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1.  Introduction 

Many problems in contemporary social science lend themselves to an analysis in which the individuals 
under study are placed in their context, especially a context that can be defined spatially, as street, block, 
town, county, or some other spatial unit. Data producers have found two ways of providing this 
information, either identifying the spatial unit (so that the data user can link the appropriate contextual 
data herself), or merging the contextual data, effectively adding the characteristics of the spatial unit in 
which the subject lives. In this second case, the record for a given individual includes that person’s 
characteristics (e.g., age of respondent) as well as those where they live (e.g., proportion of population in 
respondent’s neighborhood that is poor). 
 
One reason for providing the contextual data themselves, rather than the identity of the spatial unit, is that 
doing so makes it more difficult to identify the spatial unit in which the survey respondent lives (Armstrong, 
Rushton, and Zimmerman 1999). However, it is possible that the contextual data themselves constitute 
enough information to be a geographical unique.  If that’s the case – for example if the combination of 
contextual information about a given spatial unit is rare among spatial units of that type – then 
identification is more likely, rather than less (Saalfeld, Zayatz, and Hoel 1992).  Care must then be taken 
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to modify these data to maintain their confidentiality and their statistical properties, while at the same time 
ensuring that the data have the maximum analytic value for the broadest user group. 
 
Two recent studies followed this practice of adding contextual data to their analytical files.  In producing 
their public-use files for their Residential Energy Consumption Survey, the Energy Information 
Administration perturbed temperature data to mask the location of weather stations (Subcommittee on 
Disclosure Limitation Methodology 2005; Energy Information Administration 2001). And in a study of 
discrepancies between official votes and exit polls in the 2004 presidential election, official tallies of the 
proportion of Kerry votes were blurred for a sample of Ohio precincts; thereby concealing the identity of 
these controversial voter locations (Kyle et al 2007).  Although they address confidentiality issues 
stemming from contextual data, these studies do not detail the likelihood of reidentifying these locations 
and associated determinants.1   
 
Hence my goal for this study is to provide basic research informing the design of public-use microdata 
files containing contextual measures at three spatial scales: (1) census blockgroups, (2) census tracts, 
and (3) counties.  I assess one crucial source of risk associated with these contextual data, that of 
pinpointing a sample of locations among the total population of geographic units.  In doing so, I provide 
estimates for this risk component and illustrate how they vary across pertinent design elements.  Given 
this information, I then identify distribution plans that are most likely to provide a specified level of 
confidentiality for sets of contextual variables.   
 
Compiling nearly 15,000 data files composed of geographic-unit records containing a variety of contextual 
data, I measure the likelihood of correctly reidentifying locations under alternative distribution scenarios, 
relating to: (1) spatial scale; (2) the identification of division, state, and MSA-status; and (3) the number 
and coarseness of contextual variables provided in a dataset.  Using the “datafile” as my unit of analysis, 
the proportion of easily-reidentified geographic units as the outcome of interest, and associated 
experimental traits, I detail the complexity of reidentification patterns that emerge when constructing 
public-use files that provide contextual data.  
 
Because microdata files typically consist of both individual and contextual measures, a full assessment of 
risk requires a hierarchical reidentification model that considers identifying characteristics of both survey 
respondents and their locations.  By providing a set of baseline estimates for one key component of 
locational risk, this study helps lay the groundwork for such an evaluation.   

2.  Empirical Approach to Disclosure Analyses of Contextual Data 

In this section, I outline the analytical steps involved in evaluating disclosure risk for contextual data 
(Armstrong, Rushton, and Zimmerman 1999; De Waal and Willenborg 1995, 1996; Interagency 
Confidentiality and Data Access Group 1999; Subcommittee on Disclosure Limitation Methodology 2005; 
United States General Accounting Office 2001; Zayatz 2005). 
 
Widely-available summary files of census data identify all counties, tracts, and blockgroups in the United 
States and provide measures describing the characteristics of the population located within these 
geographies.  Trying to safely meet user demands for geographically-rich information, a producer can 
attach these contextual data to their survey respondents’ locations, without directly identifying the 
geography (Armstrong, Rushton, and Zimmerman 1999).  But before these microdata files can be 
released publicly, the producer must assess the likelihood that a survey respondent’s location can be 
correctly reidentified by an intruder using this contextual data.   
 
An intruder may identify geographies by conducting an experiment that matches contextual information 
provided in the survey’s public-use file with data available from the original tabulation files for the full 
population of geographies.  Searching within the survey file, the intruder identifies sampled locations that 
share a specific set of contextual characteristics.  Using the same indicators, the intruder then identifies 
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locations in the population file that have the same characteristics and compiles direct identifiers (i.e., 
county name, tract, and blockgroup identifiers) for these “population matches”.   
 
A sampled location having a single match, defined as a “unique”, is unequivocally reidentified when the 
external database represents the full population.  A location with a small number of matches, defined as a 
“rarity”, also faces a significant risk of being reidentified.  Conversely, a location is said to be adequately 
obscured only when there is a sufficiently large number of population matches.  In turn, the producer must 
decide upon a match-threshold that defines the upper bound of risk.  If the number of matches falls below 
this threshold, then risk of reidentification is considered intolerable and therefore the contextual data is not 
safe for release.  The producer considers information sensitivity and intruder behavior when defining this 
match-threshold, incorporating statistical inference arguments to justify their selection.  After defining what 
constitutes anonymity for geographic units, the producer then assesses the amount of risk associated with 
a public-use file’s contextual information by calculating the proportion of locations that are easily 
reidentified.   
 
Using this measure to gauge changes in risk, the producer can then modify the composition of their 
public-use file to meet their goal of maximizing the utility of contextual data while minimizing the chances 
that geographic units are reidentified.  Data utility, as well as the ability to reidentify locations, is enhanced 
by releasing geographic identifiers and a large number of contextual variables.  To effectively design their 
public-use dataset, the producer needs to set priorities regarding (1) the release of geographic identifiers, 
(2) the scope of geographic identifiers, (3) the scale of contextual variables, and (4) the number of 
contextual variables.  The producer can then better select disclosure limitations methods (DLMs) that 
offset the risk associated with these contextual data.   
 
To reduce disclosure risk in public-use microdata files, agencies often only apply nonperturbative methods 
in order to maintain the statistical properties of the original data, thus maximizing its utility for widely 
disparate and largely unknown applications (Interagency Confidentiality and Data Access Group 1999; 
Subcommittee on Disclosure Limitation Methodology 2005; Zayatz 2005).  Consequently “global recoding” 
and “local suppression” are important techniques to be considered for statistical disclosure control (De 
Waal and Willenborg 1995, 1996).  Aggregating continuous measures into various levels of coarseness 
decreases the likelihood that locations are reidentified (i.e., global recoding).  But for geographic units that 
remain easily pinpointed, their contextual characteristics are not to be released on a microdata file (i.e., 
local suppression); where the proportion of sampled locations with suppressed contextual data are 
represented by the aggregate measure of disclosure risk.  Because fewer measurement categories and 
high suppression rates increase the amount of information-loss, a producer needs to consider how data 
utility varies with these methods.   
 
Using this empirical approach, I develop an experimental study that systematically varies the 
characteristics of contextual data that are associated with a single sample of locations.  In doing so, I am 
able to assess how locational risk is shaped by different choices that a producer makes when designing a 
dataset that safely offers the most useful contextual data.  Illustrating important aspects of the decision-
making process, I discuss how disclosure risk is defined and issues associated with this definition in 
Section 3, along with providing an example of how decisions are informed by my study’s results in Section 
5c. 

