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Abstract

Contrary to serial replacement, parallel replacement problems require a deci-
sion maker to evaluate a portfolio of replacement decisions in each time period
because of economic interdependencies among assets. In this paper, we describe
a parallel replacement problem in which the economic interdependence among
assets is caused by capital rationing. The research was motivated by the experi-
ence gained from a vehicle fleet replacement study where solutions to serial re-
placement problems could not be implemented since they violated management’s
budget plan. When firms use budgets to control their expenditures, competition
for the limited funds creates interdependent problems. In this paper, we formu-
late the problem as a zero-one integer program and develop a branch-and-bound
algorithm based on Lagrangian relaxation methodology. A multiplier adjustment
method is developed to solve one Lagrangian dual.
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1 Introduction

The replacement problem typically involves a required service provided by one or more
assets over either a finite or infinite time horizon. The decision is to determine re-
placement schedules for individual assets so that a particular measure of economy—
usually the net present value (NPV)—is optimized. A replacement schedule specifies
a) whether to keep an existing asset (the defender), if one exists, or to replace it im-
mediately with one of the new assets (current challengers), b) a sequence of future
challengers to be installed after the current decision, and c) how long each asset in the
sequence is to be kept in service.

There is a rich literature on replacement problems. The vast majority of it studies
the serial replacement problem. In serial replacement, it is assumed that there is no
economic interdependence among the assets that provide the service together so that
their replacement decisions can be made separately. The commonly-used traditional
treatment considers serial replacement with infinite horizon time and deterministic
cash flows. It also assumes that any current challenger would be replaced repeatedly
with identical assets in the future. Although it has a simple closed-form solution, its
assumptions are usually too restrictive to justify in most problems. Major works that
progressively relaxed the restrictive assumptions of the traditional treatment include a)
early infinite horizon models that incorporate the effects of inflation and technological
improvements but require constant replacement intervals for the current and future
challengers (Terborgh 1949; Oakford 1970), b) finite horizon dynamic programming
(DP) formulations that completely relax the repeatibility assumption (Wagner 1975;
Oakford, Lohmann, and Salazar 1984), c) simulation modeling for uncertain cash flows
(Lohmann 1986), and d) planning horizon approaches for the infinite horizon case
without the repeatibility assumption (Sethi and Chand 1979; Chand and Sethi 1982;
Bean, Lohmann, and Smith 1985, 1990; Hopp and Nair 1991).

Contrary to the case of serial replacement, parallel replacement problems require
a decision maker to evaluate a portfolio of replacement decisions in each time period

because of economic interdependencies among assets. The economic interdependence



can be caused by various factors. Vander Veen (1985) studied a parallel replacement
problem in which the economic interdependence resulted from the requirement of sat-
isfying a prespecified demand and by keeping one or more assets in service at all times.
Jones, Zydiak, and Hopp (1991) discussed another economic interdependence caused
by a fixed cost that is incurred whenever one or more assets are replaced. A typical
use of the fixed replacement cost is to model the economies of scale effect associated
with some capital investment problems.

In this paper, we describe another parallel replacement problem in which the eco-
nomic interdependence among the assets is caused by capital rationing. In serial re-
placement, it is common to assume that the firm has sufficient capital so that, for
all individual assets, indicated capital replacement expenditures can be financed in
any time period over the planning horizon. In practice, however, firms frequently use
budgets to control their expenditures. In this case, it is necessary to consider all re-
placement decisions in each time period together since competition for the limited funds
creates interdependent problems. We call this problem the “capital rationing replace-
ment problem” (CRRP). The research was motivated by a vehicle fleet replacement
study with a major utility company in Michigan. Recommended replacement actions
were obtained by solving individual serial replacement problems. However, they could
not be implemented since they violated management’s budget plan.

Parallel replacement problems are more difficult to solve than serial replacement
problems because evaluating all replacement decisions together creates a difficult com-
binatorial problem. Even for reasonably small problems, the set of all combinations
is typically so large that the cost of computing an optimal solution using total enu-
meration is prohibitive. In this research, we formulate the finite horizon, deterministic
version of the CRRP as a zero-one integer program and develop a branch-and-bound
algorithm based on the Lagrangian relaxation methodology. The major contributions
of this work are the multiplier adjustment method to solve one Lagrangian dual and
an implementation capable of solving moderately-sized problems.

The remainder of this paper is organized as follows. In the following section, we dis-

cuss the nature of the underlying capital rationing environment and its role in making



replacement decisions. In §3, we present an integer programming formulation of the
CRRP. Two Lagrangian relaxations are described in §4 along with efficient algorithms
to solve them. Next, §5 suggests a simple heuristic procedure for quick lower bound-
ing. In §6, we discuss procedures to determine nonoptimal variables at the outset in
an attempt to reduce problem size. Procedures of §4 through §6 are synthesized into a
branch-and-bound algorithm in §7 and computational experience with this algorithm

is reported. Finally, §8 provides a summary and outlines future research directions.

2 Capital Rationing Environment

Until the well-known article of Lorie and Savage (1955), limited availability of capital
was not a concern in most work on capital investment modeling. Their work was very
influential in attracting attention to a firm confronted with a variety of possible invest-
ment projects and a fixed capital budget. Next, Weinga.ftner (1963, 1966) formulated
the Lorie-Savage problem as an integer program which maximized the NPV of project
cash flows subject to capital rationing constraints.

In general, capital rationing constraints can be imposed externally or internally. If
they are externally imposed, they imply market imperfections in the sense that the firm
cannot raise more money from capital markets. As Weingartner (1966) explained, this
type of rationing is rare and usually temporary. On the other hand, internally-imposed
capital rationing constraints are provisional limits commonly adopted by management
as an aid to financial control. For example, some ambitious divisional managers may
overstate their investment opportunities. Rather than trying to distinguish which
projects really are worthwhile, their corporate headquarters may find it simpler to
impose an upper limit on divisional expenditures and thereby force the divisions to
set their own priorities. In other cases, management may believe that very rapid
corporate growth could be harmful to management and the organization. Since it
is difficult to quantify such constraints explicitly, the budget limit may be used as a
proxy (Brealey and Myers 1988). Other common reasons for internal rationing were

summarized by Gurnani (1984). They included: a) debt limits imposed by internal



management or by an outside agreement, b) inadequate cash in-flows from operations,
c) maintenance of certain price/earning ratios, and d) dividend payout policies. In this
research, we assume that capital rationing constraints are imposed internally. They
do not represent “hard” bounds in the sense of an absolute limit on finance. Rather,
they are provisional limitations imposed for the purpose of controlling replacement
expenditures. The expenditures to be controlled by capital rationing constraints are
capital costs to purchase new assets.

