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ABSTRACT

The isothermal galvanomagnetic effects bear various conventional
names such as the transverse and the longitudinal magneto resistance, the
Hall, the "planar Hall field," and the Corbino effect, corresponding to cases
where the magnetic field is either normal or parallel to the current, or in
the plane of the current and the Hall probes.

In the first part of this dissertation the isothermal galvano-
magnetic effects are defined phenomenologically with the magnetic field, the
electric field, and the current vectors arbitrarily oriented with respect to
the crystal axes and to each other. Thus all the conventional studies cited
above are included as special cases. The literature is inconsistent with re-
gard to the parity properties of the galvanomagnetic effects as a function of
the magnetic field B. Some of these properties are here deduced from Onsager's
relation and symmetry considerations. In particular, it is shown that the
magneto resistance* is necessarily an even function of B, while, contrary to
convention, the Hall effect is in general neither an odd function (as is usually
assumed) nor an even function of B, but can be purely odd or purely even or zero
under proper conditions.

These effects are then analyzed in terms of an ascending power series
of the components of B, whose coefficients are denoted by the "brackets."

Prior to this work the crystallographic effects have never been taken into
account comprehensively. An overall investigation of the effect of the 32
point groups upon the isothermal galvanomagnetic effects is attempted. A

theorem is developed to deal generally with tensors of arbitrary rank under

the restriction of an arbitrary N-fold axis of rotation.

*For convenience, we shall refer throughout to px“(g) as magneto resistance,
and to [px“(E) —‘pxu(g = 0)] as magneto resistance change. Sometimes the
latter is abbreviated by the former when no confusion is introduced.
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ABSTRACT (Concl. )

The Corbino effect, which has not been previously studied in single
crystals, 1s dealt with very briefly, and its relations with the magneto re-
sistance and the Hall effect are established for speclal cases.

The brackets are then defined microscopically according to the con-
ventional single-band model and according to a multiband model. This brings
out a formal completion of the microscopic theory of the isothermal galvano-
magnetic effects, developed by Jones and Zener (1934), Davis (1939), and
Seitz (1950); by Sondheimer and Wilson (1947), and by Jones (19%6). The
multiband model‘includes the single band as well as the two-band and many-
valley models as special cases.

A detailed discussion is presented of the conditions under which
the even part of the galvanomagnetic tensor vanishes. This gives some criteria
for avoiding one of the outstanding difficulties of the existing simple theories,

viz., how to choose a simple microscopic model without yielding zero longitudinal

magneto resistance,

vii



INTRODUCTION

This dissertation consists of three parts:

I. A general definition of the isothermal galvanomagnetic effects
is given, which includes most of the previous definitions as special cases,
while rejecting some of them as inadequate. The wmagneto conductivity tensor
is expanded in terms of an ascending power series of the constant magnetic
field B, whose coefficients ("brackets") are analyzed. It is then possible
to understand some experimental findings (at least qualitatively) and to com-
pile experimental data more systematically.

II. A general theorem is developed to analyze the effect of an N-
fold rotation axis upon an arbitrary even-rank tensor; thus explicit expres-
sions for the galvanomagnetic effects corresponding to each of the 32 point
groups are established.

III. '"Brackets" pertaining to the galvanomagnetic effects are de-
fined microscopically according to the band approximation. Thus by bringing
together all previous efforts as well as the author's, we have the framework
of a formally complete microscopic theory. Of special interest are some con-
ditions for the vanishing of certain galvanomagnetic constants in terms of the
functional forms of the energy and of the relaxation time of the "electron gas."

The first and second parts are presented in Chapters I and II, the
third part in Chapter ITITI. The motivation for this work is presentedVin this
introduction. Appendix VI and Section 5 of Chapter I are recommended to those
readers who wish to go immediately to the results.

Motivation.-—Several names for special galvanomagnetic effects are
familiar from the literature: the Hall effect, the longitudinal and transverse
magneto resistance effect, the Corbino effect, and the 'planar Hall field.'

We ask—
Question I. Can one define the effect in general in such a way that all these

1
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effects are included as special cases?

i

Casimir™ and others proposed to define the even and odd.parts of

the resistivity tensor in the presence of a magnetic field as the magnetc re-
sistance and Hall effect, respectively. There resulted some controversy in the
15

literature regarding 'mixing of the magneto resistance in the Hall effect,'

and 'longitudinal Hall effect in the magneto resistance,’l7 which leads to=—

Question II. Are the definitions of Casmir compatible with the physical meas-
urements of the magneto resistance and the Hall effect?

The anisotropy of the. galvanomagnetic effects of single crystals has
never been discussed comprehensively. In 1950 Seitz proposed a formula for the
current-field relation in the presence of an arbitrarily oriented weak magnetic

field for cubic crystals.

Question III. Can one derive an equation, similar to Seitz's equation, which

will hold generally for all crystal symmetries?
The most instructive findings come from experiments on the magneto
resistance at low temperatures and high magnetic fields. DNoting the strong and

8 19

complicated anisotropy observed by Justi- and others on gold, Wilson™ remarked

in his book in 1953%:
It does not seem likely that any model simple enough to be tractable
theoretically would give a magneto resistance curve of the complexity
of those actually observed.

This remark provided the main motivation for the present thesis. The difficulty

is reduced by one step if one can answer—

Question IV. What part of these complicated magneto resistance curves can be
understood on the ground of symmetry considerations alone?

The phenomenological theory is developed in Chapters I and IT to answer
these four questions. It is estimated that a series up to the power of 24 or more

is needed to interpret the magneto resistance curve of gold referred to above.



CHAPTER T
PHENOMENOLOGICAL THEORY:
MAGNETO RESISTANCE AND HALL EFFECT
1. INTRODUCTION
Consider a volume element of an anisotropic isothermal* homogeneous
single crystal of arbitrary shape placed in a homogeneous magnetic field B.
A constant current- density J in the crystal is maintained by wmeans of a suit-

able electric field F (see Figure 1).

Figure 1. Orientation of vectors J, F, B,
and probes ab in an anisotropic single
crystal.

Evidently F will be a vector function of J and B,
F = F (LB . (1)
The dependence of F on B represents the galvanomagnetic effect.** The crystal
symmetry and other physical laws will, in general, restrict the possible forums
of (1). It is the purpose of this chapter to find the proper description of
F for all possible crystal symmetries, all orientations and magnitudes of J and

B with respect to the symmetry axes of the crystal, under the restriction that

Ohm's law is valid for fixed B.

*TIsothermal conditions are assumed throughout this paper without further ex-
plicit statement.

**Throughout this paper we restrict ourselves to nonferromagnetic substances.

5
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The vector F can be determined experimentally for any given J and B

1,253 of F in three independent directions. In a

by measuring the components F
direction d one can measure rd by measuring the potential difference Vg, between
two probes a and b, without drawing current, and dividing by the distance ab.

If d is taken along J, the resulting dependence Fj| (Q,E) is called the mag-
neto resistance effect; if d is normal to J, then FJ_ ({,E) is called a Hall
effect. Both are special cases of the galvanomagnetic effect. Other special
cases, such as the Corbino effect, imply a geometry and boundary conditions
which are again different.

1 first discovered the magneto resistance

Historically, Lord Kelvin
effect for Fe in 1856 and also predicted the Hall effect in 1851L. After many
attempts by various workers, Hall:L discovered the effect named for him in 1879.
The first empirical formula connecting the two effects was proposed by Beattie
in 1896.l The name 'galvanomagnetic effect' appeared in the literature, weaning
the Hall, the magneto resistance effect, as well as some other effects such as
the Corbino effect.

The dependence of the Hall effect on the magnetic field and on the
temperature was studied by meny investigators. In 1883 Righil studied the in-
fluence of the crystal orientation of the Hall effect. Extensive summaries were
given by Cam,pbelll in 1925 and by MeisSner2 in 1935. Briefly, the findings3 of
all this work are that the Hall effect depends on the crystal orientation, and
that it is not adequately described by a constant Hall coefficient. The Hall
effect is not always an odd function of the magnetic field, céntrary to a sug-
gestion by Casimir® in 1945.

Numerous authors extended Lord Kelvin's work on magneto resistance to
nonferromagnetic materials. Grunmach and Wiedert! published in 1906-07 the first
extensive study for various elements at room temperature. In 1928-30 Kapitza5
went to lower temperatures and higher magnetic fields. In 1897 Van Everdingenl

had discovered the influence of the crystal orientation on the magneto resist-
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ance. The effect was studied further by Schubnikow and de Haas,6 Stierstadt,7

Justi8 and co-workers, Blom,9 and otheraolo Schubnikow and de Haas, Stierstadt,
and, more systematically, Blom, tried to analyze the angular dependence of the
magneto resistance on the orientation of the magnetic field relative to the sam-
ple by a Fourier analysis. Briefly, findingsll of all this work are that the
magneto resistance depends markedly on the crystal orientation, especially at
low temperatures; that for low magnetic fields (say less than 1 kilogauss) the
magneto resistance is proportional to the square of the field, whereas at high
fields the relation is a more complicated function of the field. According to
most results, this function is even. In 1905 Voigtlg laid the foundation for
an appropriate description of the anisotropy of the Hall and magneto resistance
effects., Further contributions to the phenomenological theory were made by

1h Juretschke,l5 and other workers,

K'ohler,15 Casnrl:'LrgLL Seitz.

The ultimate aim of the theory of the galvanomagnetic effects is to
describe the function (1) completely in terms of the electronic properties of
the material concerned. This task can be divided into two parts. In the first
or phenomenological part the function (1) i§ described in terms of a number—
finite or infinite—of true isothermal galvanomagnetic constants that are char-
acteristic for the materialal6 In the second or electron-theoretical part these
constants are interpreted in terms of electronic properties.

The objective of the present chapter and the next is to give an ex-
plicit development and broadening of the phenomenological theory, leaving the
electron-theoretical part to the last chapter. The plan of attack is as fol-
lows. In Section 2 the proper galvanomagnetic constants are defined, the de=-
pendence of F on the orientation of J and E is -discussed, and some general re-
lations are established. In Section 3 a general method is developed by means

of which the effects of crystal symmetry are properly taken into account. In

Section 4 formulas are given for the number of independent galvanomagnetic con-
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stants for the various crystal classes. In Section 5 various explicit forms
are given, particularly forms for B up to terms quadratic in the components of
B, for the various crystal symmetries, while the corresponding foruws for higher
powers can be elaborated from there on without essential difficulties. The

significance of the results obtained is pointed out in Section 6.

2. DEFINITIONS AND GENERAL RELATIONS

a. Coordinate Systems.—Two sets of orthogonal coordinate systems

will be used.

(1) The symmetry coordinates ki (i = 1,2,3). These are adapted to the
crystal symmetry* as follows:

For the groups Ci, S; the directions of the coordinate axes are
arbitrary. For the groups Sz, S4, Ss, C2, C3, C4, Ce, Coh, Cah, Csh,
Cegh, the ks axis is taken along the axis of rotation;*¥* the other axes
have one degree of freedom.

For the groups T, Th, Ty, the coordinate axes are taken along the
twofold rotation axes.

For all other classes, ks is taken along the rotation axis of
highest order, kj; along a rotation axis*¥ normal to ks, and ko accord-
ingly. Vector or tensor components with respect to these symmetry co-
ordinates will carry Latin subscripts.

(2) The laboratory coordinates X (a = 1,2,5) with x1 along the current
density J, xZ in the plane of d and d, and x2 accordingly. In the
case of magneto resistance, d is along J, allowing one degree of
freedom for x2 and x3 in the plane normal to xl. Vector and tensor

components with respect to the laboratory coordinates will carry

*Only the macroscopic symmetry of the crystal, i.e., which one of the 32
crystallographic point groups it belongs to, need here be considered.

*¥*The axis of an improper rotation is understood here as the normal to the
corresponding reflection plane.
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Greek superscripts. No confusion between superscripts and exponents
should arise in practice.
The definition of the laboratory system implies
Jg2 = J% = 0 . (2)
Denoting the direction cosines between the two coordinate systems by 3? and

using the summation convention for repeated indices, we have

01 (07
J7 o= Jihy r}
s I [ (5)
B~ p P
3*3
F. = P18
J J v,

b. Assumption I. Ohm's Law.—We assume Ohm's law to be valid for

any constant applied magnetic field B, i.e., the current density J is a homo-
geoeous linear vector function of F. Thus, in symmetry coordinates:
Ji = oy5 (B) Fs )
FJ = Pyi (E) Ji

where the conductivity tensor components 03 3 and the resistivity components
P34 are both functions of B and are related by

oj; = Aij/A ) (5)
Here A is the determinant of the o4 and Ay is the cofactor of oj; in A. The
functions Gij(E) and pji(g) are characteristic of the material at any given tem-
perature and independent of the geometry' of galvanomagnetic measurements. The
effects of crystal symmetry are to place restrictions on these functions. How-
ever, the direction of current flow J has, in general, no particularly simple
relation to the symmetry coordinates, and the results of measurements are most

directly expressed in terms of laboratory coordinates. Ohm's law, restated in

laboratory coordinates, 1s
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= pY(B)

where (6)
al a1 1,0
o (B) = Dji(E)fjﬂi = Aij(E)filj/A(E) .
For & = 1 these equations describe the magneto resistance effect; for & = 2 or
5 they represent the Hall effect. The latter form expressed these galvanomag-
netic effects in terms of the conductivity components in symmetry coordinates.

c. Assumption II. Onsager's Relations.-—The validity of Onsager's

relations is assumed:

-\

in(E) = Py -B) .
Consequently, . (7)

GlJ(—) = pij(-E) J
and

o’ B

%P(B) = o (-B) (8)

d. The Parity of the Magneto Resistance Effect.—Equation (8) states

that

p**(B) = po**(-B) , (9)
which proves the theorem that the magneto resistance effect is even in B. 1In
the literaturel! there has been some controversy about the evenness of pll,
but the above argument shows that under the very broad assumptions stated, pil
must be an even function in B without exception.

e. Parity of the Hall Effect.-=The Hall effect as defined by (6)

with o % 1 implies that the Hall electrodes are normal to the current. We
shall adhere to this definition, though some experimenters prefer to define
the Hall effect as measured with the Hall electrodes on an eQuipotential when
B = 0.
In general the Hall effect is neither an odd or an even function of
B. This is true for either definition. However, in a number of special config-

ﬁrations the crystal symmetry may impose a special parity on the Hall effect. The
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complete list of such configurations is as follows. Consider the crystallographic
point group, obtained from that of the crystal by augmenting it with an inversion
center. The physical significance of this augmented group is explained in Sec-
tion 5. Then one can easily prove with respect to this augmented group:
(1) If B lies along a 3-, k-, or 6-fold axis and either J or 4 is normal
to B, then the Hall effect is odd.
(2) If B is normal to a 2-, 4-, or 6-fold axis and either J or d is along
that axis, then the Hall effect is odd.
(3) If B lies along any 2-, 3=, 4-, or 6-fold rotation axis and is coplanar
with J and d, then the Hall effect is even.
(k) If B, J, and d are normal to the same 2-, 4=, or 6-fold axis, then the
Hall effect is even.
(5) If B and either J or d lie along any 2-, 3-, 4-, or 6-fold rotation
axis, then the Hall effect vanishes.
There are no other cases in which the Hall effect is purely even, odd, or zero
as a function of B. The "new" galvanomagnetic effect reported by Goldberg and
Davis,l8 for example, is a case illustrating points (4) and (5). In their Fig-
ure 1 the slight discrepancy between the axis direction and the direction of

zero Hall effect must be due to an experimental error of imperfect alignment.

f. Assumption IIT. Power Series Expansion of Gij(g)s-—Most galvano-

magnetic measurements suggest that Uij(B) can be expanded as a series in powers

of the components Byp. One of many typical examples is reproduced by A. H.
Wilsonl9 from work by Justi and Scheffers on gold. If a Fourier analysis of
polar diagrams of this sort involves significant terms with arguments of the
sines or cosines up to n¢, then, it is easily shown, significant contributions
to the conductivity components 953 arise from terms proportional to the nth

power of B and vice versa.

