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Abstract

We describe a problem that requires joint determination of multiple shortest paths
due to some shared resource constraints. A common procedure is to relax the resource
constraints and solve the Lagrangian dual by a multiplier adjustment method (M AM).
We describe a general.MAM that unifies various features of similar methods for spec.fic
problems in the literature. The MAM always achieves monotonic ascent and, iit some
cases, steepest ascent with little extra computation. We discuss how to adopt the
general MAM into various applications, including equipment replacement, prodaction
planning, and pavement maintenance. We use the generalized assignment problem to

illustrate the steepest ascent feature of the MAM.
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1 Introduction

Many important decision problems, such as equipment replacement and production planning,
can be formulated as acyclic shortest path problems that are efficiently solved by dynamic
programming (DP). Difficulties arise, however, in implementing such solutions if there are
limited resources to be shared by shortest path problems, such as budgets and storage space.
For example, in fleet vehicle replacement, each individual vehicle replacement induces a
shortest path. A capital expenditure budget links all individual problems [19].

The resource-constrained shortest path problem is an NP-hard combinatorial optimiza-
tion problem [14]. A common way to handle resource constraints is to relax them using
Lagrange multipliers and solve the Lagrangian dual problem [2, 14]. Although there is no
guarantee to solve the original problem optimally, this approach is attractive for two rea-
sons. First, shortest paths obtained by this approach are sometimes acceptable when slight
resource violations are considered tolerable, for example, under soft capital rationing [17, 15].
Second. the Lagrangian dual problem provides a lower bound which can be used in implicit
enumeration algorithms [1, 2, 7, 8, 12, 19].

In this paper, we describe a general multiplier adjustment method (MAM) for solving
the Lagrangian dual. The MAM unifies various aspects of similar methods designed for the
specific applications of the resource-constrained shortest path problem [8, 12,13, 17, 19, 22],
and applies the general structure to new specific problems. Since the most difficult part of
a MAM is usually the determination of a step size, for given a set of ascent directions, most
existing methods select the first ascent direction that gives a nonzero step size. A novel
feature of our method is its efficiency in calculating the step size along any given ascent di-
rection. With this feature, selecting the steepest ascent direction is justified computationally
in many applications that satisfy some mild network conditions.

In the following sections, we first formulate the multiple acyclic shortest path problem
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Figure 1: Two shortest path problems with three common resources.

with complicating resource constraints. We then present an algorithm for the MAM and
establish its properties through a number of lemmas. Next, we discuss how to adopt the
general MAM for various applications. We illustrate the steepest ascent property through

the generalized assignment problem. Finally, we present the concluding remarks.

2 The Model

C'onsider m shortest path problems that must be solved jointly due to n common resources.
Let the ¢-th problem be defined over a directed, acyclic graph G; = (N;, A;), 1 =1,...,m,
as the problem of finding a shortest path between a source and sink node. Each N; can be
partitioned into n disjoint node sets such that N; = Ji_; N;;, and all arcs emanating from
N, consume resource j. Essentially, each G; is a DP network with resources corresponding
to stages. and the set N;; corresponding to the states in stage j. Figure 1 illustrates a case

where two shortest path problems must be solved jointly, each using three common resources.



Let
c(i,k,£) = length of arc (k,{) € A;
a(i,k,{) = resource j consumption of arc (k,f) € A;, k € N;; (7 implicit
from k)
b(j) = resource j availability /requirement
Hikf) = 1 if arc (k,f) € A, is on the optimal path in G;
0 otherwise
We can formulate this problem as an integer program (IP) as follows. For the ease of
exposition, add to each A; a dummy arc with zero length from the sink node to the source
node.

minimize Z Y ¢ i, k,{)

(k,0)EA;
subject to

o (i k0)= Y z(i,6k)=0 i=1,....m (1)

£EN; LEN;
<
Z Z 71”7[) = b(]) J = 17 1 (2)
=1
>
z(i,k,0) € {0,1} Vi k¢ (3)

Network constraints (1) assure the conservation of unit flow for each ¢. Resource constraints
(2) link the individual shortest path problems, rendering an NP-complete problem [14].
Let A € " be a vector of Lagrange multipliers for constraint set (2) with the following

sign conventions.

