Assuming T and C are independent conditional on
Z, i.e., independent censoring, the joint density function of ðY ;D; ZÞ is

p0ðy; d; z; q0; l00Þ ¼ ½f1� G0 ðy j zÞg f0ðy j zÞ�d ½f1� F0ðy j zÞg g0ðy j zÞ�1�d h0ðzÞ;

where q0 denotes the true value of q, l00ð�Þ denotes the true baseline hazard, L00ðtÞ is the true cumu-
lative baseline hazard and F0ðt j zÞ ¼ exp f�L00ðtÞ exp ðq00zÞg. Hence Eq. (8) can be written as

wðq; q0; l00Þ ¼
P1
d¼0

Ð Ð
fz� hðy; qÞg dp0ðy; d; z; q0; l00Þ dy dz

¼
Ð Ð
fz� hðy; qÞgf1� G0ðy j zÞg f0ðy j zÞ h0ðzÞ dy dz:

It follows that the asymptotic limit q* solves wðq*; q0; l00Þ ¼ 0 and hence q* is a function of the
true values (q0; l00). Numerical integration can be used to calculate hð�Þ and wð�Þ and the Newton-
Raphson algorithm can be used to numerically solve the equation.

Now we calculate the asymptotic bias of q̂q numerically. We assume the baseline failure time T has
an exponential distribution with constant hazard rate l00. Thus L00ðtÞ ¼ l00t. Assume the censoring
time C follows a uniform distribution in ð0; c0Þ and the follow-up ends at a fixed time t with t < c0,
and the covariate is binary, i.e., Z 2 f0; 1g. We choose t ¼ 1, c0 ¼ 2, and Pr ðZ ¼ 1Þ ¼ 0:5. We
choose different values of l00 corresponding to different values of the disease rate d00 of the Z ¼ 0
group at time t in absence of censoring. In other words, l00 ¼ �log ð1� d00Þ. We calculate the
asymptotic relative bias assuming the true value of q0 is �log2 � �0:693, 0, �log3 � �1:099, which
correspond to hazard ratios 2 and 1=2, 1, and 3 and 1=3. The asymptotic relative bias is defined as
ðq* � q0Þ= j q0 j. When q0 ¼ 0, the relative bias is calculated as q* � q0.

Under the assumed model, the function hðt; qÞ can be calculated analytically using the above joint
density function p0ð�Þ. We then calculate the function wðqÞ and its derivative with respect to q using
numeric differentiation, and use the Newton-Raphson algorithm to search for the root of wðq*Þ ¼ 0.
We find the derivative of wðqÞ is always negative, and thus wðqÞ decreases monotonically and the root
of wðq*Þ ¼ 0 is unique. Figure 1 presents the asymptotic relative bias as a function of the baseline
disease rate for the five values of q0. We vary the baseline disease rate from close to 0% to 5%. The
5% baseline disease rate corresponds to the population disease rate 9.6%, 7.4%, 5%, 3.8%, and 3.3%
for q0 ¼ log3, log2, 0, �log2, and �log3, respectively. The results in Figure 1 show that the asympto-
tic bias of q̂q is anti-conservative, and the relative bias is very small and is up to 4% when the popula-
tion disease rate is less than 10%.
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4 A Simulation Study

We have conducted a simulation study to investigate the finite sample performance of the proposed
method. Data are generated from the same distribution as that used in the above theoretical asymptotic
bias calculation. For each pair of the baseline disease rate d00 and q0, we randomly generate a large
cohort and randomly select 100 failures (cases) prior to time t ¼ 1 and 100 controls. The baseline
disease rate is set to be 0.5% and 2.5%. They correspond to the population disease rate between 0.3%
to 4.9% when q varies between �log(3) and log(3). For each parameter configuration, we simulate
1000 data sets, and analyze each data set using the proposed modified case-cohort method by solving
Eq. (5). The numerical implementation follows the method proposed by Therneau and Li (1999). For
comparison purpose, we have also performed a standard logistic regression using the case/control
status as a binary outcome and the binary indicator Zi and time (age) Yi as covariates. We use 100
bootstrap runs to calculate the bootstrap variance of q̂q under the modified case-cohort analysis, where
cases and controls are re-sampled with replacement separately.