There is an observed limitation to the appropriateness of a power-
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series expansion for galvanomagnetic effects. Experimentseo have shown that the
Hall voltage and the magneto resistance at low temperatures contain oscillating
terms which presumably are connected with the van Alphen - de Haas effect and
are proportional to B sin BO/B, Such terms do not possess a derivative with
respect to B at B = O and hence cannot be expanded in powers of B. Consequently,
the development presented here does not apply to that part of the galvanomagnetic
effects which arises from terms of such a nature.

As the third assumption, we write

© n m
m-p_ P_ n-m
Gij(g) = }; }; ;z hn-p,p,n-m]ij By BoBa (10)
n=0 m=0 p=0

or, introducing the direction cosines y; of B with respect to the symmetry co-

ordinates,
00 n m
n m-p n-m
G]_J(E) = Z B Z Z [m'P:P:n"m}ij 7. 72p73 . (10a)
n=0 m=0 p=0

The coefficients in this expansion are designated by the bracket symbols and
are independent of B. They are the true phenomenological material constants
characterizing the galvanomagnetic behavior of any particular material. They
are sums of components of tensors of rank 2n + 2 since the axial vector B is
an antisymmetric tensor of rank two.¥*
Onsager's relations imply

[w-p,p,n-mlyy = (=)" [m-p,p,n-mlyy . (11)
Consequently, it is sufficient to consider ij values of 11, 22, 33, 23, 31, 12,
only. This will always be done unless stated otherwise. Another consequence
of (11) is that all brackets with n = odd and i = j vanish. Denoting by w an

arbitrary odd number:

*¥In order to set the temsor character in evidence, the brackets will sometimes
be denoted by [(23)%°P, (31)P, (12)2-M], .. The quentities (23), (31), (12) will
be referred to as the pairs of inner indices and 4j as the outer indices.
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[m-p,p,0-mlj5 = O . (11a)
The restrictions imposed on the brackets by the crystal symmetry will be de-
scribed in the next section. The fact that (6) is simpler in terms of pij
then in terms of Gij would suggest a power-series expansion of the former.
The latter was chosen since the brackets so obtained permit a simpler electron

theoretical interpretation. However, the contents of all that follows are ap-

plicable without any modification to p-brackets and o-brackets alike.

5. THE EFFECTS OF CRYSTAL SYMMETRY

a. Only Eleven Point Groups Need Analysis.—Tensor components that

are material constants must be invariant under the operations of the crystallo-
graphic point group of the crystal considered. If the tensor components are of
even rank, they transform identically into themselves under inversion, Conse-
quently, all tensor components of even rank that are material constants must be
invariant under the operations of the point group that is obtained by augment-
ing the point group of the crystal considered by an inversion center. This is
obviously also true for the brackets. Any point group augmented by an inver-
sion center becomes one of the eleven well-known crystallographic point groups
which possess such a center. Thus, it suffices to analyze these eleven point
groups. They can all be generated by at most two rotations in addition to the
inversion center. We shall generate the eleven point groups by means of the
elements shown in Table I. In the second row are listed the twenty-one point
groups without inversion center which go over into those of the first row by
the addition of an inversion center.

Under a general rotation each bracket is transformed into a linear
combination of other brackets. If the rotation be a covering operation, and
thus requires invariance of the bracket, then certain relations must hold be-

tween the brackets.
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TABLE I

GENERATING THE ELEVEN POINT GROUPS

Point Group S2 Czoh Cai Csn Ceh Don Dsi Dgh Dsh T On
Equivalent Cy Co Ca Cq Cash Cov Cav Dog Dsp T Tgq
Point Cgq Sq Ce Do D3 Cav Cav 0]
Groups Dy Ds
Generating*

Elements

axis along ks - 2 3 3 6 2 3 L 6 2 L
axis along ki - - - - - ) > o) ) - -
axis along [111]} - - - - - - - - - 3 3

*¥If an axis is taken as a generating element, its multiplicity N is listed at
the appropriate place. The inversion center which is a common generating ele-

ment of all groups 1s not listed.

Under inversion each bracket is transformed identically into itself.
Hence, no relations between brackets can be derived from the requirement of in-

variance under inversion.

b. A Theorem Concerning the Effect of an N-Fold Rotation Axis Along

kg.~The effects of an N-fold rotation axis along ks are covered by a theorem
which states that certain linear equations must hold between the brackets. In
order to express these combinations concisely, some notations are introduced.
Let s be the number of non-threes among a given ij and let © be the number of
twos minus the number of ones in ij. The numbers s,6 define uniquely one of

the six independent pairs of indices ij, and vice versa. Table II gives the re-

lation explicitly for further reference. We write

[m-p,p,n—m]ij [m—p,p,n—m](s,e) . (12)
Let z denote a nonnegative integer < s and w a nonnegative integer < m. Each
of the linear equations referred to by the theorem will be labeled by five in-

tegers n, m, s, z, w. All brackets occurring in one equation have the same n,m,s,
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but may differ in p,®. The parameters z,w serve to label the various equations

with the same n,m,s, involving the same brackets with different coefficients.

TABLE TIT
TABLE OF s AND © VALUES

iy S )
33 0 0
31 1 -1
23 1 +1
11 2 -2
12 2 0
22 2 +2

Theorem
For an N-fold rotation axis along ks, the brackets satisfy the equations
m
) ) lmp) <(e,0,2) [mppyneml(g ) = O (1)
e p=0
provided the inequality
h = m+s - 2(w+z) # kN (k=0,+1,+2...) (1)
holds; in other words, h is not a multiple of N.
The summation over © is meant to include all i1j combinations with con-

stant s. The coefficient g(m,p,w) is defined in terms of binomial coefficients

> glm,p,w) = if Z ()2 ( ;ip><w?q> o (15)

q=0

The factor €(s,8,z) is given in Table III for all values for which it is defined.
The proof of this basic theorem is given in Appendix I. In Appendix II it is
shown that the only solution for the complete set (13) for given n,m,s, is that
all brackets involved vanish. A consequence is that the equations (13) with
the condition (14) represent a complete description of the symmetry properties
of the brackets.

For finding the relations between brackets of given n,m,s, one will

first 1list all brackets of this set according to their p and © values, next es-
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tablish their coefficients ge for all possible values of the parameters w,z,
and finally write down one equation of the type (15) for each set of w,z val-
ues compatible with (14). Shortcuts to this procedure will be explained after

some corollaries of the theorem have been proved.

TABLE III
THE VALUES OF €(s,6,z)

n = even n = odd
5 e ijz-| o0 1 2 | o 1 2
0 0 33 1 - - - - -
1 -1 51 1 l’ - 1 1 -
1 1 23 i -1 - -1 i -
2 -2 11 1 1 1 - - -
2 0 12 2i 0 -2i 0 21 0
2 2 22 -1 1 -1 - - -

c. Some Consequences of the Theorem.-—In formulating the fundamenﬁal
theorem a rotation axis was taken along ks. It is simple to apply the theorem
to a rotation axis along ki or ks by permutation of both inner and outer indices.
The effect of a threefold axis along the [111] direction can be taken into ac-
count by requiring invariance for the brackets under cyclic permutation of the
indices 1,2,3 both in and outside any bracket. Thus the effect of symmetry for
the eleven point groups is completely described by the theorem with these gener-
alizations.

However, in a number of cases the application of the theorem is greatly

simplified by means of some corollaries.

Corollary I
For N = even (2,4,6) about ks, all brackets for which the index 3 oc-

curs an odd number of times (inside plus outside) are zero.
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Proof
In any particular bracket, the index 3 occurs 2-s+m times. Thus it
must be shown that all brackets with (m+s) odd vanish. If (m+s) is odd then h
cannot be an integral multiple of the even number N. Thus all equations pro-
vided by the general theorem are valid. According to the theorem, given in

Appendix II, all brackets concerned must now vanish.
g.e.d.

In preparation of Corollary II let two brackets be called "adjoint"
with respect to ks, if they can be obtained from one another by interchanging
the indices 1 and 2%, Dboth inside and outside, and writing the resulting pairs
of indices in the conventional order. For example, the brackets

[m-—p,p,n-m]25 and [p,m—p,n-m]5l

are adjoint. Indeed the first bracket can be written as [(23 )m'P,(51)P,(12)n‘m]25.
Upon interchanging 1 and 2 this becomes [(52)p,(lB)m'p,(El)n_m]la- A1l pairs
must now be interchanged in order to appear in the conventional order. The n
o

inner pairs each give a minus sign. The outer pair gives (- according to

Onsager's relation (11). The result is always a plus sign. The resulting
bracket is [(25)p,(51)m'p,(lE)n'm]5l, which is the same as [p,m—p,n-m]5l- Thus
the adjoining operation with respect to ks transforms one bracket into another

one, by interchanging p with m-p and & with -©.

Corollary IT
For N = 4 about ks, nonvanishing adjoint brackets are either equal or

opposite. They are equal if the nuwber of occurrences of the index 2 is even,

opposite if this number is odd.

Proof

Under a fourfold rotation about ks, k; transforms into k2 and ks into

-k{. Thus the result of this rotation differs from the operation "adjoining"

*¥Similarly we define adjoint with respect to ki (or kz) by interchanging the
indices 2 and 3 (or 3 and 1).
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only by a factor (-) to the power of the number of occurrences of the index 2.
If the index 2 occurs an even number of times the factor is +1, otherwise -1.

Since the fourfold rotation is a covering operation the corollary is proved.
g.e.d.

The indices 1 and 2 occur both even or both odd. Indeed the total
number of indices 1, 2, and 3 is even, and the occurrence of the index 3 is
even according to Corollary I. Thus the corollary is symmetric with respect

to the indices 1 and 2.

Corollary III

If in an equation of the type (13) each bracket [m—p,p,n-m]ij is re-
placed by [m-p,p,n'-m]ij; where n' has the same parity as n, the resulting

equation also belongs to the set (13) and has the same h.

The -corollary is essentially due to the fact that ks is the rotation
axis. In equation (13) n occurs only in two places: in the brackets, all
brackets in one equation having the same n, and in € (see Table III). In the
latter the influence of n enters only through its parity, hence different val-
ues of n with the same parity lead to similar equations. Since the definition

(14) of h does not contain n, the h-values of such equations are equal.
g.e.d.

A consequence of this corollary is that a change from n to n' with
the same parity in any bracket relation leads to another valid relation, i.e.,
bracket relations for given values of m,s need to be tabulated only for n =
even and for n = odd, a fact which has permitted great simplification in the

tables of bracket relations that follow.

Corollary IV
Two equations of the type (13) with equal n,m,s having parameter val-

ues w,z and w'=m-w, z'=s-z, i.e., h'=-h, are conjugate complex,
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Proof
One must prove that the coefficient ge is transformed into its conju-
gate complex by changing from w,z to w}z'. According to (15) it is easily shown

that g(m,p,w) = (-)™P g(m,p,m-w). Since the definition of g contains a factor iP,

glm,p,w) = (=) g¥(m,p,w') (16)

the asterisk denoting the complex conjugate. Likewise, Table III shows that
e(s,0,z) = e*(s,0,z') . (16a)

Thus by changing from w,z to w',z' the equation is multiplied through by the

constant factor (-)® and each coefficient changes to its complex conjugate.

g.e.d.

The occurrence of the equations (13) in complex conjugate pairs per-
mits a simplification in listing or surveying all such equations. If the real
and imaginary part of each equation is taken separately, one need only consider
one equation of each conjugate complex pair and maintain all self-conjugate
equations. This can be done in two ways. In the first way one restricts the
range of w to values satisfying the selection rule:

m=-2w >0,
and leaving O < z < s free. In this way only equations with h > O are selected,
and this procedure is most practical for the making of tables of bracket rela-
tions. In the second way one restricts the range of z to values satisfying the
selection rule:
s -2z >0 ,
and leaving O <w < m free. This way is useful for proving some general rela-
tions, for example, those of Appendix III. It is evident that for self-conju-
gate equations
me=ow = 5 -2z = 0
is a necessary and sufficient condition. The number of real equations so ob=-

tained is equal to the number of original complex equations.
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Corollary'z

If in an equation of the type (13) each bracket is replaced by its ad-

joint, the resulting equation also belongs to the set (13) and has the same |h|.

Proof

Each equation (13) contains adjoint pairs of brackets, characterized
by p,® and p'=m-p,6'=-0, since summations over.p and @ occur.

The coefficients of adjoint brackets in one equation are g(m,p,w)
e(s,0,z) and g(m,p',w) e(s,0',z). Thus, replacing all brackets by their ad-
Jjoints is equivalent to interchanging the above coefficients without changing
the brackets. We shall prove that, apart from a constant factor, this change
in coefficients transforms the equation into its conjugate complex, which ac-
cording to Corollary IV also belongs to the set and has opposite h.

It follows directly from equation (15) that

8(m:P)W) = (‘)m+wi-m g*(m,p',w) ’ (17)

where p'=m-p. It is also easy to verify in Table III that

€(s,0,z) = (‘)n+zis G*(SJQY,Z) ) (17a)

where ©' = -9. Thus by changing from p,® to p',0", the coefficients are multi-
plied by the constant factor (-)nih and change to their conjugate complex.
g.e.d.

A consequence of this corollary is: For any real relation between
brackets its adjoint relation is also valid with the same coefficients. This
fact is extensively used in constructing the tables of bracket relations which
follow.

A number of other corollaries follow from the symmetry of g and €.
The principal ones are listed below, proofs being left to the reader. They are

useful for checking relations among brackets.
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Corollary VI

Any relation between brackets with s = 1 (6 = + 1) is invariant for

the substitution o' = -6 followed by reversal of the sign of the coefficients

of all terms with @' = -1.

Corollary VII

Any relation between brackets with s = 2 is invariant for the substi-
tution ' = -8 followed by reversal of the sign of the coefficients of all terms

with 6 = 0.

Corollary VIIT

Any relation between brackets for s = 1, n = even, is transformed to
a valid relation for n = odd by changing the sign of all brackets with © = + 1,

and vice versa.