3.  Assumptions and Hypotheses  

3. a.  Matching Algorithm 

For purposes of this study, I assess only one component of risk associated with contextual data, that of 
pinpointing a sample of locations among the total population of geographic units (i.e., A j ).  The 
distribution of contextual variables characterizing these survey locations (i.e., Y J | j ) is determined by my 
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experiment’s sampling methodology.  I define “Locational Disclosure Risk”, my outcome of interest, as the 
fraction of locations associated with a survey that an intruder can confidently reidentify (i.e., LR).2   

LR   =   Σ ( Pr [ R J ] )        ( 1 ) 

Pr [ R J ]   =  1 – ( Pr [ Y J | j ]  x  Pr [ A j ] )       ( 2 ) 

Pr [ A j ]  =  f ( S, G, K, M )         ( 3 ) 

Where:  
 
LR  = Proportion of sampled geographic units that are easily reidentified 

R J   =  Sampled geographic unit ( J ) is easily reidentified, given “contextual” variables ( j ) 

Y J | j   =  Sampled geographic unit ( J ) has “contextual” variables ( j ) 

A j   =  Combination of values of “contextual” variables ( j ) is considered safe  
  if combination occurs at least T1 times among geographic unit population 

S  = Spatial scale of contextual data 

G  =  Identified geography 

K  =  Number of “contextual” keys 

M  =  Masking technique 
 
Assumption:  T1  =  20, “Geography Population Unique” Threshold 

In turn, I assess how easy it is to reidentify a geographic unit given perfectly accurate information about its 
contextual characteristics (Lambert 1993; Duncan and Lambert 1989).  Using simple combinations of 
contextual variables, the probability of a unit being reidentified depends on the number of matches found 
in the population; where “matches” are those units sharing the same set of characteristics (i.e., A j ).  A set 
of geographic units having the same characteristics are considered anonymous when there are at least T1 
in the set.  Identifying matches within the population depends on four characteristics of a dataset:  the 
spatial scale of contexts (S), geographic identifiers (G), the number of contextual variables (K), and the 
coarseness of their measures (M).3 

3. b.  Statistical Properties and Expected Outcomes 

There are dramatic differences in the number of units in the populations of counties, tracts, and 
blockgroups.  Compared to the number of counties, there are 20.7 times and 66.3 times as many tracts 
and blockgroups (3,140 counties or county-equivalents; 65,133 tracts and 208,235 blockgroups; excluding 
Washington DC).  These differences result from the methodology underlying the construction of these 
administrative units which places a cap on their population size.  With population sizes ranging between 
67 to 9,519,338 people (i.e., Loving County, Texas and Los Angeles County, California), counties are 
entities that have been defined legally; that is, they are created by State law or some other administrative 
action.  In contrast, census tracts and blockgroups have been defined specifically for data collection 
purposes.  Census tracts designate areas that are relatively uniform in their population characteristics, 
economic status, and living conditions, with as many as 1,500 to 8,000 people (U.S. Census Bureau 
2000).  With as many as 600 to 3,000 people, blockgroups further subdivide tracts into areas bounded by 
visible and legal features (e.g., streets, property lines) (U.S. Census Bureau 2000).   
 
Laws of probability predict that the likelihood of identifying a unique is negatively associated with the 
number of units within the total population.  Consequently, disclosure risk rises with the spatial scale of a 
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geographic unit because of declining population size and the possibility of locating matches.  In other 
words, small geographic units – that are large in number – offer more opportunities to locate matches, 
thereby ensuring confidentiality.  Hence risk should be lowest for blockgroups, given the high probability of 
finding multiple matches.  Applying the same logic to counties, risk of disclosure should be highest for 
these large-scale geographic units. 
 
However the anonymity benefits of a relatively large number of potential matches is offset by another 
statistical artifact.  Because space is further delineated into units that are relatively small in area, large in 
number, and heterogeneous, blockgroup-level data exhibit considerably more variation in contextual 
characteristics.  Consequently, there is an increased chance of identifying unique contexts among 
blockgroups.   
 
Besides these scale factors, the ability to reidentify geographic units varies with the scope of the study. 
Directly identifying state/regional location and MSA-status limits the size of the population that is matched 
upon by confining the disclosure assessment to units within these areas, thereby increasing the likelihood 
of locating uniques. In turn, risk should generally be higher with the release of state, regional, and 
population density variables. Furthermore risk of reidentification should be highest when state-location is 
known because they are precise geographies covering the smallest land area. 
 
The ability to identify population uniques is further enhanced when more information is provided about a 
given location. Consequently geographic units are generally more easily reidentified in datasets with 
relatively large numbers of contextual measures. The amount of risk resulting from these keys depends 
on the coarseness of their measurement. 
 
Expected Disclosure Risk Associated with Spatial Scale of Contextual Data, Identified Geography, and 
the Number and Coarseness of Contextual Variables 

Spatial Scale (S) Risk Identified Geography (G) Risk Number & Coarseness of  
Contextual Variables (K, M) Risk 

Counties              +++ MSA-Status     + 1-Key or  
Top, Bottom-25% Categories + 

Tracts                   ++ Region     ++ 3-Keys or 10%-Categories ++ 

Blockgroups         + State  +++ 5-Keys or 1%-Categories     +++ 

3. c.  Specific Considerations 

To inform the design of the most typical survey datasets, I construct a moderately-sized, cross-sectional 
sample of locations that is randomly drawn to reflect each state’s population distribution.  In selecting my 
reidentification threshold (i.e., T1), I take into account these survey characteristics as well as my project’s 
need to concurrently study a variety of contextual data – whereby I consistently apply this parameter 
across all datasets.  

Using statistical inference, survey respondents can refute an intruder’s assertion that he/she has correctly 
reidentified their location.  But to provide convincing evidence, researchers must certify that the chances 
of an intruder’s match being correct is no better than if the intruder chose it at random from the other 
matches in the set.  Hence, the task at hand is to avoid type I errors where we have mistakenly rejected 
the null hypothesis (H0) that the intruder’s locational-match is correct.  Assuming that the significance level 
(or p-value) of 0.05 provides a sufficient test of this hypothesis, there is a 5-in-100 chance of wrongly 
rejecting the intruder’s claim, if it is in fact true.  If we are unable to reject the null hypothesis, it only 
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suggests that there is not sufficient evidence against the intruder even though the match may still be 
incorrect.  By correctly rejecting the null hypothesis, we can assuredly deny the intruder’s claim.  This is 
discussed in greater detail in VanWey, et al. (2005). 

Although the p-value of 0.05 has been established as the standard for correctly rejecting null hypotheses 
(i.e., avoiding type I errors), this significance-level may be inadequate when applied to the disclosure of 
geographic units.  Intruder costs – associated with verifying reidentified locations – are significantly 
affected by a dataset’s scope which concentrates the geographic dispersion of matches.  The question 
then becomes: Given the close proximity of matches, do intruders gather additional information that 
increases our chances of incorrectly rejecting their claim?  If this is true, researchers may want to lower 
their significance level to offset reduced intruder costs associated with a dataset’s release of geographic 
identifiers; whereby smaller p-values indicate stronger evidence for rejecting the null hypothesis.  Further 
research is needed to inform this decision. 

When deciding what constitutes adequate protection, researchers must also contemplate how the utility of 
their data will be affected.  Given the small number of large geographic units, counties are generally 
easier to reidentify – based solely on the number of potential matches, without regards to the number and 
coarseness of contextual measures.  Suppressing data for “at-risk” geographic units, contextual data 
would primarily be released for an extremely homogeneous set of counties; thereby reducing variation in 
these measures to the point where they become analytically useless. This suppression bias is 
exacerbated with increased threshold-levels (i.e., T1).  

Finally when choosing a threshold, researchers need to consider the spatial scale of contexts and whether 
the dataset will provide identifying geographic information.  Reducing the number of matches, the ability to 
provide convincing evidence is significantly lowered when a dataset increases its contextual scale or limits 
its scope of study.   

While I am unable to address variability in intruder costs, I do incorporate a consistent definition of risk 
that maximizes data utility across all test datasets.  In turn, I choose the reidentification confidence level of 
p>0.05, where “at-risk” geographic units are those with 1 to 19 matches.  This reidentification confidence 
level conversely translates into a threshold value of 20, where contextual data are considered safe for 
release when geographic units have twenty or more matches  (i.e., T1=20).    

4.  Assessing Disclosure Risk of Masked Contextual Data  

As the empirical basis of my study, I conduct experiments to assess the amount of disclosure risk 
associated with a dataset’s contextual data (Domingo-Ferrer and Torra, 2001a).  Using the test dataset as 
my unit of analysis, the amount of locational disclosure risk as my outcome of interest, and associated 
experimental traits, I produce descriptive, multivariate analyses to test my hypotheses.  In doing so, I 
followed eight methodological steps: 
 

• select contextual measures and identify population of base variable sets; 
• draw a sample of base variable sets; 
• construct test datasets that vary in spatial scale of contextual measures, identified geography, 

number of keys, and masking method, holding constant sample of base variable sets; 
• identify a set of geographic units associated with a single synthetic sample of survey respondents; 
• construct microdata files composed of sampled locations, attaching test datasets of contextual data 

to these geographic-level records; 
• reidentify a set of sampled locations, using available geographic identifiers and contextual data for 

counties, tracts, and blockgroups; 
• calculate aggregate disclosure risk for each test microdata file as proportion of geographic units 

that are easily reidentified; and 
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• estimate aggregate disclosure risk for all possible datasets (i.e., full population of base variable 
sets).   

4. a.  Sources, Measures, and Sampled Datasets of Contextual Data 

My sources of contextual data are summary files tabulated from the 2000 U.S. Census of Population and 
Housing (U.S. Department of Commerce 2000a, 2000b, 2000c).  These summary files are prominent 
public-use databases within the social sciences, providing a diversity of measures and a range of 
geographic detail. Contextual data are compiled from published tabulations for all blockgroups, tracts, and 
counties in the United States.  
 