We also assume that a) salvage values of discarded assets, if any, are not added
to subsequent budgets, b) remaining (unspent) budget is not carried forward, and c)
borrowing is not allowed. Each of these assumptions is consistent with the economic
principle of seperating financing decisions from investment decisions. This issue was
also raised by Weingartner (1966), “...as a matter of good business practice, the cash
in-flows resulting from project adoption should not be made available for reinvestment
without first passing through those control channels which set the expenditure ceilings
in the first place.” From this viewpoint, we believe many managers responsible for
replacement planning do not consider those funds obtained from salvage values readily
available for. financing replacement expenditures. Further, in many replacement prob-
lems, salvage and trade-in values are so insignificant that they are considered zero.
The latter was the case with the vehicle fleet replacement study that motivated this
research. However, there are other replacement problems for which above assumptions
may not be appropriate. The following development is not intended to address those

problems.

3 The Model

The CRRP can be stated as an integer program that provides a basis for further
algorithmic developments. We assume that all replacements and cash transactions
occur at the end of the time periods, and that the end of period zero refers to the

current time. Let



H = time horizon

n = number of assets in the group

a = discount rate per period

m, = number of challengers for asset a

N, = maximum service life of challenger type c of asset a,

a=1ton,c=0tom, (c=0 denotes the defender, if any)

P,.i = capital costs to purchase challenger type c of asset @ in period :
B; = budget in period ¢, : =0 to H — 1
Taeij = NPV of acquiring challenger type c of asset a in period :

and using it until period j,
i=0to H—1and j =i+ 1 tomin{H, i+ Ny}

To avoid the added computational complexity from consideration of taxes, we as-
sume all quantities to be before taxes. However, the impact of taxation can easily be
incorporated into the model by using after-tax cash flows in NPV computations and
adjusting the other parameters accordingly. In determining 7,.; values, we follow an

approach similar to that given in Oakford, Lohmann, and Salazar (1984). Therefore
Tacij = F(a,¢,3) NPV(a,c,j —1) /(1 + )’

where, for asset a, F(a,c,t) is a functional relationship to relate future challengers
acquired at 7 > 0 to the current challenger ¢ and NPV(a, ¢, p) is the NPV of p-periods
of usage for the current challenger ¢ which can be acquired now. We note here that
F(a,c,t) represents changes over time and is typically used for modeling the effects
of inflation and technological improvements on future assets. It does not associate
a future challenger’s cash flow series from period ¢ onward with the condition of the
asset in service in period 7 and/or with the replacement decisions made before period
i. Such associations cannot be represented trivially using functional relationships and
are discussed in §8 as extensions of the current model.

The decision variables are



1 if the challenger type c of asset a is acquired in period ¢
Tocij = and used until period j

0 otherwise

The defender can be modeled as a special challenger available only at the current
time. Further, we suppose m,.;; = —0co whenever ¢ = 0 and 7 > 0. We also define two

index sets:

Foei = {jli<j<min{H, i+ N,}}
Pai = {j] max{0,i— N, }<j<i}

Then, the CRRP can be formulated as an integer program as follows:

Ma H"'l

Maximize NPV = i: E Z Z Tacij Tacij

a=1 ¢=0 1=0 jE€EFqci

subject to:

1) Asset sequencing constraints: for each a =1 to n

3 Y oy = 1 0

c=0 j€Faco
Mgq Ma
Zzwacﬁj—ZZzacﬁ = 0, fore=1to H-1 (2)
c=0 jE€Fqci c=0 j€Pgci
Ma
- Z Z TacjH = -1 (3)
¢=0 j€Pscn

2) Capital rationing (budget) constraints: for each i =0 to H — 1
Z Z P..; Z Tocij < B; (4)
a=1 c=0 J€Faci

3) Multiple choice constraints: for eacha=1ton

Za Z Tac0j = 1 (5)

c=0 j€Faco

iz%cﬁ <1 fori=1to H-1 (6)

c=0 jE€EFqei



4) Integrality constraints: for all a,c, 1, j

Tacij € {0, 1} (7)

The asset sequencing constraints (or flow conservation constraints in network ter-
minology) can be interpreted as project interdependencies; i.e. constraint sets (1) and
(3) define mutually exclusive projects whereas constraint set (2) defines contingency
relationships. Capital rationing constraint set (4) limits purchasing new assets in each
time period. Multiple choice constraints (5) and (6) prevent replacing assets with more
than one challenger and are redundant given the asset sequencing constraints. How-
ever, they will prove useful in a subsequent Lagrangian relaxation approach in which
the asset sequencing constraints are relaxed.

The above formulation has a network characterization. Consider a directed graph
where nodes represent the end of periods and arcs represent replacement decisions. As-
sociated with each arc are two parameters, length (net present value benefit of replace-
ment, T,;) and resource consumption (purchaée cost, P,e;). This network structure is
illustrated in Figure 1 for a particular asset with a three-period planning horizon. Here,
asset a has two challengers: challenger 1 can be used until the horizon time, whereas
challenger 0 (defender) has a remaining life of two periods. We have as many such
graphs as the number of assets. Suppose that the last node of each asset’s graph (node
H) is connected to the first node of the next asset’s graph (node 0) with a dummy
arc of length zero, except for the last asset. The problem then is to find the longest
path from the first asset’s first node to the last asset’s last node in such a way that no

resource (budget) constraint is violated.

4 Lagrangian Relaxation Approaches

Lagrangian relaxation methods are based on the observation that many hard integer
programming problems can be viewed as easy problems with a set of “complicating”
side constraints. Dualizing such constraints produces a Lagrangian relaxation of the

original problem. The Lagrangian problem yields an upper bound (for maximization



Ta,1,0,3

Ta,1,2,3

TMa,0,0,2

P, a,0,0

Figure 1: Network structure of a particular asset’s replacement problem

problems) on the optimal value of the original problem. Foundations of the Lagrangian
relaxation theory and some early successful applications are summarized in expository
papers, such as Fisher (1985 and 1981), Shapiro (1978), and Geoffrion (1974).