Corollary IX

For m = odd any relation between brackets is invariant for the substi=-
tution m' = m-p followed by reversal of the sign of the coefficients of all

terms with outer indices 31 and 12.

d. The Procedure for Tabulating the Bracket Relations.—-It was stated

that the brackets are linear combinations of components of tensors of even rank.
Thus the analysis can be restricted to eleven out of thirty-two point groups.
Moreover, Onsager's relations permit one to use only six pairs of indices 1],
with equations (11) and (1la) valid for all point groups. The theorem, given

by equations (13) and (14), allows complete tabulation of all bracket relations
for all these groups. Often the application of the corollaries, especially I
and IT, is helpful in obtaining the tables for certain groups from those of other
groups. The brackets of the group So can be tabulated completely by using equa~-
tions (11) and (1la) only. It is to be remembered that all the tables that fol-

low are constructed according to the convention that kg is taken along the ro-
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tation axis of highest order and k; along a rotation axis normal to ks, if there

be one.
TABLE IV
PROCEDURE FOR TABULATING BRACKET RELATIONS
Table :of . + Corollary I + Coréllary IT + Invariance Yields
e SN S R L T
Sz + Czh
Cah + Doy
Czh + Cah
Dzh + Dgh
Dan + T
D4gn + on
Cai + Dai
Cai + Ceh
Ceh + Dsh

The first six groups of the last column of Table IV are seen to be
completely derivable from the Corollaries I and II and the invariance under cy-
clic permutation, as indicated by the + signs. The groups Dsi, Ceh, Deh are
based on Caj, which required the direct application of the general theorem, as-
sisted by the various corollaries. We have not found any simple rule yielding

the complete tabulation for Cai.

e. Bracket Relations for Cph and Dph.—Table V for Cgh and Dgh is

constructed on the basis of Corollary I. The effect of symmetry is manifest
entirely in the vanishing of certain bracketsj all nonvanishing brackets are
independent. Thus, we have used three symbols to indicate the state of a

bracket whosé inner part is given by the second column and whose outer indices
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appear in the first row. The inner parts of brackets contain the syricols e for

an arbitrary even number and & for an arbitrary odd one.
+ means the bracket is independent both for Con and Don.
® means the bracket 1s independent for Cgoh but vanishes for Doh.
O means the bracket vanishes both for Csn and for Dsp.
Examples: [205]25 is found to be zero as shown by [eew]25 in the eighth
row,
[20k]1p is found to be independent for Cph and zero for Dzh
as shown by [eee] in the first row.
The outer indices 11, 22, 33 cannot occur with n = odd, according to equation

(112). Table V is complete for all n.

TABLE V

BRACKET RELATIONS FOR Cop AND Doh

i3> |25 | 31 | 12 11| 22 | 33
[eee] 0 0 e ' + + +
[}
o
2 [eaw] + ® o 'o 0 0
Q ]
L [wew] @ + o ' o0 0 0
[w} 1
[awe ] 0 0 + ' @ ® @
N ]
[ ] 0 0 ®
i [weel | + ® 0
o
L [ewe] @ + 0
a
[eew] 0 0 +

+ means bracket independent for Csh and Dsp.
® means bracket independent for Cgp, zero for Dpp.
0 means bracket zero for Csh and Dsh.

f. Bracket Relatlons for Cuh and Dgh.~The effect of symmetry is mani-

fested in two ways: either a bracket is zero or it is equal to plus or minus its
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adjoint (as defined in Corollary II of the theorem). Of each such pair of ad-

Joint brackets, one bracket can be chosen as independent. In the first, fourth,
fifth, and eighth or last row self-adjoint brackets may occur. A self-adjoint

bracket may be forced to vanish if it must be minus its adjoint. Thus it turns
out that four symbols are needed, whose meaning is explained under the Table VI,

which gives the complete bracket relations for all n.

Examples: [202]p -[022]1p for C4n, zero for Dyn (first row).

[220]12 = self-adjoint and -[220];5, hence zero for Cup and Dyy.
[202]11 = +[022]22; one of the pair is independent, both for
Cs4h and Dgn.
TABLE VI

BRACKET RELATTONS FOR C4qh AND Dgn

i~ | 23| 3| 12| 11| 22| 33
[eee] 0 0 4; } - + 4
g
% [eaw] i, & | o 0 0 0
\&/

'g‘ [wew] | -6<~ N4 0 0 0 0
[awe] | © 0 ' eem- | &
[oww] 0 0 ©-

B | lweel | K & | O

: [ewe] éﬁ, \‘* 0
[eew] 0 0 }-

+ means bracket is one of an independent pair and
equal to its adjoint for Cuh and Dsh.

©-means bracket is one of an independent pair and
equal to minus its adjoint for Cuh, zero for Dun.

4-means - and in addition zero if self-adjoint.
O means zero for Cup and for Dyh.

Dotted lines connect adjoint places.
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g. Bracket Relations for Ty and Op.~Table VII for these groups is

derived from Table V for Doy and Table VI for D4y by requiring that brackets

remain invariant under cyclic permutation of all indices. The six permutations
of the indices 1,2,3 fall into two groups of three cyclic permutations. Brackets
belonging to two such cyclic groups are pairwise adjoint with respect to ky, ko,
and kg. If adjoint brackets are to be equal, such as happens in Oy, or if
brackets are pairwise self-adjoint, the two cyclic groups coincide. For exam-
ple, we have for Ty a cyclic group of three equal brackets, obtained by cyclic

interchange of inner and outer indices from the first one:
[202]11 = [220]22 = [022]53 o

The other cyclic group of three equal brackets can be obtained from these by a
transposition of two indices. Thus by interchanging 1 and 2, i.e., adjoining

with respect to ks, one obtains:
[022],, = [220]y; = [202]55 .

For Op all six are equal. On the other hand, the bracket [220]55 is self-
adjoint with respect to ks, hence there is only one cyclic group of three

brackets derived from it and they are equal both for Ty, and O, namely:

[220] = [022]ll = [202]22

33

h. The Bracket Relations for Csi, Dsi, Csh, Dgh.=—No simple rules

for the complete tabulation are available and the theorem plus corocllaries will

be used. In order to obtain the most compact form for the results, the follow-
ing scheme has been adopted.

For any particular bracket we must first decide whether or not it is
zero. For Cgi all zero brackets are listed in Table VIII. The proof that these
brackets are zeros for Czi is given in Appendix TIIT. The groups Dsi, Ceh, and
Dgh have the same zeros and the additional zeros listed in Table IX. The latter

was obtained from Tables V, VI, and VII according to the procedure shown in

Table IV.
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TABLE VII

BRACKET RELATIONS FOR Ty, AND Oy

i3> | 23| 31| 12| 11| 22| 33
[eee] 0 0 0 et =t
§ | leaw] [+, © 0 0 0 0
> ~
[0} .
I [wew] [ O ™ | O 0 o | o
d ‘\\
[awe] | O 0 |+ 0 0 0
[axoon ] 0 0 0
3
J lwee] |+ O 0
I \\\
o [ewe] 0 + 0
[eew] 0 0 |+

+ means nonvanishing bracket for Ty and for Op.
O means zero bracket for T} and Oy.

In T, + is one of an independent cyclic set of
three equal brackets.

In Op + is one of an independent permuted set of
three or six equal brackets (three, if brackets
are pairwise self-adjoint).

Dotted lines indicate places of brackets of the
same set.
If a bracket does not vanish according to Tables VIII and IX, then
its relations to other brackets are shown in Table X, up to m = 6 inclusive.
Table X is arranged in three parts, according to s = 0, 1, or 2.
Each part consists of seven sub-tables for m = 0, 1, ... 6. The sub-tables,
except the simplest ones, have the form of a core array of coefficients bor=-
dered by brackets, This arrangement represents a double-entry table, similar
to the familiar trigonometric tables: brackets on the left are equal to the
linear combinations of those at the top, with the listed coefficients, whereas
brackets on the right use these same coefficients with those at the bottom.

That this arrangement, in which adjoint brackets stand at opposite ends of
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rows and columns, is possible is

m = 4 we have

[31elp3

[136]51

The two equations are adjoint with

due to Corollary V.
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[40el31 + 3[o04e]3

3[40e]pz + [ose]ps

respect to ka.

TABLE X

RELATIONS FOR NONVANISHING BRACKETS FOR Cai, Dsi, Ceh, Deh

s =0
m
0 [oce 153
1 ——-
2 [2celzz = [oze]z3
3 [120]33 = -3[30w]s3
[210]33 = -3[03w]33
" elacely, = lzzely, = 2losels,
5 [s00]53
[oan]ss -2 [2a0lss
[140]55 -3 [410]33
[osw]=3
g feoely; lsselsy loselss
[s1el33 0 -3/10 0 [iselss
[42e]35 -6 0 9 laz4elssz

[ose]55 [33e]55 [soe]55

For example, for s
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TABLE X (Continued)

s=1 n-=even
m
0 -
1 [100]3; = [oww]pz
[owly) = -[row]yy
2 2laoely) = - [11elpz = - 2[ozelz
2lzoelys = [12e]3; = - 2[ozelys
3 [sow]3l = [1an]z; = [2mw0]p3 = [o3w]ps
mlsowlyy = -[rawlys = [2wls = [oawls
i [4oe]31 [o4e]51
[s1el,; 1 5 lasely
[2ze]s) -3 -3 lazelyy
[18elps -3 =1 [siels
[ose]y5 [40e]ys
5 [s0w]5; [osw],s : [sowlys [osw] 5
[4w]p5 -2 3 [wawls; | [ewly 2 3 [y
ol 4 6 [ewly | [saly; 4 -6 [awly
[osw]yy [s00]5y ' [osw]z, [sowlps
6 [60e 37 [osels;y
[s1elpz 1 3 lisels;
[42e]5l -2 -3 [24e]p3
[aselos -2 2 [sselz
[24e]3; -3 -2 [azelys
[iselys -3 -1 [siely

[oseloz [ece]ps

*
The same table can be used for n = odd if each bracket with outer indices 23
receives a minus sign, according to Corollary VII.
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TABLE X (Continued)

s=2 n=even
[ooely; = [ooeln
[1o0]1; = [oww]yp = [100]pp
[Olm]eev = -[rowlyp = fow]yy
[11e]p = [20ely; - [20elpp
lozely; = [20elpp
[oze],, = [20elj;
[11€]y; = - [12elpp = 2[20el;p = -2lozely,
[sanly; [sowlpp
[210]1, -1/2  1/2 [120]75
an], -1 2 [zl
[12m]5p -2 -1 [2100]7
[oaw];p -1/2  1/2 [sow];p

[oaw]no [osw]ll

[40e]i; ([osely; + [40elpp) [oselnn

[31e]12
[22e]y4

[046]11

[oselpy ([40e]os + [o04elyq) [40elq;

-3/2 -1/2
-5/2 1/2
1/2 1/2

|
l
5/2 !

[13e]12 [Slé]ll 1
7/2 [zze]ee: [s1e]np -1

-1/2 [406]22 [226]12 *3

[40e]is [o4e])5

3 [133]22
-5 [1selyy
-3 .[22@}12

[oee]yp [40e]i5

[410]7p
[32w]y7
[32w]5n
[230]y0
[140]71

[lﬂb]ge

[saw]y; [o=wlis [s0w]on

1 3 -1 [1a0]q0
-3 -6 1 [2aw]lpp
1 6 -3 [aaw]yg
-3 -l 3 [saw]y,
0 2 -3 [a10]pp
-3 -2 0 [a10]y;

[osw]ps [s0w] 5 [osw]yq
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TABLE X (Concluded)

6 [eoelyy [eoely Losely [0selop
[s1e]p -1 1 -3 3 [isels
[4ze]{] -k -2 3 6 [z4elnp
lazelpy -2 b 6 5 [2eely
[ssel;p 2 -2 2 2 [aselip

[oee]22 [oee]ll [606]22 [soe]q;

[soelyp [oselip [azely;
[s1e]ly; 2/5 18/5 -3/10 [1selnp
[s1elos -8/5 -12/5 -3/10 [1sely;
[4¢2e], -2 -3 0 [24elyp
[sselpy 4 -k 1 [asely;

[ose]l o [60e]1n [33e]5p

s=2 n=odd
m
0 loaw]so
1 —--
2 [ozwlyp = [200]1p
3 [21el,5 = -3[o3el;p
[azely, = -3leoel,
b 2lacwlyp "= [2zw]1p = 2[low]yp
5 2[a1e]yp = 3l2zel;p = -[oselin
2[14e]lyp = 3[szelyp, = -[s0elip
6 [s10]75 = - 3/10[z30]1p = [1sw]p
[42w],, = -6[sow];, + 9loew];,
[2a0]15 = 9lsow]ypy - 6[cew];p

L. THE NUMBER OF NONVANISHING INDEPENDENT BRACKETS

Let I(n) be the number of nonvanishing independent brackets for each

point group as a function of nj further let P(n) be the number of possible

brackets, E*¥(n) the number of valid equations (13) between them, E(n) the num-

ber of equations (13), valid and nonvalid, and K(n) the number of nonvalid
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equations (13) corresponding to h = kN. Then evidently

I(n) = P(n) - E(n) = P(n) - E(n) + K(n) . (18)

Case 1. Groups Cy (N = 1,2,3,4,6)

It will be shown in Appendix II that Py(n) = Ex(n) for a rotation axis

along ks, reducing (18) to
ICN(n) = KCN(n) . (19)

In order to evaluate KCN(n), a counting diagram as shown in Figure 2 can be
used. For any of the six allowed combinations of s,z when n is even (three
when n is odd), each possible equation (13) is represented by a point in the
h,m plane. The equations for a given value of n are represented by lattice
points m < n. ©Since by definition 0 <w <m, we have -m + (s-2z) <h< +m+
(s =2z); hence, for each s,z pair (subgraph), the points fill a triangular ar-
ray. For purposes of counting it is convenient to think of each point as the
center of ‘a one~by-two rectangle, the rectangles filling the area. The points
(equations) satisfying h = kN lie on a series of equidistant horizontal lines
spaced by a distance N.

For the group C; all the points must be counted as a function of n,

i.e., up tom = n inclusive, leading to

ICl(n) = Po(n) = Eg(n) = Kcl(n) = agn® + bon + co (20)

where, for n = even, a5 = 3, by = 9, ¢y = 6, and, for n = 0dd, ag = 3/2,

by = 9/2, co = 3.

For CN(N > 1) the number of points lying on the horizontal lines h = kN

must be counted and is easily seen to be of the form an® + bn + c, where
a = ag/N (21)

stems from the wmain triangle area covered by these lines (i.e., the rectangles

of the lattice points on these lines) while
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Points represent E-equations (13) in h,m plane for the various possible combi-
nations of s and z. Arrows indicate K-equations for which h = kN. The case
illustrated is N = 3. For n = even all six diagrams are validj for n = odd,

only those with parentheses.

Figure 2. Counting diagram.
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b = b /N for N = odd
b = (by +1)/N for N = even, n = even (22)
b = (b, + 1/2)/N for N = even, n = odd

stems from circumference points with h = kN whose rectangle areas stick out be=-
yond the main triangle area. The values of c are most easily evaluated in prac-
tice by solving for ¢ for some low value of n for which ICN has been counted.

In this way the formulas of Table XI for the C classes result.

Case 2. Groups Dy (N = 2,3,4,6)

The quantities on the right-hand side of (18) will now be interpreﬁed
after the effect of a binary axis along kj has been taken into account. This
effect is manifest in two ways: certain brackets vanish, reducing P(n), and
certain equations about ks must be dropped, reducing E(n), as will now be shown.