To identify which measures would be of most interest to researchers, I draw on the sociological literature 
on stratification, residential segregation and mobility, and labor markets. I limit my test datasets to those 
having subsets of the seventeen concepts (i.e., base variables) listed below.  
 

• Race/Ethnic Composition  
o % Persons, Non-Hispanic White 
o % Persons, Non-Hispanic African-American  
o % Persons, Non-Hispanic Asian or Pacific Islander 
o % Persons, Non-Hispanic Other Race 
o % Persons, Hispanic 
o % Persons, Foreign-Born 
o % Foreign-Born, Naturalized Citizens 
o % Households, Linguistically Isolated 

 
• Socioeconomic Status  

o % Persons, In-Poverty 
o % Households, With Wage Income 
o % Households, Receiving Public Assistance 
o % Persons Age 25+, College Degree 

 
• Social Context 

o % Families, Female-Headed 
o % Persons Age 16-19, Neither Enrolled nor Graduated from High School 
o % Housing Units, Owner-Occupied 

 
• Labor Market  

o % Persons Age 16+, Civilian Labor Force 
o % Civilian Labor Force, Unemployed 

 
The conceptual content of datasets varies with (1) the number of base variables (i.e., k = 1, 2, 3, 4, 5) and 
(2) which base variables are included in the sets. All possible combinations of base variables (i.e., base 
variables sets) are constructed for sets containing one, two, three, four, and five concepts (N k = 17; 136; 
680; 2,380; 6,188; respectively). I compile datasets – holding constant a specific base variable set – by 
varying its spatial scale, identified geography, and masking technique.  Consequently, I can better clarify 
risk factors associated with spatial scale and geographic relationships and avoid confounding my results 
with varying sub-domains. 
 
Relationships between variables within a dataset have implications for reidentification and vary with the 
geographic scale of the measures.  Large amounts of variation within measures (i.e., wide range of 
values) increase the likelihood of identifying uniques and, therefore, disclosure risk. However large 
amounts of collinearity among measures may allow producers to release more variables within a dataset 
without drastically increasing disclosure risk.  To assure an unbiased selection of measures that are 
representative of the degrees of variance and collinearity among all possible datasets, I sample 137 sets 
of base variables composed of one to five concepts.  All seventeen base variable sets with a single 
concept are included in my study.  Thirty datasets are randomly sampled from each stratum of the 



                         Witkowski:  March 17, 2008 

    8

multiple-concept base variable sets.  An assessment of the effectiveness of this sampling approach is 
presented in a working paper that is available upon request. 

4. b.  Experimental Traits 

Given a finite number of sampled sets of contextual concepts (n=137), datasets (C b,s,g,m) are varied along 
the [B x S x G x M] matrix of: (1) base variable sets (b = 1 to 137, described above); (2) spatial scales of 
contextual data (s = 1, 2, 3 = counties, tracts, blockgroups); (3) identified geographies (g = 1, 2, 3, 4, 5, 6 
= none, population density, division, state, population density and division, population density and state); 
and (4) masking techniques (m = 1, 2, 3, 4, 5, 6 = 1%, 5%, 10%, 15%, 20%, and Top and Bottom-25% 
categories). Consequently, 14,796 datasets (= 137 x 3 x 6 x 6) are compiled and assessed.   
 
Illustrating this nomenclature, two datasets are compiled using one of the sampled set of concepts 
consisting of five base variables (b=137): (1) % Persons, Non-Hispanic White; (2) % Persons, Foreign-
Born; (3) % Households, Receiving Public Assistance; (4) % Housing Units, Owner-Occupied; and (5) % 
Civilian Labor Force, Unemployed.  Test dataset (C 137,1,1,1) contains these five contextual variables 
measured at the county-level (s=1) without any geographic identifiers (g=1), masked into 1% categories 
(m=1).  In comparison, test dataset (C 137,3,3,3) contains these five contextual variables measured at the 
blockgroup-level (s=3) along with the identification of division (g=3), masked into 5% categories (m=3). 
 
Presented in Appendix Table A-1, equal proportions of datasets across categories of spatial scale, 
geographic identifiers, and masking techniques reflect my experimental design. Taking a base variable set 
of concepts, I compile datasets that systematically vary across a matrix of these experimental traits.  
However, the proportions of datasets across categories of the number and conceptual composition of 
contextual variables reflect the random sampling of base variables sets, stratified by key-sets (i.e., 
including all 17 sets with 1 key; including 30 sets each with 2, 3, 4, and 5 keys). Every conceptual domain 
(i.e., base variable) is represented in my test datasets. Fifteen of the seventeen concepts were included in 
15 to 24% of the datasets.  However, “% Persons, Non-Hispanic Asian or Pacific Islander” was least likely 
to be represented (7% of datasets); while “% Persons, Non-Hispanic White” was most often represented 
(31% of datasets).  These inconsistencies are strictly random artifacts. 

Given these base variable sets, I then constrain my matching process by geographic identifiers released 
in the dataset.  A dataset can directly identify the state, division, and population density of respondent 
location.  U.S. Census geographic divisions categorize states into seven regional groups of (1) New 
England, (2) Middle Atlantic, (3) East North Central, (4) West North Central, (5) South Atlantic, (6) East 
South Central, (7) West South Central, (8) Mountain, and (9) Pacific.  Population density is defined by 
three categories of MSA-status: (1) MSA 1-million or more, (2) MSA less than 1-million, and (3) Non-MSA 
(Sources: U.S. Census Bureau, 2002, 2006a, 2006b). Measured at the county-level, these data are also 
used to characterize the MSA-status of tracts and blockgroups.   

Finally I systematically vary the amount of measurement detail across my experimental datasets; thereby 
assessing how rates of local suppression fluctuate with global recoding schema.  After top-coding and 
bottom-coding my continuous variables to conceal outliers, I recode contextual measures into six grades 
of coarseness (i.e., 1%, 5%, 10%, 15%, 20%, and Top and Bottom-25% categories).  Outliers were 
identified as those within the top and bottom 0.5% of each variables distribution (Zayatz, 2005), given 
geographically-specific distributions defined by each dataset’s identified geography.  Contextual variables 
are recoded into aggregated categories based on their absolute values (i.e., absolute recoding).  For 
example, let us consider a county having 72% of its population that is non-Hispanic White.  Coarsening 
the measure into 10%-categories, the county would be characterized as having an absolute value that 
falls between 70% and 80%.4 
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Global Recoding of Contextual Variables 

Coarseness of  
Contextual Variables  

Metric 
Spaces Absolute Values Coarseness of  

Contextual Variables 
Metric 
Spaces Absolute Values 

1%-Categories              100 0%, 1%, 2% . . .  
98%, 99%, 100% 15%-Categories 7 0 - 14%, 15 - 29%, . . .  

75 - 89%, 90 -100% 

5%-Categories               20 0 - 4%,  5 - 9%, . . .  
90 - 94%, 95 - 100% 20%-Categories 5 0 - 19%,  20 - 39%, . . .  

60 - 79%, 80 - 100% 

10%-Categories        10 0 - 9%,  10 - 19%, . . . 
80 - 89%, 90 - 100% 

Top, Bottom-25% 
Categories 3     Top-25%, Bottom-25%, 

Other 

4. c.  Sampled Locations 

Represented in the 2000 U.S. Census of Population and Housing (U.S. Department of Commerce 2000a), 
a stratified sample of blocks is drawn to reflect the areal distribution of the U.S. population across states. 
The block is chosen as my sampling unit because it most closely approximates the residential location of 
our theoretically ideal sample of individual survey respondents (i.e., persons). Being the foundational 
spatial unit from which all geographies are built upon, blocks also pinpoint various contexts to a single 
location. In turn, tabulations from identified counties, tracts, and blockgroups, which overlap with my 
sampled blocks, are included in my study as contextual data. These contextual data are then represented 
in a dataset of location-records.   
 
Fifty-one state-specific block samples (including the District of Columbia) are drawn with probability-
proportional-to-size without replacement (PPS).  Each block within a state has a probability of selection 
that is proportional to its population density, defined as the total number of persons per square meter of 
block area.  Presented in Appendix Table A-2, 11,562 blocks are sampled, representing 11,562 synthetic 
persons dispersed across approximately 5% of all blockgroups, 14% of all tracts, and 57% of all counties 
in the U.S.  Further details about my sampling methodology and construction of weights are available 
upon request.  