We use two Lagrangian relaxations for the CRRP based on its integer program-
ming formulation. First, when we relax the capital rationing constraints, we obtain a
relaxation with the integrality property which is useful to solve the linear programming
(LP) relaxation of the original problem approximately (Geoffrion 1974). Obtaining a
quick dual feasible solution for the LP relaxation is important in a variable reduction
algorithm to be described later. Additionally, given the assumption that the capital ra-
tioning constraints are imposed primarily for expenditure control purposes, and hence
soft, the Lagrangian problem may produce acceptable solutions. Second, when we
relax the asset sequencing constraints, we obtain a relaxation without the integrality

property, and thus, useful to obtain tighter upper bounds for the original problem.



4.1 Relaxing Budget Constraints

The first relaxation is obtained by dualizing the set of budget constraints (4) with

g > 0, where y; is the multiplier associated with the budget constraint of period :.

PROBLEM (LR,): L(p)= ZB,-;;,- + max { Z Z Z Z(Wac{j - ac;u.-)xac,-j}
i a ¢ i ]

where S, = {z | = satisfies (1), (2), (3), and (7)}. Having constructed the Lagrangian

function, we can formulate the Lagrangian dual problem to find the best upper bound:

PROBLEM (LD,): min L()
u20

Solving PROBLEM (LR,) For A Given y

Relaxing capital rationing constraints eliminates the interdependency of replacement
decisions among assets. Therefore, the problem is reduced to n separate replacement
problems, each of which is that of finding a longest path on an acyclic graph. We use
a DP to solve efficiently each longest path problem. For a given g > 0, let 7y.i; =
Tacij — Pacipti for all a,c¢,1,j. Set NPV(a,0) = 0 for all a. For each a, the following
recursive equations find a longest path from node 0 to H:

NPV(a,j) = max { max { Taej + NPV(a,i)}} forj=1,.. ,H

1=j=1,..,8

where ¢ = max{0, j — N,.}. The Lagrangian function value is the sum of individual

longest paths plus a constant term:
L(s) =) NPV(a,H)+ ) Bimi

Solving PROBLEM (LD,)

Finding the best multiplier vector for the solution of a Lagrangian dual is a nondifferen-
tiable optimization problem. Subgradient algorithms have been used on many practical
problems successfully. Previous applications include the traveling salesman problem
(Held and Karp 1971), the set covering problem (Etcheberry 1977), and resource-

constrained assignment scheduling (Mazzola and Neebe 1986). The basic step of a
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subgradient algorithm requires solving the Lagrangian relaxation problem to compute
a subgradient direction for the multipliers. The multipliers are then changed in the

computed direction. Details of subgradient algorithms including convergence proper-
ties can be found in Held, Wolfe and Crowder (1974), and Goffin (1977).
To solve the Lagrangian dual problem (LD,), we implemented the subgradient

algorithm as in Fisher (1981). At iteration k, a subgradient ¢ = (£¥) is found from

(=B - ZZP‘"" m] foreach:=0,...,H -1

k .

where z* is optimal for L(u*).

4.2 Relaxing Asset Sequencing Constraints

The second relaxation is obtained by dualizing the asset sequencing constraints (1)-(3)
with A, where A;; is the multiplier associated with the asset sequencing constraint of

period ¢ for asset a.

PROBLEM (LR,):

L(’\) = Z(/\ao - /\a.H + gé%f { EZ Z Z Tacij — Aa.z + /\a.))mac:]}

a

where Sy = {z | z satisfies (4), (5), (6), and (7)}. The Lagrangian dual problem cor-

responding to this relaxation is given by

PROBLEM (LD,): mAin L))

Solving PROBLEM (LR)) For A Given )

Relaxing the asset sequencing constraints yields a pure capital rationing problem with
a set of mutually exclusive replacement projects. Note that the contingency constraints
are not enforced. We observe two special characteristics of these replacement projects

that facilitate the solution of the Lagrangian problem significantly:

1. The replacement projects included in a particular period’s budget constraint do
not appear in any other period’s budget constraint. Hence, we can solve each pe-

riod’s project selection problem independently from other periods.. This property

11



decomposes the computation of L()) into H separate, single-period capital ra-

tioning problems with mutually exclusive projects, also known as multiple choice

knapsack problems (MCKPs).

2. At a particular period 7, the knapsack weights (purchase costs) of the variables
Tqacij, for a fixed a and ¢, are the same. Thus, we can replace every occurrence of

the partial sum ; Tacij With Zacijne Where jmax = argmax;{Tacij — Aai + Aaj }-

To evaluate L()) for a given A, first let ®yeij = Tacij — Aai + Aqj for all @, ¢, 2, j. Then,

for each 1, solve the following MCKP:

maximize E E Tacijmaz Lacijmas
a c
subject to

Z Z Py Tacijmaz < B
a ¢

Zxac;jma,SI fora=1,...,n

c
Tacijmes € 10,1} for all a,c

The above formulation is valid for all periods except the first one. At i = 0, the

multiple choice constraints are equalities to enforce replacement (recall that keeping

the defender is a special replacement in this context). We give an algorithm to solve the

above problem efficiently in the next section. Let the optimal objective be MCKP(z).

The Lagrangian function value is the sum of individual knapsack solutions plus a

constant term:

L(\) =Y MCKP(i) + Y _(Aao — Ar)

12



An Algorithm To Solve The MCKP

Consider the following generic MCKP:

m  ng

maximize Z Z Ckj Tkj

k=1 j=1

subject to

m Nk

ZZakjmkj Sb

k=1 j=1
Nk

Zxkal fork=1,...,m

j=1
zx; € {0,1} for all &,
If any multiple choice constraint is of a less-than-or-equal-to type, we can add a slack
with zero objective value and zero knapsack weight to bring it into the above canonical
form.