According to Corollary I, all brackets for which the index 1 occurs
an odd number of times vanish. In any bracket the index 1 occurs p + n -~ m
times inside and 1/2(s - ©) times outside, together p + n - m + 1/2 (s - 8)
times. On the other hand, any equation (13) about ks contains brackets with
the same n,m,s, but different p,8. The coefficient ge of any such bracket is
ip+l/2(s-9) iS times a real factor. Thus, if n - m + s is even, then all
brackets with imaginary coefficients in the equations (13) about ks vanish due
to the binary axis about k;, while if n - m + s is odd, those with real coef-
ficients vanish. Thus, every equation (15) about ka becomes equivalent to its
complex conjugate, and in order to find EfN(n) it is only necessary to count
points h # kN for which h > 0, i.e., the upper half of the counting diagram of

Figure 2. Consequently
* *
EDN(n) = 1/2 ECN(n) . (23)

The number of possible brackets after introducing the binary axis ky is clearly

PDN(n) = Iogp(n) (2%8.)
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or wit (18) and (20)

Ipy(n) = TIgy,(n) - 1/2 [Ig,(n) - Iey(a)] . (24)

Substituting the results found under Case 1 for Iczh and ICl’ we have for

1/2 Igy(n) + 1/2n + 1 (2ka)

[»]
Il

even IDN(n)

n = odd Ipy(n) 1/2 ICN(n) + 1/ n o+ 1/4 (24b)

Case 3. Groups Th,Op

For the class Ty, analysis of the effect of cyclic permutations leads

immediately to
ITh = 1/5 ID2h ’

while for Oy case various simple ways of counting yield the results of Table XI.

Case 4. Isotropic Case

For an isotropic sample, one can always take the 3-axis along the applied
constant magnetic field. The number of nonvanishing independent brackets would beA
Jjust that corresponding to the crystal classes Cy with N being infinite. There-
fore, every equation given by (13) and (14) is valid except those pertaining to h = O.

Since m = O always, the number of such equations is given by

a=b=20

1 if n = odd or zero (2ke)
c =

2 if n = even > zero.

Note that the first line of equation(2hc) agrees with equations (21) and (22).

5. EBXPLICIT FORMS OF THE GALVANOMAGNETIC TENSOR
It was shown in Section 2.b that

Q Q,1 1,0
o HB) = pyilily = Agylily/A (25)

(04
where Aij is the cofactor of 05 3 in A = det 0139 and Ei is the direction cosine of

the laboratory coordinates axis & with respect to the symmetry coordinate i. For

@ = 1 the equation represents the magneto resistance, for @ # 1 the Hall effect,



THE NUMBER OF NONVANISHING INDEPENDENT BRACKETS an® + bn + c

3k
TABLE XI

Group n a b c
C1=S2 even 3 9 6
odd 3/2 9/2 3
Coh even 3/2 5 b
odd 3 /4 5/2 /4
Cai even 1 3 2
odd 1/2 3/2 1
Cah even 3 /4 5/2 2
Lk+1 3/8 5/ 11/8
bk-1 3/8 5/ 7/8
Ceh 6k—2 , h‘/}
2k '} 1/2 } 5/3 83
k+2 b)
6k-1 T/12
6k+1 ] /b 5/6 23/12
| 6k+3 5/4
Doh even 3 /4 3 3
odd 3/8 3/2 9/8
Daj even 1/2 2 2
odd 1/4 1 3/L
Dspn even /8 T/4 2
hk+1 3/16 7/8 15/16
bk-1 3/16 7/8 11/16
Deh k-2 5/%
6k /b 4/ ?
6k+2 ' /3
6k-1 13/2k4
6k+1 ] 1/8 ] 2/3 29/2k
6k+3 7/8
Ty even 1/ 1 1
odd 1/8 1/2 3/8
On even 1/8 3/l 1
Lie+1 1/16 3/8 9/16
bk-1 1/16 5/8 5/16
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and this is true for all that follows. Substituting the expansions of all 013

into (25) we obtain

a1
% (B) = (Z Py B2N +Z QZ%‘}rl an+5/z Mon B2N . (26)
T]:O T]=O T]=O

Qi a1
The explicit expressions of Pon , Q2n+1 s and Mzn in terms of the brackets

and the two sets of direction cosines can be readily obtained from (25) and (26)
since M is the expansion of A and P and Q are expansions of (Aijﬂiﬂﬁ).

There are three classes of special cases of equation (26) that are of
interest for both historical and practical reasons. The first class, which is valid
for some crystal symmetries, pertains to special geometrical configurations. The
second class, valid for an arbitrarily oriented magnetic field, pertains to isotropic
substances only. The third class, valid for all crystal symmetries, pertains to a
small, but arbitrarily oriented, magnetic field.

a. Galvanomagnetic Tensor for Special Orientations*.-—This class of

special cases applies to all crystal symmetries except Sz and Csh. The 3-axis is
taken either along a rotational axis of three-, four-, or six-fold symmetry or along
a two-fold axis if it is accompanied by another two-fold axis normal to it. This
class is <divided into two subclasses according to the relative orientations of the
magnetic field and the current.

“Case l. Transverse Field

Assume
(1) Laboratory coordinates are along symmetry coordinates, i.e.,
17 = 42 = 43 = 1.
(2) The magnetic field is along the ka-axis, i.e., 73 = 1.

(3) The current flows along the ki-axis.

According to the results of Section 3%, under condition (2) there are only two kinds

*In most papers on the theory of galvanomagnetic effects the formulas for this class
up to the second power of B are used instead of equation (26).
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of nonvanishing brackets, [oow];o , [ooelys , which will be abbreviated by

[w]lg, lels5, 1 = 1,2,3. It follows that

ptt(B) - p11(B =0) = -~ B Uzn/ [ol11 Z Naq (27)
ﬂ"
p21(B) = Z B2 [2q + 1] / Z B2M Naq (28)
n=0 =0
p31(B) = 0 ; (29)
where
}: B21 Noy = ZE: B2 [oly7 [29]pp + Ej B=" Uaq (30)
’q:O T]=O ‘I’]=l
n-1
Usn = Z {[2(71 - a)lyp [2aly, + [29 + 1112 [27 - 2q - 1112} - (31)
g=0

Case 2. Longitudinal Field

Assume
(1) Laboratory coordinates are aldng symmetry coordinates, i.e.,
1
o= 18 = 13 = 1.

(2) The magnetic field is along the ks-axis, i.e., 73 =1

(3) The current flows along the ks-axis.

Then
p®3(B) - p33(B=0) = - Z :all [Enlagﬁo]% Z B2 [21]33 (32)
n=1 =0
p™3(B) = p=2(B) = 0. (33)

Note that equations (27-33%) have the same parity as predicted in Section 2.d,

from which one can in fact write down equations (29) and (33) directly.
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b. Explicit Expression of ph“(ﬁ) for Isotropic Substances.-—Upon the

introduction of a magnetic field, an isotropic sample behaves anisotropically as

if it posesses a rotation axis of infinite-fold order along the direction of the
magnetic field. In this case one can always take the 3-axis along the magnetic
field direction; thus only brackets of the form [oon]ij, or [n]ij , are involved.

There are only three kinds of nonvanishing brackets: [ooe]ll B [ooe]55 , and

[oow]{o . Therefore, remembering that [ococly = [000]53 , the explicit forms of
A
Pg; 5 Q§%+l , and Mon contained in equation 26 can be readily written out as fol-
lows:
" n L
Pan = O\, }j[g(n - a)l11 [2qlzs + Is I3 EEI[E(H - a)lyy ([2qlyy - [2al33) +
q=0 q=0
-1
+ z [2q + 1115 [2(n - @) + 113, (34)
=0
Qen+r = -!; zg: (2(n - Q)]55 (29 + 1]1o (35)
g=0
n r r
Mon = 2[2(71 - 1) 1x3 }:[E(r - a)lyil2qlyp + 2[2(1" - q) + 1lypl2g = 1110k, (36)
I':O q_=O q.=l

where 2; has been used as an abbreviation defined by

AU AW

ﬂﬁ =
Thus, if N = p, ££ automatically vanished in agreement with the evenness of the
magneto resistahce, while if M % W, the subscripts ijk must be a permutation of
123 of the same parity as the superscripts NuVv. In that case £; is the direction
cosine between the symmetry axis k and the laboratory axis v. Note that if A~ ,

u~ , and j-axis are orthogonal to each other, then pK“(E) is a purely odd function

of B. This result conforms with the prediction of Section 2.e.
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c. Galvanomagnetic Effects for Low Values of the Magnetic Field.—

This class applies to cases with arbitrary orientation of the sample and of the
magnetic field with respect to the crystal axes for all crystal structures.

For the practical purpose of reading off the explicit form of the galvanomagnetic
tensor components p%* = Fu/Jl in terms of the brackets, tables have been com-
piled for all except that for So, which is omitted for simplicity.

If only terms up to B® are considered, then equation (26) becomes
(045
o0t = -(%%l +Qy B + (PE' - B2 Mz/Mo) BZ + ,,.i}/MO . (37)

Table XII gives My. Table XIII gives the coefficients of li l? in Pgl. Table
XIV gives the coefficients of 7y, the directidn cosines of Eiin the crystal co-
ordinate system, resulting in Q?l. For the purpose of tabulating the coefficient
of B® we write

(041 1 a1 a1
P2 - Py Mz/Mg = Rz = Ry 7% 7y - (38)

‘Tables XV, XVI, and XVII give the R%% for the various classes. Coef-
ficients for higher powers than B2 can be obtained similarly if needed. These
tables are useful, for example, in determining what measurements must be made in
order to determine all the independent brackets (material constants). In prin-
ciple, the number of measurements must be at least equal to the number of inde-
pendent brackets. It must be emphasized that a complete set of brackets cannot
be determined from magneto resistance measurements alone, even allowing varia-

tion of the £'s and y's. At least some Hall measurements are also required.

6. DISCUSSION

The anisotropy of galvanomagnetic effects, first studied by Righi in
1883, appeared in many works from time to time. However, the crystallographic
effects have never been taken into account comprehensively. An overall inves-

tigation of the crystallographic effects of the 32 point groups upon the iso-
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TABLE ¥II

THE EXPLICIT FORM OF .M,

Csh [ooo]55 ([ooo]ll [ooo]22 - [ooo]ie)
Dsh [ooo]55 [ooo]ll [ooo]22
C315D31,C4h >
(ooolz3 [oooly;
Dah,Ceh,yDen
T} 0 [ooo]il
TABLE XIII
THE EXPLICIT FORM OF P9
1 O h e 1 O 1 O 1 O
L1 k3 L2 12 I3 I3 Iy 0o+ 02 L
Caoh [000],A[000] [0o0],4[000] [ooco ], [0o0] -[ooo]2 -[oo0],, [000]
22 33 33 11 11 22 12 33 12
Dzh [000122[000]§5_,[000]55[000]11 [ooo]ll[ooo]22
Cai,Dai ]
.. 2
C4hsDap [ooo]ll[ooo]55 [ooo]ll[ooo]55 [oco]7;
CehsDsh
Th,0n [ooo]%l [ooo]il [ooo]il
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TABLE XV

THE EXPLICIT FORM OF Rp FOR Cph, Dzhf

lc{‘li‘{([ooo]33 [aoo]ll + [100]?1) A/B + 2([:.00]25 [mc]}l - [ooo]ﬁ [200]12) A+ ([coo]53 [aoo]22 + [100]23) AB} +

+ 12 {([ooo]33 l2o0], + [100]53) B/A + 2([200],,; Tao0l, = [oo], [200]; ) B + ([ocol {200l + [mo]gl) AB} +

- 8%
P {[ooo]n [ocx)]e2 [200]53 + [000111 [100]25 + [000122 [1oo]§I + (2[100]25 [mo]jl - [c.oo]l2 [200133) (1 - aB) [coo,];-g}/[ooo]ﬁ +
+ (f13 + zgz}){ ([eool s [200] ), = [200],, [100]) (1 + 4B) - (ool [aoo]); + la0ol5)) & - ([oool,, [200), + [10012) B}*
l‘f[i {([000]35 [020]11 + [olo]%l) A/B + 2([010]3l [010]25 - [000]55 [020]12) A+ ([000]55 [oeo]22 + [mo]gﬁ) AB} +
i R: + lgl; {([ooo]35 [020122 + [010]22;) B/A + 2([010]51 [o;.o]25 - [ooo]35 [czo]le) B+ ([ooo]ll [020]55 + [010]?1) AB }+
+ 1212{([000122 [oao]” [ooo]ll + [t:»oo]ll [mo]i; + [000]22 [010];21) + (2[010]25 [010]51 - [ooo]12 [020153) (1 - 4B) [ooo];z}/[ooo]ﬁ +
+ (l?l; + Igli){([ooo]ﬁ [ozo]12 - [010]51 [01_0]25) (1 + AB) - ([000]55 [ozo]ll + [010]%1) A - ([ooo])} [020]22 + [010123) B}*
l?li {([ooo]22 [ooe]ll + [001]52) / [coc;]ll - 2[002]12 A+ [coz]22 AB } {ooo]35 +
+ lglé {([coo]ll [002]2-2 + [oo:.]fz) / [oool22 - 2[0&::2]12 B+ [ooz]ll AB} [ot)o]515 +
.
Rag a1 .
+ fals (1 - AB) [002]55 [oc:o]ll [coo]22 / [ooo]55 +
+ (l?lé + tgli){ (1 + AB) [002]12 - ([m:!o}22 [ooz]ll + [<>oo]ll [002]22 + [001]$2) A/ [000]22 }* {ooo]33
- (RGs + Faz) (1343 + £513) (ool [onlys = loaw], [oroly = lavol, [onal})) + (£52i+ £523) ([ovoly, [onaly) = [ooa) , [orolyy = Loool, onalys)* (1 - 4B)
- (Rgi + Ri%) (lgl; + Igl;) ([ooo]ll [10"]23 - [001112 [J.oo]51 - [uoo]12 [101]31)* + (lgli + lgl;) ({ocvo]22 [101]51-[001]12 [mo]25 -[ooc]l2 [101]25)(1 - AB)

l{ixl:;{([ooo]35 [1r0]y; + 2[010151 [100]5]_) A/B + (2[100]23 [010]51 + 2[010]25 [100151 - [000155 [110]12) A+
+ ([ooo]EE [110]5ﬁ + [;@,]:’5 [_uu],d.‘ 4o [1L:;]._‘J, juln]es} "‘B}* +
+ lg‘llg"{([ooo]337 [110]22 + 2[).00]23 [010]25) B/A + (2[100]25 [010]51 + 2[010]25 [:Loo]51 - [ooo]55 [:u.o)lz) B+
. *
+ ([ooo]ll [110]35 + [ooo]ﬁ [1.1.0]1l + 2[100]51 [4.]51) AB} +
- (893 + B3 o 1{
+ 1313 ([000]22 [1.1c>]55 [ooo]ll + 2[000]22 [100]51 [010]51 + 2[100J25 [cuo]23 [ooo]ll) +
+ (2_[100}25 [o:\.o]31 + 2[010]2) [100]31 - [<:noo]12 [110]35) (1 - AB) [000]12 }*/[coo]55 +

+ (s + 285) {([000]53 (120, - [mo]23 [om]51 - [010123 [100]51) (1 + AB) -

- ([oco]55 [1:.0]ll + 2[010]31 [100]51) A - ([ooc]33 [u.a]22 + 2[1oo]25 [010]25) B}

A = looolys/lovoly 4B = 1/(8/8) = [ocolpp/lovol

*
B = [ocm]lz/[:mo]22 * means zero for Dpp

)1 The whole table should be divided by a factor (1 - AB).
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thermal galvanomagnetic effects is attempted in this chapter. The results
include as special cases the work of Voigt and of Juretschke concerning the
tables of brackets, the work of Seitz, Pearson and Suhl, and Goldberg and Davis
concerning the formulas for cubic crystals, and some of the work of Kohler,
insofar as it is concordant with Onsager's relations.

For Dai and m < b Juretschke'sl5 results agree completely with ours
presented in Table X, except for a different notation. In order to facilitate
the comparison of our bracket notation with the ncotations used by Seitz and by

Pearson and Suhl for the case Op, Table XVIII has been prepared.