4. d. Locational Disclosure Risk Associated with Test Datasets  

The foundation of my component of locational disclosure risk (i.e., A j ) is the confidence-level of correctly 
identifying a sampled location among a population of geographic units (i.e., T1 ).  Given the p-value of .05, 
I assume that I can strongly refute an intruder’s claim of correctly reidentifying a location (H0) when there 
is a 5-in-100 (or less) chance of wrongly rejecting this hypothesis (VanWey, et. al, 2005).  Taking the 
inverse of this confidence-level, a geographic unit is considered easily reidentified when it has fewer than 
20 matches (i.e., at_risk=1).   
 
To ascertain the number of matches, I compare the contextual characteristics associated with a sample of 
locations – with a master contextual file containing the same measures for the full population of 
geographic units and their identifying information. Data in the master file are top and bottom coded and 
collapsed into intervals as defined by the test dataset.  In that my test datasets also directly identify 
population density, division, and state-location, I further refine my matching process by utilizing 
geographically-specific master contextual files.  Because contextual data for a sample of locations are 
originally drawn from this master file and have not been perturbed, the identification of matches is exact.  
Consequently, counting the number of matches simply requires that I tabulate the number of geographic 
units in the population file having a specified set of contextual characteristics, coinciding with those found 
in my experimental survey (Winkler 2004). 
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After assessing whether a sampled geographic unit is considered easily reidentified, I measure the 
amount of aggregate risk associated with a dataset by calculating the proportion of locations that are 
considered “at-risk” of being reidentified because of the release of contextual data (i.e., at_risk=1).  This 
estimate measures risk for a single sample of locations associated with a survey of respondents, instead 
of drawing separate samples of counties, tracts, and blockgroups.  

4. e.  Generalized Estimates  

Using the above measure, I calculate the average amount of disclosure risk associated with contextual 
data at three spatial scales as a function of geographic identifiers, number of contextual variables, and 
masking techniques.  Analyzing metadata characterizing my sample of 14,796 datasets (see Appendix 
Table A-3 for further details), I produce estimates that are generalized to all possible datasets.  In doing 
so, I provide point and interval estimates of average aggregate risk for 540 dataset typologies defined by 
my study’s experimental traits (i.e., S x G x K x M = 3 x 6 x 5 x 6).   
 
Confidence intervals for extreme values of risk tend to be narrower than those for moderate values.  Since 
estimates are adjusted to account for the complex survey design of sampled variables sets, this pattern 
does not reflect bias introduced from heteroskedasticity; rather it arises from a confluence of matching 
inefficiencies in my reidentification algorithm.  It is easy to predict that nearly 100% of respondents will be 
reidentified when we have a large number of fine-grained contextual data that characterize a relatively 
finite geographic area.  But it becomes more difficult to predict aggregate risk (with as much precision) 
when reidentification depends upon fewer, coarsely-grained measures that characterize a larger 
population of potential matches.  Consequently, confidence intervals tend to be the narrowest at the 
extremes and widen across more moderate levels of risk.  This variation should be considered when using 
this study’s results for designing datasets. 

5.  Presentation of Results  

In the following section I describe how aggregate disclosure risk of geographic units varies with the 
experimental traits of datasets.  When I refer to “aggregate disclosure risk”, I am specifically talking about 
the probability of confidently reidentifying a geographic unit among its population because of its contextual 
characteristics.  As a way to encapsulate the complexity of these results, I produce summary statistics 
and provide a specific example of how this information may be integrated into the design of datasets. 

5. a.  Tool for Creating Public-Use Microdata Files with Contextual Data 

In Table 1, I present the average amount of aggregate risk for each dataset typology.  I also present the 
upper bound of this estimate in that the highest, probable amount of risk is also of concern when 
designing public-use datasets.  This table is organized so that the reader can easily assess patterns of 
risk.  Dividing the table into three pages, each page shows estimates for datasets with different spatial 
scales of contextual data.  Each page is further divided into six panels, where each panel displays 
information for datasets with varying geographic identifiers.  Within each panel, predicted values are 
presented for datasets with one to five contextual variables (across columns) that vary in the coarseness 
of their measurement (within rows).  Hence, within each page, aggregate risk tends to increase as one 
reads from left-to-right and from top-to-bottom. 
 

 [Table 1 Here] 

5. b.  Descriptive Statistics  

Presenting Table 1’s estimates averaged across all masking typologies, Figures A, B, and C illustrate the 
degree to which disclosure risk is heightened with the release of identified geography and additional 
contextual keys.   
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Looking at Figure A, the risk posed by county-level contextual data dramatically rises when we constrain 
the geographic scope of the dataset. Considering datasets where only one contextual variable is released, 
only 1% of sampled locations are at-risk when the study is national in scope.  While for sub-national 
studies, 4 to 9% of locations are at-risk with identifying either population density or division; 20 to 29% of 
locations with identifying both division and population density or state alone; and 52% of locations with 
identifying both state and population density.   
 
For each scope of study, disclosure risk also increases with the addition of contextual variables.  The 
largest increase in risk occurs with the release of a second contextual variable.  National datasets and 
those identifying both state and population density experience a 11 to 12 percentage-point jump; slightly 
less than the 14 to 17 percentage-point increase experienced by other geographically-specific datasets.   
 
When datasets release 3 or more keys, there generally is a 6 to 9 percentage-point increase in the 
marginal proportions of locations at-risk. However, there is one exception when datasets identify both 
states and population densities.  Since four keys already allow for 77% of locations to be easily 
reidentified, it is expected that a fifth key will have a relatively lesser impact on risk – with marginal rate of 
only 3 percentage-points. 
 

 [Figures A, B, C Here] 
 

Similar patterns are found for datasets with tract- and blockgroup-level contextual data (Figures B and C).  
However, the rise in risk due to constraints in geographic scope and the addition of keys are less 
pronounced. For single-variable datasets with smaller-scaled contexts, the proportions of locations at-risk 
increase by only 12 and 5 percentage-points (for tract and blockgroups, respectively) when identifying 
both state and population density (compared to national datasets).  
 
Once again disclosure risk increases the most with the addition of a second contextual variable, but only 
for datasets identifying division, state, and their population densities (i.e., 12 to 19 percentage-point 
increase for tracts; 11 to 17 percentage-point increase for blockgroups).  However national datasets and 
those identifying only population density experience the highest jump in risk with the addition of a third 
variables (i.e., 8 to 10 percentage-point increase).  
 
Furthermore marginal changes in risk tend to rise when the scope of study is constrained.  Adding a 
second contextual key, risk increases by only 2 to 4 percentage-points for small-scale, national datasets; 
while experiencing a 17 to 19 percentage-point jump for datasets identifying both state and population 
density.  With the addition of the third, fourth, and fifth contextual key, risk grows at a similar (or 
proportional) rate of 7 to 11 percentage-points for tract and blockgroup-level datasets. 
 

[Figures D, E, F Here] 
 
Presenting Table 1’s estimates averaged across all key typologies, Figures D, E, and F further illustrate 
how risk is reduced by coarsening contextual measures.  For nearly all datasets risk drops the most when 
data are recoded into 5%-categories; and most often risk declines considerably more with additional 
coarsening into 10%-categories.  This is not surprising considering data are now presented across 20 and 
10 metric spaces (instead of 100 metric spaces).   
 
In datasets known for their extreme levels of risk, the application of 15%-categories (7 metric spaces) also 
offers a sufficient drop in aggregate risk.  In fact, datasets identifying divisions, states, and their population 
densities experience an additional 7 to 13 percentage-point decrease in risk with this level of coarseness. 
 
These patterns of marginal change illustrate the trade-offs between measurement detail and risk.  But let 
us consider whether a recoding scheme typically offers a “considerable” amount of confidentiality; that of 
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obscuring the identity of 85% or more of locations (i.e., aggregate risk-level less than 15%, averaged 
across the number of keys). 
 
For national datasets or those identifying either population density or division alone, recoding tract- and 
blockgroup-level data into 10%-categories seems to offer a considerable amount of confidentiality.  For 
county-level data, only national datasets or those identifying population density alone receive this level of 
protection with 10%-categories.  Instead 15%-categories may be better suited for large-scale datasets 
that identify division. 
 
For datasets that identify division, state, and their population densities, collapsing tract- and blockgroup-
level measures into 15% or 20%-categories achieves this target risk-level.  Geographically-constrained 
counties are easily reidentified regardless of the coarseness of their contextual measures.   

5. c.  Example of Decision-Making Process 

When designing a public-use dataset, the producer seeks to release as much information as possible 
while ensuring that all locations are kept confidential.  In doing so, the producer needs to consider the 
trade-offs between data utility and access to analytical files when defining acceptable levels of risk and 
contextual content.  After choosing the mode of distributing datafiles to their user community, the producer 
must define what constitutes anonymity for survey respondents and their locations by selecting values of 
thresholds that underlie the definition of risk.  Completing their reidentification experiments, the producer 
distinguishes respondents whose locations are pinpointed with their contextual data.  This geographic 
information must then be deleted or modified to ensure the respondent’s identity is kept confidential. 
 