The MCKP is a well studied problem in the literature. A common way of solving
it has been the branch-and-bound with upper bounds computed by LP relaxations,
e.g. Sinha and Zoltners (1979), Dyer, Kayal and Walker (1984). Bean and Syverson
(1990) described a DP recursion for the MCKP by extending the knapsack function
definition in Gilmore and Gomory (1966). Here, we pursue an alternate DP approach
that provides additional information necessary to the multiplier adjustment method
that follows.

Let the state space consist of the set of ordered points (k, (), where k enumer-
ates multiple choice sets (1 < k < m) and B enumerates the knapsack capacity
(0 £ B < b). The knapsack function, fi(8) is defined to be the optimal value
of a subproblem which uses multiple choice sets k + 1 through m with a knapsack
capacity of b — 3. The MCKP is solved by finding the longest path between states
(0,0) and (m,b) in the DP network. In finding the longest path, we will say that an
algorithm that starts from state (0,0) heading for state (m,b) makes a forward pass
(forward algorithm) whereas an algorithm that starts from state (m,b) heading for
state (0,0) makes a backward pass (backward algorithm).

We formulate a backward pass-using the reaching strategy discussed in Denardo

13



(1982). For efficient computation of fi(3) values, we require that the knapsack with
capacity b— 3 be tight for £ > 1. We will say a solution is “tight” whenever there is no
slack in the knapsack, or equivalently, whenever the knapsack constraint is satisfied as
an equality. Computation is saved with this requirement because it limits consideration
of slack space in the knapsack to the first stage (k = 1). If there is no tight solution
for stage k > 1 and for a particular value of b — 3, the state (k,8) cannot be reached,
then its fi(Q) is defined to be —oco. Let My = {8 | fiu(B) # —=} C {0,1,2,...,b},
k=1,...,m — 1. Then, the following recursive equations solve the MCKP optimally:

fm-1(B) = max { —00, m;ja,x{cmj | B+ amj = b} }
for 3=0,1,...,b,
fi(B) = max { —00, m]‘."l'x{fkﬂ(ﬂ + ar41,5) + Cerrj | B4 aksr; € M} }

for =0,1,...,b,and k =m —2,m —1,...,2, and finally

(8) = max { o0, F(3+1), max{ A3+ )+ sy 5+ o € M} |

for # = 0,1,...,b — 1. The separate computation of f(8) is for any possible slack
space necessary to set aside in the knapsack. Finally, the optimal objective value is

given by
z = max { —00, max{fi(a1;) + c1j | a1; < band ay; € My} }
i

If z = —o0, the problem is infeasible.
This particular recursion has special properties that allow efficient implementation
of the following multiplier adjustment method. An illustrative numeric example is

provided in the appendix.

Solving PROBLEM (LD))

In order to solve the Lagrangian dual problem (LD,), we could use a subgradient
k.

at

algorithm in which the subgradient vector at iteration , £k = (

a0 = 1“221'5(;0]'
c

) is calculated as

14



€ai = ZZ‘T:cji"Zszcij fort=1to H-1
c 3 c 3
éaH = _1+szlgcj}]
c

foralla =1 ton.

In general, given an arbitrary initial multiplier vector, the convergence of a sub-
gradient algorithm is usually poor. To avoid its slow convergence, many researchers
have developed dual ascent or multiplier adjustment methods (MAMs), heuristic al-
gorithms for solving Lagrangian dual problems exploiting the special structure of a
particular application, as alternatives to the subgradient-based optimization. Previous
applications of MAMs include the uncapacitated facility location problem (Erlenkotter
1978), the set partitioning problem (Chan 1987), and the generalized assignment prob-
lem (Fisher, Jaikumar and Van Wassenhove 1986; Guignard and Rosenwein 1989).
The advantage of a MAM is that it usually guarantees monotonic improvement of
the bound. The disadvantages are a) it depends on a specific problem structure, and
b) it cannot guarantee bounds better than those obtained by solving the Lagrangian
dual with a subgradient procedure. This suggests that a MAM may serve to initialize
multipliers before a subgradient procedure.

Although this initialization scheme is used at every node of the branch-and-bound
tree, it is particularly useful at the root node because any node except for the root is

given the final multipliers of the parent node to have an advanced start. Below, we

describe a MAM for solving the Lagrangian dual (LD)) of the CRRP.

A Multiplier Adjustment Method

The basic idea behind the MAM is to reduce infeasibility resulting from the violation
of dualized constraints. Since these constraints are equalities, any constraint with a
nonzero subgradient vector element indicates infeasibility. Therefore, the multiplier
corresponding to any infeasible constraint should be changed to adjust its current

penalty. Specifically, given a multiplier vector A = (),;) and a subgradient vector

15



7raclh1i - ’\ahl + Aai

>
>

Taciij — ’\ai + /\a.j

Tacmhmi — /\ahm + ’\as'

P

aj

Aa'h'l /\ﬂhm /\a.i

Figure 2: Multiplier \,; is decreased to reduce infeasibility and to improve L(A).

¢ = (&4:), we should
decrease Ay if £, >0

increase Ay if £ <0

For any asset a, decreasing \,; has the effect of discouraging too many assets from being
retired at ¢ whereas increasing A,; has the effect of discouraging too many purchases
at 1. Systematic procedures of adjusting multipliers for a monotonic reduction of such
infeasibilities, and hence improving the Lagrangian function L()) are discussed below.

First, consider the situation shown in Figure 2 which calls for decreasing A,;. We
are looking for a A such that decreasing Aq; by A will lead to a strict decrease in
L(}). Find the set of m nodes hy < h2 < ... < hy, < 1 such that Tse hi = Taghyi =
cor = Taenhmi = 1, Where cx is the selected challenger of asset a at Ay, in the current
solution. For &,cpy = 0 in the current optimal solution, let 8, be the least amount of
increase in Tqepq SO that T4, could be selected as well, creating an alternative optimal
solution. Note that 8,cpq = 0 for z,cp =1 in the current solution. Leaving the actual

computation of é,.p, to a later discussion for the moment, we proceed with defining
Ap = Il;n'cilql {6avcyhkyq }

where hy < ¢ < min{ht + Ny, H} and ¢ # ¢ for ¢ = i. The quantity A,, an upper
bound on A, shows how much A;; can be decreased without changing the current

MCKP solutions in periods hy,hs,...,hn. If there is no replacement of asset a in

16



period ¢, let

Aj= Dgijn {barcii }

where ¢ < j < min{i+ N, H}. Here, A¢, another upper bound on A, shows how much
Aei can be decreased to prevent any challengers of asset a from entering the current
MCKRP solution in period i. If there is a replacement at ¢, we set Ay = +00. Now, we

can define A as follows:

A = min{A,, Ay}
After decreasing A;; by A > 0, L()) will be strictly reduced by

(m-1A ifi=H or Ay =400

mA otherwise

On the other hand, empirical results indicate that increasing a multiplier to reduce
the Lagrangian function is not computationally justifiable (see Karabakal 1991). Hence,
we chose not to increase any multiplier in designing our MAM.

