Indications for Thyroid FNA and Pre-FNA Requirements:
A Synopsis of the National Cancer Institute
Thyroid Fine-Needle Aspiration State of the Science Conference

Edmund S. Cibas, M.D.,1,2* Erik K. Alexander, M.D.,3,4
Carol B. Benson, M.D.,5,6 Pedro Patricio de Agustín, M.D., Ph.D.,7
Gerard M. Doherty, M.D.,8,9 William C. Faquin, M.D., Ph.D.,2,10
William D. Middleton, M.D., FA.R.C.,11 Theodore Miller, M.D.,12
Stephen S. Raab, M.D.,13 Matthew L. White, M.D.,8,9
and Susan J. Mandel, M.D., M.P.H.14

The National Cancer Institute (NCI) sponsored the NCI Thyroid Fine-Needle Aspiration (FNA) State of the Science Conference on October 22–23, 2007 in Bethesda, MD. The 2-day meeting was accompanied by a permanent informational website and several on-line discussions between May 1 and December 15, 2007 (http://thyroidfna.cancer.gov). This document summarizes the indications for performing an FNA of a nodule discovered by physical examination or an imaging study; the indications for using ultrasound versus palpation for guidance when performing a thyroid FNA; the issues surrounding informed consent for thyroid FNA; and the information required on a requisition form that accompanies a thyroid FNA specimen. (http://thyroidfna.cancer.gov/pages/info/agenda/)

Key Words: thyroid; cytology; fine-needle aspiration; indications; consent form

The authors of this document comprised Committee I of the NCI Thyroid Fine-Needle Aspiration (FNA) State of the Science Conference. The charge of this committee was to evaluate the state of the science of thyroid FNA with regard to the indications for performing a thyroid

1Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
2Department of Pathology, Harvard Medical School, Boston, Massachusetts
3Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
4Department of Medicine, Harvard Medical School, Boston, Massachusetts
5Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
6Department of Radiology, Harvard Medical School, Boston, Massachusetts
7Department of Pathology, University Hospital “12 de Octubre”, Madrid, Spain
8Department of Surgery, St. Joseph Mercy Hospital, Ann Arbor, Michigan
9Department of Surgery, University of Michigan, Ann Arbor, Michigan
10Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
11Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
12Department of Pathology, University of California San Francisco, San Francisco, California
13Department of Pathology, University of Colorado at Denver, Aurora, Colorado
14Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

The following medical societies are co-sponsors of the NCI Thyroid Fine-Needle Aspiration State of the Science Conference and Website:
The American Cancer Society; College of American Pathologists; The American Society for Clinical Pathology; The American Society of Clinical Oncology; La Societe Francaise de Cytologie Clinique; The American Society of Cytopathology; The Papanicolaou Society of Cytopathology; The American Association of Clinical Endocrinologists; The American Association of Endocrine Surgeons; The American Thyroid Association; The Society of Radiologists in Ultrasound; The American College of Radiology; National Comprehensive Cancer Network; and The American College of Endocrinology.

*Correspondence to: Edmund S. Cibas, M.D., Department of Pathology, Brigham and Women’s Hospital, 75 Francis St., Boston, MA 02115. E-mail: ecibas@partners.org

Received 27 February 2008; Accepted 27 February 2008
DOI 10.1002/dc.20827
Published online in Wiley InterScience (www.interscience.wiley.com).
FNA and the prethyroid FNA requirements. This is a summary of the “Review and Conclusions” of the subject matter that this committee analyzed based on literature reviews limited to English language publications dating back to 1995 using PubMed as the search engine, with key words determined by the committee members; online forum discussions (http://thyroidfna.cancer.gov/forums/default.aspx); and formal interdisciplinary discussions held at the October 2007 conference. This is not a “standards of practice” guideline, nor is it endorsed as such by the National Cancer Institute.