A resource constraint type

>0
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Dualizing all resource constraints yields the following relaxation.

n

L()) = minimize fz Y. Al kO k 0 =Y b(7) )

i=1j7=1 (k£)EA,; J=1
subject to (1) and (3), where ¢x(z, k,£) = (¢, k,£) + a(z, k,£) A(7), k € N;;.
Without resource constraints, individual shortest path problems can be solved efficiently

by a DP recursion [6]. Let f(z) be the length of the shortest path in G; for a given'/\. Then

m n

L(N) = Y fl1) = 22b(5) M) (4)

i=1 j=1
For a given A, L(A) is a lower bound on the optimal value to the IP. The tightest bound

is obtained by solving the Lagrangian dual problem.

max L(A) (5)

In the next section, we present a MAM for solving (5).

3 Multiplier Adjustment Method

MAMs are heuristic algorithms for solving Lagrangian duals by exploiting the special struc-
ture of a particular problem. A MAM has the advantage of achieving monotonic bound im-
provement in most applications unlike the more common subgradient algorithms. However,
a MAM does not guarantee bounds better than those obtained by subgradient algorithms.
For details and successful application examples of the MAMs, see [5, 7, 8, 19, 22].

Although most MAMs use the violated constraints to select an ascent direction, they
differ considerably in finding the step size along a chosen direction. Based on the total float
concept borrowed from the critical path method, our MAM features an efficient procedure
for determining exact step sizes. Under some conditions, we can guarantee steepest ascent.
We discuss these issues in detail following the formal presentation of the MAM.

We now present a generic framework for the MAM.
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Step 1. Pick initial multipliers, A°. With &0, solve m shortest path problems and obtain z 0.

Set t — 0.

Step 2. If x): satisfies (2), stop; otherwise select a violated constraint j* from constraint set

(2).

Step 3. Let LHS(;*) be the left hand side of constraint j*. Determine a step size, A > 0, as

follows.

(a) If the LHS(;7)> b(;*) for “<” or “=" type constraints, increase A*(7*) by A until

one of the following arcs is deselected.

{(k,€) € Nij»

.T)\t(l.,k,g) = 1}

(b) If the LHS(;*)< b(;*) for “>” or “=" type constraints, decrease A'(j*) by A until

one of the following arcs is selected.

{(k,6) € Nij

I/\t(i, k‘,g) = 0}

If finding A > 0 is not possible, stop; otherwise, adjust multipliers

A iase ) o
A7) = . CATG) = X(G) for j #5
M) = A if case (b)

With cye1. solve m shortest path problems to obtain zy:+1. Set t «— t 41, go to step 2.

The most critical step of the MAM is the determination of the step size, A. We start

with some definitions.
Definition 1 Given a Lagrangian solution v, define

L(j) = {i]|a\(i.k ) =1, k € Ny, for some €}, and

) = {i]|xalik6)=0, ke Ny, for some {}.
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Figure 2: Determination of 8,(z, &, ¢).

Definition 2 (Slack of an arc) Given z)(z,k,{) = 0 in the current solution, define 0,(i, k,{)
as the minimum decrease in ¢\(1, k,£) necessary to set zz(1,k,£) = 1. We refer to 0,(z, k, ()

as the slack of arc (k, () in G;.

The value of 6,(z,k,£) can be determined by a procedure similar to that of the critical
path method for finding total floatsin activity networks. This concept is related to sensitivity
in dynamic programming as discussed in [20]. The idea is illustrated in Figure 2. Let L; and
L, be the shortest path lengths from the source node to the tail of (k,/) and from the sink
node to the head of arc (k, £), respectively. The lengths L; and L, can be computed efficiently
by forward and backward DP recursions [6]. The value of 0,(i, k, ) is the difference hetween
the length of a shortest path from source to sink constrained to include (&, ¢), fA(i. ), and

the length of the current shortest path, fi(z).
Lemma 1 Given x)(2.k,¢) =0 in the current solution,
Os(i, k. 0) = A0k, 0) = fa(i) 2 0
where fu(i.k,€) = Ly + &x(s, k, €) + Lo.
Hence, we have

Lemma 2 Consider a Lagrangian solution z, for a given \. If constraint j* is violated

because consumption is less than what is required, i.e., LHS(j*)< b(j*), then the step size in

6



step 3 of the MAM can be computed

. 0:(i, k. €)
= — . 6
2T a { ali, k. ) } o

(k,[)eA‘, keNi]‘

Proof: Consider z,(i,k,¢) = 0,1 € I%(;*) and k € N;j». Decrease ¢)(i, k,¢) until another
path in G; that contains (k,{) € A; emerges as an alternative to the current shortest path.