The MAM starts with finding a pair of indices (@, ) for which £,; > 0, that is, finding
a dualized asset sequencing constraint violated by retiring too many challengers of asset
a in period ¢. Then, we determine the value of A by which we decrease A,;. If A turns
out to be zero, indicative of a situation that the current MCKP solution in period
¢ has an alternative optimum, decreasing A,; does not decrease L(A). If A > 0, we
update A,; by subtracting A from its current value. With a new A, we solve L(A) again
and compute a new ¢ vector. The method stops either when all attempts to strictly
decrease a multiplier fail or when all subgradient vector elements become zero. The
latter situation implies feasibility, and supposing a branch-and-bound environment, it
yields an optimal solution to the CRRP at the root node and an optimal completion
at any other node.

A crucial point in the implementation of the MAM is an efficient computation
of § quantities in determining A. Next, we describe a method which is based on a
post-optimality analysis of the objective coefficients over the current optimal MCKP

solutions:
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A Post-Optimality Analysis For The MCKP

Essentially, we seek to answer the following question after solving a MCKP optimally:
if zx; is not chosen in the current optimum, what is the minimum A such that ¢;; + A
would cause zi; to be included in an alternative optimum assuming that all other
objective coefficients remain unchanged?

Recall that the backward pass computes the length of the longest path from state
(m,b) to (k,B) for each feasible state (k,3) in the DP network. These longest path
lengths were given by fi(3). In particular, the longest path length from (m, d) to (0,0)
was z. Similarly, we can make a forward pass to compute gx(3) defined as z minus the
length of the longest path from state (0,0) to (k, ) for the same feasible state (k, 5)

encountered in the backward pass. Specifically,
g1(arj) =z —cyj
for j=1,...,n; and ay; € M,
91(B) = min{g1(8),51(8 - 1) }
for all B € M; and § # min;{a,;}
gr+1(B) = min{ge(B ~ ars1) = chrr | (B = arers) € Mi)
for k=1,...,m -1 and all 8 € My4,.

Proposition 1: Suppose zi; is not in the current optimum. Assuming that all other
objective coefficients remain unchanged, the minimum A such that cx; + A would

cause Ty; to be included in the current optimum is given by Ay;, where
Amj = gm-1(0 = @mj) — Cmj forj=1,...,nn (8)

Ayj = min {9k-1(8 — axj) — fu(B) — ck; | B — ax; € My} 9)

fork=m-1m-2,...,2andj=1,...,nt, and
Aqj =z - filay;) — & forj=1,...,m (10)
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Figure 3: Illustration of the post-optimality analysis

Proof: Assume that zij» was selected from the k-th multiple choice set. Consider
another variable zi;, j # j*, from the same set, and let one of the arcs that
represents j; in the DP network be from (k, 8) to (k—1, 8 — ax;) (see Figure 3).
Define z; and 2; as the longest path lengths from (m,b) to (k,3) and from
(k—1,B - ax;) to (0,0), respectively. Hence, the length of the longest path from
(m,b) to (0,0) constrained to include the arc from (k,f3) to (k — 1,0 — ax;),
denoted z®, would be

P=z+aj+2n<z

In order for z; to be selected from multiple choice set k in an alternative optimal

solution, 2f should be at least as large as z. To assure this selection, c; must
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be increased by at least z — 27, where

z—2F = z—(n14+aj+2)
= (z—2z)— 21 —cxj

= gk-1(8 — ak;) — fi(B) — cxj

Since there may be more than one arc corresponding to the variable xy;, it is

necessary to identify the minimum increment of cx; over all these arcs.

min{z - M = min {ge-1(8 — aij) = fuB) — cxj | (B — ax;) € M1}

as given by equation (9). Consider the boundary conditions. For k = m, set
z1 = 0 to obtain equation (8). For k = 1, set z; = 0 to obtain equation (10). In
both cases, there is a one-to-one match between variables and arcs, therefore the

use of the minimum operator over 3 is not required. =
The corollary below follows directly from Proposition 1:

Corollary 1: Suppose zij« is selected from the k-th multiple choice set in the cur-
rent optimum. Note that Agje = 0. The minimum A such that cxj» — A would
cause Tij» to be removed from the current optimum (or, equivalently, the mazi-
mum A such that cpjo — A would keep Tij» in the current opiimum) is given by
min;js{Ax;} assuming that all other objective coefficients remain unchanged. If

A =0, there is an alternative optimum to the current solution.

Remark: This procedure is similar to finding total floats in an activity network by

the critical path method. The floats define A; values.

Improving The Lower Bound

Each computation of L()) returns a primal solution, z, which, although feasible with
respect to the capital rationing constraints, is usually infeasible with respect to the
asset sequencing equations. Some of these infeasible solutions, however, can be made

feasible easily. If the purchase of a particular challenger is feasible at the end of period 2
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to be used for p periods, it is also feasible to use it any p’ periods where p' can range
from one period to the challenger’s maximum service life. This correction obviously
does not change any expenditure pattern and hence the budget-feasibility is retained.
There may be many possible ways of correcting a given infeasible replacement schedule
by either decreasing or increasing the service lives of assets. If several corrections are
possible, the one that results in the maximum NPV can be found by modifying slightly
the DP recursion given earlier for solving L(y).

Let c,; be the challenger of asset a to be acquired in period ¢ as prescribed by the

current infeasible solution z. For each a

i=j-1,..,

NPV(a,j) = max . { Fauij + NPV(a,i) } forj=1,...,H

where 7, ¢, ij = —00 if T4, ; cannot be selected. If NPV(a, H) = —oo for any a, the
attempt to generate a feasible solution fails. Computational tests indicate that this

procedure often improves the current lower bound.