Table 1 reports the empirical bias, the empirical standard error, and the average of the bootstrap
standard errors of the modified case-cohort analysis and the average of the model-based standard errors
of the logistic regression. The theoretical asymptotic bias for the modified case-cohort analysis is also
reported. The results in Table 1 suggest that the proposed modified case-cohort method performs well
for analyzing case-control age-at-onset data. The empirical bias is very small and agrees with the
asymptotic bias reasonably well. The bootstrap standard errors agree with their empirical counterparts.
The empirical biases and standard errors of the modified case-cohort survival analysis are smaller than
those from standard case-control logistic analysis, especially when the disease rate is lower, indicating a
superior performance of the proposed modified case-cohort method for rare diseases.

5 Analysis of the Breast Cancer Case-Control Data

We have applied the proposed method to analyzing data from the Michigan breast cancer case-control
study (Beebe, 2002). The study consisted of 204 cases and 246 controls who were postmenopausal
women. Cases were identified from patients’ records at the University of Michigan Breast Cancer
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Center, who were diagnosed with primary breast cancer between January 1, 1996 and December 31,
1999. The major question of interest was how a woman’s weight change was associated with the risk
of breast cancer. The investigators collected ages at the breast cancer diagnosis for cases and ages at
the survey for controls. All the participants were white. The ages of the participants ranged between
50 and 70 for either cases or controls, with medians equal to 57 for cases and 60 for controls. The
covariate of main interest was the change of body mass index between age 20 to 50. Each woman
was asked to report her weights at age 20 and 50, marital status, smoking status, family history of
breast cancer and birth of a child. Body mass indexes (BMI) at age 20 and 50 were calculated
(weight/height2, kg=m2), and the change of BMI between age 50 and 20 was calculated. Among those
450 cases and controls, 21 women with missing information on either weight change or height were
excluded from the analysis. One additional extremely short woman (40 inches high, which was likely
to be a coding error) was also excluded.

We analyzed the data using the modified case-cohort method under the Cox model by solving (5),
where ages of cases were used as event times and ages of controls were used as censoring times. The
breast cancer prevalence percent of January 1, 2003 of SEER 11 population diagnosed in the previous

Biometrical Journal 50 (2008) 2 317

Table 1 Biases and standard errors based on 1000 simulations with 100 cases and 100
controls in each data set using the modified case-cohort (MCC) analysis Eq. (5) and the
standard logistic regression (SLR).

q0 Population
desease rate

Baseline disease rate ¼ 0.5% Bstrp. SE
Model SE

Method Asym.
bias

Empr.
bias

Empr.
SE

�log(3) 0.3% MCC �0.001 �0.026 0.317 0.328
SLR –– �0.047 0.344 0.351

�log(2) 0.4% MCC �0.001 �0.002 0.307 0.311
SLR –– �0.017 0.335 0.332

0 0.5% MCC 0 0.006 0.301 0.302
SLR –– 0.009 0.331 0.322

log(2) 0.7% MCC 0.002 0.008 0.313 0.312
SLR –– 0.009 0.345 0.333

log(3) 1% MCC 0.004 0.012 0.323 0.327
SLR –– 0.035 0.359 0.350

q0 Population
disease rate

Baseline disease rate ¼ 2.5% Bstrp. SE
Model SE

Method Asym.
bias

Empr.
bias

Empr.
SE

�log(3) 1.7% MCC �0.008 �0.043 0.323 0.328
SLR –– �0.044 0.365 0.350

�log(2) 1.9% MCC �0.006 �0.001 0.318 0.311
SLR –– �0.006 0.351 0.332

0 2.5% MCC 0 �0.009 0.303 0.303
SLR –– �0.012 0.329 0.321

log(2) 3.7% MCC 0.011 0.017 0.308 0.313
SLR –– 0.012 0.340 0.331

log(3) 4.9% MCC 0.023 0.026 0.328 0.327
SLR –– 0.026 0.359 0.348
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10 years for white women aged between 50 and 70 is less than 3% (see Ries et al., 2006). The
prevalence rate for the University of Michigan breast cancer data set should be even smaller because
of shorter cancer diagnostic period. Hence our rare disease assumption is appropriate. Our asymptotic
bias analysis (Section 3) and simulation results (Section 4) show that the proposed modified case-
cohort method is expected to work well for such a rare disease. We calculated standard errors using
1000 bootstraps. The covariates included in the model were change of BMI, baseline BMI, marital
status (yes/no), current smoking status (yes/no), family history (yes/no) and birth of a child (yes/no).
The results are presented in Table 2. The change in BMI did not show a significant association with
the risk of breast cancer. Smoking and family history of breast cancer significantly increased the risk
of breast cancer. While marriage only marginally decreased the risk (with p-value < 0:1), child birth
significantly decreased the risk of breast cancer. No significant relationship was found between base-
line BMI, BMI change and breast cancer.