Suppose this occurs at increment § > 0, which, in turn, must satisfy
AG) = fli, k€)= §a(i, k, £).
From Lemma 1, (6) follows. =

Definition 3 Let f\(i |~ E) be the length of a shortest path in G; constrained to exclude

arcs in set £ € A;.

Lemma 3 Consider a Lagrangian solution x, for a given A. If constraint j* is violated
because consumption exceeds what is available, i.e., LHS(j3*)> b(;*), then the step size in

step 3 of the MAM can be computed

A= min {
i€l (5*)
{(k.0))z5(i.k.£)=1}

. 0,\(iak1’€l) f/\(l IN{(kaE)}kEN.‘,') _f\(l) (,,)
(W,0es,e al, ks 0) — ali, k0 a(i, £, 0) ‘

where

Sije = {(K', )| k' € Nyjo, a(i, K, 0) < a(i, k,0)}.

Proof: Consider z)(i,k,{) = 1,7 € I}(j) and k € N;;». Increase ¢,(i, k,{) until another
path in Gy, not containing (k,¢) € A;, emerges as an alternative to the current shortest path.
Suppose this occurs at increment 6, which can be either zero or positive. Since the step 3 of
the MAM requires a positive step size, assume é > 0. There are two possibilities for the new

path; it will either 1) pass through one of the nodes in N+, or 2) skip all the nodes in N,js.



In the first case, say the new path includes arc (k’,¢') € Nj;» for which z(z, k", ¢') = 0.

Then, § must satisfy
NG +8a(i k,0) = A, E0) +6a(i, K, 0).

From Lemma 1

0\(i, k', 0') = 6lali, k, ) — a(i, &', €)].

A sufficient condition for § > 0 is a(7, k', ¢') < a(i,k,£), that is, if the ¢-th problem is to use
resource J*, it should consume less than what it is currently consuming.

In the second case, similarly, § must satisfy

M) +6a(i, k6 = i@ [~{(k O}ken, . )-

The value of A(7) is increased until either case occurs. m
The MAM is a dual ascent procedure in that it monotonically increases the value of L()).

This property 1s established below.

Lemma 4 (Monotonicity) Let 7* be a violated resource constraint in iteration t. Adjusting

A7) by A >0 yields L(A™Y) > L(AY).

Proof: If the violation is because LHS(j*)> b(;*), increasing A(j*) at the end of iteration

t increases both components of L(A") in (4). First component increases because each fy:(7),

i € 1}.(J7), increases by A x a(i, k, (), where xy¢(i,k,{) = 1, k € N;;». The second component

increases by A x b(7*). Hence,

LA = )+ A D a(i, k) (i k £) — Ab(G) = L(XY) + A[LHS(5) — b(5)).

i€, (*)

Similarly, if the violation is because LHS(7)< b(;*), decreasing A(7*) at the end of iteration

t decreases both components of L(A") in (4). Hence,

LAY = —A Y a(i k )z, b, €) + Ab(5T) = LA + A[b(j*) — LHS(j7)].

€13,(5*)



In either case, the Lagrangian function strictly improves. =

In step 2 of the MAM, an ascent direction is chosen as a violated resource constraint. Let
Jy, be the set of violated resource constraints for a given A. Two popular rules for selecting
j* € Jy are a) first ascent [8, 12, 13], which scans J) in a predetermined order and selects ;*

as the first encountered, and b) steepest ascent, which scans Jy and selects 7 as follows.

Corollary 1 (Steepest ascent) Let A(j) be the step size as determined by either Lemma 2
or 3 for an ascent direction 7 € Jy. The steepest ascent direction j* satisfies

j = angmax (A() % [LHS() = 45
Proof: Follows from Lemma 4.

Determining the steepest ascent direction requires the computation of both terms in (7)
for all j € Jy. The first term is obtained basically by a table search, but the second term
calls for solving a shortest path problem with some nodes deleted. In problems where all
arcs having tail nodes in set 7 have their head nodes in set j + 1, the second term in (7) does
not need to be computed, and hence, the steepest ascent improvement is possible with little
extra computation. For example, shortest path formulations of certain knapsack problems
have this structure. More discussion of this issue is given in Section 4.4.