Indications for Performing an FNA of a Thyroid Nodule Discovered by Palpation

Every patient with a palpable thyroid nodule is a candidate for fine-needle aspiration (FNA) and should undergo further evaluation to determine if an FNA is warranted.1–3 Thyroid nodules detected by palpation are usually at least 1.0 cm in dimension4,5 and are therefore potentially clinically significant. Before a decision is made to perform an FNA, a complete history should be obtained; a physical examination directed to the thyroid gland and cervical lymph nodes should be performed; and a thyrotropin level (TSH) and thyroid ultrasound (US) should be obtained.1,3,6–8

Significant history or physical examination findings that increase the likelihood of malignancy include a family history of thyroid cancer, prior head and neck or total body irradiation, rapid growth of the nodule, a very firm or hard nodule, hoarseness or vocal cord paralysis, ipsilateral cervical lymphadenopathy, and fixation of the nodule to surrounding tissues.1,3,6–8

Patients with a normal or elevated serum TSH level should proceed to a thyroid US to determine if an FNA needs to be performed (see section “Indications for Performing an FNA of a Thyroid Nodule Discovered via Imaging”); those with a depressed serum TSH should have a radionuclide thyroid scan, the results of which should be correlated with the sonographic findings.1,3,6,7,11

Functioning thyroid nodules in the absence of significant clinical findings do not require an FNA because the incidence of malignancy is exceedingly low.12 A nodule that appears either iso- or hypo-functioning on radionuclide scan should be considered for FNA based on the US findings (see section “Indications for Performing an FNA of a Thyroid Nodule Discovered via Imaging”).1,3

Contraindications to thyroid FNA are very few: an uncooperative patient and a severe bleeding diathesis. In such circumstances appropriate medical consultation should be sought prior to the FNA.13–15 The most significant (but extremely rare) complication of thyroid FNA, limited to a few case reports and small series, is intrathyroidal hemorrhage and acute upper airway obstruction.16

Extrapolating from recommendations for endoscopic US-guided FNA, it is usually possible to perform an FNA on a patient who is taking standard doses of aspirin, other non-steroidal anti-inflammatory drugs (NSAIDS), or prophylactic low molecular weight heparins (LMWH).3,14–17,18 Nevertheless, consideration should be given to stopping LMWH at least 8 hour before the procedure.19 In patients taking therapeutic doses of warfarin or heparin/LMWH, performing a thyroid FNA is controversial but can be done.18,19 There are no data on the safety of FNA in patients taking anti-platelet medications like Plavix® (clopidogrel bisulfate). A reasonable approach is to stop the medication for 3–5 days with agreement from the prescribing doctor. If this cannot be done safely, an FNA may be performed using the smallest needle possible and limiting the number of passes performed. In this scenario, US guidance may be preferable so that the surrounding small vessels can be visualized and avoided.

Conclusions:

1. Before biopsying a patient with one or more thyroid nodules discovered by palpation, a serum TSH level should be measured and an US examination performed.
2. If the serum TSH level is depressed, the findings of a radionuclide thyroid scan should be correlated with those of US examination. If the nodule of interest is hot, an FNA is not indicated.
3. If the serum TSH is normal or elevated, an US examination should be performed to determine if sonographic criteria for FNA are met (see section “Indications for Performing an FNA of a Thyroid Nodule Discovered via Imaging”). If so, the nodule should be biopsied.
4. An FNA may be contraindicated if the patient is uncooperative.
5. An FNA may be contraindicated if the patient has a severe bleeding diathesis.

Indications for Performing an FNA of a Thyroid Nodule Discovered via Imaging

A nodule not previously suspected or discovered clinically but detected by an imaging study is considered an incidental nodule (“incidentaloma”). Whether or not a nodule has been detected clinically depends on the expertise of the person performing the clinical examination (if one was done), the size and mobility of the patient’s neck, and the size and location of the nodule.

Incidentalomas detected by 18FDG-PET are unusual (2–3% of all PET scans) but have a higher risk of cancer (14–50%) compared to the background incidence.20–28 A focal 18FDG-PET-avid thyroid nodule is much more likely to be a primary thyroid cancer than metastatic disease to the thyroid, even in patients with an extrathyroidal...
malignancy. Many 18FDG-PET-avid lesions that are not papillary cancer are follicular or Hurthle cell neoplasms. Therefore, a focal nodule that is 18FDG-PET-avid is an indication for FNA. This applies only to focal lesions. Diffuse increased uptake on 18FDG-PET does not warrant FNA unless thyroid sonography detects a discrete nodule.

