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INTRODUCTION 

Background 

One of the most critical features of a driver assistance or safety system is the 

driver-vehicle interface.  The interface must be designed so that it can get the driver’s 

attention and evoke an effective response under the time pressure of an emergency 

situation.  The difficulty of achieving that is heightened by the fact that emergency 

situations are rare, so that there is little chance for the driver to learn the characteristics of 

the system.  The rarity of real emergency situations also means that even a low rate of 

false alarms can undermine the driver’s faith in the system, and possibly create 

distraction if the system’s signaling is made strong enough to get the attention of a driver 

who is not paying attention.  In this study, we describe and partially test the potential 

effectiveness of a very simple interface for a night vision system.  The display involved is 

much simpler than the video displays that are currently used in most night vision systems, 

and the information that it provides to the driver is correspondingly limited.  However, 

the proposed system is intended to address the main safety problem that has been 

attributed to darkness—specifically, pedestrian crashes.  Furthermore, the display 

involved may represent a particularly desirable balance by being nonintrusive enough to 

reduce problems with distraction and false alarms, while still being salient enough to 

evoke an effective response from a driver under the nighttime conditions that it is 

designed for. 

Crash data suggest that the main potential safety benefit of automotive night 

vision systems is in assisting drivers to detect and avoid hitting pedestrians, animals, and 

cyclists (Rumar, 2002).  To achieve this potential safety benefit, a successful 

implementation of a night vision system need not help drivers see the entire night road 

scene better.  Rather, it should focus on pedestrians, animals, and cyclists.  Sullivan and 

Flannagan (2001) estimated that the nighttime deaths of about 2,300 pedestrians in the 

U.S. each year can be attributed to darkness.  Night vision systems could be cost effective 

and valuable to society if they prevented some of those deaths. 

The potential safety benefit of night vision systems has to be weighed against the 

cost of continuously displaying information to drivers that may not improve, and may 
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even hinder, their safety and the safety of others.  This cost may include driver distraction 

if drivers need to either look away from or draw their attention away from the road 

intermittently.  Furthermore, it is possible that some drivers will use night vision systems 

only when they think they can’t see well enough, and ignore the system when they feel 

confident that they can see well.  It has been shown that drivers do not always correctly 

estimate the limitations of their vision at night.  For example, data from the U.S. show a 

substantial underuse of high beams in situations without opposing traffic (Hare and 

Hemion, 1968; Mefford, Flannagan, and Bogard, 2006).  This phenomenon might be 

explained by the selective degradation theory (Leibowitz and Owens, 1977).  Leibowitz 

and Owens proposed that at low levels of illumination, typical in night driving, certain 

“focal” visual capabilities (such as detecting pedestrians) are significantly impaired, 

whereas certain “ambient” visual capabilities (such as the visual guidance needed to steer 

the vehicle) are relatively well preserved.  Furthermore, they suggested that drivers are 

not fully aware of this selective degradation. 

The probability of any particular driver being involved in a pedestrian crash is 

very low.  For most drivers, it is less than once in their lifetime.  The total vehicle miles 

traveled in the U.S. in 2004 was 2,965 billion (NHTSA, 2005).  Of that, about 25% are 

estimated to have been at nighttime (741 billion vehicle miles per year).  Considering the 

estimation of 2,300 pedestrian deaths per year due to darkness, there are about 322 

million motor vehicle miles per pedestrian death due to darkness.  A similar calculation 

for pedestrian injuries results in 26.5 million miles per incident.  Assuming 3,750 

nighttime miles per driver annually, it is expected that a pedestrian death due to darkness 

would occur every 85,000 driver years.  Similarly, a pedestrian injury would occur about 

every 7,000 driver years.   

The probability of hitting an animal is higher than that of hitting a pedestrian, but 

those crashes tend to be less fatal.  In 2004, there were 195 fatalities in the U.S. due to 

animal-vehicle crashes (NHTSA, 2005).  For six upper Midwestern states in the U.S., 

there were 41 fatalities, 5,575 injuries, and vehicle damage estimated at $236 million 

(Knapp et al., 2005).  Knapp and colleagues estimated deer-vehicle crash rates in the 

upper Midwest at 1 per 2.5 million vehicle miles (about one crash every 166 driver 

years).  Although a breakdown into daytime and nighttime was not reported, most animal 
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crashes (about two thirds) occur in the dark (GES, 2005).  It should be noted that these 

estimates are high compared to the entire U.S. (one crash every 660 driver years where 

the first harmful event is associated with an animal [NHTSA, 2005]). 

These estimates of the volume of vehicle-pedestrian crashes and vehicle-animal 

crashes, and a driver’s probability of experiencing them, are summarized in Table 1. 

Table 1 
Vehicle-pedestrian and vehicle-animal crash estimates. 

Description Estimate Source 
Number of pedestrians killed in 
the U.S. annually due to darkness 2,300 deaths  Sullivan and 

Flannagan, 2001 
Frequency of a driver 
experiencing a fatal pedestrian 
crash that is attributed to darkness 

1 per 300 
million vehicle 
miles traveled 

1 in 85,000 
driver years 

Estimated based 
on NHTSA, 
2005 

Frequency of a driver 
experiencing an injury pedestrian 
crash that is attributed to darkness 

1 per 26.5 
million vehicle 
miles traveled 

1 in 7,500 
driver years 

Estimated based 
on NHTSA, 
2005 

Frequency of a driver in the upper 
Midwest U.S. being involved in a 
deer crash (including no-injury 
crashes) 

1 per 2.5 
million vehicle 
miles traveled 

1 in 166 
driver years 

Knapp et al., 
2005 

 