Rates of local suppression are reflected by the level of aggregate risk, expressed as the proportion of 
respondents whose contextual data may not be safely released.  Perturbative methods, such as 
swapping, can then be used to construct confidential information that replaces these missing values.  The 
producer must consider how these ascribed data may distort analyses and whether a group of geographic 
units is particularly affected by these aberrations.   
 
Establishing an acceptable rate of data perturbation, the producer can achieve the coinciding aggregate 
risk-level by coarsening the contextual measures.  However, if the necessary amount of coarsening 
results in analytically useless data, the producer may decide to release fewer contextual variables or less 
specific geographic identifiers.  Finally the producer may adjust their definition of disclosure risk such that 
more and higher quality data can be released through more restricted modes of data access. 
 
Given these decision-making factors and the above broad patterns of risk, I now offer an example of how 
the results of my study can be used to inform dataset design.  In this exercise, I focus on developing a 
microdata file that has tract-level contextual data.  Keeping in mind the general trends presented in 
Figures A through F, I start my review by appraising datasets with two and three contextual variables.  
Ideally I would prefer to also release a geographic identifier; therefore I consider the trade-offs in risk with 
identifying population density, division, and state. Furthermore I investigate how risk will be offset by 
aggregating my measures into 10%-, 15%- and 20%- categories.  I do not consider national or single-key 
datasets seeing they pose very little threat to confidentiality. 
 

[Figure G Here] 
 
For datasets of 10%-categorical measures (blue bars, solid and hashed, in Figure G), the rise in risk with 
the addition of a third contextual variable is heightened when the scope of study is constrained.  While 
datasets identifying population density experience a 3 percentage-point increase, risk jumps by 7 and 15 
percentage-points for those identifying divisions and states (respectively).  
 
If data are collapsed into 15%-categories (red bars, solid and hashed), datasets identifying population 
density and division no longer experience such increases, with less than 4% of their locations at-risk.  If 
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data are collapsed into 20%-categories (green bars, solid and hashed), datasets releasing two contextual 
variables and state-geography are able to achieve comparably low levels of aggregate risk, with about 4% 
of their locations at-risk.  
 
If the maximum rate of local suppression is set to 5% (upper bound), three optimal designs are then 
indicated: (1) population density, 3-keys, 10%-categories; (2) division, 3-keys, 15%-categories; and (3) 
state, 2-keys, 20%-categories.  The final choice among these designs ultimately hinges on the analytical 
value of the measures and the scientific relevance of the contextual content. 

6.  Conclusions  

The results of these analyses clearly illustrate two well-known reidentification mechanisms (as 
hypothesized), whereby the amount of risk is a function of:  (1) the number of potential matches and (2) 
the quantity of information used in the matching process.  Decreasing the chances of locating numerous 
matches, shrinking populations generally increase disclosure risk.  Increasing the chances of identifying 
uniques, additional information about the characteristics of geographic areas – determined by the release 
of more contextual variables – also tends to increase disclosure risk.  But the utility of this information is 
dampened by the coarsening of measures to reduce reidentification.   
 
While these broad patterns offer some insight, most interesting is the degree to which each factor helps 
intruders pinpoint the location of survey locations and how coarsening offsets this risk.  Predicted values 
of aggregate disclosure risk provide broad guidelines for the production of context-linked microdata files, 
helping to improve the utility and confidentiality of public-use data. Increasingly required by funding 
agencies, data distribution plans – in their design and evaluation – are also informed by these a priori 
disclosure risk estimates of contextual data linkage. Finally this research holds the promise of wide scale 
adaptation and application to content- and user-specific products. 
 
The current study applies a single threshold when analyzing a sample of base variables, where all keys 
within a set share the same level of coarseness.  While these simplifications were necessary for the initial 
stages of this work, further research needs to be conducted to (1) inform the selection of the 
reidentification threshold; (2) identify more optimal recoding and suppression schemes; and (3) closely 
study how specific contextual measures (e.g. % persons, in-poverty) shape disclosure risk. 
 
Furthermore I plan to quantify the utility of masked contextual data by measuring the amount of 
information lost (e.g., Domingo-Ferrer and Torra, 2001a and 2001b; Raghunathan, et. al. 2003; Winkler 
2004), thereby better illustrating the risk-utility tradeoffs when safely constructing these data. I am 
particularly interested in documenting how the suppression of contextual data distorts the original 
sampling framework and whether sub-domains of contextual measures are differentially affected.   
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9.  Endnotes  
 
1   A complimentary yet different approach to studying disclosure risk associated with multiple scales is 
Duke-Williams and Rees’ (1998) analysis of geographic “sliver polygons”. Sliver polygons result when 
boundaries of units at different scales overlap but are not mutually exclusive (ESRI 2006). Risk is then 
assessed in terms of person-counts within these redefined small areal units. Falling below acceptable 
population-levels, unique slivers were found to increase the chances of pinpointing respondents who 
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resided within these extemporaneous boundaries (Duke-Williams and Rees 1998).  Avoiding sliver 
polygons by assuming that datasets will only release contextual data at one spatial scale, I offer a more 
transparent assessment of risk.   

2   My aggregate measure of disclosure risk follows Lambert’s (1993) conceptualization of the “Risk of 
True Identification” that is defined as the “fraction of released records that an intruder can correctly 
reidentify.” 

3  Clarifying terms used throughout this paper, contextual measures are referred to as “key variables” 
being how combinations of their values are used to locate uniques within its target population.  On the 
other hand, geographic identifiers are considered “block variables” being how they are used to subset 
locations within the matching process.   

4  I conduct another set of simulations analyzing contextual measures that are coarsened based on their 
percentile distribution (i.e., percentile recoding).  Twenty percent of all counties have at most 66% of their 
population being non-Hispanic White (i.e., 20th percentile at 66.14%); while thirty percent of all counties 
have at most 76% of their population being non-Hispanic White (i.e., 30th percentile at 76.11%).  
Coarsening the measure into deciles categories, my exemplar county – having 72% of its population 
being non-Hispanic White – would be characterized as falling between 20th and 30th percentiles (i.e., the 
third decile).   

As illustrated in Appendix Table A-3, disclosure risk is heightened considerably by this global recoding 
approach.  Counties having a rare characteristic – those with an outlying value at the tails of a contextual 
variable’s continuous probability distribution – are less likely to be reidentified with percentile coarsening.  
However, counties sharing a relatively common characteristic – those within the middle of the distribution 
– are actually more likely to be reidentified with percentile coarsening.  

Building upon my previous example, let us consider my exemplar county which is one among a population 
of 3,141.  With absolute recoding, this county has approximately 346 matches with values between 70% 
and 80%.   With percentile recoding, there are 315 matches with values between 66.14% and 76.11%.  In 
turn, percentile recoding automatically sets an upper bound to the number of matches, resulting in 
relatively higher risk for more typical counties.  
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Prop.
UB 

(95%CI) Prop.
UB 

(95%CI) Prop.
UB 

(95%CI) Prop.
UB 

(95%CI) Prop.
UB 

(95%CI)

National (None)
Top-25%, Bottom-25%, Other 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.01 (0.01) 0.02 (0.02)
20%-Categories 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 0.03 (0.04) 0.05 (0.06)
15%-Categories 0.00 (0.00) 0.01 (0.02) 0.03 (0.04) 0.06 (0.08) 0.11 (0.13)
10%-Categories 0.01 (0.01) 0.02 (0.03) 0.07 (0.08) 0.13 (0.16) 0.24 (0.28)
5%-Categories 0.01 (0.01) 0.08 (0.10) 0.22 (0.26) 0.41 (0.47) 0.59 (0.66)
1%-Categories 0.05 (0.05) 0.60 (0.68) 0.88 (0.94) 0.99 (1.00) 1.00 (1.00)

Population Density
Top-25%, Bottom-25%, Other 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 0.03 (0.03) 0.04 (0.04)
20%-Categories 0.01 (0.01) 0.02 (0.03) 0.04 (0.04) 0.07 (0.08) 0.11 (0.12)
15%-Categories 0.01 (0.01) 0.04 (0.04) 0.07 (0.08) 0.13 (0.15) 0.19 (0.23)
10%-Categories 0.02 (0.02) 0.07 (0.08) 0.13 (0.16) 0.24 (0.28) 0.36 (0.42)
5%-Categories 0.03 (0.03) 0.19 (0.22) 0.36 (0.42) 0.54 (0.60) 0.69 (0.75)
1%-Categories 0.17 (0.17) 0.73 (0.79) 0.92 (0.96) 0.99 (1.00) 1.00 (1.00)