5 Heuristic Approaches

Obtaining a feasible solution to the CRRP is important because a) in branch and
bound algorithms a good lower bound prunes many subtrees early in the tree search,
b) subgradient algorithms used in solving Lagrangian duals require a lower bound to
determine better step sizes, and c) just a “good” feasible solution may be the only

hope for some big problems.

The algorithm uses the idea of a state expressed as an n-tuple (¢,...,ta,...,t),
where t, is a “partial horizon” for asset a. A transition to state (¢1,...,%,...,t,) from
a state (t,,...,t.,...,t.) is possible only if it is feasible to purchase a challenger of

asset a at ¢ to be used until ¢, > ¢/ whenever t, # H for all a. If t/, = H, the next
state, if any, must have t, = H too. The purpose is to find a path from the start
state (0,...,0) to the goal state (H,..., H) passing through feasible states in between.
Instead of enumerating all the states, however, we use a “heuristic rule” to accomplish

the state transitions.
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A systematic way of implementing these state transitions is the depth-first tree
search technique which is devised to reach a goal state as quickly as possible (Nilsson
1971). Hence, the technique is useful to find a quick feasible, but not necessarily good

solution to the CRRP. The general idea is as follows:

1. Put the start state (0,...,0) on a list called OPEN.
2. If OPEN is empty, exit with failure; otherwise continue.

3. Remove the first state from OPEN and put it on a list called CLOSED. Let this

state be ¢ = (i1,... in).

4. Expand state ¢, i.e. use heuristic rules to define transitions from state ¢ to suc-
cessor states. If no transition is possible, go to step 2. Otherwise, if any of the
successors is the goal state (H,...,H), exit with solution obtained by tracing
back through the pointers. If neither of them is the goal state, put these suc-
cessor states (in arbitrary order) at the beginning of OPEN and provide pointers

back to ¢ and go to step 2.

As an illustration, consider a three-asset fleet and 10-year planning horizon. Figure
4 shows a possible path followed by the algorithm to reach the goal state (10,10, 10).
In this example, only two heuristic rules are used to accomplish the state transitions.
The successors to the left are generated first. Note that all attempts to expand state
(7,7,6) fail due to the budget constraints at these times so, the algorithm proceeds with
expanding its sibling state (7,8,6).

Within the general framework of the depth-first search, many heuristic rules can
be devised to expand a state ¢ in step 4. We introduce five rules here. Given a state
¢ and total expenditures from state (0,...,0) to state ¢, for each a, find a challenger

and its period of usage such that:
1. the immediate contribution to the overall NPV is maximized,

2. the ratio of the immediate contribution to the overall NPV by the purchase cost

is maximized,
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Start State
(0,0,0)

(1,1,2) (2,1,4)
(5,3,6)

(5,6,5)

RN

(7,8,6) (7,7,6) -
AN
(9,10,9) (8,9,7)
S\
(9,10,10) (9,10,8)
/
(10,10,9) (10,10,10)

Goal State

Figure 4: An example to illustrate the depth-first heuristic search algorithm
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3. the ratio of the immediate contribution to the overall NPV by the purchase cost

weighted by the remaining budget at the time of purchase is maximized,
4. the immediate expense is minimized,

5. the ratio of the immediate expense to the remaining budget at the time of pur-

chase is minimized.

Although many other similar rules could be devised, the above five prove sufficient

in locating a quick feasible solution on random test problems.

6 Variable Elimination

Before starting the branch-and-bound, there is usually a computational advantage to
invest some time for reducing the problem size. We present two ways of eliminating

variables that cannot appear in an optimal solution.

A Dominance Criterion

It is possible to eliminate some variables immediately after reading problem data using
a knapsack-type dominance criterion (Sinha and Zoltners 1979). The rule is, for a fixed
asset a and a fixed period of service, say from 7 to j, if a challenger ¢; costs more than
challenger ¢, in period ¢, and if ¢;’s NPV contribution is less than that of c;, then a

decision to buy c; in period i and use it up to j is dominated. Symbolically

IF Pieyi 2 Pagyi AND 7405 < Tapij THEN ELIMINATE z,,,;

Variable Elimination By LP Relaxation

The second variable elimination method requires a dual feasible solution for the LP

relaxation of the CRRP. Let (P) denote the LP relaxation of the CRRP excluding the
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redundant multiple choice constraints (5) and (6). Let (D) be its dual.

(D) : minimize Z(/\ao - /\a.H) + Z B; p;

a

subject to
)‘ai - /\a.j + Paci Hi Z Tacij
pi >0

The constraints of (D) can also be written as

Aa.i - /\a.j + Paci Hi + 7_racij = Tacij
pi 20, Taei; <0
or
Tacij = Tacij — Aai + Agj — Paci pti <0
pi 20

Note that 7,.; values correspond to the reduced profits of (P) and the dual feasi-
bility condition 7,.; < 0 is an optimality condition for (P).

We consider a variable elimination method proposed by Sweeney and Murphy
(1981). Let UB be an optimum objective for (P). Suppose we are given a feasible
solution and let LB be its objective value. Then, a variable could be eliminated if its
absolute value reduced profit exceeds UB — LB, since any solution with this variable
equal to one would have an objective value less than LB.

The preceding variable elimination rule can be made stronger for the CRRP by
following a suggestion by Noon and Bean (1988). Let the shortest reduced profit path
be defined as the shortest path from one node to another over the reduced arc profits.

Let SP(a,1,j) be the shortest reduced profit path from node 7 to node j in asset a’s

network.
Proposition 2: If
Iiacij+SP(a707i)+SP(a7j’H)|>UB_LB (11)

then no solution with z,.; = 1 can be optimal and thus, T,cij can be eliminated

from the problem.
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Proof: Whenever z,,; = 1, its corresponding arc must be on a path from node 0
to node H. On this path, the length from node 0 to node ¢ is at least as
long as SP(a,0,:). Similarly, the length from node j to node H is at least
as long as SP(a,1, H). Hence, SP(a,0,1) and SP(a,%, H) can be added to Tq;
to strengthen the elimination rule. =

Determining reduced profits by any direct solution of (P) or (D) is costly. Instead,
we take advantage of the integrality property that the Lagrangian relaxation (LR,)
possesses. The integrality property assures that a) L(p) is minimized by setting p =
p*, where u* is optimal for (D), and b) L(x*) is equal to the optimum objective of
the LP relaxation (Geoffrion 1974). We approximate the solution using the iterative

* .

subgradient algorithm. Suppose the solution of (LD,) yields y* and z*, where z}; is

*
actj

marked as “basic” for DP tree arcs, ;. is “nonbasic” otherwise. Set UB « L(p*).

