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I. INTRODUCTION

In this study stagnant zones that occur in the flow of a
stratified fluid are investigated. Numerous examples of such stag-
nant zones can be found in industrial processes and in nature. At
sufficiently low rates of discharge, preferential withdrawal of heavi-
er fluid from oil reservoirs, or the partial separation of fresh water
from sea water which has intruded into a fresh water reservoir, or of
cool water from warm water in thermoelectric plants, can be achieved
due to part of the fluild becoming essentially stagnant. In nature,
extensive regions of stagnant air are usually present in front of moun-
tain ridges when the prevailing winds blow at a low speed, and when the
stratification is sufficiently strong. If a city is situated in such a
location, air pollution is the result, as 1s illustrated by the smog in
the Los Angeles area.

The flows considered here are assumed to be two-dimensional
and steady, and the fluid is taken to be inviscid, incompressible, and
of variable density. This type of flow admits and sometimes demands
solutions with velocity discontinuity along a streamline (contact dis-
continuity) creating a vortex sheet. A degenerate case is the classi-
cal problem of free streamlines in potential flows. In the problems
under consideration, the fluid on one side of the discontinuity is re-
quired to be stagnant, so that the pressure on the discontinuity is
known. The position of the dividing streamline is however not known
a priori. Bernoulli's equation is satisfied along the dividing stream-

line and this provides a non-linear dynamic boundary condition to the
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flowing part. Since the motion i1s in general rotational, this is a
case of a free streamline problem in rotational flow.

For the purpose of this investigation, the flow under con-
sideration will be restricted between two horizontal planes and two
cases are studied. In the first case, the symmetric flow into a line
sink is considered, in which the fluid on the upper part is stagnant.
In the second case, an obstruction is present on the lower boundary
and a stagnant zone lies in front of, and is caused by the obstacle.

An appropriate stratification profile is assumed far upstream to render
the governing differential'equation exactly linear. The parameter
governing the flow 1s the Froude number. In the first case, a flow
with stagnant zone is the actual mode of flow at Froude numbers below
a number somewhat greater than l/n, In the second case, the height of
the stagnant zone is related to the Froude number and the shape of the
obstruction, depending on whether the obstacle has steep upstream face
or gentle upstream face.

The fact that an appropriate stratification is chosen to
render the equation exactly linear is no real restriction, since up-
stream profiles that lead to linearity are physically realistic in
themselves, and furthermore, a perturbation from these assumed profiles

will exhaust most of the physically realistic cases.



II. THE GOVERNING EQUATION

For steady two-dimensional flow of an inviscid, incompressi-
ble, density-stratified fluid in a gravitational field, with the gravi-
ty force acting in the negative z direction, the equations of motion

are

2u du _ _ 13
Woax T W5z T @35, (1)

9w v 12
Woax T WSz ‘"F'?'%—%’ (2)

in which x and z are Cartesian co-ordinates, u and w are the corre-

sponding velocity components, p is the density and'p is the pressure,

and g the gravitational acceleration. Since the equation of conti-

nuity is
26w L 2lpwd 4 (3)
20X 0z 9

and the equation of incompressibility is

2 2
wf + w2 = o (4)

9

the equation of continuity for an incompressible fluid is

M _
+ 52 = 0 (5)

S

Since the density varies from streamline to streamline, irrotationa-
lity in general does not persist. The above system can however be
rendered into a more convenient form by introducing an associated flow

field (indicated by a prime) through the following transformation due

...3_



to Yih: (1)
(w', w') = f?; (u, w) . (6)
It then follows from (5) that
%‘% N %‘% = @ (7)

whence it follows immediately that there exists a stream function for

the associated flow ' such that

o
\ 2y 2y (8)

From the equation of incompressibility for steady flow (4), it is

obvious that

—\O.
—

? )) 2 (£(p)
D 2D 2o

where f(p) is any function of density. It is also obvious from (4)
that density is constant along a streamline in both the actual and the
assoclated flow fields. Therefore, integration of (1) and (2) along
a streamline shows that Bernoulli's equation 1s still true along a
streamline,

By use of (9) the equations of motion (1) and (2) can now

be written as

U ! _ 2
o (W% +wds) = -5, (10)
w! 20 2 ,
(WL +wds) = -2 -9p. (11)

If n' 1s the second component of the vorticity of the associated



flow,

2u' 2w 2
7z " ox = -V, (12)

[l

it

and (10) and (11) become

! 2 2
\ - 3 N ! (
(J*’Q%Yi = 'gxﬁ”"’()m{zw}), (13)
' ' (s =)
(Joy(. 29’42} = —%—Z C'F + P (M 7 el ) - 9’()0 <lh’)

Multiplication of (13) by dx and (14) by dz, and addition of the re-

sults yield

ot = -3 p o B
= -4 (,9 4+ b (“';* v + 9gz) +9zdp
= -dH@W) + gz dey) | (15)
or
e. Vot = %%' - 9= %«ey , (16)
which can be written as
e Vi + gz 3—5 = Fly) . (17)

This equation 1s originally obtained by Yih,<l) and possesses a form
which is very much more suitable for further studies than the equation

governing the stream function | of the actual flow field, first ob-



tained by Long:(g)

AR

2 L d + 1y _ .
e w8 (B2 w82 ) = Hw L ag
It is easy to show that Long's equation can be simplified to (17) by

Yih's transformation written in the form

' —
v o= e

In this study, the flow under consideration will be restrict-
ed between two rigld horizontal planes forming a channel. Two cases
are investigated. In the first case, two-dimensional symmetric flow
into a line sink is considered. In the second case, an obstacle 1s
present on the lower boundary. In both cases, we seek a class of so-
lutions exhibiting a discontinuity in the flow field, on one side of
which the fluid is stagnant. In the second case, the stagnant zone
lies in front and is caused by the obstacle.