Implementation of this genefal approach requires structural information from the under-
lving problem. The next section gives examples of this approach applied to several such
structures: equipment replacement with capital budgets [19, 17], multiple item capacitated

lot sizing, pavement maintenance scheduling [18], and the generalized assignment problem.



4 Applications

4.1 Equipment Replacement with Capital Budgets

Equipment replacement decisions typically involve a) which equipment to install, and b) how
- long to use it. The problem is to find a chain of serial replacements that minimizes .the total
discounted cost over n periods. Suppose there are m pieces of equipment with a limited
capital budget encompassing all replacements in each period. If serial replacements are
modeled by network constraints while periodic budgets are resources, our general resource
constrained shortest path formulation directly applies to this problem as follows.

For a single asset, consider a directed graph where nodes correspond to the beginning
of time periods and arcs correspond to the replacement decisions. Associated with each
arc are three parameters: equipment type (technology), discounted cost (arc length), and
installation cost (resource usage) of the replacement. An arc from node k to ¢ > k represents
a particular technology to be acquired in period k and salvaged in period £. Without resource
constraints, a single equipment’s replacement problem is solved by finding a shortest path
from node 1 to node n + 1, as illustrated in Figure 3 for a three-period problem. Since time
periods define states, we have N;; = {j} for all 7,5. See [17] for implementation details
and computational experiments with large replacement problems. To briefly summarize,
problems with up to 500 pieces of equipment and 20 periods were solved in, on the average,
178 seconds on an IBM RS/6000 model 320 to within 0.5% of optimality with an average

budget violation of under 1%.

4.2 Multiple Item Capacitated Lot Sizing

Consider the problem of determining the quantity and timing of production for several prod-

ucts over a planning horizon so as to satisfy a known demand in each period and minimize
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Figure 3: Shortest path representation of equipment replacement and lot sizing problems.

the sum of the production and inventory costs without incurring backlogs. Production costs
consist of a fixed (setup) and a variable cost component, whereas the inventory costs are
proportional to the quantity and time carried. A production capacity is imposed in each
period. See [21] for a review of this literature.

[[ the resource constraints (production capacity) are relaxed, each item’s lot sizing prob-
lem can be solved by Wagner-Whitin's shortest path algorithm [25]. The underlying network
structure for this problem is identical to that of the equipment replacement problem in that
the nodes correspond to the beginning of time periods and arcs correspond to the lot sizing
decisions (see Figure 3). An arc (k. {) represents a decision to supply the demand require-
ments for period k k4 1,...,{ =1 by production in period k. Two parameters are speciﬁe'd
for cach are: cost of production and inventory holding (arc length) and resource usage of the
production. Hence. our general MAM can be directly applied. A major drawback with this
approach is that it restricts itself to schedules satisfying the Wagner-Whitin property, which
states that the demand in a period is satisfied either entirely from production in the period

or from production in a prior period. The optimal solution may not satisfy this property.
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4.3 Pavement Maintenance Scheduling

The problem of scheduling road pavement maintenance is of serious concern in practice
because of the rate at which pavement deteriorates to unacceptable levels. The pavement
condition can be improved by selecting a maintenance alternative ranging from simple routine
maintenance such as pothole patching and chip sealing to major maintenance practices such
as reconstruction and rehabilitation [3, 10, 24].

The selection of a maintenance alternative is not a straightforward task because of the
differences in cost and effectiveness. The least expensive alternative may not be the best
because it allows the pavement to deteriorate faster in subsequent periods. Hence, while
the cost of a maintenance alternative depends mainly on the pavement’s concition, the
overall cost of maintaining a street pavement over time is a function of both timing and type
of maintenance alternatives. The problem is further complicated by the periodic budget
limitations. Most government agencies work to an annual budget process which imposes
budgets on pavement maintenance programs.

Consider a street segment with a current pavement condition. The decision maker may
either let it deteriorate further by applying only routine maintenance or choose to install one
of the major maintenance alternatives to improve the pavement condition. We as<ume that
both deterioration and improvement rates are deterministic and known with cer.iinty once
the pavement condition and the choice of maintenance alternative are specified.