Consider the dual constraints

)\ai - /\aj + Paci ,u': > Tacij

From the complementary slackness condition, dual constraints corresponding to the
“basic” primal variables are equalities. Hence, set A%, = 0 for all a and solve the
equations

Asj = Agi = Tacij + Paci 5 fory=1,...,H

*

corresponding to the “basic” z} ;. Compute reduced profits

Tacij = Tacij — A + Ag; — Paci p <0

Eliminate a variable z,; satisfying condition (11). However, since z* above is com-
puted by determining a DP tree rooted at node zero of each asset’s network, we note

that SP(a,0,7) =0 for all @ and 7 > 0. Therefore, condition (11) is equivalent to
| ®acij + SP(a,5,H)| >UB - LB (12)

If at least one variable is eliminated by (12), we apply heuristic algorithms to the
reduced problem in an attempt to improve the LB. If the LB is strictly increased,
condition (12) is checked again to eliminate more variables and we repeat; otherwise

we stop.
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7 Implicit Enumeration

After variable elimination, we solve (LD)) with initial multipliers set to A*. If an upper
bound obtained by either Lagrangian relaxation turns out to be feasible with respect
to the relaxed constraints, it is optimum to the CRRP—we stop. Otherwise, we have
a “duality gap” and we use a branch-and-bound implicit enumeration to close the gap.

Nonoptimality of a solution obtained by solving (LD, ) indicates that one or more
of the asset sequencing constraints are violated. Every infeasible solution must have
an asset a for which there are too many challengers retired in a certain period, say
¢ > 0. We branch from such solutions by imposing further restrictions in an attempt
to reduce infeasibility. We have not found the selection of the pair of indices (a,?)
to be critical; we simply select them such that the current subgradient element &,; is
maximum.

The set of variables that represent the challengers of asset a retired in period :
possesses a “multiple choice” structure because any feasible solution may include at
most one variable from this set. This structure can be exploited by incorporating a
branching strategy similar to the approach found in Bean (1984) for multiple choice
variable sets. Therefore, if a variable is fixed at one, the other variables in its set are
automatically fixed at zero.

Let hy,...,hn be the periods in which the challengers retired in ¢ were purchased.
There may be three possible violations of asset sequencing constraints. We discuss how

to branch from each case below.

1. Too many challengers (m > 2) are retired in period ¢ = H. Since we need exactly
one challenger to be retired in H, we create m branches, each fixing a single
decision variable to one. Another possibility is to ignore all of these decisions.

We do this in the (m + 1)-st branch by eliminating all current retirements in H
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from the subproblem.

Branch 1: Set  Toen =1
Branch m: Set  Zgen g =1
Branch m+1: Set Zoeinm =+ = Tacmhma =0

. Exactly one challenger is retired in period ¢ # H, but no challenger is purchased
in 7. There are two ways of correcting this infeasibility. We can either eliminate
the current retirement decision from the subproblem or we can fix this retirement
decision and, at the same time, make sure that there will be exactly one purchase
in z.

Branch 1: Set  zgeini =0

Branch 2: Set  Zgeni=1 and Z Z Toeij =1
c J

. Too many challengers (m > 2) are retired in period ¢ # H. There may or may
not be a challenger purchased in i. To correct it, we use a strategy combination

of those given for case 1 and case 2.

Branch 1: Set oeni=1 and Z Zmac,-j =1
c J

Branch m: Set zgeph,i =1 and z mej =1
c j
Branch m+1: Set 24 hi ="' = Tacmhmi =0

The implicit enumeration algorithm begins by choosing a pair of indices (a,?), and

branching. Each resulting subproblem is upper-bounded and checked for fathoming.

It is fathomed if it is either infeasible or an optimal completion, in which case it is

compared with the current incumbent. For upper-bounding a subproblem, (LD,) is

first solved by the MAM. If it is not fathomed, final multipliers of the MAM are used

as initial multipliers of the subgradient algorithm. The upper bound returned from the

subgradient algorithm with this initialization strategy is tighter than the bound that

would be returned with arbitrary initialization. Subproblems that cannot be fathomed

28



are put on a list. The subproblem with the largest upper bound is selected to branch
next. The algorithm continues until the subproblem list is empty or the largest upper
bound of the list is less than the incumbent. At this point, the optimal solution is the

current incumbent.

Computational Experiments

The optimal algorithm was coded in Pascal and tested on a series of randomly generated
problems. Test problems were generated for group sizes n = 2,4, 6,8, and 10 with time
horizons H = 4,6,8, and 10. Following uniform distributions were used to generate

challenger parameters.

Number of challengers of an asset U(L,3)

Life of a challenger U(2,H)

Remaining life of the defender U(L,3)

Purchase cost of a challenger U(10,30)

NPV(a,c,p) U(50,60) + (p— 1) U(5,35)

Budgets were set to half of the total expenditures if the cheapest challenger of every
asset were purchased in each time period. For every n-H combination, we solved
a set of five problems. The results are shown in Table 1. Column (3) shows the
median problem size for each set in terms of the number of constraints times the
number of binary variables when the CRRP is formulated as an integer program.
Columns (4), (5), and (6) display the median, minimum, and maximum CPU times,
respectively, to solve each set of test problems optimally. The times reported are
in seconds on an IBM 3090-600E at The University of Michigan, running the MTS
operating system. An asterisk next to table element indicates that the corresponding
problem could not be solved optimally in 2,000 CPU seconds. The next three columns
give the performance of the upper bounding procedures used at the root node expressed
as a median percent deviation from the optimal objective (for the problems that could
not be solved optimally, percent deviation from the value of the best incumbent at the
termination of execution). The upper bound of column (7) is obtained by disregarding

all capital rationing constraints and hence, column (7) gives a measure of tightness of
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Table 1: Results of the computational experiments