It has been shown by Yih3<3> that if the fluid originates
from a large reservoir, where the velocity is zero and flows into the
channel horizontally, the associated flow is irrotational far upstream,
If we now restrict our attention to a linear density stratification
far upstream, equation (17) can be rendered exactly linear if u' = a

positive constant A, For then

If



then (17) becomes
e. v—f’"’" + 9‘@,&& 2 = F(/\"/') 5

with

Fl4")

i
|
<

by virtue of (19).

Therefore,

ViV 4+ kA = - Ak, (20)

with

V %

Z
?(-—"ﬂ , 3 = 4 , 7::1’ , (21)
The dimensionless form of (20) is then
3‘.{’ 37':1" -2 -2
e T et FTE = -FT (22)
where | = _ A is a Froude number. Equation (22) is the
Jvdige

equation to be solved, subject to the boundary conditions to be consid-

ered in the next section.



IITI. THE BOUNDARY CONDITIONS

Along the dividing streamline the pressure is fixed by the
static pressure of the stagnant zone. The position of the dividing
streamline is not fixed'g priori. Physically, the conditions for
stability of the total flow configuration are that the density of the
stagnant fluid must never increase upwards, and that in the neighbor-
hood of the streamline, the density must be greater than or less than
the density along the streamline depending on whether the stagnant
zone lies below or on top of the dividing stfeamline,

Bernoulli's equation,

2 T 4F T o= (23)

holds along the dividing streamline, in which Pg is the density
along the streamline and is a constant. Differentiation with respect

to the distance s measured along the streamline yields,

or

But, since the pressure distribution in the stagnant zone is hydro-

static,

J/F = _(J%,JZ' .

8.



so that
d (9 dz .
Ts(%’) = ”%(\ —‘%) ds (24)
and
(&) - Ld (25)
df‘z 2.) - (‘) Z e o
Now %g can be either positive or negative depending on whether the

dividing streamline is concave upward or downward as shown in Figure
(1), for case (B) and case (A) respectively. In the geometry con-
sidered here, the stagnant zone is situated on the convex side of the
dividing streamline,

Thus, for a stable flow configuration, the density of the

stagnant fluid bordering the dividing streamline at any point along it

dz

1s greater or less than Py depending on whether Is ig positive
2
or negative. It therefore follows from equation (24) that %g (%;)
. 2
is positive. Conversely, if %E (%;) is positive, then it follows

from equation (24) that p must be greater or less than o depend -~

ing on whether %E is positive or negative., Furthermore, from equa-
s
2

2

tion (25), for a stable stagnant stratification, %—E (g;) along the
z= 2

dividing streamline must be negative or zero, Indeed, if the strati-
a 42 Cl2

fication is stable £ ig negative or zero, and —— (=) is there-
' dz o ) dz2 2

fore negative or zero. Conversely, if Q;E (gh) 1s negative or zero,

dz= 2 r

d
then a% is negative or zero, and the stagnant stratification is
therefore stable. Hence, the necessary and sufficient conditions for
a stable configuration with a stable stagnant zone and a flowing zone

to exist are that, along the dividing streamline, the square of the
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DIMENSIONAL FORM DIMENSIONLESS FORM
CASE (B)

Figure 1, Configurations showing the dividing
streamline and the location of the
stagnant zone,
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32 2
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dze 2

zero, For the inverse method of solution of this investigation, the

velocity be monotonically increasing, and be negative or

above conditions are utilized to produce a posteriori a stable stag-
nant stratification, as will be seen in the next two sections.

The boundary condition along the dividing streamline is the
satisfaction of Bernoulli's equation, which, in terms of the stream

function  , can be written as

(B (B)] +f v ge - c =)

Now

and, similarly,

AN _ (e, 2F
az—j'ﬁ/-\avg,

Therefore (26) becomes

or
y (&) (a}‘} T oomie
2 93’*"‘{)‘*&/-\“ ISR
or
¥ Y 2\ - .
i(55) +(§5)} A B S
with ] = ;t‘ = the non-dimensional pressure,
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and ¥ =»———J5—~——— = a Froude number.
I3tf)d

If I, 1s the dimensionless pressure at a point 7 = hy on

the dividing streamline far upstream, it then Pollows from (27) that

ACIE )’}+ﬂ+w BO)+ T+ B3

or

HEY +(Z) - 1) = 5020 - (n-7.), @

which is the boundary condition along the dividing streamline and in
which 1T is the dimensionless hydrostatic pressure due to the stagnant
fluid of some stable stratification.