TABLE XVIII
NOTATIONS OF VARIOUS AUTHORS

Sy T

9% = 1/po [oo0lqq

a [100]p3 = [oo1lqp

B [200]2p = [o02]77

7 [o11]p% = tllo]lg

B+7y+0 [200]17 = [oo02]33
a [100]25/[000]11
b ([200]pl000];1+[200185)/[000] 5]
c -([100]%5-[011}23[ooo]ll)/[ooo]§1
a ([200]11-[200]22-[011]25)/[ooo]ll

Many investigators limit themselves to cases where the magnetic field
is either parallel or normal to the current, or in the plane of the current and
the Hall probes. Such limitations seem unnecessary with the broadened defini-
tions of the galvanomagnetic effects, which permit the magnetic field to be ar-

bitrarily oriented (Seitz did this for the magneto resistance of cubic crystals
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including terms up to B2), Therefore all the galvanomagnetic effects bearing
various conventional names, such as the transverse and longitudinal magneto
resistance, the Hall effect, the "planar Hall field," and the Corbino effect,
are included as special cases. They can all be analyzed in terms of an ascend-
ing power series of the magnetic field; the only known exception is thé oscil-
latory behavior at very low temperatures. The Corbino effect, about which, to
the best of our knowledge no work has been done on single crystals, will be
dealt with in Chapter II.

We have also brought to light certain properties regarding the parity
of the galvanomagnetic effects, about which a certain lack of consistency is to
be found in the literature. In particular, the magneto resistance is necessarily
an even function of the magnetic field, while, contrary to the odd-Hall-effect
convention, it was proved here that the Hall effect is in general neither an cdd
nor an even function of B, but can be purely odd or purely even or zero when
proper conditions are satisfied. These contentions are firmly supported by ex-
periments, for example by Logan and Marcus, and by Goldberg and Davis.

In testing a theory of the galvanomagnetic effects, one only needs to
compare the theoretical and experimental values of the brackets. But this pro-
cedure has not been followed by all investigators. For example, as implied by

Seitz's work, for n < 2 Table VII for Op gives five independent brackets, i.e.,

[ooolqy, [oo1lyp, [oo2]17, [110]79, loo2]53 »
All empirical data prior to 1951 are incomplete. In 1951 Pearson and Suhl meas-
ured the first complete set of experimental brackets on germanium for terms up
to B®. Likewise, for n < 2, Tables VIII to X for Dsi give 12 independent brackets:
[oooly1, [oo0lzss [100]p3, [o01lyp,
[200]17, [200]22, [200]53, [o02]41,

[200]25, [002]55 [o11]q7, [011]25, .
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Experimentally, all data prior to 1956 are incomplete for materials of this
group. Complete data were recently published by Okada (1956) and in part by
Abeles and Meiboom (1954) for bismuth. Abeles and Meiboom, by taking [ooo]ll
and [001]12 as given, made a complete set of quantitative calculations, against
which the measurements of Pearson and Suhl were compared. -Unfortunately, the
comparisons were not made completely in terms of the brackets. In trying to
bring this into order we analyzed the experimental data given by Tables I and
II of Pearson and Suhl. We found that the data are not self-consistent, This
might be due to experimental errors, or more likely to the uncorrected high-
power terms and misalignment of the claimed geometry. The most serious in-
consistency appeared in Table II of Pearson and Suhl, in which the values of
b, ¢, and 4, for &, B, and &, for p-type Ge at 77°K give a negative sum. But
according to their own Table I, the sum is positive, and it will be shown in
general in Chapter III that the sum of b, c, and d, for the bracket -[oo2]sz,

is always nonnegative.



CHAPTER II
PHENCMENOLOGICAL THEORY:
THE CORBINO EFFECT*

1. GALVANOMAGNETIC EFFECTS AS BOUNDARY VALUE PROBLEMS

In the previous chapter the phenomenclogical theory of the isothermal
galvanomagnetic effects for single crystals was developed quite generally inso-
far as Ohm's law is valid,** i.e.,

P oo P ep-123) . (2.1)

In order to obtain pozB the general practice is to employ samples of convenient
geometry such that the solutions of the equations

Curl F (B) = 0 (2.2)

=

Div J (B) = O (2.3)
satisfy certain boundary conditions. Note that the vectors J and F are now
functions of the constant external magnetic field B.

In Chapter I, we used the Boundary conditions
J2 = J3® = 0. (2.4)
The physical realization of (4) limits us to samples of special geometry.
Boundary conditions other than (4) have also been used, related to the various
sample geometries employed (described in Table XIX).

2l in 1915, made a rather extensive study of the galvano-

Volterra,
magnetic boundary value problems for isotropic samples. For single crystals
the problem in general becomes much more complicated. Since the final aim of

studying the galvanomagnetic effects is to obtain the material constants, or

brackets, it does not seem .efficient to adopt an awkward geometry involving in-

*The material presented in this chapter can be regarded as an immediate exten=
sion of the late Prof. W. W. Sleator's work (reference 48). Prof. Sleator's
paper was brought to my attention by Prof. O. Laporte Just before the final
draft was put to print.

*¥This excludes the problems of "hot electron," superconductivity, oscillatory

diamagnetism, and of the galvanomagnetic effects pertaining to ferromagnetic
substances.

w7
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TABLE XIX

VARIOUS GEOMETRIES EMPLOYED¥

Geometry Author

Rectangular plate Hall, 1879

Split rectangular plate
Righi, 1883

Cruciform

Semicircular plate
Ettingshausen and Nernst,

Circular plate with a radial saw cut | 1886
Circular plate with circular electrodes Corbino, 1911

Circular plate with point electrodes Alimenti 1915; Bordonavo,
Square plate with two perpendicular sets of arms Heaps, 1918 o
Circular cylinder with planar radial field Poppelbaum, 1953

*¥See references 21 to 23,

inconvenient boundary conditions. Nevertheless, a simple case will be investi-
gated in this chapter for historical and practical reasons. The case involves
a circular disk bounded by two concentric circular electrodes. Such an arrange-
ment is known as a Corbino disk. It was employed by Corbino for the first time
in 1911.22 In the litérature,25 however, the 'Corbino effect' has been used
quite loosely to include galvanomagnetic measurements pertaining to cases where
a current (rather than a voltage) transverse to the magnetic field is measured
irrespective of the geometry of the sample*

In the next section it will be shown that a simple relation exists be-
tween the Corbino effect and the other ' galvanomagnetic effects, for isotropic sam-

ples or properly'cut single-crystal samples with a suitably oriented magnetic field.

¥Tt is clear that the earlier controversy (see reference 1, p. 127) regarding the
relative significance of the Hall and Corbino effects becomes meaningless. They,
as well as the magneto resistance effect, are special cases of the general gal-

vanomagnetic effect.
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2. CORBINO EFFECT FOR SINGLE CRYSTALS

Consider a circular disk cut from a single crystal such that the
normal is along a three-, four-, or six-fold axis of rotation. Suppose
a constant radial current is maintained at constant temperature through two
concentric circular electrodes by means of an electric field. When a constant
magnetic field is applied normally to the disk, either of the following two
equations can be used as boundary conditions,
7

- 52 - o , (2.6)

= J? = 0 (2.5)

with ¢, r, z denoting a cylindrical laboratory-coordinate system such that the

z-axis is along the 3-axis and along the normal. Either (2.5) or (2.6) lead to

J° = F* = 0 (2.7)
FI‘
N 5 % N
7= P11% + P17 = Fom (2.8)
FrplZ r
P - ETem oF e (2-9)

or in terms of the brackets directly:

I o= ZB2T] [oo21]q 7 (2.10)
=0

J¢ = - Fr Z B2n+l [00(2n+l)]12 (2.11)
n=0

Note that the symmetry of the problem permits one to take any two perpendicular
axes in the plane of the disk as the 1- and 2-axes; thus the first halves of
equations @.8 and (2.9)reveal general relations between the Corbino measurements

Jr, J¢, FY, the magneto resistance P11, and the Hall effect pjp. From these
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relations or equations (2.10) and (2.11) one can immediately draw the following
conclusions for a Corbino disk:
(1) The radial current J¥ is always an even function of the normal magnetic

field B.

(2) The circular current B1 (which is usually known as the "Corbino current")

is always an odd function of the magnetic field B.

These conclusions are also valid for isotropic samples. FExperimental confirma-
tion can be found in references 21 to 23.

The simplicity of equations (2.10) and (2.11) is noteworthy. They
afford direct measurements of'the brackets, which can then be used to test the
microscopic theories much more readily than the usual magneto resistance and
the Hall measurements. However, they involve only a limited number of brackets,
and they cannot be used to determine a complete set of brackets.

One might think that another set of boundary conditions such as

FZ2 o= J% = 0 (2.12)
would be as effective as (2.5) or (2.6). But this is not the case, because of

the way equations (2.1) are coupled.



CHAPTER III

MICROSCCPIC THEORY

1. INTRODUCTION

In order to survey the various parts of this dissertation, the following
block diagram (Fig. 3) was prepared.

In the previous two chapters we studied the phenomenological part of the
diagram; in this last chapter we shall study the microscopic part.

In essence, the main purpose of Chapter IIT is to give a general defini-
tion of the brackets according to the guantum theory of solids. This will be done
in two ways: (1) according to the usual single-band model, (2) according to the
multiband model.

a. Early Microscopic Theories of the Galvanomagnetic Effects.--—l’19

Five years after the discoveryiof the Hall effect, Lord Kelvin in 1884 praised
Hall's work as the 'most important' since the days of Faraday. Many physicists,
including such leading figures as Lord Kelvin, Stokes, Boltzmann, Lorentz, and
J. J. Thompson, tried to give a wmicroscopic interpretation to both the Hall effect
and the magneto resistanceal It was in their efforts that the present theory of
solids had its genesis.

The first successful theory was given by Drude in 1900; he assumed that
a metal consists of a gas of electrons which possess an average velocity and
pursue random motions through the metal. The metal ions, owing to their large
mass, can be considered immobile. Drude's theory has an attractive simplicity
and is able to predict the Wiedmann-Franz law, but his picture is known to give
incorrect numerical results.

In 1904 Lorentz reinvestigated the problem by using the Maxwell-
Boltzmann statistics and also investigated the dynamics of the collision process
more carefully. It was found that Lorentz's theory made no improvement in the

final results and in some cases was even worse than Drude's theory.

51
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A great improvement in the situation was brought about in 1928 by
Sommerfeld who introduced the Fermi statistics. He imagined a metal consisting
of a number of electrons, without interaction, moving in a region of constant
negative potential energy. The motion of these electrons in the metal is de-
termined by the Schroedinger equation. In spite of its successes, Sommerfeld's
theory fails to account for many facts such as the difference of metals and in-
sulators, the two signs in the observed Hall effect, the cohesion energy of
metals, and the fact that the calculated values of the magneto resistance are
about 104 times smaller than the observed ones.

These and many other things can be nicely rectified, at least qualita-
tively, by the band theory of metals, which is an approximation based on the
Schroedinger equation and the periodicity of the crystal structure. The band
theory was essentially developed by Bloch. Jones and Zener (1934) were the first
to obtain an order-of-magnitude agreement between their calculated values and the
experimental data for lithium.

Thus during the years of 1928-1934, in the hands of Sommerfeld, Bloch,
Peierls, Jones and Zener, Wilson, and others, the electronic theory of conduction
phenomena in solids was established in its present form. Since then the theory
has been advanced from the gqualitative stage of the 1930's to the quantitative
stage of today through the efforts of many investigators.:. The vast development
made in the field of semiconductors after World War II has contributed greatly.

However, nothing fundamentally new has been added since 193k.

The inherent difficulties of the band theory are: the justification
of the one-electron approximation upon which the band theory is built; the assign-
ment of a distribution function for the carriers in solids; the existence of a
relaxation time; and the validity of a simple form of the Boltzmann equation of

transport. Detailed accounts of these developments since the days of Drude and
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difficulties can be found in standard text books,

19,24

and in the literature.¥*

b. Survey of the Restrictions of Existing Theories.——All the existing

microscopic theoriesl9:28 can be conveniently classified into two categories:
the single-band model and the multiband 'model.** All models make the following
fundamental assumptions.
(A) Ohm's law is valid, i.e.,
Ji = 033(B) Fy (1, = 1,2,3) , (3.1)
-where summation over the repeated indices is implied. For the multiband model
with g noninteracting bands the conductivity tensor cowmponents Uij(g) are composed

additively of the corresponding components of all bands:

q
oy® =) oM (5.12)

A=1
(B) According to the Bloch scheme, the charge carriers within each of the

g noninteracting energy bands are associated with a group velocity

V(A) = ‘ZK E(h)/ﬁ.: No= 1,2,...,0 , (3.2)

where k 1s the quasi-momentum and A is Dirac's constant. When A = 1, the super-
script will be omitted for the single-band model here and in all that follows.
(C) The number of electrons or holes per unit volume in the A-th band whose

wave vector k lies within the range k to k + dk is

st ™ (o) & . (3.3)

The aistribution function £ (k,t) becomes fO(K)(E) when B=F = 0 . The

latter function is defined by the Fermi-Dirac distribution and the distribution

of energy levels.

*¥For example, see references 25, 26, 27, and 28,

*¥*The two-band model and the many-valley model encountered in the literature are
special cases of the multiband model to be worked out presently. The same is
true for the single-band model.
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(D) 1In the presence of an electric field F and a wagnetic field B, T

(»)

cbeys the Boltzmann transport equation:

[E + _i_ K()\-) X _B_] . ka(x)(_lg,t) + [f(k)(-l_{_,t) _ fO(X)(E)l/T(h)(E) = O, (5'4)

=Xl o

-e and c being the electron charge and the speed of light. T(X)(E) is the relaxa-

tion time pertaining to the A-th band whose existence is assumed. The noninter-

action of the bands is expressed by the fact that no coupling exists between the
equations for different values of A (different bands).*
These assumptions are used in all theories of electron conduction in

solids. For their validity, see references 19, and 24 to 28.

The single band model (N = g = 1) was used by Jones and Zener in 1934,

and improved by Davis in 1939 and by Seitz in 1950. It can be expected to be a

reasonable approximation only for alkaline metals and for low concentration n-type

or p~type semiconductors. Even for p-type Ge and Si its validity is limited be-
cause of the degeneracy of the valence bands. Davis' and Seitz's treatments of
the single-band model are restricted as follows.

Restriction 1: Validity is limited to special orientations of the magnetic field
and current relative to each other and to the crystallographic
axes (Davis).

Restriction 2: Validity is limited to low values of the magnetic field (Seitz).

Restriction 3: Validity is limited to special classesvof crystal symmetry
(Seitz and Davis).

Although the idea can be traced back to Riecke31 in 1898, the two-band

*To be more specific, let us consider the case of a rather empty s-band that over-
laps nearly full p-band having slow holes and fast holes. By assumption, the
electrons in the s-band are the first kind of carriers, the slow and the fast
holes in the p-band are the second and the third kinds of carriers respectively;
these carriers are moving in the first, the second, and third bands respectively
independent of each other's motion. Furthermore no transition of electrons to
the p-band, and no conversion from the slow holes to the fast ones will take

place, and vice versa.
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model (q = 2), was first introduced by Jones52 in 19%6. Later, developments by
53

Sondheimer and Wilson,”” by Chambers,5u and many others55 followed. These
studies are restricted as follows.
Restriction &: The energy is no more general than a quadratic function in

reciprocal space.
Restriction 5: The parameters used are (magnetic) field dependent, rendering

it impossible to study the effect of crystal symmetry in general.
Another drawback of the two-band model in the hands of Wilson et al. is that,
because of the restrictions used, it always gives zero longitudinal magneto re-
sistance contrary to all known experiments.