We also did a stratified analysis with a 10-year age window as a stratum to take into account the
possible birth cohort effect, and found similar results as the non-stratified results given in Table 2.
Thus we only report the non-stratified analysis in this article.

In Table 2 we also included results of a logistic regression adjusted for age and a conditional like-
lihood estimation with post hoc stratification on age. We have tried different functional forms of age
in the logistic regression including cubic spline smoothing and observed similar results. Hence we
only reported the result adjusted by linear age effect. The post hoc stratification is based on one-year
intervals. The logistic regression and the post hoc stratification yield similar results, but their effects
of BMI change is different to that obtained from the proposed method. Effects of BMI at age 20,
smoking status, and child birth have also switched significance status. We do not have a definitive
explanation on the discrepancy in addition to the methodological differences. There is always a
chance that some important confounders were missed in the study design.

6 Discussions

The modified case-cohort survival analysis provides an attractive procedure for analyzing case-control
age-at-onset data when the disease rate is low. Unlike the standard logistic regression used for case-
control data, this analysis naturally uses age at disease onset as a survival outcome and is easy to
implement. Our simulation results show that the proposed method outperforms standard case-control
logistic regression when the disease rate is low. In view of the lack of the sampling fraction of con-
trols in case-control data, we propose to estimate standard errors using bootstrap. It is of future re-
search interest to develop an alternative analytic standard error estimator. The proposed approach can
handle time-dependent covariates without any added difficulty.

We restrict in this paper on classical case-control data where ages are not matched. The proposed
method can also be generalized to exposure covariate matched case-control data and family case-con-
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Table 2 Analyses of the Michigan Breast Cancer Case-Control Data.

Variable Modified case-cohort Logistic regression Conditional likelihood

Coefficient SE Coefficient SE Coefficient SE

Change in BMI 0.03 0.09 �0.16 0.07 �0.12 0.07
BMI at Age 20 �0.05 0.04 �0.08 0.03 �0.07 0.03
Marital Status �0.67 0.39 �0.95 0.28 �0.91 0.28
Smoking Status 0.90 0.32 0.31 0.22 0.36 0.22
Family history 1.26 0.39 1.11 0.27 1.01 0.27
Child Birth �1.07 0.42 �0.41 0.33 �0.32 0.34
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trol data. For the exposure covariate matched case-control data, each group of cases and controls with
matched covariates consists a stratum. Then a stratified Cox regression can be implemented together
with the method of Therneau and Li (1999), which assumes each stratum has its own baseline hazard
function. For the correlated family data, the method of Cai and Prentice (1995) may apply to improve
estimation efficiency for hazard ratio parameters. Note that the cumulative baseline hazard function is
not estimable from case-control data where age is not matched because the sampling fraction of con-
trols is unknown.

Appendix: Proof of the Asymptotic Limit of Eq. (5)

Again we consider one-dimensional covariate here for notational simplicity. The Multidimensional
case can be handled similarly. Let

ĥhðt; qÞ ¼
P

j2SC ð1� DjÞ IðYj � tÞ Zj exp ðqZjÞP
j2SC ð1� DjÞ IðYj � tÞ exp ðqZjÞ

: ð9Þ

Suppose the parameter space q is compact, and the study ends at a fixed time t with
Pr ðC � tÞ ¼ Pr ðC ¼ tÞ > 0 while Pr ðT > tÞ > 0. Then all functions 1� D, IðY � tÞ, Z and
exp ðqZÞ are well-behaved and belong to Donsker classes. Hence both summands in the numerator
and the denominator in ĥhðt; qÞ are in Donsker classes and thus belong to Glivenko Cantelli classes
(van der Vaart and Wellner, 1996). It follows that ĥhðt; qÞ converges to hðt; qÞ in probability uniformly
in ½0; t� 	 q when the size of control group approaches to infinity, i.e., as m!1, given that the
denominator is bounded away from zero in probability. Then the left hand side of equation (5) is
asymptotically equivalent to (7) uniformly in q since

1
m

Pm
i¼1

Ð
fĥhðt; qÞ � hðt; qÞg dNiðtÞ

����
���� � supt;q j ĥhðt; qÞ � hðt; qÞ j � 1

m

Pm
i¼1

Di ! 0

in probability by the uniform convergence of ĥh. By the permanence of the Donsker property for
convex hulls of van der Vaart and Wellner (1996), it can be shown that fhðt; qÞg is also Donsker and
thus a Glivenko-Cantelli class given that the denominator is bounded away from zero. Hence the right
hand side of (7) converges to wðqÞ in equation (8) in probability uniformly in Q.
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