It is useful at this stage to examine the variation of (q')@
with n along the dividing streamline for some given stable stratifi-

cations. For a stagnant zone with stable linear stratification of the

type

Fz = Pl - ﬁ(&i ?

where p! 1is a reference density at z = 0, and
o) 2

d
’i)(z) ’——‘—‘/6@»:}2
Z

Therefore

ey = B0 (247 - plg(2-0),
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b - p(hd) = BERGE-R) - olg e -rd)
Therefore
M =T, = 4 F -2 -F2 (-4,
where
= A
Jg(&/ﬁ)a ’
Thus,

BLT -1} = - FP (-8 - U R4S + ERO-2)
= K FROP A - (FR-FD) (-4

which is a quadratic in 7y

For a stagnant zone of constant density Py

T -1, = -F201-4.),
where
Fe = A ___
: ['3Ce/p) 4
Therefore

A{Gy 11 = ~ (57-57) (-4,

which is linear in 7



IV. FIOW INTO A SINK

A. Discussion and Statement of the Problem.
In'this section the fiow into a line sink is to be examined,
The fluid is assumed to be confined between two parallel planes, one

at z

O, and one at z = d. The sink is‘situated in the lower plane
at x = 0. Since éverythiné is symmetric with reépect to the z-axis,
only one half of the flow field need ge conéidered. The solution for
flows with Froude's number greater than l/n has been given by Yih(3),
in which it wés pointed Qut that no stagnant zone 1s possible at these

rates of discharge. For lower rates of discharge, i.e.
2
& =

Q £ 536
experimental results of Debler(u) indicates the presence of a stagnant
zone, The flow field is separated into two regions: a region where
the fluid is essentially stagnant, and a region where the flow is con-
centrated. The line 6f diséontinuity‘is a streamline and forms a vor-

tex sheet. The Froude's numbers

F= %
and

based on the actual discharge rates are now the significant experi-
mental parameters of the separated flow. In these definitions for Fl
and F2, dl denotes the depth far upstream of the flowing part and d2

denotes the total depth of the channel. It then follows immediately

-14-
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from these definitions that for a given discharge, the following re-

lationship holds:

2
FFo= F (—“—l‘t) . (29)

The mathematical problem for flow with stagnant zone is then

to find a solution to the equation

'Y+ FIE = -

in which
Y
t ’J‘z% Py

and the asterisk indicates non-dimensionalizing bY'Al and dq, with the

boundary conditions

¥ = 0o for §*<O s Y(*'—'Oa
¥ = - for =0, 0<Yl*< b,
¥ o= - tor =oo, 0TS,

and along the dividing streamline,

1 ?._S_E‘* z (E*)Z} — *® 2 o ¥
/2{(33*)* N = G -Rv-n,
in which 1I* 1is the dimensionless hydrostatic pressure due to the

stagnant fluid., In order to solve this problem in the framework of
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the inverse method used in this study, an auxiliary problem is solved.

the auxiliary problem is
2 -2 -
V¥ + F'Y o= -F7

with F = Fl and subject to the boundary conditions

¥ = O for $<o0 , 1=0,
' -’-*1@\0 for T =0, °<Yl<L;
3 = -N for 1=-w,0<Y <R, ,

and along the dividing streamline

£ (BT - -,

in which II 1is the hydrostatic pressure due to the stagnant fluid.
Because of the conditions of stability established in Section II, the
dividing streamline must meet the line ¢ = o tangentially. The so-
lution to this auxiliary problem'can then be cast back into the solution

to the actual problem by the similarity transformations

P _ ¥ de
q_/r—_j’r’ -ﬂw:—;‘-

® 2 b

and

Ade = Ald,
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STAGNANT ZONE

DIVIDING STREAMLINE

ho

FLOWING ZONE

Figure 2. Flow into a sink,
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and

In the inverse method outlined below, various values of F and h, are
assumed and with the introduction of a suitable sink distribution on
¢ = o, a solution satisfying the boundary value problem above is to

be obtained.

B. Method of Solution.

A direct method of solution to the problem just stated is
difficult, and in fact no advantage can be gained from attacking the
problem directly. An inverse method 1s therefore employed. Inverse
methods have yielded large classes of solutions to otherwise difficult
problems in fluid mechanics.

The method is to introduce a distribution of sink on ¢ = 0 .
In this way the flow field is still continuous everywhere but there is
one streamline which divides the flow into two regions; one part flow-
ing completely into the original sink and the other into the sink dis-
tribution that has been introduced. This new problem can be stated as

follows:

2 - -

Ve o+ FTE = -FTN, (30)
in which V¥ dis assumed to be of the form

Y= a¥, + (- ¥, ,

with Wl representing the flow into the original sink and satisfying
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the following boundary conditions:

¥ = - for t=0, N=1,

¥, = 0 for —0<¥<0, V=0,
and

¥, =" for I =-0 , 04N <),
and V¥

5 representing the flow into the sink distribution and satisfy-

ing the following boundary conditions:

Y, = -| for - <3 <o, N=|

¥, = © for —=0 <Y <0, WN=o0

¥, = 1 for §=-00, 0 &1,
'-l.ug. = 9(7) for 3 = o, \><V(£ ‘ )
¥, = O for T =0, o<N<b,

Here, "a" represents the percentage of the total flow field that flows

into the original sink. The solution ¥ obtained exhibits a dividing

streamline, along which velocity can be calculated and therefore the

pressure distribution can be computed. Now if the upper region, name-

ly the part that flows into the fictitious sink distribution introduc-

ed on ¢ = o0 , is replaced by a stagnant layer of fluid of a stable

stratification, and if the static pressure produced by the stagnant
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layer i1s equal to the pressure computed before, then this is a solution

to the original boundary value problem.

