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New Directions in Head and Neck Imaging
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Computerized tomography (CT) and magnetic resonance imaging (MRI), positron emission tomography (PET) and the hybrid modality of

PET/CT are sensitive and reliable tools for detection and staging of head and neck cancers. This article describes the role of PET/CT in initial

staging of head and neck squamous cell carcinoma, the utility of CT/MR perfusion imaging in qualitative analysis of tumor tissue, and the

usefulness of diffusion weighted MR and dynamic contrast-enhanced MR imaging in head and neck oncological imaging.
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Diagnostic imaging has come a long way from 1895 when Conrad

Roentgen discovered X-rays. Conventional radiography and ancillary

techniques like fluoroscopy and tomography had a relatively minor

role in evaluation of neoplasms of the head and neck unless it

encroached into the aero-digestive tract. Computerized tomography

(CT) was introduced in the 1970s and revolutionized body imaging. It

is inexpensive, fast, and ubiquitous in most medical centers. CT is quite

good at delineating tumor extent and nodal disease. In squamous cell

carcinoma, CT helped in tumor staging, which dictated patient manage-

ment and related to prognosis [1]. Subsequently, helical multi-detector

computerized tomography (MDCT) with 16 and now 64 detector rings

has rapidly become the new industry standard in CT imaging.

Magnetic resonance imaging (MRI) in the 1980s was a quantum

jump in diagnostic imaging of the human body, including imaging of

head and neck pathologies. Some of earliest investigations in head and

neck imaging with MRI highlighted the ability of MRI to differentiate

neoplastic from inflammatory lesions. MRI provides essential infor-

mation about the deep extension of clinically detected masses and also

delineates additional clinically unsuspected lesions [2]. It has added

value for detection of soft tissue extent, marrow involvement, and

perineural spread [3]. The excellent tissue characterization and

multiplanar imaging capability of MR imaging results in more

accurate diagnosis of neoplastic and benign processes [4,5].

However, early investigators credited MR imaging with greater

precision in head and neck imaging than was warranted [6].

Conventional MR imaging did not have the last word in histological

specificity, early detection of primary malignancy and differentiat-

ing neoplastic from inflammatory lymph nodes. In spite of early

enthusiasm, MR imaging did not eliminate the need for biopsies or

aspirations of lesions. Spin echo imaging is still the mainstay of MR

imaging, but now various new techniques hold promise for the future of

head and neck imaging.

Positron emission tomography (PET) has been utilized since the

1970s for clinical imaging. PET scanning with 18fluorodeoxyglucose

(18FDG) can be used for staging and evaluation of recurrence for

primary head and neck tumors. The principle for PET is based on the

metabolism of the neoplasm, primary or recurrent, and is more

sensitive than CT or MRI for T1-staged lesions [7]. The most recent

innovation in PET systems is the hybrid PET/CT scanners. Integration

of PET with CT scan in 2000 was a great leap forward and enhanced

the clinical information from PET. Today all commercial PET scanners

are sold as PET/CT.

Various advanced techniques are utilized for answering some of the

unresolved issues from conventional CT, MRI and PET.

DIFFUSION WEIGHTED MAGNETIC
RESONANCE IMAGING

Diffusion weighted imaging (DWI) with magnetic resonance

relies upon the relative diffusivity of water protons within tissue. This

technique is based on the amount of random (Brownian) motion that

water protons undergo. During such an MRI examination, at least

two short echo-planar MRI pulse sequences are applied to generate

diffusion weighted images (DWI). However, some intrinsic T2

weighted information is contained in such images. Thus arithmetic

processing is performed between the sets to generate apparent

diffusion coefficient (ADC) maps, eliminating contributions from

T2 signal changes. In normal tissue or in areas exhibiting vasogenic

edema, the motion of water molecules is not limited and no restricted

diffusion should be noted. In tissues with cytotoxic edema or in highly

cellular regions, however, there is diffusion restriction, which can be

measured both qualitatively and quantitatively. This technique has

proven quite useful for brain imaging in differentiating between

infarcted tissue and other pathological processes [8]. Early studies have

also demonstrated that head and neck squamous cell cancers, likely due

to their high cellular content, can demonstrate restricted diffusion [9].

While conventional imaging techniques are often adequate for

demonstrating initial tumor extent, post-treatment changes can be

difficult to delineate from small volumes of tumor recurrence, as both

may enhance in a similar fashion. Diffusion weighted MRI can aid

in these situations. Inflammatory or post-treatment tissue does not
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demonstrate restricted diffusion, likely due to relative low cellularity.