Division
Top-25%, Bottom-25%, Other 0.01 (0.01) 0.03 (0.03) 0.04 (0.05) 0.06 (0.07) 0.08 (0.09)
20%-Categories 0.02 (0.02) 0.05 (0.06) 0.08 (0.09) 0.13 (0.16) 0.19 (0.23)
15%-Categories 0.03 (0.03) 0.08 (0.09) 0.13 (0.16) 0.21 (0.25) 0.31 (0.36)
10%-Categories 0.04 (0.04) 0.14 (0.17) 0.26 (0.30) 0.38 (0.43) 0.51 (0.58)
5%-Categories 0.08 (0.08) 0.34 (0.39) 0.55 (0.63) 0.69 (0.75) 0.80 (0.85)
1%-Categories 0.37 (0.37) 0.85 (0.90) 0.96 (0.99) 1.00 (1.00) 1.00 (1.00)

Division & Population Density
Top-25%, Bottom-25%, Other 0.05 (0.05) 0.09 (0.10) 0.11 (0.12) 0.16 (0.17) 0.20 (0.22)
20%-Categories 0.08 (0.08) 0.16 (0.18) 0.20 (0.23) 0.29 (0.33) 0.36 (0.40)
15%-Categories 0.10 (0.10) 0.21 (0.24) 0.29 (0.33) 0.39 (0.44) 0.49 (0.54)
10%-Categories 0.14 (0.14) 0.31 (0.35) 0.43 (0.49) 0.56 (0.61) 0.65 (0.70)
5%-Categories 0.24 (0.24) 0.52 (0.57) 0.68 (0.75) 0.80 (0.84) 0.87 (0.90)
1%-Categories 0.57 (0.57) 0.91 (0.93) 0.98 (0.99) 1.00 (1.00) 1.00 (1.00)

State
Top-25%, Bottom-25%, Other 0.08 (0.08) 0.13 (0.14) 0.15 (0.17) 0.20 (0.23) 0.25 (0.28)
20%-Categories 0.13 (0.13) 0.23 (0.27) 0.30 (0.34) 0.39 (0.44) 0.47 (0.52)
15%-Categories 0.16 (0.16) 0.31 (0.36) 0.41 (0.47) 0.53 (0.59) 0.63 (0.69)
10%-Categories 0.23 (0.23) 0.43 (0.49) 0.57 (0.64) 0.69 (0.74) 0.76 (0.82)
5%-Categories 0.37 (0.37) 0.65 (0.72) 0.80 (0.86) 0.91 (0.94) 0.95 (0.97)
1%-Categories 0.77 (0.77) 0.97 (0.99) 0.99 (1.00) 1.00 (1.00) 1.00 (1.00)

State & Population Density
Top-25%, Bottom-25%, Other 0.34 (0.34) 0.39 (0.41) 0.42 (0.44) 0.48 (0.51) 0.52 (0.55)
20%-Categories 0.39 (0.39) 0.49 (0.53) 0.55 (0.60) 0.62 (0.66) 0.67 (0.71)
15%-Categories 0.43 (0.43) 0.56 (0.60) 0.64 (0.69) 0.73 (0.77) 0.78 (0.82)
10%-Categories 0.49 (0.49) 0.64 (0.68) 0.73 (0.78) 0.81 (0.84) 0.85 (0.88)
5%-Categories 0.59 (0.59) 0.78 (0.82) 0.87 (0.92) 0.95 (0.96) 0.97 (0.98)
1%-Categories 0.86 (0.86) 0.98 (0.99) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

Table 1:  Average Proportion of Geographic Units "At-Risk" of Disclosure, By Spatial Scale and Experimental Traits of Contextual Data

County-Level Contextual Data                                                                                

1-Key 2-Keys 3-Keys 4-Keys 5-Keys

Note:  Assume there is risk of disclosure when there are fewer than 20 matches (i.e., based on reidentification confidence-level of p=.05).
Note:  The upper-bound of the 95% confidence interval for the average proportion at-risk is presented in parentheses.  This estimate is adjusted to account for the complex 
survey design of sampled variables sets.



Prop.
UB 

(95%CI) Prop.
UB 

(95%CI) Prop.
UB 

(95%CI) Prop.
UB 

(95%CI) Prop.
UB 

(95%CI)

National (None)
Top-25%, Bottom-25%, Other 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
20%-Categories 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02)
15%-Categories 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 0.05 (0.05)
10%-Categories 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.05 (0.06) 0.14 (0.17)
5%-Categories 0.00 (0.00) 0.01 (0.01) 0.08 (0.10) 0.26 (0.30) 0.47 (0.53)
1%-Categories 0.00 (0.00) 0.22 (0.25) 0.71 (0.78) 0.94 (0.96) 0.98 (1.00)

Population Density
Top-25%, Bottom-25%, Other 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01)
20%-Categories 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.01 (0.02) 0.03 (0.04)
15%-Categories 0.00 (0.00) 0.00 (0.00) 0.01 (0.02) 0.04 (0.04) 0.09 (0.11)
10%-Categories 0.00 (0.00) 0.01 (0.01) 0.04 (0.05) 0.10 (0.12) 0.22 (0.26)
5%-Categories 0.00 (0.00) 0.03 (0.03) 0.16 (0.19) 0.36 (0.42) 0.57 (0.64)
1%-Categories 0.01 (0.01) 0.40 (0.46) 0.81 (0.87) 0.97 (0.98) 0.99 (1.00)

Division
Top-25%, Bottom-25%, Other 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02)
20%-Categories 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 0.04 (0.05) 0.09 (0.10)
15%-Categories 0.00 (0.00) 0.01 (0.01) 0.04 (0.05) 0.09 (0.11) 0.18 (0.21)
10%-Categories 0.00 (0.00) 0.02 (0.03) 0.09 (0.11) 0.21 (0.24) 0.35 (0.41)
5%-Categories 0.00 (0.00) 0.09 (0.11) 0.31 (0.36) 0.52 (0.58) 0.70 (0.76)
1%-Categories 0.04 (0.04) 0.63 (0.70) 0.90 (0.95) 0.99 (1.00) 1.00 (1.00)

Division & Population Density
Top-25%, Bottom-25%, Other 0.00 (0.00) 0.01 (0.01) 0.01 (0.01) 0.02 (0.03) 0.04 (0.05)
20%-Categories 0.00 (0.00) 0.02 (0.02) 0.04 (0.05) 0.08 (0.10) 0.15 (0.18)
15%-Categories 0.00 (0.00) 0.03 (0.04) 0.08 (0.10) 0.16 (0.19) 0.27 (0.32)
10%-Categories 0.01 (0.01) 0.06 (0.07) 0.17 (0.21) 0.31 (0.36) 0.47 (0.53)
5%-Categories 0.02 (0.02) 0.20 (0.23) 0.45 (0.52) 0.64 (0.70) 0.78 (0.84)
1%-Categories 0.12 (0.12) 0.76 (0.81) 0.95 (0.97) 0.99 (1.00) 1.00 (1.00)

State
Top-25%, Bottom-25%, Other 0.00 (0.00) 0.02 (0.02) 0.03 (0.04) 0.05 (0.06) 0.08 (0.09)
20%-Categories 0.01 (0.01) 0.04 (0.05) 0.09 (0.10) 0.14 (0.17) 0.23 (0.27)
15%-Categories 0.01 (0.01) 0.07 (0.08) 0.15 (0.18) 0.25 (0.29) 0.38 (0.43)
10%-Categories 0.02 (0.02) 0.13 (0.16) 0.28 (0.33) 0.42 (0.47) 0.58 (0.64)
5%-Categories 0.06 (0.06) 0.34 (0.39) 0.57 (0.65) 0.74 (0.79) 0.85 (0.90)
1%-Categories 0.27 (0.27) 0.85 (0.89) 0.97 (0.99) 1.00 (1.00) 1.00 (1.00)

State & Population Density
Top-25%, Bottom-25%, Other 0.01 (0.01) 0.04 (0.04) 0.06 (0.07) 0.09 (0.11) 0.14 (0.16)
20%-Categories 0.03 (0.03) 0.09 (0.10) 0.15 (0.18) 0.22 (0.26) 0.33 (0.38)
15%-Categories 0.04 (0.04) 0.14 (0.16) 0.24 (0.29) 0.35 (0.40) 0.48 (0.55)
10%-Categories 0.06 (0.06) 0.23 (0.27) 0.39 (0.45) 0.53 (0.59) 0.67 (0.74)
5%-Categories 0.13 (0.13) 0.46 (0.52) 0.67 (0.74) 0.83 (0.87) 0.91 (0.94)
1%-Categories 0.44 (0.44) 0.91 (0.94) 0.98 (1.00) 1.00 (1.00) 1.00 (1.00)

5-Keys1-Key 2-Keys

Note:  Assume there is risk of disclosure when there are fewer than 20 matches (i.e., based on reidentification confidence-level of p=.05).