The inverse method consists of the suitable choice of the
sink distribution such that the velocity along the dividing streamline

satisfies the conditions of stability; namely that q2 be monotoni-

a2 q2 .
—— (&) <0 along it. For, when these con-
az= 2

ditions are satisfied a unique stable stratification of the stagnant

cally increasing and

layer is determined,

Returning to the solution of Yl and ¥y and with the as-

sumption that

P=-n+d, ¥ =-1+4, FTn=-N+4,

then (30) becomes

%—gi,_ + %_V']é + (:‘Z:{_ = O (31)

)4

and the boundary conditions for fl are

f, = 0 for o<y <0, M, (32)
o= -1+ for ¥ =0 , o< =1, (33)
j() = 0O for —ea <€ < ¢ N=o9o, (34)

{ =0 for T=-= 05’{5‘» (35)
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By separation of variables and with conditions (32), (34), and (35),

it i1s found that

with

From (33), the B's, which are the Fourier coefficients of n - 1 in

terms of the complete orthogonal set {sin nxn} , are given by

2
Bn = "'“*n:_r o (37)
Therefore
- 2 a5 .
¥, = -V - h; Ty € 3 s man . (38)

For ¥, , it is necessary to assume the form of g(n) .. A sink dis-
tribution of uniform strengtn from 7 =b to 7 =1 is assumed in
tnis analysis. If the strength of the sink distribution is «

J

then

{3

¥, =fv<c4*1 = o (-b),
b

and

< (v =b),

|

e [



Therefore
1%
Hence
-k
q& = - -5
and
¥, = 0

The boundary value problem for V¥

as follows:

,9252 _91.

ETh + 75WL
5’1 = Q for
:g‘z = O for
J('z = 0 for
."'2 = Vl for

-k
o=1-0=
Therefore
j? - Z Cn (=3

at

at

=
W

00,

T -k

—-o<€<0; Yk—:|,

—~<g <0, "=

= -0 o<y
g =0 , © érq

for T=0, b<

TN

5 can be restated in terms of f

2

(40)

(k1)

(42)

(L3)

(hh)

(45)

(46)
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with

2C = for oV b,

Therefore

|
C, = Z/Tsmmv[dvl—zﬂ

= <T2:£> (ﬁ\},)i Sin nab.,

<'YT('£‘}§> un i JV(

With the above value for Cn’ Yg becomes

& o LN a.s .. )
z = -1+ (5 (75) sen nab &€ sin mny
Finally
=0 " .
Y= -N - MZ_“W% e ‘;Sm,nw 4
NEAVARS A
+ (1-) %I(T:b><VLJ") Simnnb €7 sin Y]

The series converges uniformly for all values of ¢ < O and

0<n<1 . Now

(48)



o) I

Therefore

>t o 2
o = | o+ MZ.Z"' SRLTN nop = G-o) 2 (%)

l
(=) sinnab € sinna (50)
N " 2
w'o= —%% QnQO‘iSMLrLJ}Q + (\=a&) e ('\'_"f;)

r

| Cuy
(F\‘sr‘) Qn S NTb Qagsmnﬂ*’l . (51)

For any assumed value of F, "a" (which is equivalent to assum-
ing h, ), and "b", the velocity along the dividing streamline can be
calculated. From this a graph of q'2 against 1 can be plotted to see
whether the stablilty conditions are satisfied. The detailed calcula-

tions involve a process of trial and error.

C. Results and Discussion,

The solutions found indicate a Froude number of 0.345 for the
flowing part for all separated flows. It has been shown analytically
by Yih(5) that there exists an unique Froude number for the flowing
part for such flows. That the number found here is a reasonable figure
of this unique Froude number can be seen by_the folldwing consideration,
For F slightly bigger than l/ﬂ , Yih's solution(3) shows a large eddy
which is nearly horizontal, resulting in return flow to infinity.

These eddies are moreover unstable, It is therefore indicated that a
flow with discontinuity din the flow field, as given here, is called
for, with the flowing part possessing a Froude number of a magnitude

in the neighborhood of a number somewhat bigger than 1/ﬂ , which is
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indeed the case found here, The results produced with discontinuity
in the flow field are thus the desired solutions.

Experimental values of Debler(l*> indicates that the Froude
number for all separated flows lies in the neighborhood of 0.28. The
discrepancy with the number obtained here 1s actually superficial
rather than real. This 1s because of the fact that in the experimen-
tal measurements the effect of viscosity tends to make the depth of the
stagnant zone smaller so that for the same discharge the measured dl
is bigger in the case with viscosity than if the viscosity is completely
absent., Also the presence of the boundary layer at the bottom of the
channel in the experimental case increases the observed depth of the
flowing zohe° Furthermore the side-wall effect also tends to reduce
the actual discharge compared with the theoretical discharge. Now,
since the error in the depth of the flowing zone enters as a squared
term, the experimental values when suitably corrected appear to be in
agreement with the result obtained here,

Figures (3a) and (L4a) show that q32

varies linearly with 17 .
Thus the density of the stagnant zone is a constant., For Figure (3a),

the equation for q'2 against n 1s

Gr-1 . 6-91 4

0‘46 .