The "many-valley" model is equivalent to a multiband model with ellip-

soidal energy surfaces for each one of thé noninteracting bands, arranged to con=-
form With the crystal symmetry of the substance.®* The model was used by Blochinzev

) 37-10

and Nordheim56 in 1953 and was recently elaborated by many authors:

2. THE SINGLE-BAND MODEL

a. The Definition of the Brackets.—If we write

f(k,t) = fo(B) -0 %%9

and substitute into (504), omitting the superscript A = 1 and neglecting terms

in F2 or higher; we have

e SEViE gB- g = o, -5)

where g is an operator defined Dby
2 = -V E x ¥, = (91,02,0) . (3.6)

The solution ¢ from (3.5) is well known.¥* It can be expressed in an ascending

¥IT this model is interpreted as containing many valleys in a single band, one
must justify the assumption that only intravalley transitions can take place
and that overlapping ellipsoids contribute independently and additively.

¥¥See reference 19, p. 225, or reference 29. Note that a sign difference in the
odd powers of ® is introduced according to the definition (16). (Equation num-
bers without a prefixing digit refer to equations of Chapter I.)
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power series of B, as follows:

SXCHLIGLEDE o0

Consequently, the magneto=-electric current density J can be written as:

(-e/4ﬂ3)k/1/1/qy £(k,t)dk
<e/”ﬂaﬁ>dfgfjp UERF-CRT (3.8)

J

1]

or in component form,

%=Z Z}ﬁmmm-mﬂlpmwfwm, (5.9)
n=0  m=0 p=0
where i,j = 1,2,3, and
[m-p,p,n-mly5 = ab? b/L/L/‘(E_ggg %EI P{:(Tgl)m’P(TQZ) (793) M %E—)dk ,
with | (3.10)
a = e2/kx3h2 ; b = efhZc . (3.11)

Iﬁ:}- means the sum of all permutations of (m-p) operators TQ1 , p operators TQo ,
and (n-m) operators TQs, in different order. This sum consists of n!/(m-p)'p!(n-m)!
terms. © has the dimension of energy, Q/H2 that of mass'l, and bTQ that of gauss~t
hence a bracket of order n has the dimension of Ohm™‘em~™% gauss”n. By comparing
equations (3.9) and (3.1) with (10a) it is obvious that the brackets defined by
(5.10) are identical to those introduced in the phenomenological theory.

It is interesting to observe that the assumptions II(Onsager's relation)
and III [power series expansion of Gij(En of the phenomenological theory come out
automatically as consequences of equations (3.5) to (3.9). Assumption II is a

consequence of the integration by parts of (3.10), leading to (11), while assump-

tion IIT is a consequence of the solution of the Boltzmann equation. This bears
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out the fact that the microscopic model is consistent with the well established
thermodynamical relations (7). Note that (3.10) is obtained without any re-
striction on the form of T(E) and E(g), except that T(g) exists and that T(E)

and E(g) must have the same symmetry as the crystal plus an inversion center.

The addition of the inversion center, which i1s a necessary consequence of the
principle of time reversal, was arrived at in the phencmenoclogical theory from
the fact that the vector B 1s an axial vector (antisymmetric second-rank tensor).
Thus every bracket behaves like a tensor of even rank, in the sense that they
transform identically into themselves under the operation of an inversion.

Since all isothermal galvanomagnetic effects can be expressed in
terms of the brackets according to (26) for arbitrary orientations of Jdy B,
and the crystal axes, equations (26) and (3.10) form the basis for a general
microscopic theory of the isothermal galvanomagnetic effects according to the
single-band model, without any of the restrictions mentioned in the previous
section. Therefore, this theory contains all previous works as special cases:
For crystal classes Dsh, Dah, Deh, Th, Oh, equations (27), (32), and (28) be-
come equations (8), (9), and (7) of Davis, respectively, except that all higher
power terms are written out explicitly, without introducing anything new in
principle. If one considers terms up to B2 only, equations (34) and (35) and
Table XVII for Oy give equation (4) of Pearson and Suhl, which was essentially
obtained by Seitz.

Further development of the theory starting from this point depends on
what information is available about 7(k) and E(k). Unfortunately, at the present,
no reliable information about these quantities is available. A summary.of various
representative, simple assumptions about T(k) and E(k) is given in Table XX. In

an effort to obtain further insight into the theory the following three mathemat-

ical lemmas are useful.
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TABLE XX

TYPICAL ASSUMPTIONS FOR T(k) and E(k)

(k) E(k) Authors Applications
Constant Kohlerljrl Kohler Diagram
T(E) E = ak® + ¢ Jones and Zener=? Li
T(E) E = }:aikiz Jones52 Bi
7(E) E even in ki, k2, k3
DavisBO -
T = a1k® + agy * E = bik® + boys*
T = ai1k? + agyas¥ E = ak® SeitzuL Cubic Crystals
. Lo .
E = aijklkj Shoenberg Bi
1]
T = 7(E) warped surface Lax and Mavroides45 Ge and Si

¥ys is the cubic harmonics of 4th order.

b, Three Mathematical Lemmas.—

Lemma I. A Variation of the Schwartz Inequality.

Let £, g, F, G be four vector functions of k, then

@) 1= [1osa [g-gue [Fora [o- o2 [ [F gz,

(3.12)
where each integtal sign represents a three-fold integration and
dk = dki dkz dks .
(2) The equality of equation (3.12) holds if and only if
£o= g
(3.13)
F = cg,

where ¢ is an arbitrary constant.

If the four vector functions span an n-dimensional space, then equations

(3.12) and (3.13) become respectively
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n

fiif@dkf Q9 dg*f@ De D

] 2f<ifi o) o f@Fl &1) & 2 0 (3.10)
i=1 i=1

and

fi = C Gi

(3.15)

F;, = cgy i = 1,2,5...,n .

Proof Schwartz's inequality is:

fz-zdgfg-gdg-(ff- £) > 0. (5.16)

The equality of equation (3.16) holds if and only if

(o)}
ot
=
\V}
\Y%
(@)

f = cg . (3.17)
One can now rewrite the left hand side of equation (5.12) as
2
» 1/2
I = (ffefdkf. d@ -(fg-gdgfg_-gd@ "

+2{quagd_f5-gdg>(f§.1?dk «Gdlﬂ °_C_}_d,_15fg.§dl_§,

The first term of I is nonnegative. We can rewrite the second term as

1/2 ‘ 1/2
2 [f£°9dl<_+0‘£| | frrearoe - oo [T g

which is also nonnegative, because both &1 and (G2 are nonnegative constants
according to equation (3.16). This proves the first part of the lemma.

It is obvious that equation (3.13) is sufficient for the equality of
(3.12) to hold. Now we prove the necessity: If the equality of equation (3.12)
holds, then one has both terms of I vanishing separately. Since the second term

of I vanishes, it is required by equation (3.17) that
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f = C1 G

F

Cza g,
where C;, Co are two arbitrary constants. Since the first term of I vanishes,

1t is necessary to have

Cy, = C2 = C.
g.e.d
Lemma II. The necessary and sufficient condition that
Uzn = O (3.18)
for all 7, is
03(TE1) = cEz (3.19)

where c¢ is an arbitrary constant, E; = OE/dk; (i = 1,2,3), and

[
N
=

1]

-1

}j-[2(n - q)lyy [2q]op + [29 + 1192 [29 - 2q - 1]1%}1 (3.20)
q=0

with the abbreviation [n]ij = [o,o,n]ij

Proof Sufficiency.

If (3.19) holds, then
[2q + 2]17 = - c®[2g])op

and

[2q4 + 1)o - clegqlyy -
Substituting these into (3.20), it can be seen that the terms within{::}‘vanish
for all values of 7 and g. |
Necessity.
If (3.18) is true in general, then
Uz = [2lyloly, , 1105, = o . (5.21)
If the explicit form of the brackets is written out according to equation (3.10),

the last expression is a Schwartz equality. According to (3.17) the necessary

and sufficient condition for this to vanish is that the square root of the in-
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tegrands of [2]y; and [O]op be linearly dependent. This is just equation (3.19).

ge.e.d.
An interesting corollary of this lemma is as follows. If Uzn = O for
any value of n, then it is zero for all values of 7n. The first step for proving

the corollary is to rewrite equation (3.20) as:

A-1

Uzy = zgj{iux+2-2p]ll[2u]22 + [2u+2]; [MA-2ulon + 2[2u+1]12[4x-2u+1]12i} +
u=0
+ (221110200 + [2M1190°  for 1 = oA+ 1 (3.22)

A-1
Uzy = Z{:{E%A—Qu]ll[Eu]gg + [2u+2]11 [ba-2p-2]on + 2[2u+l}12[hk-2u-l]£%}
p=0
for n = 2\. (3.23)

The last term of (3.22) is of the form of (%.16). The terms within curly brackets
of (3.22) and (3.23) are of the form of (3.14). Thus by applying Lemma I the proof
of the corollary follows immediately,
Lemma III. The necessary and sufficient condition that
[oozn]55 = 0 (3.24)
for all n is
Q3(tEs) = O (3.25)
provided that 7 is finite and positive, which is plausible on account
of its physical meaning.
Proof Since the proof for sufficiency is obvious, one only needs to prove the

the necessity. If equation (3.24) holds, then

ab2hlz7ﬁ- %%Q Esz (Qa7)%(7Es) dk
+ab2\[2?p<§§%2 f){§S(TE3%}? & = 0.

[002155
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Since - (O0fy/0E)T is nonnegative, (3.25) is true.

g.e.d.
A consequence of this lemma is that if[bozn]55 = 0 then [ooznq53 =0
for all o' > 7.
Note that similar lemmas also hold if both the inner and outer indices
1,2,3 in equations (18) through (25) are permuted cyclically. Therefore it is

expedient to combine Lemmas II and III into one lemma as follows.

Lemma. The necessary and sufficient condition that

U;% = 0 and [En]ii = 0 (3.26)
is
Qi (1E5) = ECjyp i3,k = 1,2,3, (3.27)
where
Cj if ijk is an even permutation of 123.
Ci jk = -cj' if ijk is an odd permutation of 123. (3.28)
0 if any two indices of ijk are equal.

1j
C; and C‘j are arbitrary constants. Uzq is defined such that equation (3.20)
stands for Ug%. [En]ii stands for a bracket in which all the inner indices are
zero except the i-th one, i.e., [27,0,0]y77, [0,21,0]pp, and [O,O,2n]55.

c. Special Conditions Satisfying Equation (3.27).—By inspection one

can find various special conditions under which either equation (3.19) or equation
(3.25) or both, i.e., (3.27), are satisfied. These conditions are listed in
Table XXI. In using this table, one follows each row and reads: If I and II
are given, then III is satisfied.
For example, the second row states: If T(E) is a function of the

energy E(g), which is given by E = 3;1 aiki2, and if the temperature is at
—J

i=1,2,%

absolute zero, the equation (3.27) is satisfied [of course (3.25) is also satis-
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fied]. However, if one reads the 4th or 5th row, then only equation (3.25) is

satisfied.
TABLE XXI
SPECTAL CONDITIONS SATISFYING EQUATION (3.27)

I II 11T
Relaxation Tiwe 7(k) Energy E(k) Equations Satisfied
T(k) = constant

E(k) = ajk;?2
(k) = 7(E), T =0%K 110,35
35 ’ —2=2 04 (1B5) = Cy 3B
T(k) = Ck/= E(k) = E(k)
dk =
Q(TE;) = O
= t _ n i 1
t(k) = constan E(k) = E(E{jank )
n
k) = 7(E _ A\ n
T(x) = 7(E) Bk) = E(}Z }:an,ik{>
n i

The verification of Table XXI is straightforward. As a help one might em-

ploy an operator 0(01, Oz, Oz):

0] = Ke —0 = k. — . .2
J i
It is readily shown that
O k3 = - ky €i3% > (3.30)
where €13k is the Levi Civita symbol. Two illustrative examples will be proved

as follows.

Example I. If E = ak®, then the necesgary and sufficient condition that
(k) = £(|k|]) or £(E) satisfies equation (3.27) is that
T(k) is a constant.

Proof Sufficiency. Obvious from Table XXT.
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Necessity.

Since
EJ = 2akj
0;f(ld) = ©

and
0if(E) = O

Thus
Oi(TEJ) = —21—(5)1{1{ .

Now if ,
9;(1Ey) = CinBx = Cypcky

then 7(k) must be a constant.
Example II1. If (k) is a constant, then the necessary and sufficient condition

that E = ;{:ankn satisfies equation (3.27) is that n = 2 (or 0).

.Proof Sufficiency. Obvious from Table XXT.

Necessity.
Since
El = E'ki
QiEj = (E'Oi)E'kj = - (E'")® ke = const kg
with
_ n-2
E' = Xnank .
Therefore, E' = const.

This is so only if n = 2 (or O).

d. Discussion.-—A number of interesting consequences are deduced.
directly from the three mathematical lemmas. These will be stated and proved
for the single-band model whereas their validity for the multiband model is
clear. These consequences clarify some ideas previously held without a rigor-

ously valid basis; e.g.,
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a) The transverse magneto resistance change is always positive because of
the Schwartz inequality.*

"b) The longitudinal magneto resistance change is always smaller than the
transverse one.¥¥

(i) Zero magneto resistance and odd Hall effect. 1In Table XXI we

have listed various simple conditions on T(E) and E(g) under which (3.27) holds.
The physical significance of the mathematical lemma given by equations (3.26)
and (3.27) is revealed by the vanishing of the even part of the galvanomagnetic
tensor p*1(B). The results are stated in terms of three corollaries. Corre-
sponding statements about the Corbino effect can be easily deduced from these

corollaries and equations (2.11) and 2.12).

Corollary I. A Condition for Zero Magneto Resistance Change.

If: (1) for all crystal symmetries except Sz and Coh, the 3-axis is taken
either along a rotational axis of three-, or four-, or six-fold
symmetry, or along a two-fold axis if it 1s accompanied by another
two-fold axis if it 1s accompanied by another two~fold axis normal
to it;

(2) laboratory coordinates coincide with symmetry coordinates, i.e.,

11 o= 42 = 15 = 1,

(3) the magnetic field is along ks, i.e., 73 = 1l; then the necessary and
sufficient condition for vanishing isothermal magneto resistance
change p*1(B) - p'1(B=0) = 0, is equation (3.27).

-Proof The proof is trivial if the mathematical Lemmas IT and III are applied to

equations (27) and (32) of Chapter I.

Corollarz EE. .é Condition for 0dd Hall Effect.

If: (1) for crystal symmetries T}, and Oh’ the coordinates are taken

*See, for example, Davis (reference 30); Brooks (reference 28).

*¥See, for example, Wilson (reference 19), p. 227.
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as described in Section 2.a of Chapter I;
(2) the magnetic field is along the ki axis;
then the necessary and sufficient condition for paﬁ(g) being an odd function
of B is equation (3.27).

Proof It is sufficient to prove the corollary for the case i = 3; i.e. 73 = 1.