All focal hot nodules detected on sestamibi scans and confirmed by US to be a discrete nodule should undergo FNA. Thyroid incidentalomas detected on sestamibi scans have a high risk of cancer (22–66%).29–33 Many that are not papillary cancer are follicular neoplasms.

Incidentalomas detected by US (such as carotid Dopp- ler scans or scans done for parathyroid disease) have a cancer risk of \(\approx 10–15\% \) (0–29\%).34–46 and should undergo dedicated thyroid sonographic evaluation. Lesions with a maximum diameter greater than 1.0–1.5 cm should be considered for biopsy unless they are simple cysts or septated cysts with no solid elements. FNA may also occasionally be replaced by periodic follow-up for nodules of borderline size (between 1.0 and 1.5 cm in maximum diameter) if they have sonographic features that are strongly associated with benign cytology. A nodule of any size with sonographically suspicious features should also be considered for FNA. Sonographically suspicious features include:

- microcalcifications
- hypoechoic solid nodules
- irregular/lobulated margins
- intra-nodular vascularity
- nodal metastases (or signs of extracapsular spread)

This latter approach is controversial because it includes patients with microcarcinomas, in whom a survival benefit following an FNA diagnosis has not been documented. Nevertheless, the American Thyroid Association,\(^1\) the Academy of Clinical Thyroidologists,\(^{34}\) and a collaborative effort of the American Association of Clinical Endocrinologists and the Associazione Medici Endocrinologi\(^{47}\) make this recommendation (Table I). There are several reasons for this approach. A nodule that has suspicious sonographic features may not be malignant. If the nodule is benign by FNA, the patient can be reassured, and subsequent follow-up can be less frequent. On the other hand, if the FNA reveals that the nodule is malignant, surgery is generally recommended. The natural history of micropapillary carcinomas, however, is not well understood. Most remain indolent, as implied by the 13\% prevalence of micropapillary cancers in the United States at autopsy examination.\(^{48}\) A minority follow a more aggressive course; this subgroup might be identified by sonographic evidence of lateral cervical node metastases, tumor multifocality, extrathyroidal invasion, or cytopathologic features that suggest a high-grade malignancy.\(^{49}\) The development and application of even more sensitive and specific markers of aggressive potential (including molecular and genetic markers) may one day facilitate triage of patients with a microcarcinoma.

There are few direct data on the cancer risk of thyroid incidentalomas detected by computed tomography (CT) or magnetic resonance imaging (MRI). They are seen in at least 16\% of patients evaluated by neck CT or MRI.\(^{50}\) The risk of cancer in one study was predicted at 10\%, but it included only a limited number of patients who went on to FNA.\(^{51}\) CT and MRI features can not determine the risk of malignancy, except in very advanced cases that are unlikely to be incidental. Until more data are available, incidentalomas seen on CT or MRI should undergo dedicated thyroid sonographic evaluation. Any nodule with sonographically suspicious features (see above) should be considered for FNA. In addition, lesions that have a maximum diame-

Table I. Indications for Thyroid FNA: Recommendations of Professional Societies

<table>
<thead>
<tr>
<th>ACT(^a)</th>
<th>ATA(^b)</th>
<th>AACE(^a)</th>
<th>SRU(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td><10 mm FNA if clinical risk factors</td>
<td><10 mm FNA if clinical risk factors or suspicious US features</td>
<td><10 mm FNA if clinical risk factors or suspicious US features</td>
<td><10 mm No recommendation</td>
</tr>
<tr>
<td>5–10 mm FNA if suspicious US features</td>
<td>FNA if suspicious US features</td>
<td>FNA if clinical risk factors or suspicious US features</td>
<td>>10 mm FNA if microcalcifications</td>
</tr>
<tr>
<td>10–20 mm FNA most nodules May defer FNA if benign US features</td>
<td>>10–15 mm FNA all</td>
<td>>10 mm FNA all</td>
<td>>15 mm FNA if solid with coarse calcifications</td>
</tr>
<tr>
<td>>20 mm FNA all</td>
<td>>10 mm FNA all</td>
<td>>20 mm FNA if mixed solid & cystic or cystic with mural nodule</td>
<td></td>
</tr>
</tbody>
</table>