Tract-Level Contextual Data

Table 1 (cont.):  Average Proportion of Geographic Units "At-Risk" of Disclosure, By Spatial Scale and Experimental Traits of Contextual 
Data

3-Keys 4-Keys

Note:  The upper-bound of the 95% confidence interval for the average proportion at-risk is presented in parentheses.  This estimate is adjusted to account for the complex 
survey design of sampled variables sets.



Prop.
UB 

(95%CI) Prop.
UB 

(95%CI) Prop.
UB 

(95%CI) Prop.
UB 

(95%CI) Prop.
UB 

(95%CI)

National (None)
Top-25%, Bottom-25%, Other 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
20%-Categories 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01)
15%-Categories 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.03 (0.03)
10%-Categories 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.03 (0.03) 0.09 (0.11)
5%-Categories 0.00 (0.00) 0.00 (0.00) 0.04 (0.05) 0.17 (0.20) 0.37 (0.43)
1%-Categories 0.00 (0.00) 0.09 (0.11) 0.55 (0.61) 0.85 (0.88) 0.96 (0.98)

Population Density
Top-25%, Bottom-25%, Other 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
20%-Categories 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02)
15%-Categories 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 0.05 (0.07)
10%-Categories 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.06 (0.07) 0.16 (0.19)
5%-Categories 0.00 (0.00) 0.01 (0.01) 0.09 (0.11) 0.27 (0.31) 0.48 (0.54)
1%-Categories 0.00 (0.00) 0.22 (0.25) 0.69 (0.75) 0.91 (0.93) 0.98 (0.99)

Division
Top-25%, Bottom-25%, Other 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01)
20%-Categories 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 0.05 (0.06)
15%-Categories 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.05 (0.06) 0.12 (0.14)
10%-Categories 0.00 (0.00) 0.01 (0.01) 0.05 (0.06) 0.13 (0.15) 0.26 (0.31)
5%-Categories 0.00 (0.00) 0.04 (0.04) 0.19 (0.23) 0.41 (0.46) 0.61 (0.67)
1%-Categories 0.01 (0.01) 0.43 (0.49) 0.83 (0.88) 0.95 (0.97) 0.99 (1.00)

Division & Population Density
Top-25%, Bottom-25%, Other 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.01 (0.01) 0.02 (0.02)
20%-Categories 0.00 (0.00) 0.01 (0.01) 0.02 (0.03) 0.04 (0.05) 0.09 (0.11)
15%-Categories 0.00 (0.00) 0.01 (0.01) 0.04 (0.05) 0.09 (0.11) 0.18 (0.22)
10%-Categories 0.00 (0.00) 0.03 (0.03) 0.10 (0.12) 0.21 (0.24) 0.36 (0.42)
5%-Categories 0.01 (0.01) 0.10 (0.11) 0.31 (0.36) 0.52 (0.57) 0.70 (0.76)
1%-Categories 0.04 (0.04) 0.58 (0.64) 0.90 (0.93) 0.97 (0.99) 0.99 (1.00)

State
Top-25%, Bottom-25%, Other 0.00 (0.00) 0.01 (0.01) 0.01 (0.02) 0.02 (0.03) 0.04 (0.05)
20%-Categories 0.00 (0.00) 0.02 (0.02) 0.05 (0.06) 0.08 (0.10) 0.15 (0.18)
15%-Categories 0.01 (0.01) 0.03 (0.04) 0.09 (0.10) 0.16 (0.19) 0.27 (0.32)
10%-Categories 0.01 (0.01) 0.07 (0.08) 0.18 (0.21) 0.30 (0.35) 0.46 (0.53)
5%-Categories 0.02 (0.02) 0.20 (0.23) 0.43 (0.49) 0.63 (0.68) 0.78 (0.83)
1%-Categories 0.12 (0.12) 0.71 (0.76) 0.94 (0.96) 0.98 (0.99) 1.00 (1.00)

State & Population Density
Top-25%, Bottom-25%, Other 0.00 (0.00) 0.01 (0.02) 0.03 (0.03) 0.05 (0.05) 0.08 (0.09)
20%-Categories 0.01 (0.01) 0.04 (0.05) 0.08 (0.10) 0.13 (0.16) 0.22 (0.26)
15%-Categories 0.01 (0.01) 0.07 (0.08) 0.14 (0.17) 0.23 (0.27) 0.36 (0.41)
10%-Categories 0.02 (0.02) 0.12 (0.14) 0.26 (0.31) 0.40 (0.45) 0.55 (0.62)
5%-Categories 0.05 (0.05) 0.30 (0.34) 0.54 (0.60) 0.72 (0.77) 0.84 (0.88)
1%-Categories 0.23 (0.23) 0.80 (0.85) 0.96 (0.98) 0.99 (1.00) 1.00 (1.00)

Note:  The upper-bound of the 95% confidence interval for the average proportion at-risk is presented in parentheses.  This estimate is adjusted to account for the complex 
survey design of sampled variables sets.

4-Keys 5-Keys

Note:  Assume there is risk of disclosure when there are fewer than 20 matches (i.e., based on reidentification confidence-level of p=.05).

1-Key 2-Keys 3-Keys

Blockgroup-Level Contextual Data

Table 1 (cont.):  Average Proportion of Geographic Units "At-Risk" of Disclosure, By Spatial Scale and Experimental Traits of Contextual 
Data



Figure A: Aggregate Disclosure Risk of Geographic Units 
by Number of Contextual Variables, County-Level
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Figure B: Aggregate Disclosure Risk of Geographic Units
by Number of Contextual Variables, Tract-Level
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Figure C: Aggregate Disclosure Risk of Geographic Units
by Number of Contextual Variables, Blockgroup-Level
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Figure D: Aggregate Disclosure Risk of Geographic Units 
by Coarseness of Contextual Variables, County-Level
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Figure E: Aggregate Disclosure Risk of Geographic Units
by Coarseness of Contextual Variables, Tract-Level
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Figure F: Aggregate Disclosure Risk of Geographic Units
by Coarseness of Contextual Variables, Blockgroup-Level
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Figure G. Aggregate Disclosure Risk of Geographic Units, Tract-Level
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Proportion of 
Datasets

Spatial Scale
Counties 0.33
Tracts 0.33
Blockgroups 0.33

Geographic Identifiers
None 0.17
Population Density 0.17
Division 0.17
Division & Population Density 0.17
State 0.17
State & Population Density 0.17

Coarseness
1%-Categories 0.17
5%-Categories 0.17
10%-Categories 0.17
15%-Categories 0.17
20%-Categories 0.17
Top-25%, Bottom-25%, Other 0.17

Number of Contextual Variables
1-Key 0.12
2-Keys 0.22
3-Keys 0.22
4-Keys 0.22
5-Keys 0.22

Conceptual Composition
% Persons, Non-Hispanic White 0.31
% Persons, Non-Hispanic African-American 0.17
% Persons, Non-Hispanic Asian or Pacific Islander 0.07
% Persons, Non-Hispanic Other Race 0.24
% Persons, Hispanic 0.18
% Persons, Foreign-Born 0.17
% Foreign-Born, Naturalized Citizens 0.18
% Households, Linguistically Isolated 0.23
% Persons, In-Poverty 0.19
% Households, With Wage Income 0.18
% Households, Receiving Public Assistance 0.15
% Persons Age 25+, College Degree 0.18
% Families, Female-Headed 0.20
% Persons Age 16-19, Neither Enrolled nor Graduated from High School 0.15
% Housing Units, Owner-Occupied 0.15
% Persons Age 16+, Civilian Labor Force 0.23
% Civilian Labor Force, Unemployed 0.22

Table A-1:  Characteristics of Test Datasets (N=14,796)

Unweighted Averages                                                                                              
Across Datasets



Sampling Total Sample Percent

Synthetic Persons 281,421,906 11,562 0.0041

Geographic Units
Blockgroups 208,125 10,478 5.03
Tracts 65,174 8,947 13.73
Counties 3,141 1,785 56.83
States & Washington DC 51 51 100.00

Population Size Average Mininum Maximum

Counties
Geographic Identifiers

None 3,141 3,141 3,141
Population Density 1,047 390 2,294
Division 349 67 618
Division & Population Density 116 15 546
State 62 1 254
State & Population Density 21 0 196

Tracts
Geographic Identifiers

None 65,174 65,174 65,174
Population Density 21,725 13,832 36,156
Division 7,242 3,203 11,328
Division & Population Density 2,414 576 7,398
State 1,278 127 7,038
State & Population Density 426 0 5,830

Blockgroups
Geographic Identifiers

None 208,125 208,125 208,125
Population Density 69,375 47,646 112,294
Division 23,125 11,006 36,686
Division & Population Density 7,708 1,856 23,347
State 4,081 398 22,066
State & Population Density 1,360 0 17,932

Table A-2:  Sampling of Synthetic Persons, Resulting Geographic Contexts, 
and Size of Geographic Unit Populations

Note: Excludes tracts and blockgroups with no population.