Sufficiency. Using the conditions (1) and (2) with i = 3, it follows that:

PR - i{g‘i‘z?[eqlggtem-qn% + 1%82q)p 1 [2(n-a) 155 + z%‘z%tz(n-q>1ll[2q122}+

=0

-1
QA
+ éi: £Slgf2q+l]12[2n-2q-l]12

q=0

(07
= 158 [anlppl0lss + tatBlen]y; 0155 + 218 [0]1; [nlpp +

n-1
v ) (iealzs + 2Biealy)) (-l + 034 (3.51)
g=0
-1
where Ug% = ;z <E?(n-q)]ll[2q]22 + [2q+l]12[2n-2q-l]lé>
g=0

Because of condition (1) we have
[0l;; = [oly, = [0lss
and
[enlpe = [enlyy -
The first term on the right side of equation (5.51) is zero because of the
orthogonality condition, and the last two terms are zero because of the lemma.
Necessity.
ap . o B )

If Poy = O for arbitrary Ki and £j , then the second and third terms

of (3.31) must vanish separately, that is Ugﬁ = 0. Thus the proof is established

by using the lemma.
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Corollary III. A Condition for the Vanishing of Quadratic Terms.

If: (1) E(k) and 7(k) are even functions in ki, in ks, and in ks;

(2) only terms up to B? are considered;
then equation (3.27) is the necessary and sufficient condition for:
0 if a=1

e 1(B) - p7H(B=0) =
0dd function of B, if o # 1

Condition (1) limits the validity of the corollary to crystal symmetries
of Dzh, Dsh, Deh, Th, and Op. These are general enough to include all elements
except Po, Hg, As, Sb, Bi, and the transition metals. Note that for Tp and On,
paB(E;O) is zero because of the orthogonality and symmetry conditions.

Proof It suffices to prove the corollary for Doh only, because all the other
symmetries contain Doh as subgroup. When o # 1 the conclusion deals with the
Hall potential; when & = 1 it deals with the magneto resistance change. The

proof for both cases is established by showing R?ﬁ

(3.27) holds. [See equation (38) of Chapter I for the definition of R?;J

= 0 if and only if equation

Sufficiency.

R%; for Doh, given by Table XV of Chapter I, consists of terms either
of the form of (3.19) or (3.25). These are all zero, according to the lemma,
if equation (3.27) is true for all values of 1 and J.

i 4 35.

The proof will be established by showing that a typical coefficient,

for example,

Ras = [011]p3[000]1; - [010]5; [001]15

is zero if equation (3.27) holds. Then the proofs for the coefficients of Rg}
.and R?é follow identically if one permutes the indices 1,2,5 cyclically. Now if

(27) holds one has
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[011]23 = 0201[000122
[010151 =»-C1[OOO]ll
[001]12 = =Cz[o00],,
Consequently
[011}25[0001ll - [0_10]51[001]12 = 0 .
Necessity.

Ir Rgl = O for arbitrary values of 7's, then R?% = and R?¥<j are zero

separately. Since ﬁ?; = 0 also for arbitrary values of I's,then each coefficient
of l? 1? in R%i is zero separately. Therefore, equation (3.27) is true according
to the lemma.

The proof is completed by recalling the second part (1 < j) of the
sufficiency proof.

Corollaries I to IIT, supplemented by Table XXI, might be considered
as the microscopic counterparts‘to the parity statements of Chapters I and Ii.
However, the phenomenological statements are perfectly general while the validity

of the corollaries 1s limited to the microscopic models.

(i1) Remarks about the longitudinal magneto resistance change. Many

microscopic models lead to zero longitudinal magneto resistance change. This was
not always supported by experiments.. Thus a question arises: What conditions
made these calculated values zero? An answer is provided immediately by Lemma
IIT and Table XXI of Section c of this chapter. For example, if can be shown
that for n > 1, ﬁoozn]55 and its cyclic equivélents are identically zero if

(a) (k)= (E) only (or (k) is a constant),

(b) E(k) is a function of Zankn or of 2 Zan,ikin .
n n i
Now [oozn]55 is directly proportional to the longitudinal magneto resistance

change (see equation (32)) when both the current and the magnetic field are
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along the 3-axis. This axis is also taken as the principal axis of a crystal
class of order higher than Csh. Consequently, zero longitudinal magneto re-
sistance change resulted in the works of Jones for Bi52 and of Abeles and
Meiboom for p-type G€57. Similar results under wider classes of conditions can
be predicted from Table XXI.

It is often claimed that condition (a) can be used for interpreting
experiments.* Assumptions (a) and (b) probably constitute good approximations
for certain materiais under suitable conditions, e.g., Cu and Ag at high temper-
ature and under small magnetic field. Since there are more functions satisfying
equation (3.25) than equation (3.19) (see Table XXI), this may imply that equa-
tion (3.24) is approximately true more often than equation (%.18). Thus one
could speculate that one more often finds the longitudinal magneto resistance
change smaller than the transverse one. However, this should not be used to
rule out cases where the situation is otherwise.¥¥

(iii) About the nonnegative magneto resistance change. It has been

found experimentally that, as a rule, paB(g) - pa5(§=o) is & positive quantity,¥¥*
for substances involving no transition elements. Davis?O in 1939 and others,¥*¥**
using equation (27) of Chapter I for 1 = 1, stated that the Schwartz inequality

Uzt = [001]15 + [002]11[000]22 > 0 (3.32)

provides the explanation. However, one has to use equation (26) of Chapter I to
claim a general proof. Unfortunately, even for the cases of equations (27) and
(32) of Chapter I, no general proof of the positive definite nature is established

as yet. Nevertheless, one can make some statements as follows.

¥See, for example, references 37, L1,
¥*See, for example, Figure 4 of Pearson and Suhl (reference 11).
**¥There are exceptions to this statement; for example, see reference L6.

*¥*xSee, for example, Brooks (reference 28).
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In the case of equation (32) of Chapter I, if n is an odd integer, then by

integrating by parts 7 times it is clear that*

- [0027}]55 > 0. (5-53)
If alsc in the power-series expansion
2n
Ej B [ooz‘q]55 (3.34)
n=1

the magnitude of a term is always greater than that of the subsequent term, then

(3.34) is always nonnegative. We do not know of any convincing evidence that

this monotonic condition holds¥* However, if it does, it means that the longi-

tudinal magneto resistance change is nonnegative for 1lsotropic substances and for

crystals except Coh and So when the measuring current is along the principal axis.
By use of equations (3.22) and (3.23) and Lemma I, it can be shown in general

that

oN + 1 (3.35)

Il

ij

-Ug'r] 2 0 if n
ij .

-Ug'q S 0 if n = 2N . (5.56)

Thus a similar statement can be made about the transverse magneto resistance
change. That is, if in equation (3.34) and in
ZBEH Usn (3.57)
=1
the magnitude of each term is larger than that of the subsequent one, then, from
equations (27), (30), and (31) of Chapter I, the transverse magneto resistance
change is always nonnggative, for cases where the laboratory coordinates coincide
with the symmetry coordinates or where an isotropic sample is used. However,

even if the monotonic nature of the expression (3.34) and (3.37) were granted,

*This statement is true for any of the brackets [ooen]ii s 1 =1,2,5, and those
obtained from [oo2nlii by cyclically permuting the indices 1,2, and 3.

**However, Blom stated (reference 9, p. 94): - "Experimentally we find as a rule
that the higher (power) terms are smaller than the lower (power) ones."
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one still has to study the most general equation (26) of Chapter I for the magneto

resistance.
Therefore, it should be emphasized that at present no theory predicts the

positive magneto resistance change in general.

5. THE MULTIBAND MODEL
The multiband model, as described in Section 1.b of this chapter, is
so postulated that all formal derivations of the single-band model can be taken

over directly simply by writing

A
[m'P)P;n‘m]iJ‘ = 2 [m-p,p,n-m]ij) (3.38)
A=1,2,..,q

[m-p,p,n -m]( - abnfff }\ agk(:\)

()
x P{ET(X)QIO\-)) ( (>\- ( )P( ( (}\-)) }(T(k) _a_g}k__) d_lg . (539)
dJ

with

If A = 1, then, by dropping the superindex 1, equation (3.39) becomes (3.10).
Therefore all the formal developments of Chapters I and IT can now be interpreted
according to the multiband model, without any of the restrictions mentioned in
Section l.c of this chapter.

As an example, we can reformulate the often used two-band formula as
follows. If one limits oneself to terms up to B2 and to special geometries and
symmetries as specified for equations (27) through (32) of Chapter I, and in-
terprets the brackets according to two noninteracting bands, then equations (27)
and (28) of Chapter I are comparable to equations (8.523.4) and (8.521.9), re;
spectively, of Wilson's book.19 The additional formula of (32) would be zero if

more restrictions such as used by Wilson et al. on E's and 7's were made. The
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equations (27) through (32) contain no field-dependent variables, such as the
carrier densities nj; and ns, so that the effect of the crystal symmetry can be
studied. Furthermore, they can be extended to cases, say by using Tables XV to
XVII, where both geometry and symmetry are arbitrary, and to cases where more
noninteracting bands and higher powers of B are desired.

The mathematical lemmas, given by equations (3.18)through (3.28) in
terms of the single-band model, can all be re-established for the multiband
model. To see this one only needs to read all the brackets contained in equa-
tions (3.22) through (3.24) as defined by (3.38) and (3.39). Therefore, the
mathematical lemma given by equations (3.26) through (3.28) can be repeated,

replacing equation (3.27) by

a(”(#“ygé”) - CijkEk(M . A = 1,0,...q . (3.10)

Note that equation (3.40) is more stringent than (3.27) in the sense that the
same constant Cijk is required for all values of A. Consequently, all three
corollaries, for the single-band model, will hold also for the multiband model
if and only if condition (3.40) is read instead of condition (3.27). .Then one
can repeat all the remarks about the zero, the nonnegative, and the relative
magnitudes of the longitudinal and transverse magneto resistance.

All these formal results followed from the assumption that transitions
between bands do not occur. However, experiments have shown that recombination
of electrons and holes does occur. Studies* allowing transitions between bands

baseéd on the present work may prove to be very fruitful.

*One example of such studies was given recently by Rittner (reference L4T).



APPENDIX I

PROCI OF THE THRCOREM CONCERWING AN N-FOLD ROTATION AXTS ALONG kg

Let k1'ko'ks! be a set of symmetry coordinates of a point and let
k1 "ko"ka" be the transformed set of the same point after rotation of the co-
ordinate axes through an angle ¢ = En/N about ka. With respect to these two

systems of axes the components of a tensor T of arbitrary rank are related

by

T"ij....z - Z By 85y vt B T, 0 (A.1)

where

cos ¢ sin ¢ 0
aip = |-sin @ cos g0 | . (A.2)
0 0 1

This is true in particular for the components of the position vector k of a
point, of the components of the magnetic field vector B, and of the components
4 of the second-rank conductivity tensor. Thus by such a rotation of coordi-
nate axes any equation between singly primed tensor components is transformed
into one with doubly primed tensor components. If the rotation is a "covering"
operation of the crystal, then the eguation must be invariant, i.e., its form
in terms of singly primed quantities must be identical to that in terms of
doubly primed quantities. This principle can be applied to equation (10).
Thus, for a covering operation the coefficients (brackets) in the singly primed
and doubly primed forms of (10) must be identical, hence can be written without
any primes.

Now the doubly primed forms of equations (10) can be transformed by
applying the equations A.l1 and A.2 +to the doubly primed components of ¢ and

B. The transformed equations so obtained in terms of singly primed components

r'( h
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must be equivalent to equations (10) in their direct singly primed form. This

equivalence requirement yields certain identities between the brackets. It will
be shown that these identities are just described by equations (13) and (14).

In order to simplify the proof we shall not apply the above reasoning to the
‘Cartesian components of the tensors involved but rather refer to a pair of co-

ordinate systems of a different type (complex, nonorthogonal) defined by

ki' = ki' + i kp!

k" = k' -1 kg' ; (A.3)
1 1

ks' = ks ]

and likewise for double primes. Quantities referring to the complex coordinates

will be marked by a bar throughout. We define the complex components of B by

Bi' = By' + 1By
Bo' = Bi' -1 By > (A.L)
E—F = BRa'

3 3 J

and likewise for double primes. The complex components of the second-rank con-

ductivity tensor are defined by*

*For a tensor of arbitrary rank n the complex component Tij,.‘g is defined as
follows.

a. Replace every index in the given order by a symbol according to this scheme:
the index omne by (li4iz), the index two by (li-iz), the index three by
(1a).

b. Multiply the n-fold product of symbols so obtained according to the associ-
ative and distributive law, but do not use the commutative law.

c. Replace each "term" of the symbolic polynomial so obtained by T with the
indices of that term in the given order and with a coefficient equal to the
product of the coefficient parts (upper parts) of the "factors" of that term.
The resulting polynomial in T is the desired expression.

For example, one wants to find the appropriate definition of Tyss. According to
(a) he writes the symbol (1i+ip)(li-iz)(lz). According to (b) he obtains the
symbolic polynomial (11)(11)(ls) - (11)(i=2)(1s) + (i2)(11)(1s) - (i2)(i2)(1la).

According to (c) the definition is now Tyzz = Tiis = 1 Tizs + 1 Tors + Toza-



g + 0

11 = Opp * 1oy +05) 0y 0p - 1(0y, - 0p)

o1 =| Opp * Opp * Hoyp = 0y) 0y - Gy - i(ogpy + 0yy) 05 - 105 [(A 5)
051 + 1052 051 - i052 055
According to Onsager's relation
553(B) = T31(-B) (A.6)

hence terms below the diagonal of A.5 are dependent and it suffices to consider
those above the diagonal.

For convenience we shall now introduce another notation. Let s denote
the number of ones and twos together, and z the number of twos, among the in-
dices of a EZE. This definition of z is consistent with that given in Section 3b.
The numbers s,z define uniquely one of the six independent pairs of indices 1iJ

and vice versa. We write (note the indices between parentheses):

O(s,z) = o1 - (A.7)

Thus, for example, U(ll) is another notation for Op3: It can be verified by
direct substitution of these definitions and comparison with A.l and A.2 that
the complex tensor components as defined transform under a rotation of coordi-

nates about ks according to

mr revelir-wes = T
Tij...l = Z ai}\ aju L) al-r T}\MO'OT (A08)

AT

with the diagonalized matrix

(4.9)

In particular,



Bl" - ']é?'e 1¢
=7 _ =T . if
Bz® = B2'e i (A.10)
Bs" = Bs'
] _ ' -1 -2 )
o)) = (g (@) T N

We are now ready to apply the invariance principle. The equations to

which it will be applied are the expansions of 0'(5 z) and U”( in powers of
5 g
8,z

By' and B, ", respectively, analogous to equation (10):

=1
9 (s,z)

|l[\v/j8
ll[\v/js
>~1=
e
(D
5
0
S
>
t
Hm
o
N—-
=
o
w-—
5
B
~
,__.I
'.—-I

where g and € are the functions defined in the text by equation (15) and Table
ITI. Equations of identical form, but with double primes, hold for the compo-
nents with respect to the doubly primed coordinate system.

From the equality of singly and doubly primed brackets for a covering
operation of the crystal, arrived at earlier, it follows now that

"

F(-S)Z) (n,myw) = —-'(_S,Z) (n,m,w) . (A.13)

According to the plan outlined at the beginning of this section, one
must now express the doubly primed components of B?é,z) and B," in the doubly
primed analog of A.1l1 in terms of the singly primed ones by means of A.10.