Recurrent or residual disease, however, contains regions of increased

cellularity and thus should demonstrate restricted diffusion (Fig. 1)

[10]. Recent studies have maintained that such imaging can be a useful

adjunct in assessing post-treatment disease and may aid in diagnosis,

particularly with regard to tissue sampling [11]. Diffusion weighted

imaging of the orophayrynx can easily be performed at the time of

MR conventional imaging and adds approximately only 1–2 min of

additional time to the examination. High sensitivities and specificities

better than CT or conventional MRI are also reported in staging of neck

lymph nodes in squamous cell carcinoma [12,13]. Whole body DWI at

high b-values with ADC mapping is technically feasible and improves

assessment of metastatic spread in routine MR examinations

[14]. However, technical standardization is still not achieved; results

obtained depend on selection of b-values. Magnetic field inhomo-

geneity and suboptimal placement of receiver coils can have a negative

impact on image quality [10]. Interpretation of DWI in the head and

neck requires training and experience and more research is still needed

in this field.

PERFUSION IMAGING

Perfusion imaging, whether performed with CT or MRI, evaluates

dynamic microscopic blood flow changes through a region of interest.

Changes in tissue signal intensity (MRI) or attenuation (CT) are

measured during a dynamic contrast infusion. Blood flow, blood

volume, and transit time parameters of tissue regions can be then

generated, either on the CT scanner or on a separate workstation with

commercially available software. Perfusion characteristics of tissue

demonstrate changes in blood flow or volume of the interrogated

areas depending on the underlying pathologic processes. This

technique has been previously studied in characterizing brain ischemia,

particularly in identifying infarcted tissue versus tissue at risk [15].

Neoplastic tissue also demonstrates changes in perfusion character-

istics. Early studies have shown that oropharyngeal tumor tissue

demonstrates increased blood volume and blood flow with decreased

transit times in comparison to normal tissue [16].

Generally, these findings may not add substantial additional

information regarding tumor extent at the time of diagnosis. However,

such imaging may be of benefit in qualitative analysis of tumor

tissue. Specifically, additional recent studies have demonstrated that

squamous cell carcinomas of the upper aerodigestive tract with

increased blood volume/flow are more chemosensitive than other

lesions with relative decreased perfusion parameters (Fig. 2). This is

likely due to relative increased oxygenation and metabolism of such

lesions [17]. Such perfusion techniques could be particularly useful

in determining which patients would benefit from such medical

treatment, as opposed to surgical therapies which may not always

preserve organ function.

An additional area of interest is in regard to tumor recurrence or

regression. Again, conventional MRI or CT may simply demonstrate

increased contrast enhancement within the treated neck. Morphologic

changes in tissue appearance (such as increase in size or nodularity)

may not be well demonstrated on early post-treatment conventional

imaging. However, recent studies have concluded that for recurrent

oral cavity and oropharyngeal carcinomas, perfusion parameters are

altered. Specifically, blood volume and blood flow within recurrent

tumor tissue are elevated in comparison to therapy-altered tissue, with

corresponding decreases in transit time [18]. Perfusion imaging, like

diffusion imaging, adds little time to either conventional MRI or CT

examinations and can also be obtained noninvasively [19]. Blood flow,

volume, and transit time maps can be generated either on the unit or on

a separate workstation.

PET CT FOR DIAGNOSIS AND INITIAL STAGING

The clinical usefulness and role of FDG-PET CT for detection of

lymph node involvement and recurrences in patients with head and

neck cancer is very well-established [20]. It has been found to be

superior to conventional imaging work-ups in the evaluation of patients

with head and neck malignancies [21]. FDG PET is also found to be

more accurate than CT/MRI imaging in oral cavity cancer [22].

However, potential clinical applications include pretreatment staging,

treatment monitoring and evaluation of the previously treated patients

[23]. The current practice is not in favor of utilizing CT-PET for

staging of all newly diagnosed squamous cell carcinomas. However,

PET can detect metastatic cervical lymph nodes, which may be

clinically occult and may not be detected by CT or MR imaging [24]. It

can also detect primary head and neck squamous cell carcinomas

greater than 1 cm in size.

PET-CT may be performed in squamous cell carcinoma to evaluate

for possible occult distant metastases to the lungs or bones [25]. The

presence of pulmonary metastases upstages a patient from M0 to M1

and alters the treatment regimen (Fig. 3). Routine imaging work-up for

the patient with pulmonary squamous cell carcinoma includes

conventional radiography of the chest at most institutions. Chest CT

is performed in patients with advanced stage disease. A solitary nodule

on CT scan may represent a metastasis or a granuloma. PET would be
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Fig. 1. Large posterior oropharyngeal wall squamous cell carcinoma demonstrates increased DWI (A) and decreased ADC (B) signal intensity
at presentation. Post-therapy, the lesion has decreased greatly in size (C).
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helpful in this evaluation as an FDG-positive nodule would likely be

metastatic and may require biopsy. An FDG-negative nodule may

likely indicate a granuloma. Various studies have evaluated the diag-

nostic accuracy of PET-FDG for detecting metastatic cervical lymph

nodes. It has a high negative predictive value (NPV) of approximately

90%, which is more than any other imaging modality. With future

technological advances, PET-CT is likely to have high resolution CT

imaging. This is likely to increase the diagnostic accuracy of combined

PET-CT, which may have greater impact on management of N0 [26]

disease.