Mean (SE) Mean (SE) Mean (SE)

Total 0.52 (0.01) 0.40 (0.01) 0.34 (0.01)

Geographic Identifiers
None 0.31 (0.02) 0.25 (0.02) 0.22 (0.02)
Population Density 0.37 (0.02) 0.29 (0.02) 0.26 (0.02)
Division 0.46 (0.02) 0.36 (0.02) 0.31 (0.02)
Division & Population Density 0.57 (0.02) 0.42 (0.02) 0.36 (0.02)
State 0.65 (0.02) 0.49 (0.02) 0.42 (0.02)
State & Population Density 0.78 (0.01) 0.56 (0.02) 0.48 (0.02)

Number of Contextual Variables
1-Key 0.19 (0.00) 0.04 (0.00) 0.02 (0.00)
2-Keys 0.33 (0.01) 0.16 (0.01) 0.11 (0.01)
3-Keys 0.41 (0.01) 0.26 (0.01) 0.21 (0.01)
4-Keys 0.49 (0.01) 0.35 (0.01) 0.29 (0.01)
5-Keys 0.55 (0.01) 0.42 (0.01) 0.37 (0.01)

Coarseness
1%-Categories 0.99 (0.00) 0.98 (0.00) 0.96 (0.00)
5%-Categories 0.77 (0.01) 0.66 (0.01) 0.57 (0.01)
10%-Categories 0.53 (0.02) 0.36 (0.01) 0.27 (0.01)
15%-Categories 0.39 (0.02) 0.21 (0.01) 0.14 (0.01)
20%-Categories 0.29 (0.01) 0.12 (0.01) 0.08 (0.01)
Top-25%, Bottom-25%, Other 0.17 (0.01) 0.04 (0.00) 0.02 (0.00)

Mean (SE) Mean (SE) Mean (SE)

Total 0.94 (0.00) 0.75 (0.01) 0.54 (0.01)

Geographic Identifiers
None 0.84 (0.02) 0.56 (0.02) 0.38 (0.02)
Population Density 0.88 (0.01) 0.65 (0.02) 0.44 (0.02)
Division 0.94 (0.01) 0.74 (0.02) 0.51 (0.02)
Division & Population Density 0.97 (0.00) 0.80 (0.02) 0.57 (0.02)
State 0.99 (0.00) 0.86 (0.01) 0.63 (0.02)
State & Population Density 1.00 (0.00) 0.89 (0.01) 0.68 (0.02)

Number of Contextual Variables
1-Key 0.39 (0.00) 0.07 (0.00) 0.02 (0.00)
2-Keys 0.69 (0.01) 0.32 (0.01) 0.18 (0.01)
3-Keys 0.85 (0.01) 0.54 (0.01) 0.35 (0.01)
4-Keys 0.92 (0.01) 0.69 (0.01) 0.48 (0.01)
5-Keys 0.95 (0.00) 0.79 (0.01) 0.57 (0.01)

Coarseness
1%-Categories 1.00 (0.00) 1.00 (0.00) 0.99 (0.00)
5%-Categories 1.00 (0.00) 0.99 (0.00) 0.94 (0.00)
10%-Categories 1.00 (0.00) 0.93 (0.00) 0.78 (0.01)
15%-Categories 0.99 (0.00) 0.80 (0.01) 0.06 (0.00)
20%-Categories 0.96 (0.00) 0.59 (0.02) 0.37 (0.02)
Top-25%, Bottom-25%, Other 0.68 (0.02) 0.19 (0.01) 0.07 (0.01)

Coarseness Based on Absolute Values

Counties Tracts Blockgroups

Coarseness Based on Percentiles

Table A-3:  Aggregate Disclosure Risk of Geographic Units in Test Datasets, By Experimental Traits 
(N=4,932 Datasets At Each Spatial Scale)

Blockgroups

Note:  Assume there is risk of disclosure when there are fewer than 20 matches (i.e., based on reidentification confidence-level 
of p=.05).

Note:  Standard errors (in parentheses) are adjusted to account for the complex survey design of sampled variables sets.

Counties Tracts
Weighted Averages                                             
Across Datasets

Proportion At-Risk

Weighted Averages                                             
Across Datasets

Proportion At-Risk



None Population Density Division Division & 
Population Density State State & 

Population Density

1-Key 0.01 0.04 0.09 0.20 0.29 0.52
2-Keys 0.12 0.18 0.25 0.36 0.45 0.64
3-Keys 0.20 0.26 0.34 0.45 0.53 0.70
4-Keys 0.27 0.33 0.41 0.53 0.62 0.77
5-Keys 0.33 0.40 0.48 0.59 0.68 0.80

None Population Density Division Division & 
Population Density State State & 

Population Density

1-Key 0.00 0.00 0.01 0.03 0.06 0.12
2-Keys 0.04 0.07 0.13 0.18 0.24 0.31
3-Keys 0.14 0.17 0.23 0.28 0.35 0.42
4-Keys 0.21 0.25 0.31 0.37 0.43 0.51
5-Keys 0.28 0.32 0.39 0.45 0.52 0.59

None Population Density Division Division & 
Population Density State State & 

Population Density

1-Key 0.00 0.00 0.00 0.01 0.03 0.05
2-Keys 0.02 0.04 0.08 0.12 0.17 0.22
3-Keys 0.10 0.14 0.18 0.23 0.28 0.34
4-Keys 0.18 0.21 0.26 0.31 0.36 0.42
5-Keys 0.24 0.28 0.34 0.39 0.45 0.51

Note:  Assume there is risk of disclosure when there are fewer than 20 matches (i.e., based on reidentification confidence-level of p=.05).

Blockgroup-Level Contextual Data

Average of                        
Predicted Values              
Across Coarseness

Table A-4:  Aggregate Disclosure Risk of Geographic Units by Number of Contextual Variables, Comparisons across Spatial Scale 
and Geographic Identifiers

County-Level Contextual Data

Tract-Level Contextual Data

Average of                        
Predicted Values              
Across Coarseness

Average of                        
Predicted Values              
Across Coarseness



None Population Density Division Division & 
Population Density State State & 

Population Density

1% 0.70 0.76 0.84 0.89 0.95 0.97
5% 0.26 0.36 0.49 0.62 0.74 0.83
10% 0.09 0.16 0.26 0.42 0.53 0.70
15% 0.05 0.09 0.15 0.29 0.41 0.63
20% 0.02 0.05 0.09 0.22 0.30 0.55
T25%,B25%,Oth 0.01 0.02 0.04 0.12 0.16 0.43

None Population Density Division Division & 
Population Density State State & 

Population Density

1% 0.57 0.64 0.71 0.76 0.82 0.87
5% 0.16 0.22 0.32 0.42 0.51 0.60
10% 0.04 0.07 0.14 0.20 0.29 0.38
15% 0.01 0.03 0.06 0.11 0.17 0.25
20% 0.00 0.01 0.03 0.06 0.10 0.16
T25%,B25%,Oth 0.00 0.00 0.01 0.02 0.04 0.07

None Population Density Division Division & 
Population Density State State & 

Population Density

1% 0.49 0.56 0.64 0.70 0.75 0.80
5% 0.12 0.17 0.25 0.33 0.41 0.49
10% 0.03 0.05 0.09 0.14 0.20 0.27
15% 0.01 0.02 0.04 0.07 0.11 0.16
20% 0.00 0.01 0.02 0.03 0.06 0.10
T25%,B25%,Oth 0.00 0.00 0.00 0.01 0.02 0.03

Note:  Assume there is risk of disclosure when there are fewer than 20 matches (i.e., based on reidentification confidence-level of p=.05).

Table A-5:  Aggregate Disclosure Risk of Geographic Units by Coarseness of Contextual Variables, Comparisons across Spatial 
Scale and Geographic Identifiers

Blockgroup-Level Contextual Data

Tract-Level Contextual Data

Average of                        
Predicted Values              
Across Number of 
Contextual Keys

Average of                        
Predicted Values              
Across Number of 
Contextual Keys

Average of                        
Predicted Values              
Across Number of 
Contextual Keys

County-Level Contextual Data


	Abstract
	Paper
	Tables and Figures