A street segment’s problem has a network structure similar to the ones shown in Figure 1.
Nodes correspond to pairs (time period, pavement condition) and arcs correspond to mainte-
nance decisions. A maintenance decision consists of the type of maintenance alternative and
its life. Associated with each arc are two parameters: length which is the discounted cost of
the maintenance decision over its life, and resource usage which is the required investment.

An arc from node (t1,¢1) to (to, c2) is selected only if its maintenance alternative is installed



in period ¢; when the pavement condition is ¢;, leading to condition ¢; in period ¢, and per-
forming only routine maintenance between ¢, and ;. A single segment’s problem is solved
by finding a shortest path from a node in the current period to a node in the horizon period.
See [18] for details and computational experiments with large maintenance problems. To
briefly summarize, problems with up to 200 street segments and 20 periods were solved in,
on the average, 244 seconds on an IBM RS/6000 model 320 to within 0.1% of optimality

with an average budget violation of under 0.1%.

4.4 Generalized Assignment Problem

The generalized assignment problem (GAP) seeks to optimally assign n tasks to m agents
such that each task is assigned to exactly one agent but each agent is constrained only by the
amount of a resource. Let v;; be the cost of assigning task j to agent 7, w;; be the resource
required by agent ¢ to perform task j, and b; be the resource available to agent i. Suppose
a 0-1 variable, y;;, 1s set to one if task j is assigned to agent ¢, zero otherwise. Then, an

integer programming formulation ior the GAP is:

m

minimize Z Z Vij Ui (8)

=1 =1

subject to Zwii Yij < b; 1=1,...,m (9)
J=1
Yoy =1 j=1,...n (10)
1=1
yij € {0,1} all ¢, 7. (11)

GAP has many applications and many algorithms were developed for its solution, see [4]
for a recent survey. A common solution technique has been branch-and-bound with lower
bounds obtained by various relaxations. A popular MAM was developed by Fisher, Jaiku-
mar. and Van Wassenhove (8] for the Lagrangian dual obtained by relaxing the multiple-

choice constraints (10). Let A(j) be the multiplier associated with multiple-choice con-

13



straint 7. Then

LX) = rnyin { ;Zj:ﬁtj yi; | y satisfies (9) and (11)} - zj:/\(]) (12)
where 0;; = v;; + A(j). Later, Guignard and Rosenwein [12, 13] suggested several enhance-
ments over this MAM but the b@sic structure remained the same. We will refer to the
enhanced algorithm as the traditional MAM in subsequent discussions.

For a given A, Lagrangian solution z) is obtained by solving m shortest path problems.
This is possible because each capacity constraint in (9) has a knapsack structure which lends
itself to a shortest path formulation.

A knapsack problem is to select from various possible items that fit in a knapsack while
minimizing a cost measure [23]. Suppressing the i-index in the variables for clarity, let v;
and w; be the value and weight of item j, respectively. The knapsack can carry up to b units
of weight. Set y; = 1 if item j is put in the knapsack, otherwise y; = 0. Also let s; = 1 —y;,

with zero value and weight. Then we have

n

min Z —v; Y;

=1
subject to

D wiy;<b
J=1
yi+s;=1 j3=1,....n

y;, s; € {0,1} vy

Knapsack problems can be solved as shortest path problems [6, 19, 16]. Consider a
directed graph in which nodes are ordered pairs [}, 3], where j enumerates items and /3
enumerates the knapsack capacity (3 = 0,...,b). Arcs represent variable selection decisions
such that an arc selecting item j must be from node [j — 1, 3 —w;] to node [;, 3]. Arc lengths
are assigned the objective values of corresponding variables. Add a dummy source node and,

using dummy arcs, connect it to the tail nodes of the arcs for the first item. Similarly, add a

14



RHS

2 O——0
—4
source sink
1
D
0 0
0 1 9 variable

Figure 4: Shortest path representation of a 0-1 knapsack problem.

dummy sink node and, using dummy arcs, connect it to the head nodes of the arcs for the last
item. n. All dummy arcs have zero lengths. Then, the knapsack problem is solved by finding
a shortest path from the source node to the sink node. To illustrate, suppose we have two
items which are valued 4 and 5 units and weigh 1 and 2 units, respectively. The knapsack can
carry 2 units of weight. A shortest path graph for this problem is shown in Figure 4. Note
that the diagonal arcs correspond to selecting item j > 0 (hence setting y; = 1), whereas
horizontal arcs correspond to not selecting item j > 0 (hence setting s; = 1).