ACT, Academy of Clinical Thyroidologists; ATA, American Thyroid Association; AACE, American Association of Clinical Endocrinologists; SRU, Society of Radiologists in Ultrasound.\(^{38}\)

\(^a\)Nodule size not specified as maximum or mean.

\(^b\)Nodule size refers to maximum dimension.
ter greater than 1.0–1.5 cm should also be considered for FNA (see above).

As discussed in section “Indications for Performing an FNA of a Thyroid Nodule Discovered by Palpation,” serum TSH levels may influence the decision to perform an FNA on an incidentaloma. Given the infrequency with which TSH levels are depressed, the decision to perform an FNA need not be delayed if the patient is undergoing sonography and the results are not available.

It may not be feasible or advisable to perform an FNA for all incidentalomas. There are too many, the costs and strain on the medical system would be too great, and such a practice would ultimately lead to needless surgery on many benign lesions. The goal in dealing with incidentalomas is to avoid FNA as best possible for nodules likely to be benign, while maximizing the number of malignant nodules that are diagnosed. The consensus in the literature and among professional societies specializing in thyroid diseases is that incidentalomas should undergo sonography and only those that have suspicious sonographic features, exceed a certain size (1.0–1.5 cm), or have clinical risk factors should undergo FNA. Given the imperfect ability of clinical factors to predict the risk of cancer, and the unavoidable overlap in sonographic features between benign and malignant nodules, any recommendation will result in some missed cancers and some FNAs of benign lesions.

Conclusions:

1. All focal 18FDG-PET-avid lesions should undergo FNA.
2. All hot nodules detected on sestamibi scans should undergo FNA.
3. Incidentalomas detected by US should undergo a dedicated thyroid sonographic evaluation.
4. Until more data are available, incidentalomas seen on CT or MRI should undergo a dedicated thyroid sonographic evaluation.
5. Any nodule with sonographically suspicious features should be considered for FNA.
6. Lesions with a maximum diameter greater than 1.0–1.5 cm should be considered for FNA.

Indications for Performing a Thyroid FNA
Using Palpation for Guidance

Palpation-guided FNA can be performed with high levels of success in specific circumstances.2,52–54 In the setting of a new, palpable thyroid enlargement without a definable nodule on sonography, the decision to perform a biopsy or not still depends to a large degree on the sonographic appearance of the thyroid. If the thyroid is truly enlarged but is normal in echogenicity and echotexture, then malignancy is so unlikely that a biopsy is not necessary. On the other hand, if the enlarged thyroid is hypoechoic and heterogeneous/coarsened, then the differential includes lymphocytic thyroiditis (most commonly), and, rarely, uncommon malignancies like lymphoma and anaplastic cancer, as well as amyloid goiter. In such a case, an US-guided FNA may be warranted depending on the size of the thyroid, the degree of left to right asymmetry, other sonographic features, or based on clinical or laboratory findings.

The benefits of palpation-guided FNA of thyroid nodules are its reduced cost in comparison to US-guided FNA as well as its logistical efficiency: the practitioner can perform the procedure without an US machine or assistance from other practitioners. In the evaluation of individual patients with nodular disease, there are occasions when either palpation or US-guided FNA of a thyroid nodule are reasonable to perform. Published data from one study concluded that US evaluation changes the management in 63% of patients with palpable thyroid nodules.55 Thus, when thyroid nodules do not fulfill the criteria below, or when practitioners trained in palpation-guided aspiration are not readily available, US-guided FNA should be preferred.