We obtain

© n m .
E? ] }; }: }Z cr ) (n,m,w) el¢h By " Bz " By (A.1k)
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withh=m+ s - 2(w + z). Comparing A.14 with A.11 it is seen in view of A.1l3

that the two results are only compatible if

either E?é,z) (n,m,w) = O

(A.15)
or ei¢h = 1

In connection with A.12, the equations A.l5 are identical with (13) and (14) in

the text, and the theorem is proved.
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COMPLETENESS OF THE EQUATIONS (13)

Consider the complete set of equations (13) for given n,m,s, that is,
the equations (13) for all values of O <w<mand 0<z< s, regardless of the

value of h.

Theorem
The only solution of the complete set of equations (13) for given

n,m,s is that all the brackets with the given n,m,s vanish.

Proof

In the power-series expansion (10) the brackets for givén n,m,s, with
the six independent pairs of outer indices are independent constants as long
as no symmetry restrictions are introduced
The moduli of the transformations from By to By and from 035 to o1y
are nonvanishing, according to A.4t and A.5, Consequently, in the

or G(S,Z)

power-series expansion A.1l1l the constants C( ) for given n,m,s, are indepen-

S,z
dent constants and the equations A.l12 for given n,m,s can be inverted, leading
to homogeneous expressions of the brackets in terms of the C's.

The complete set of equations (13) for given n,m,s, states that all
C's vanishj consequently, all brackeﬁs with these n,m,s values vanish.

g.e.d.

In this proof use has been made of the fact that for given n,m,s, the
number of brackets [m—p,p,n-m](s,e) is equal to the number of constants C(s,z)
(n,m,w), hence equal to the number of equations (13) [without (14)]. This
equality 1s easily verified. Indeed, the number of equations for given n,m,s,
is determined by the ranges of the integers w and z, given by O < w < m and

0 <z £ 8, while the number of brackets is determined by the ranges of the in-

9
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tegers p and 1/2(s - 6), given by O <p<mand 0< 1/2(s - @) < s.

The theorem of this appendix is useful in spotting vanishing brackets
and in counting nonvanishing ones. It alsc follows from this theorem and Ap-
pendix I that the symmetry properties of the brackets are completely described

by the equations (13) with the condition (1k).
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PROOF OF TABLE VIII - ZERO BRACKETS FOR A THREEFOLD AXIS OF SYMMETRY

Consider the set of equations (13) for given values of n,m,s and dif-
ferent w,z. According to Corollary IV and the remarks made immediately there-
after, it is expedient to select from the original complex equations those sat-

isfying the selection rule
s -2z >0 (C.1)

and equating their real and imaginary parts to zero. The number of real equa-
tions so obtained 1s equal to the number of the original complex equations with
s - 2z unrestricted by C.1, It is also equal to the number of brackets having
the given values n,m,s that occur in these equations (see Appendix II).

A first type of zero bracket arises through the application of the
theopem of Appendix II. If no equation of the set is invalidated by h = kN,
thenaall the brackets of the set vanish. The h values of the equations, for
any particular value of s - 2z, range from m 4+ s - 2z downward in steps of two
for the various values of 0 < w < m. In order to avoid h = O, this type of
analysis is restricted tom + s = odd. In order to avoid h = + 3 as well, it

is necessary that

m+ s -2z = 1 (c.2)

for all values of z, compatible with the given n,m,s values and C.1l. This con-
dition can only be realized in three ways. First, m=1, s -2z = 0, and s = O;
consequently, z = O and n must be even. Second, m =1, s - 2z = 0, and s = 2}

1 must be the only compatible z value, necessitating n = odd

consequently, z
(see Table III). Third, m = O, s - 2z = 1 consequently, s = 1, and the only z

value compatible with C.1 is z = 0. The corresponding zero brackets are,

81
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[10w]

53 [010]53

[o1e] > (C.3)

[10e]

12 12

[oon]

o3 [oon]51

J

A second type of zero brackets can arise for m + s = even. According

to the definitions of g and e, the coefficients ge of any bracket in the complex
equations are ip+l/2(s-9).is times a real number. Thus, all the real parts of
the equations with given n,m,s, contain only brackets of one parity of p', de-

fined by

p' = p+ 1/2(s - 8) , (C.k4)

and all the imaginary parts of these equations contain only brackets of the
other parity of p'. The brackets with given n,m,s thus fall into two subgroups
according to the parity of p'. 1In each subgroup there are as many real inde-
pendent equations as there are brackets. There is one way in which the condi-
tion h = kN can affect one of these twp subgroups without affecting the other.
The brackets in the unaffected subgroup must then vanish on the same grounds, as
before the condition h = kN was applied. In order that h = kN shall affect only
one subgroup, it is necessary and sufficient that it affect only self-conjugate
complex equations. According to Corollary IV, these occur only for h = 0j namely,
if both

(s =2z2) = 0

(c.5)
(m -~ 2w)

"
(@]
-

- hence m,s, and m + s are all even. Since h = 6 is inadmissible, the possible
values of m are 0,2,4., These can be realized in three ways, compatible with
C.5. First, s = O consequently, z = O and n = even. The case m = O must here
be excluded since the remaining subgroup is empty. Second, s = 2, n = odd; con-

sequently, z = 1, On the same grounds as in the first case, m = O is excluded.
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Third, s = 2, n.= even} consequently, z = 1 according to C.5. But the equations

with:ss = 2, z = O must now also be admitted, while no equation that is not self-
conjugate complex should be ruled out by h = k.3. This configuration allows

only m = O. The corresponding zero brackets are:

[11e]35 [318]55 [J.ae]55

[:LJ.co]]_2 [31a>]12 [13%]12 > (C.6)

[ooel,, .

It can be shown that a threefold axis produces no other zero brackets than those

listed in C.3 and C.6.



APPENDIX IV

AN ALTERNATE METHOD OF OBTAINING TABLE XI

Let I(n) be the number of nonvanishing independent brackets for any

given value of n. Then one has

n
I(n) = ZI(m)
m=0
with
I(m) = P(m) - E*¥(m)

where P(m) is the number of possible brackets for given m < n and is given by
Table XXII. E¥(m) is the number of valid equations between P(m) possible brackets
for given m; it is given by the number of possible combinations of w, s, and z
such that

h = (m+s)-2(w+z) # kN.
If Corollary IV is used, one only needs to count the equations pertaining to
h > 0, thus one obtains equations (23) and (24) for ECN’ from which IDN and
Ity (which is just one third of that for Dgh) can be obtained. E*(n) is then
summarized in Table XXIII. Note that one of the counting methods for On is here

presented.

TABLE XXII

POSSIBLE NUMBER OF BRACKETS P(m) FOR GIVEN m

=1 s = 2

n m s =0 .8
(m+1) 2(m+1) 3(m+1)
(

m+ 1) (m + 1)

% e 2N A+ 1 0 A

Op
w 2A+1 0 0 N+ 1

/(l) Applying Corollary I twice, once to index 1 once to index 2.
(2) Because the brackets for On are invariant under cyclic permutation of

the inner and outer indices, it is sufficient to count the brackets
only with outer index pairs 33 and 12.

8L
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TABLE XXIII

NUMBER OF VALID EQUATIONS FOR GIVEN w?
Bty (m) = 2Ep (m)

n = even , n = odd
m = 2\ m=2n - 1 m = 2\ m=2N+ 1
Coh 2(2n+1) 8\ 2(2n+1) 2(M+1)
Cai L(on+l) 8\ 2(2n+1) h(n+1)
Cah L(on+1) 10N 2(2A+1+354) L(n1)
Ceh 2 (UN+2437) o 2(UA514085) 2(2A+1+51) 2(A+1+51+53)
1 1 1

Oh%% 5 54+(-2— 54-8}\,2(1_1) = N\ 5 04
% 1 = 2q6k’5q + (2q+l)8x’5q+l + 2(q+l)8K,5q+2

d2 = 298 zq + 2q8x,5q+1 + (2q+l)6x’5q+2

63 = (2q+l)6k’5q + 2(q+l)8h,5q+l + 2(q+l)5h’5q+2

s = 2a(8y o + ¥\ pg-1)

il

5 1 if A =g
Asq O otherwise

{/Here E*¥(m) means the number of adjoining relations between the brackets given
in Table XXIT.



APPENDIX V

A LIST OF PROBLEMS FOR FURTHER STUDY

We shall list a number of problems closely related to the present

work. Further study is needed in order to achieve:

I. A simple rule to tabulate all the brackets for three- and six-fold
axes.
IT. A general analysis of the relations between the measurements and

the brackets.
Solutions of these two problems are considered the most
desired but unfinished aspects of the phenomenological
theory. The first one 1s important theoretically, the
second experimentally.

I1T. A formally identical treatment of the thermo-galvanomagnetic effects.

IvV. A generalized application of the theorem given by equations (13) and
(14) to an arbitrary tensor, such as the dielectric, the elastic con-
stants, the magnetic susceptibility, piezoelectric constant, etc.

V. A physical picture of condition (3.27). Since the quantity /4% has
the dimension of a reciprocal mass, it might be investigated via the
effective-mass theory. The effect of slight deviations from equation
(3.27) on the brackets might be traced.

VI. Analysis of the temperature dependence of the galvanomagnetic effects
according to the approach suggested by the last problem, i.e., sight
deviations from equation (3.27), might be fruitful.

VII. A study of the case if some kind of transition between bands is allowed.
The formal simplicity of the multiband is attractive, but such a model

is no doubt a zero-th approximation.
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APPENDIX VI

HOW TO USE THE TABLES V TO XVII

In order that Tables V to XVII¥ can be used by a reader who does not
have the time to read the whole dissertation, a few illustrative examples will
be glven in this appendix.

Remember that the explicit expressions of the galvanomagnetic tensor
pal(g) for any crystal classes can be obtained from equatioﬁs (25) and (26) if,
for these crystal classes, one knows the explicit expression of equation (10),
i.e.,

0 n m
n m-p, D, n-m
GlJ(E) = ZB Z Z [m'P;P:n-'m]j_J'7l 72773
n=0 m=0 p=0

ij = 11,22,33,12,23,31 .

Example E. What is the coefficient of B3 in olg(B)?

The coefficient of B® in 012(B) in general is:

[oos]lg 7’% + B
+ [o12]10 7, 75 + [102]10 78 71 + 1)
s fosalyp 72 7, + [201]yp 72 75 + [121)1p 71 72 75 + [ '
+ [s00lyp 75 + [osolyp 73,
where the lines correspond tom =0, 1, 2, 3, respectively. ~
Example II. What is the coefficieng of B3 in 01 3 (1 # 3) for Dop?
For Doh all brackets marked by O and()in.Table V are zero, thus
(F.1) becomes |
[ooalip 78 + [o21]1p 75 75 + [201]12 75 Ty - (F.2)

This is the coefficient of B® in 035(B) for Dsh.

Similarly, that of B2 in 0,4(B) and o4, (B) for Doh are, respectively:

[300]p3 7% + [102]p3 7, 75 + [120lp3 7, 72
° (7.3)
[030]51 73 + [o12]31 7, 75 + [210131 Yo 73

¥For illustrations of Table XVII see Pearson and Suhl (reference 11).
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Example III. What is the coefficient of B3 in Oij(g)(i 4 3) for Dan?

From Table VI one reads off the zero brackets for Dgp as marked by
0, &, and 4- . Incidentally, these are the same zerc brackets as those for
Doh. Thus one would have the remaining coefficients of B2 in Uij(g) as given
by (F.2) and (F.3). However, there exist adjoint relations between the non-
vanishing brackets as indicated by the dotted lines in Table VI. For example,

[ébl]lg = [021]19. When this is taken into account, the coefficients of B3 in

Oij(E)(i £ 3) are:

~
[oos]lip 72 + [201)p (95 75 + 72 7,) (in o12)

[s00]p3 73+ [102]23 74 75 + [120]p3 7, 72 (in o23) i (F.4)
[Soo]25 72 + [102]25 7, 72 + [120]25 7% 75 (in 0s1) - J

Exemple IV. What is the coefficient of %% in 012(B) for Cszi?

Dropping the zero brackets according to Table VIII, (F.1) becomes

[OOS]]_? 7% + i

2
1

+ [201]i5 7 74t lo21]12 78 7, + ¢ (F.5)

+ [s00]yp 7? + [o30]90 72

Example V. What is the coefficient of B* in o3z for Dsi?
This can be obtained directly from Table X(s = O, n = even), re-
membering that [eww]BB = 0 from Table IX. Thus the answer is:

[ooalss 7% + [202]33 (72 + 72) 72 +
5 (F.6)
[031]55 (72 Yy = 3 & 75 73) + [400]55 (7? +2 9] 72 + 7:)

If at a given temperature the magnetic field is so weak that only
terms up to B2 are experimentally significant, then equations (26) and (27)
together with Tables XTI to XVII give us all the galvanomagnetic tensors for
each of the 32 point groups. The following examples illustrate some special
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Yl. For a crystal of Dzh symmetry (for example Ga), if the current

1
flows along the l-axis (£1 = 1) and the magnetic field is along the 3-axis

(75 =1

). Note that any one of the two-fold axes can be taken as the l-axis;

then the 3-axis must be chosen according to the right-~hand rule.

2

Case a. (23 = 15 = Y3 = 13 Doh) For Hall measurements (®=2), one has

21 21 . -
p2Y = (P8 + Qf' B + RaBE) My , (F.7)
where My and P%l are given by the second lines of Table XII and
XIIT, respectively, i.e.,

Mo

Pgl = 0,

i

[o0o] 7 [o0o]ppl000]55

while Qil and Rz are given by the third line and the third sec-
tion of Tables XIV and XV respectively:

Qfl = [001]12[000]55

Ro = U

Case b. (/1 = 73 = 15 Doh) TFor magneto resistance measurements (0 = 1),

Ro

Example

one has

1L
= (P + B2 BE)M, , (F.8)

where Mg and P&% are given by Tables XIT and XIII respectively:
Mo = [000]53[000]11[000]22
Pél = [000]22[000]35

and Ry is given by R%% of Table XV, i.e.,

= R3z = =~ ([002]17l000]os + [001]52)[000]55/[000]ll
1 _ —
VII. (81 = 2 = 3 = -4 = 1/Z; 73 = 0, Den)

For a crystal of Dgh symmetry (for example Zn, Cd), if the magnetic field,

the current leads, and the Hall probes lie in a plane normal to the six-fold

axis.

of the

Particularly, if the current and the Hall probes lie along the bisectors

1- and?-axes. This "planar Hall field" measurement is given by equation
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(F.7) with (reading from Tables XII and XITI)¥

M, = [000]55[ooo]§l

and (from Table XVI)
21 21 21 21 1 2
R2 = Rll + Rgg <+ ng + RZl = -é-{( [200]11 ‘- [200]22){000155 - [100]53}(71 - 72)»

Example VIII. For a crystal of Dsi symmetry (for example Sb, Bi), if the direc-

tions of the current, the probes, and the magnetic field are arbitrary with re-
spect to the crystal axes and to each other. What is the lowest odd term in
the Hall measurement le(E) (@£ 1)(where superindex 2 denotes the direction of
the Hall probe in the laboratory coordinates)? The answer is provided by the
last line of Tables XIV and XIT

p?1(B) - p?*(B) = 24qi' B
with pgl(ﬁ) and pZI(E) denoting the same measurement but with the current re-
versed and

M, = [OOO]il[OOO]BB

3 3 3
Qil = (7111 + 7222)[100]25[000111 + 7313[001]12[000}53
where superindices 1, 2, and 5 form a right-hand orthogonal laboratory coordinate

system.

*¥From Table IV one finds that Q?l becomes zero in this special case. This does
not contradict the parity statements of Section 2.e of Chapter I, because
Q%ﬁ.+ 1 % O in general.
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