The density of the stagnant zone is therefore given by

()B = (69 - &%—3&(00) o

The Froude number F2 based on the discharge and the total depth is

determined to be 0.176. For Figure (ﬁa) the equation for q'? against
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Figure 3(b). TFlow pattern into a siak with stagnant zone
at Froude number equal to 0.345,
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at Froude number equal to 0,345,



-28-

n 1is given by

Y4
*(j—_)—z—‘ -2.151 + O76 .

The density of the stagnant zone is therefore given by

2

A TR
The Froude number F2 based on the discharge and the total depth is
determined to be 0.124, Figures (3b) and (4b) show the flow pattern
of the separated flow and compare rather well with the photographs
taken by Debler(u) in his experiments.

It is to be noted that the stagnant fluid in the region
between the dividing streamline and the horizontal tangent to the
dividing streamline far upstream (we call this region the "wedge"
region for brevity) is of constant density. The density of the
stagnant fluid above this region may be of any stratification so long
as it is statically stable. In the actual physical realization of
these flows, the constancy of the density of the stagnant fluid in
the wedge region is probably achieved. This i1s because at the in-
itiation of this flow the layer of fluld above the dividing streamline
is required to expand and spread out to fill up the wedge region.
There is also some accompanied mixing due to viscosity at this initial

stage before the flow conditions become steady.



s
o

0
u

‘/&\Q/
o

e o o

Flow pattern into a sink for Fy = 0,245,
Photogreph taken by Debler. (4)



V. FIOW OVER AN OBSTACLE

A, Discussion and Statement of the Problem.

In this problem the fluid is still confined'between two
parallel planes as in the last problém.l,Aﬁ obsﬁacle is now introduced
on the lower boundary. Physicaily, ﬁhis correéppnds to the study of
atmospheric flows past mountain ridges° The interface between the tropo-
sphere and the stratosphere is approximatéd by the upper rigid plane.
The investigation of lafge amplitude lee-waves downstream from the
Obstacle has recently been done by Long(e), Yih(6), and Claus(7); hbw—
ever,.no theoretical work has been done regarding the phenomenom of
blocking in front of the cbstacle.

At low speeds of flow, it has been observed that regions of
esséntially stagnant fluid extend in front of the obstacle to far up-
stream. A well-known example that occurs in nature is the stagnant
zone in front of mountain ridges when the prevailing'winds blow at a
lbwlspeed; It there is no viscosity, then there 1is a streamline across
which the flow is discontinuous. The problem>is therefore one which is
similar_to.the one considered in the last section. Here, a streamlihe
is to be found which extends from the obstacle to far upstream, divid-
ing the flow intd two regions. .Bele this streamline, the fluid is
Stagnant, Above it there is flow. The position of the dividing stream-
iine is as before not known a priori. The pressure condition for a
stable stagnant zone is to be satisfied also.

It is assumed that the obstacle is given by n = h(¢) where

+3) + 0 for -n €£€5<8,

-29-
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and

7’1(3) = 0 otherwise,

The streamline which forms the line of discontinuity must meet the
obstacle tangentially, otherwise there will be a stagnation point
rendering the flow unstable, The line of discontinuity is assumed to

meet the obstacle at ¢ = -e . The boundary value problem is then
2 - -
V% + F*¥Y = -F7y (52)

with the boundary conditions

T = -| for —0 < € o0, M=), (53)

¥ = -1 for = -0, 0L s |, (54)

Y = -m, for s<% Kwe0 . N=0 , (59)

Y = o for -2 <{ < -, M=o, (5)

Y = —wme sor e <% < s, N =R6),(57)
and, along the dividing streamline V¥ = -mg o,

T Y = Temee, O

where II 1s the static pressure due to the stable stagnant zone,
In this problem, it is desired to study the nature of the

stagnant zone with the variation of Froude number, and also to study
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Figure 5., Obstacle in channel.
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Figure 6. Flow over an obstacle.
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the effect of the shape of the obstacle on the formation of the stag-
nant zone. It is reasonable to conjecture that in front of obstacles
whose upstream face has .a steep rise, the height of the stagnant zone
should be as high as the obstacle itself, On the other hand, if the
upstream face has a gentle slope then lower stagnant zones should also

be possible.

B. Method of Solution,

In this problem, an inverse method is again employed. An
infinite channel 1s considered and singularities which perturb the
original parallel flow are introduced. The singularities are in the
form of sinks and vortex distributions located near ¢ =0 and extend-
ing from n =0 to near the height of the obstacle to be realized in
the flow field. This type of singularities introduces a streamline
which is open upstream and closed downstream, so that the flow field
1s divided into two parts: one part flowing out downstream and the
other into the sinks that have been introduced. As in the last problem,
the pressure distribution along the dividing streamline can be calcu-
lated. If the lower region is considered partly as the obstacle and
partly as a stagnant zone, and 1f the pressure calculated 1s equal to
the static pressure on the dividing streamline produced by an equival-
ent stagnant fluid of stable stratification, then this is a solution
to the boundary value problem posed.