Conclusions:

A palpation-guided FNA can be considered in the following scenarios:

1. A thyroid nodule > 1 cm in diameter has been confirmed via US examination of the thyroid. The sonographic examination is important because physical examination can be imprecise in determining nodule size and its origin from the thyroid rather than adjacent tissues.56
2. The thyroid nodule is discrete and readily identified on physical examination. Importantly, a diffuse or asymmetric goiter without a discrete nodule on physical examination should preclude palpation-guided FNA in lieu of US-guided FNA.
3. The nodule is primarily solid (<25% cystic) on US examination.57,58
4. The patient has no other head or neck illnesses or prior head or neck surgery that may affect the thyroid anatomy.
5. A prior nondiagnostic biopsy of the nodule has not occurred. In such cases, an US-guided FNA should be performed.59
6. Obtaining US guidance for FNA is logistically difficult or not readily available.

Indications for Performing a Thyroid FNA
Using Ultrasound for Guidance

Ultrasound guidance for FNA of the thyroid gland is useful in the combined evaluation of the thyroid nodule, as it simultaneously allows detailed examination of the remainder of the thyroid gland, characterization of the nodule (solid, cystic, well-circumscribed, irregular, calcifications, vascularity, size, etc.), and accurate placement of the aspiration needle in the nodule of interest. The advantages
of US guidance include a decreased rate of insufficient or inadequate cytology specimens in several studies in which these were compared. US also allows sampling from solid areas of partially cystic lesions, accounting for some increase in adequacy. Not all studies show a difference in adequacy and accuracy, or show a difference only for smaller lesions.

US findings such as irregular margins, microcalcifications, intra-nodular vascularity, and the characteristics of other occult thyroid nodules can be used by the clinician to identify nodules at risk that should be sampled. US guidance can also provide additional information for patients who have had benign or nondiagnostic (i.e., insufficient cells/collloid) results from palpation-guided FNA. Re-evaluation of patients using US-guided FNA for those with initially benign or nondiagnostic results can lead to the reclassification of a substantial portion of patients and diagnose more cancers. Finally, there are US-specific findings that can be used to inform the results of the US-guided FNA (e.g., the benign sonographic appearance of a unilocular cyst explains why only cyst fluid was obtained by FNA).

Both palpation-localized and US-guided thyroid FNA are widely practiced. Several studies have shown, however, that US-guided FNA is a more sensitive technique than palpation-guided assessment. Regardless of the localization method utilized, high levels of operator training and experience are key determinants of successful FNA procedures. (See accompanying article in this issue by Ljung et al.)

Conclusions:

1. US guidance should be used to aspirate nodules that are not palpable.
2. US guidance should be used to aspirate nodules that have an appreciable (>25%) cystic component.
3. US guidance should be used if a prior aspiration contained insufficient cells/collloid for interpretation.
4. US guidance for thyroid FNA may be used as an alternative to palpation localization because it permits the operator to:
 a. be certain that the nodule of interest is aspirated by direct imaging,
 b. be sure that a discrete nodule is present before aspiration, and
 c. avoid passing the needle into critical structures in the neck.

The Informed Consent Form for Thyroid FNA

Informed consent is the communication process between a patient and physician that results in the patient’s agreement to undergo a particular procedure or treatment. Failure to obtain adequate informed consent renders a physician liable for negligence or battery and constitutes medical malpractice.

Although it has been suggested that improved informed consent policies could result in improvements in the patient-physician relationship, patient compliance, patient trust of the healthcare system, and patient safety (by providing information that could reduce medical

The principle of informed consent is rooted in medical ethics, codified as a legal principle, and based on the assertion that a competent person has the right to determine what is done to her or him. In the informed consent process, the physician informs a patient about the risks and benefits of a proposed therapy or procedure and allows the patient to decide if the therapy or procedure should be undertaken. Informed consent in the research setting differs considerably from informed consent in a clinical context.