The ability of PET-CT to detect unknown primary tumors of the

upper arodigestive tract is well-documented [27–29]. PET can detect

squamous cell carcinoma in 30–50% of patients presenting with

an unknown primary tumor. PET-CT is generally performed after

confirming the presence of metastatic squamous cell carcinoma. It is

usually performed before endoscopic biopsies to improve the tissue

yield. This diagnostic yield can increase with PET-CT because as it

improves the anatomic localization of areas of abnormal FDG uptake

[30,31].

PET-CT can also be potentially utilized for determining response to

chemotherapy and/or radiation. Comparison of pretreatment standard

uptake values (SUVs) to SUVs 2 weeks into treatment can allow

measurement of the speed of response and also the sensitivity of the

tumor to the treatment technique [32]. Poorly responsive tumors can

then be treated to higher effective tumor doses of radiation, or surgery

can be performed. Initial results suggest that PET-CT can be used to

assist in defining primary site and nodal tumor targets for radiation

therapy approaches. PET-CT is a useful adjuvant to clinical staging of

squamous cell carcinoma and its utilization will increase with

advancement of technology.

DYNAMIC CONTRAST-ENHANCED
MR IMAGING

Enhancement of a body tissue depends on vascularity, capillary

permeability, renal clearance and volume and composition of

extracellular fluid [33,34]. After intravenous administration of a bolus
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Fig. 2. Blood volume map of the same patient as in Figure 1A–C demonstrates increased perfusion values of the lesion (circled) in comparison
to the adjacent tissues at presentation. [Color figure can be viewed in the online issue, available at www.interscience.wiley.com.]

Fig. 3. T3N2 pyriform sinus carcinoma. A: Axial PET-CT demonstrates avid FDG uptake in a right pyriform sinus carcinoma and a metastatic
right cervical lymph node. B: PET-CT of the chest shows a mediastinal mass with focal increased uptake. This was not detected on conventional
radiography of the chest. [Color figure can be viewed in the online issue, available at www.interscience.wiley.com.]
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of paramagnetic contrast agent, it rapidly passes in to extravascular

space except in brain, retina and testes where specific vascular barriers

prevent it. This passage depends on the flow of the blood, and the

surface area and thickness of micro vessels. In case of malignant

tumors and lymph nodes, the vascular permeability is greater than

inflow of blood and hence blood perfusion is dominant factor for

contrast enhancement [35]. The tumor microenvironment has

increased microvascular permeability and diameter, increased flow

and blood volume of microvasculature, increased tissue oxygenation

and metabolism, and many times increased fractional volume of

extravascular extracellular space [36]. All these parameters result in

the rapid onset of contrast enhancement, which may taper off rapidly

or may persist depending on tissue parameters (Fig. 4A,B). After

passing in to extracellular spaces, the contrast begins to diffuse into

tissue compartments farther than vasculature and eventually over

several minutes to hours, diffuses back into vasculature. In areas of

fibrosis and necrosis, the elimination of contrast is slower due to

slower exchange rates and hence they exhibit persistent delayed

contrast characteristics [37]. Tissue perfusion and blood volume

can be evaluated and measured with a designed protocol of T1- and

sometimes T2*-weighted images. Field inhomogeneities caused by

intravascular contrast media can be quantified by the T2*-weighted

method [38] while shortening of T1 relaxation times can be quantified

by T1-weighted sequences.

Dynamic contrast-enhanced MR imaging has been utilized to

study head and neck cancers [39–43]. Escott et al. [39] did not analyze

signal intensity versus time curves, but noted that dynamic gradient-

echo MR imaging was superior to conventional contrast-enhanced

spin-echo imaging in delineating margins and extent of tumor. Guckel

et al. [42] used dynamic contrast-enhanced MR imaging to evaluate

signal intensity versus time for squamous cell carcinoma of the oral

cavity and oropharynx and found that the time/intensity curves of

the tumors could be divided into two groups, one showing a rapid

enhancement pattern with an early peak and then a continuous decrease

and one showing a slower but continuous increase that then gradually

decreased. Baba et al. [41] found that dynamic MR imaging was useful

in distinguishing persistent head and neck tumor from post -radiation

fibrosis by showing early enhancement in residual tumor. Hoskin

et al. [43] also assessed dynamic contrast-enhanced MR imaging as a

predictor of response to accelerated radiation therapy for advanced

head and neck cancer. They found that tumors with diminished tumor

perfusion at the end of radiotherapy are more likely to respond to

radiation and those that show greater post-contrast enhancement after

accelerated radiotherapy are likely to fail locally and suggested that

tumor blood flow is an important parameter in predicting the

outcome from radiotherapy. However, it was felt that dynamic

contrast-enhanced imaging has a very limited and non-significant role

and that unless invasion or T2 hypointensity was present, dynamic MR

imaging has a relatively small role to play in evaluating nonvascular

masses of head and neck [44].
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