The inverse method consists in choosing suitable sink and
vortex distributions so that the desired obstacle shape is obtained
and such that the velocity satisfies the conditions of stability along

the dividing streamline, so that a stable stratification is determined.
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The flow field WS with sink singularities only is now con-
sidered first, and the flow field ¥, for vortex distributions is super-
imposed later and suitably adJjusted to give the flow field the desired
features. Thus, with "a" representing the percentage of the total flow
field that flows into the sinks,

¥ = av, + (V- ¥, , (59)

in which V¥  satisfies equation (52) with the following boundary

conditions:
¥, = O for -0 <t <0, N=0, (60)
Y, = -m for 0L g K+0, M=0, (61)
(mo =Q.W7.)
:{/S '-_—“‘ for —M<'§<-\-D<> , VL_; 1(62)
Y, = -1 for §= -00,0¢N 21, (63)

and at ¢ = 0 the solution ¥, for -o<g <O and the solution

TS+ for 0 <t < +o are matched by the requirements

Y- — {/s+ = 'f'. OL) ) (64)

2%, _ 9%, _ (65)
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These requirements represent a singularity of the sink type. The part

¥, satisfies equation (52) with the boundary conditions

¥, =0 for —e0 <¢g <0, N1=0, (66)
¥, =0 for 6 <3<+, =0, (67)
¥, = - for e <t e, =1, (68)
¥, = -1 for S =-00 ,0& £\, (69)
end at ¢ =0 , the solution ¥, for -« <g <O and the solution

¥,, for 0 < ¢ < +» are matched by the requirements

¥.-. -%Y. = 0O, (70)
Y,. _ 9Y¥, (
3¢~ 3¢ = LW, e

These requirements represent a singularity of the vortex type. The
representation of singularities in the above manner is first introduced

in fluid problems by Yih(6)°

The above problem for ¥ 1s solved by assuming

Y (s.) = ¥, QD+ T, G, , (72)

where Yl 1s the parallel part and satisfies the equation

R I o
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and the boundary conditions

T (=0, I G)=-1,

'\I/H—(O):‘WL, i/l—*(‘): -1 5

and ¥y satisfies the homogeneous equation

vy, + F*1, = o,

with the boundary conditions

’1/?-’(?)0) = O, ?Z‘(EJ 1) =0, ¥, L"”/Q) =

:i/z-\- (s, 0)= 0, ¥u (%,\) = O,

Equation (73) with (74) yields the solution

Y, _ = ’Vln

Equation (73) with (75) yields the solution

Vo = -+ m oLF ST -meos 771

Equation (76) with (77) and (78) admits a pair of solutions

Y_ = ;2_;! A, e sinenmY

& -
¥,, = 2 D, g5 S n3th

hezl

(77)

(78)

(79)

(80)

(81)

(82)
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where
YA 2 __° -2
G = - - F°

For ¥ < 1/n wave components are present. However, because of the
last condition in (77), no oscillatory terms are allowed for ¢ <O ,

i.e, no waves are present upstream, Thus,

RS
)
i\

< B.g .
n;r:l-v-l A“ < Smn.r\q ? (83)

N
Yoo = 2 (B, cosdg + C, sinf-a. %) sim nay

n=\

<D

+ 2 D& giina, (84)

e N+ |

in which N + 1 is the smallest integer that makes aﬁ positive., Thus

equation (52) with boundary conditions (60) and (63) has the following

solutions:

N[e P

F.o= -1 + i A, e St n3in (85)

n=N+|

- R -l -
e, = -+ mel Flebn T = mecos F 7N+

" i(sn Cos NS + Co SURTRLT ) sin na ) +

+ ig Do g Snni . (86)

This solution corresponds to waves downstream but not upstream, and a

sink at ¢ = 0 . The constants are determined by conditions (64) and
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(65). Substitution of (85) and (86) into (64) and (65) yields

2 Aa SMNI| = m et Fl s T + meos T (e

= N+|

N 0
-éBn sz)nnnn - MZWDY\ sbn,nﬂq S—. (’\) 5 (87)

and

C J-0., sin IV

e
e

3B

Z AnJG sinsin

P2 @)D stangin . (88)

=W+

=

Therefore

and

Therefore (87) becomes
N =0 .
Y\Z‘ B, sinonay +“%+‘2Ansmnm = ﬁ(v[) +

t m ot F7 s F—"V( — WL Cops F"Vl. (89)

The B_'s and A_'s are then simply the Fourier coefficilents

Therefore

!
B, = —2f(&(q)ﬂnco?CF“sLnF"r(_vnwsF"@ sinzndy, (90)
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and
|
An = /(f\(ﬂ +m cot F™ SMF"V( - m o F""’() SinYlT\QAV(a (91)

The solution of (52) with (66) to (69) yields a pair of

solutions for YV . The solutions are

Y- = - + 2 A eﬁ“fsm“q , (92)

N
Y. = -1+ Yé, <B«: Cos -G, § S[JVLYLT\Yl + Cn SINA=OS .

ﬁ i __,J—a—“-g .
Sim )+ H__ZW L. ¢ Swnan . (93)

The constants are determined by conditions (70) and (71). Use of (70)

yields

Use of (71) and (94) yields

o0 | N _ .
hzﬂfi\ A sbnny — “Z C. &, sm.nwl +

N
+ % 2. A son ni = Mq) .
Therefore

N =40
_.“Z_\C,: j:—an SM)’IT\Y{ + K?__N+2l'~]_<]~—w A‘k Smnﬁq = :g,z( ) ,



in which
5 |
Ch = “ T3 fJECVU sonnm df (95)
and
|
'S l \ .
A = T J&;O’O Sun i clV( : (96)

For suitably chosen F, m, and fl(n) and fg(q) , the velocity
along the dividing streamline can be calculated. From this q’2 against
1 can be plotted to see whether the stability conditions are satisfied.