In reality, all medical care, including the procuring of all laboratory tests, requires formal informed consent, except when the patient is incompetent to make a decision or gives up the right to provide it. Formal procedures of obtaining consent, such as the signing of a consent form, following the exchange of information and a patient-physician communication, are only undertaken in some circumstance, such as prior to major invasive procedures or surgery. Legislation regulating the conditions under which consent must be obtained vary greatly by state. Thus, providers (e.g., pathologists, radiologists, surgeons, endocrinologists, etc.) who perform FNA need to design informed consent policies and forms based on state regulations. In essence, there is a lack of standardization of national informed consent policy that determines exactly when and how informed consent is obtained.

National organizations like the American Medical Association (AMA) have provided general guidelines of informed consent. The AMA recommends that the following be disclosed and discussed with the patient:

1. The patient’s diagnosis, if known;
2. The nature and purpose of a proposed treatment or procedure;
3. The risks and benefits of a proposed treatment or procedure;
4. Alternative options (regardless of their cost or the extent to which these options are covered by health insurance);
5. The risks and benefits of the alternative treatment or procedure;
6. The risks and benefits of not receiving or undergoing a treatment or procedure.

The AMA Code of Medical Ethics establishes informed consent as an ethical obligation of physicians. Failure to obtain adequate informed consent renders a physician liable for negligence or battery and constitutes medical malpractice.
Many informed consent procedures are incomplete. In addition, less than 50% of the population understands commonly used medical terms, resulting in a “health literacy” problem that limits patients in their attempts to understand information. Several studies have focused on insufficiencies in procedures to obtain informed consent. Braddock et al. created a 3-tier evaluation procedure, in which the completeness of the informed consent discussions differed depending on the complexity of the decision. Basic decisions (e.g., laboratory test ordering) require discussing the clinical nature of the decision and the evaluation of patient preferences. Intermediate decisions (e.g., medication changes) require a moderate depth of discussion and include adding a discussion of alternative treatments, including the risks and benefits of these alternatives and an assessment of patient understanding. Complex decisions (e.g., undergoing an operative procedure) require a discussion of the uncertainties associated with the procedure, in addition to the components listed previously.

Providing written information, which is also discussed during the informed consent process, may increase comprehension. This information, however, must be provided in a manner that is clearly understood by the patient. Hooper et al. found that patients with a high school education understand only 16% of all consent forms. Jubelirer et al. reported that, in a study of adult cancer patients, most had a reading level between 10th and 11th grade. Jubelirer et al. recommended that consent forms be written at 3-grade levels below the highest level of education of the specific patient.

For thyroid FNA, a consent form should be patient friendly and written so that the patient fully understands the procedure. Patient comprehension of thyroid FNA forms has not been rigorously studied. Potential complications should be listed on consent forms but written in a manner understandable to all patients. Concepts such as false-negative and false-positive proportions need to be discussed and written in terms that a patient understands; simply listing such numbers likely would not benefit most patients.

Currently, informed consent is receiving a great deal of attention, and a number of studies researching informed consent have been performed. The Agency for Healthcare Research and Quality (AHRQ) identified the challenge of addressing shortcomings such as missed, incomplete or not fully comprehended informed consent, as a significant patient safety opportunity. Thus, informed consent policies are evolving.

Conclusions:

1. Informed consent materials, if used, should describe the FNA procedure and potential risks and complications.

2. The possibility of a hematoma, the most frequently occurring complication, should be mentioned.

3. Information should be presented in a manner to facilitate patient understanding.

4. It might be useful to mention the possibility of a noncontributory result.

5. Estimates of accuracy, such as false-negative or false-positive proportions, are not mandatory and should be considered only if the practitioner believes they would facilitate patient comprehension.

Information Required on the Requisition Form that Accompanies a Thyroid FNA

Federal regulations in the United States require that certain identifying information be provided to laboratories with all specimens submitted for laboratory testing. These include:

- name and address of person requesting the test
- patient’s name or unique identifier
- patient’s gender
- patient’s age or date of birth
- name of the test to be performed
- specimen source
- date of specimen collection
- “any additional relevant information”

The purpose of this discussion is to consider what “additional relevant information” a laboratory needs to properly evaluate a thyroid FNA specimen.

With regard to the already required patient age, the risk of malignancy may be greater in individuals that are older (over age 60), and the risk is likely greater in younger individuals (children, generally under age 20). Risk is also increased in men. Papillary hyperplasias that occur in children can be confused with papillary thyroid cancer.