The traditional MAM uses the following approach for solving (12). For ), let p; = 3", v;;
for all j and Jy be the set of violated multiple choice constraints. For j € J,, the method
finds é;;. the least decrease (increase) in A(j) required for setting y;; = 1 (y;; = 0) in an
optimum knapsack solution of row z if p; :. 0 (p; > 1). A candidate step size is given by
either A(y) = min2;{é;;}, where the min2 operator selects the second smallest element of

its set, as suggested in [8] or A(j) = min;{é;;} as suggested in [12, 13]. Both min and min2
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OpGI‘&tOI‘S are over

all i, if p; = 0

{tlg=1} i pj>1
If A(y) > 0, it is accepted as the step size, A. Otherwise, another j € Jy is tried. If no

strictly positive step size is found, the algorithm stops.

Lemma 5 Let j be a violated multiple-choice constraint for z.

(¢) When A(7) = min2:{6;;}, adjusting A(j) by A(j) improves the lower bound by
Bie; if pj=0
(pi = 2)AG) + biejy  if pi>1

(b) When A(y) = min;{é;;}, adjusting A(j) by A(j) improves the lower bound by

(13)

A(])? lf P = 0
(p; = DAG), i pi>1

Proof: See [16] for a derivation of (13). The result (14) follows directly from Lemma 4. m

(14)

Note that when min2 operator is used in determining the step size, the MAM is no longer
monotonic ascent.

The procedure suggested in [8, 12, 13] to determine §;; quantities is as follows. Let
i = ). Uijyi;- Suppose we removed variable y;; from knapsack i. We will call the remaining
problem with (n — 1) variables a restricted knapsack. Let zF(3) be the optimum objective
value of the restricted knapsack when its right hand side capacity is 3. Now, i pi =0
and y;; = 0, the least decrement in 9;; that would cause y;; = 1 in an alternative optimum
solution is given by

bi; = vij + =R(b, — wij) — Zi.

Similarly, if p; > 1 and y;; = 1, the least increment in ¥;; that would cause y;; = 0 in an

optimum solution of knapsack i is given by



Table 1: Summary table

Traditional Karabakal-Bean

Knapsack problems
solved at initialization m 2m

Knapsack problems
solved in each iteration ~ O(mn) O(m)

Steepest ascent? No Yes

This procedure implies that the number of shortest path problems solved to determine
A range from m to m x n, hence it is O(mn). The procedure implied by Corollary 2 below

solves 2m problems, hence it is O(m).

Corollary 2 Suppose multiple-ckoice constraint j is violated. Define 0[1,(j — 1, 1), (J, 32)]
as the slack of an arc from (j — 1, 81) to (J, 52), where 0 < By, By < b;, in the directed graph

of knapsack 1. Then,

min {01, (j - 1.3 —wy),(,8)}, i p;=0

I
smin {6 - 1.0).(,9)] }, if pi>1
Proof: Iollows from Lemma 3. =
The improvement over the traditional method is due to the “slack of an arc” (Definition 2)
which avoids all the restricted knapsack solutions. In addition, with §;; quantities readily
available as a table, and the bound improvement results of Lemma 5, it is easy to select
a direction/step length pair to guarantee a steepest ascent improvement of L(A). Table 1

shows a comparison of the complexity of the two methods.
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5 Conclusions

We describe an effective heuristic for solving multiple shortest path problems under coupling
resource constraints. The heuristic is a MAM that solves a Lagrangian dual formulation.
Starting with a solution obtained by relaxing the resource constraints, the MAM reduces the
resource violations systerﬁatically until a feasible or acceptable solution is obtained. This
MAM calculates the step size along a given ascent direction efficiently due to the “slack of
an arc” concept. With this feature, developing the steepest ascent MAMs is computationally
feasible in certain applications.

Implementation of this procedure is discussed for equipment replacement withk capital
budgets, multi-item capacitated lot sizing, and pavement maintenance scheduliag. The

steepest ascent feature is illustrated using the generalized assignment problem.
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