The detailed calculations involve a process of trial and error.

C. Results and Discussion.

The values chosen for fl(n) and f,(n) have been determined
to be as follows: fl(n) = T(n) , T(n) Dbeing a step function which is
equal to one at n =0 and equal to zero for 0 <n <1.

(90) and (91) then gives

- - A smn-FY . sm(nm+ F")} .
B,= ~mcatF { (nm - F) (it + B0
-m +F) o cos(an =F7) _ _2nx %

{ nw +F™") (nm - F-l) (YLZJTZ—F—Z) 3

A = mcok®™ ( S —E7) _ stanm +E” 5 .\
n 2 (nys - M) (Y'LJT +F_\>
+ {CO'S(YL)'Y+F") L slun-F) _ _2uw S )
2 LGame D 7 G -F) @-FY)



1=

vlro=A-

"EHT 0 093 Teubs Jsqumu opnoxd e dFpam JO JUOLT
UT 2U0Z QUEBUZBIS UQTM 3TO0BISqO UB JaA0 Uxd33ed MOTH *) 2andtd

-~ 3

€lo
o

AMW‘ 02°0- \luu

-

60

==

3INOZ

1NVNSVLS

—

v1°0

0¢'0

f—

ov°0

0s'0

090

€b1°0 = 4

0L0

080

06°0

00'1= A-

—~—



oo

*6z*0 o9 Tenbs Jaqumu SpnoJgg 48 a3pam JO JuUOIT
UT oUOZ qUBUSEAS YJTA OTOBISAO UB JI9A0 UJI933ed MOTH

*Q 2anSTg
————— w

01I'0= A - \ 7 ANOZ LNVNOVIS
010
— 020

T 050

. 090

g20= 4
080

00°1= A -




*G2 0 03 Tenbs
Joqumu apnogd 38 9T0B}SAO 9U3 S® UIToU Swes Y3
JO ouoZz quBUSEAS UJTM STO®}SqO UB X240 uJ93qred MOTA 6 2anSTd

—-— 3

-43-

J 3NOZ LNVNOVLS

60°0

020

(0,°90)

ov'0

0s0

\x\ u il
oL0

“\I\-\‘I\I‘\" . b
62'0=41 080

060

00 1= 4 -




L

*¢z°0 c3 Tenbs gsqumu opnod qe 98pPaM JO JUOIT
UT 2uU0Z quUBUIEBLS U3TM STOBISQO Uk JI9A0 uxa33ed MOTLd °*OT 2In3t1d

*lw
ZZz §0°0
r|:|:::////1/:lnl\\\\\\\\\\\\\\\\\\|1x 020

ovo

090
g2'0=4d




~45-

*EHT"O 0% Tenbs Jaqunu opnogd 4B 9T0®31SqQ0 SU3 SB I Ty
swes oUq JO SUOZ JUBUSBES UYJTM STOBISQO UB I3A0 uxagqed MOTA °TT SJn3TJ

8lo=A -

3

oro

7

dNOZ LNVNOVLS

020 -

81’0

oeo

ov'0

0s'0

090

gb1°0 =

d

oL'0

080

06°0

01

>

———



~L6-

*¢z°0 09 Tenbs xaqumu
2pNOJd 18 STOWISOO dYY S® QUITaY awesS 9Y3 JO
SU0Z qUBUIBLS UJTM OTOBLSCAO UB J8A0 uxsqqsd MOTL °ZT aanITd

-3

Q 3INOZ L1NVNOVLS

91'0

ST T e

oeo

ov'0

050

090

oL 0

G20= 4 080

060

00T=A -



~47-

fy(n) =C for 0<n<4 .and fo(n) =0 for 4 <n . Then from

(95) and (96), it is seen that

v A
Cn."‘ J_?“'“ nn(%hﬂ["');

An = o w7 (mcosmal +1)

Two general types of obstacles have been generated, One is
somewhat circular and the other is wedge-shaped. The downstream flow
pattern is mainly dependent on the height of the obstacle and the mag-
nitude of the Froude number F, and appears to be quite independent of
the actual shape of the obstacle. For higher obstacles and lower F,
larger downstream eddies arerformed, However, it is not the purpose
of this study to investigate the significance of these eddies. Suffice
it to mention that these eddies have actually been realized in the
laboratory. The region of actual interest is of course the stagnant
zones extending upstream from the obstacle. It is seen from Flgures
(9), (11), and (12), that for the near-circular obstacles, or actually
for obstacles with steep upstream face of arbitrary shape, the tendan-
cy is for the stagnant zone to reach the same height as the obstacle,
the flowing part skimming over the top of the obstacle. These are the
only stable configurations that could be obtained in the trial and
error calculations that have been carried out. This is a result that
is to be expected, since this 1s an example of a weak flow in strati-
fied fluids under the action of gravity, and it has been shown by

Yih<8) that in such motions vertical movements are inhibited., In



_L48-

order to obtain a whole series of lower and lower stagnant zones, the
obstacle has to be wedge-shaped. This is shown in Figures (7), (8),
and (10). In fact, as shown in Figures (7) and (8), the higher the
Froude number, the lower is the depth of the stagnant zone. This is
also seen in Figures (11) and (12), though not so marked as in the
other case,

In all cases considered the density of the fluid in the stag-
nant zone 1s determined to be constant. The Froude number for the var-

ious examples is either 0.143 or 0.25.