The location of the nodule (right vs. left; isthmus; upper pole, mid-pole, lower pole, etc.) should be specified on the requisition form to permit correlation with sonographic findings and subsequent histopathologic examination (if applicable). Such identification is necessary because patients often present with multiple nodules (some but not all of which may be biopsied), or they may develop other nodules over time.

There is, at best, an imperfect correlation between the size of a nodule and the likelihood of malignancy, but larger nodules (>4 cm) may be associated with a higher malignancy risk, and therefore size should be included. Benign cytologic changes that mimic malignancy, particularly papillary carcinoma, occur in some patients with autoimmune (Hashimoto’s) thyroiditis. If not alerted to
this history, a misdiagnosis can occur.100,101 Furthermore, nuclear alterations may be seen in patients with a history of I-131 therapy (for hyperthyroidism) or external radiation.102–104 In some patient with Graves’ disease, an FNA of a nodule may include pleomorphic cells from the extra-nodular Graves’ thyroid parenchyma that can be a pitfall in cytologic interpretation.105

It is important to note a personal history of malignancy because metastatic tumors to the thyroid can mimic the appearance of a primary thyroid neoplasm. Metastatic renal cell carcinoma mimics a follicular neoplasm; melanoma can mimic medullary carcinoma; metastatic lung cancer can mimic anaplastic carcinoma of the thyroid. Cytologists should be alerted to the possibility of a metastatic tumor in any patient with a history of malignancy.

Approximately 15% of medullary thyroid cancers are familial (familial MTC or MEN2a or 2b). Knowledge of family history can alert the pathologist to the possibility of medullary carcinoma. In addition, recent data show that papillary thyroid cancer can also be familial,106 and thus knowledge of such family history can alert the pathologist to consider papillary carcinoma.

The following information can be useful to the cytologist but is considered optional on the requisition form.

- **Prior FNA.** Morphologic alterations due to a prior FNA can affect cytologic interpretation.107
- **Concurrent levothyroxine therapy.** Levothyroxine (LT4) use can alter follicular cell morphology. Such altered morphology can be encountered in an FNA obtained because of nodule growth while a patient is taking LT4. Nodules that yield a more cellular benign specimen may demonstrate more colloid and degenerative changes after LT4 therapy.108
- **TSH level.** If a patient has Hashimoto’s hypothyroidism or Graves’ disease, cytologic findings can be affected. A lower serum TSH level is also associated with a lower risk of thyroid cancer.96
- **Results of ultrasound examination**
 - US characteristics of the nodule
 - US characteristics of surrounding extra-nodular thyroid parenchyma
 - presence of other nodules
 - location of nodule

US characteristics associated with malignancy include microcalcifications, hypoechogenicity, irregular margins, and increased vascularity.45 Predominantly cystic nodules may be less likely to be malignant.109 US imaging of the surrounding extra-nodular thyroid may indicate that Hashimoto’s (lymphocytic) thyroiditis is present, which, as noted above, can cause benign cytologic changes that mimic malignancy. Although the risk of cancer for an individual patient is the same whether he/she has a single or multiple nodules, the risk of malignancy per nodule is lower if multiple nodules are present.109 The lower parathyroid glands may be contiguous to the thyroid at its lower poles. Therefore, what is imaged as a lower pole hypoechogenic thyroid nodule may be a parathyroid gland.

- **Results of nuclear medicine imaging studies (functioning or not functioning).** In general, a nodule that functions on an 123I scan should not undergo FNA.38,47,110

Conclusions:
At a minimum, the following data should appear on the requisition form that accompanies a thyroid FNA to the laboratory:

1. Usual required data for laboratory test submission (see above)
2. Location of the nodule
3. Size of the nodule
4. History of hypothyroidism, autoimmune thyroiditis, or a positive test for antithyroid antibodies
5. History of Graves’ disease
6. History of 131I or external radiation therapy
7. Personal history of cancer
8. Family history of thyroid cancer

References