CPU Times (seconds) Upper Bounding (%) Lower Variable
n H Size Median  Min Max LDy=c LD, LD, Bounding(%) Reduction (%)
@ @ @ 6 © m  ® O (10) (1)
4 14 x 36 0.03 0.02 0.04 33.31 0.00 — 2.66 25
2 6 20 x 51 0.24 0.04 0.32 27.71 4.05 0.00 9.77 22
8 26 x 93 0.53 0.05 2.29 19.40 2.41 0.00 1.87 35
10 32x191 0.11 0.07 1.16 12.95 0.00 —_ 0.00 24
4 24 x 86 1.67 0.04 3.71 18.40 4.07 0.04 0.00 41
4 6 34 x 133 7.79 0.11 9.46 18.37 4.13 0.47 12.10 24
8 44 x 235 10.81 0.08 19.73 19.08 3.29 0.30 6.94 29
10 54 x 362 15.50 0.15 17.79 17.37 3.70 0.32 14.04 27
4 34 x 112 1.61 0.07 8.70 15.99 2.68 0.82 8.73 33
6 6 48 x 209 19.12 0.10 71.92 18.76 2.99 0.23 18.96 26
8 62 x 309 55.65 41.92 114.84 15.50 3.52 0.42 10.64 24
10 76 X 542 304.79 0.23 1386.98 10.82 2.71 0.20 16.96 27
4 44 x 162 0.13 0.10 11.61 27.15 0.00 — 2.85 33
8 6 62 x 303 89.73 0.16 141.66 15.35 1.07 0.17 10.63 26
8 80 x 434 111.50 0.33 211.62 17.75 0.72 0.16 4.04 22
10 98 x 724 874.35 183.49  2000.00* 12.99 1.78 0.27* 8.88* 24
4 54 X 166 32.20 0.20 79.06 14.20 0.77 0.01 14.53 27
10 6 76 x 385 858.13 0.46 1015.27 16.59 0.89 0.46 10.71 33
8 98 x 565  2000.00* 0.53 2000.00* 34.61*  21.29* 20.03* 20.03* 27
10 120x 986 2000.00* 38.79  2000.00* 25.56* 16.97* 11.78* 11.78* 20

* problem could not be solved in 2,000 CPU seconds
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the capital rationing constraints. Column (8) shows the performance of the best upper
bound obtained by solving (LD,), and column (9) shows that obtained -by solving
(LD,). For all problems, (LD)) provided strictly tighter bounds than (LD,). However,
as the problem size increases, the difference between these two bounds becomes less
significant. Similarly, column (10) shows the performance of the heuristic approach for
lower bounding expressed as a median percent deviation from the optimal objective
(for the problems that could not be solved optimally, percent deviation from the value
of the best upper bound at the termination of execution). Since the purpose is to find
a quick feasible solution, these lower bounds are not as close to the optimum as the
upper bounds provided by Lagrangian relaxation. Finally, the last column indicates
the median percent variable elimination at the root node to reduce the problem size.
Combined performance of the two variable elimination procedures ranged from 20% to
41%.

It should be noted that budgets used in the test problems are relatively small. The
DP approach of solving multiple-choice knapsack subproblems does show an increase
in computation time with larger budgets. One way to deal with this problem is to scale
P, and B; values. As a result, there is some loss in precision since they must take
integral values. However, in many applications, future budgets and purchase costs are

not known to a high precision and/or the budget constraints have some flexibility.

8 Summary and Extensions

A parallel, finite horizon, and deterministic replacement economy problem was studied
to determine the replacement schedules for individual assets such that a) the NPV of the
cash flows resulting from the schedules is optimized, and b) budget constraints imposed
for each time period within the planning horizon are satisfied. It was motivated by the
experience gained from a vehicle fleet replacement study. The problem is formulated
as a zero-one integer program and an optimum algorithm using Lagrangian relaxation
methodology is developed. A new multiplier adjustment method is developed to solve

one of the Lagrangian duals. The implementation of the algorithm solved moderately-
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sized problems in reasonable times.

This research concentrated on the type of replacement problems in which the cash
flows of a future asset do not depend on the the service condition at future asset’s time of
installation, nor the previous replacement decisions. Many replacement problems sat-
isfy these requirements, including vehicle fleet and machine replacements where salvage
and trade-in values are insignificant. In other problems, those dependencies may need
to be introduced. If the trade-in values are significant, a future asset’s purchase cost
may depend on the condition of the asset in use at the contemplated replacement time.
For example, in street pavement maintenance problem, the cost of a major maintenance
action (corresponding to a challenger) usually depends not only on the pavement seg-
ment’s current condition, but also on the frequency of previous rehabilitations. One
way to generalize the current model to cover condition/history-dependent cash flows
is to add more subscripts to the variable and parameter definitions. Although such an
approach increases the number of variables and constraints, the structure that allowed
us to develop effective Lagrangian techniques remains undisturbed. These extensions

will be addressed in a separate paper.
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Appendix
A Numerical Example To Illustrate The MCKP Algorithm

Consider the following‘MCKP withm=4,n,=3,n=n3=ng4=2,b=06, and

4 3
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The DP network created by applying the algorithm is shown in Figure 5. Backward

and forward pass computations are shown below. Asterisks indicate DP nodes along
the optimal path. An optimum solution is given by 12 = z9; = z3; = z4 = 1, and all

others are zero. The optimum objective is 12.
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Calculations for the post-optimality analysis yield:

Au = mm{l} =1 A31 = min{O, 1} =0
Alg = mln{O} =0 A32 = mln{l} =1
A13 = m1n{2} =2 A41 = mln{O} =0

Ay = min{0,1,1} =0 Ay = min{l} =1
A= min{3} =3
Variables selected in the optimum solution have zero A values. Proposition 1 tells

that to select, for example, z2; in an alternative optimum solution, it is necessary to

increase ¢y, by at least 3 units.
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B=5
B=4
B=3
B=2
B=1
B=0
k=0 k=1 k=2 k=3 k=4
Figure 5: DP network for the example problem
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