VI. CONCLUSION

A class of solutions exhibiting a contact discontinuity has
been studied for two-dimensional, steady flow of an inviscid, incom-
pressible, stratified fluid between two parallel plates. For certain
upstream conditions, the governing equation is rendered exactly linear,

It has been found that along the dividing streamline, which
separates the flow field into the flowing zone and the stagnant zone,
the flow must satisfy Bernoulli's relation with the pressure given by
the hydorstatic pressure imposed by the stagnant zone. In order that
the whole flow configuration be stable, the density of the stagnant
fluid must satisfy certain physical requirements. These physical re-
quirements have been translated into a mathematical form in terms of a
set of necessary and sufficient conditions which the velocity along
the dividing streamline must obey. In the inverse method of solution
used in this study, tﬁese conditions have been employed to produce
a posteriori stable flow configurations.,

In the case of the flow into a sink, stable solutions have
been found exhibiting a stable stagnant zone which lies on top of the
flowing zone, The line of discontinuity in the flow field is the di-
viding streamline,‘ The flow patterns for these flows are seen to be
in good agreement with experimental results. It has been found here
that for all separated flows the Froude's number of the flowing zone
has a constant value equal to 0.345. This is in agreement with the
fact established by Yih(S) that in the case under consideration there
is a unique Froude number for the flowing zone for all separated flows,

It is also of the same order of magnitude as the number 0.28 established

_49_
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experimentally by Debler(h). The Froude number F2, based on the dis-
charge and the total depth, for the cases considered are found to be
0.176 and 0.124. The depth of the stagnant zone increases with de-
crease in F2.

For flows over an obstacle, it has been found that stagnant
regions exist in front of the obstacle. Downstream eddies are also
present, as well as the expected large amplitude lee-waves. It has
been shown here that the depth of the stagnant zone does depend on
the Froude number, the depth increasing with decrease in Froude num-
ber., It has also been shown that the height of the stagnant zone is
nearly equal to the height of the obstacle with steep upstream face
of arbitrary shape. On the other hand, a series of lower and lower
stagnant zones has been obtained when the obstacle is wedge-shaped.

Finally it mayibe noted that by the inverse method uti-
lized here, it is possible indeed to construct solutions to free-
streamline problems in stratified flows. Furthermore, since the flow
is rotational, the solutions obtained here illustrate a class of so-

lutions to free-streamline problems in rotational flow.



APPENDIX

In the case of flow into a sink, detailed calculations have
been carried out for the following:

For F = .345, a = .51, and b = .14, F_, = ,176, the values

2
computed for q'2 along the dividing streamline are tabulated below:

Ul Q'2
.160 1.625
.190 1.575
.215 1.525
.250 1.460
.295 1.425
.350 1.350
.koo 1.225
o) 1.125
AT 1.075

For F = .345, a = .36, b = .10, F, = ,124, the values com-

puted for q‘2 along the dividing streamline are tabulated below:

n qt?
115 2,025
.140 1.950
.160 1.850
.190 1.725
.220 1.650

-51~
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.265 1.475
.290 1.350
.320 1.175
.345 1.100

In the case of flow over an obstacle, detailed calculations
have been carried out for the following:

F =0.143, m = 0,20, C =10, 1 = 0,15, and a = 0,70,
The sink 1s situated at ¢ = .1 , and the vortex sheet is situated at

¢ = 0 , The values computed for q'2 along the dividing streamline are

M q'?
.140 1.000
145 1.054
.150 1.117
Therefore
G -1
B — = 585 CVL“W‘) .

The density of the stagnant zone is therefore a constant and equal to

the following:

6 = (@ =+ 5'§i’35u ) .

F=0.25, m=0.20, C =10, 1 =0.15, and a = 0,8,
The singularities are situated as in the previous case, The values

computed for q‘2 along the dividing streamline are
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1 q,e
.160 1.000
162 1.030
.165 1.140

Therefore

4% 1
S = -0
The density of the stagnant zone is therefore a constant and equal to

the following:

(og = (65 +%(o°>

F =0.143, m = 0.20, C =18, 1 = 0.14, and a = 0.90,

The singularities are situated as in the previous case., The velocity
is a constant along the whole streamline., The density of the stagnant
zone is therefore a constant and is in fact able to assume any value
greater than or equal to Py -

The case F = 0.25, m = 0.20, C =10, 1 = 0.15, and a = 0,50,
has the same constancy of velocity along the dividing streamline, and
thus has the same result,

F=0.25,m=0,10, C =18, 1 = 0.05, and a = 0,90,

The sink is situated at ¢ = .08 , and the vortex distribution is sit-
uated at ¢ = 0 . The velocity is again a constant along the stream-
line and the result is thus the same as the previous case. The case

F =0.25, m =0.,10, C =18, 1 =0.05, and a = 0,50, is the same as the

previous case,
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The above results are obtained through trisl-and-error com-
putations on the IBM 7090. Detailed tabulations are not attached here,

but are available from the author.
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