There are several implications of these estimates for the design of effective night 

vision systems.  First, there is clearly a potential safety benefit from night vision systems 

that focus on the detection and avoidance of pedestrians, animals, and cyclists.  Second, 

the rarity of events that an individual driver is likely to experience requires special 

consideration.  Many of the considerations for the design of crash avoidance systems 

(e.g., COMSIS, 1996) apply well in this context.  For example, if warnings are not heard 

frequently, drivers may respond to them slowly, or not respond at all.  To address this 

issue, it may be helpful to provide the driver with nonintrusive alerts to noncritical cases, 

which would facilitate learning of appropriate responses.  The alerts would have to be 

nonintrusive so as not to distract the driver, but sufficiently noticeable to draw the 

driver’s attention in rare situations.  Some considerations for the design of an effective 

night vision system are summarized in Table 2. 
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Table 2 
Design considerations for an effective night vision system. 

 Description Design consideration 
System 
goal Improve safety Focus on pedestrian and animal detection 

System should be effective and easily noticeable 
despite the rarity of critical events. 

Critical 
events 

Crashes are 
extremely rare (less 
than once in a 
lifetime). 

When providing a warning, the system should 
require minimal processing to allow the driver to 
respond quickly and without interruption. 
System can facilitate the driver’s learning of 
appropriate responses during noncritical events. Noncritical 

events 

There are many 
encounters with 
pedestrians and 
animals that do not 
result in a crash. 

System should not distract the driver during 
noncritical events. 

 

Several night vision systems are currently offered in the automotive market.  

Their displays are installed in the central console, the instrument cluster, or on a head-up 

display.  They provide a good view of the road scene ahead and are capable of detecting 

pedestrians and animals as far as 300 m ahead of the vehicle.  Automatic pedestrian 

detection at shorter distances is already available, and is expected to be implemented in 

some of the next-generation night vision systems.   

Table 3 shows an analysis of the performance of existing systems based on the 

criteria in Table 2.  Systems without automatic pedestrian detection do not explicitly 

focus on pedestrians.  Some provide better detection distances than others (Tsimhoni et 

al., 2004), but there is no indication to the driver about the importance of detecting 

pedestrians relative to other tasks.  Because these systems provide information that is 

continuously available without special alerting, a driver might miss a rare event, 

especially if the expectation or level of vigilance is low.  During an event, the driver 

might need to continuously scan the display to confirm the presence of a pedestrian 

instead of looking outside the vehicle and focusing on an avoidance maneuver.  There is 

some facilitation of learning in that the night vision system enhances visibility and the 

driver might learn of the presence of objects otherwise not seen.  A possible downside of 

these systems is that they have the potential to distract the driver because they require 

attending, and sometimes looking, away from the driving task.  Nevertheless, it is 
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possible that drivers may use such systems for reasons beyond safety, such as increasing 

their mobility in bad weather. 

Systems with automatic pedestrian detection can highlight pedestrians, thus 

conveying their importance to the driver.  They are expected to be effective for rare 

events because they draw the driver’s attention whenever there is a pedestrian ahead.  

After a pedestrian has been detected, there is almost no need for the driver to look again 

at the display because the pedestrian is already highlighted.  Interruption during the event 

itself is therefore expected to be minimal.  There is still a potential for negative impact 

because the display is regularly on and drivers may tend to look at it more often than 

necessary to avoid pedestrians, animals, and cyclists.  Possible problems with automation 

may arise if the driver becomes overreliant on the system’s ability to detect pedestrians. 

We propose that pedestrian detection can be improved with a simplified display 

that has the potential to comply with all the discussed safety criteria.  The proposed 

system focuses on pedestrians and is designed to be effective for low-probability 

pedestrian events.  During an event, there is no major interruption by the system.  It is 

based on automatic pedestrian detection and is subject to some level of overreliance and 

complacency, but because it is not very intrusive, it can be designed with a greater bias 

towards false positives than false negatives (misses), thus reducing the effects of the 

overreliance problem. 
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Table 3 
Analysis of night vision systems based on criteria for effectiveness. 

Criteria for effective 
night vision system Existing systems 

Systems with 
pedestrian 
detection 

Proposed system 

Focus on pedestrians Not explicitly Highlights 
pedestrians Primary focus 

Effective for a rare 
event 

Driver might not 
be looking 

Draws attention to 
the display Yes 

Interruption during 
event 

Requires glances 
to display Nearly none None 

Facilitates learning Somewhat Yes Yes 

Minimal distraction 
Driver has to 
attend away from 
the road 

Looking at the 
display may 
distract 

Minimal distraction 

Problems with 
automation No automation Possibly Possibly 

 
The proposed simplified night vision system consists of a pedestrian icon 

(Figure 1) that indicates the presence of a pedestrian near the future path of the vehicle.  

The icon is visible, but nonintrusive.  It is designed so that it is easy to detect, especially 

at night, without directly looking at it.  It alerts a driver to the presence of a pedestrian 

ahead, and is expected to increase the distance at which the pedestrian will be detected.  

A likely driver response to the pedestrian icon is attending carefully and preparing to 

slow down.  In unopposed situations, the driver may turn on the high-beam headlights.  In 

some cases, such as when driving in heavily populated areas, the vehicle will already be 

slow, and the driver may already be fully aware of the presence of pedestrians.  The 

system is primarily intended, however, for higher speed driving and roads on which 

pedestrians are less expected.  It is primarily in those conditions that pedestrian crashes 

are likely to occur because of darkness (Sullivan and Flannagan, 2001).   

Another potential benefit of the proposed system is that it may facilitate learning.  

If the blue icon turns on during the day and night every time there is a pedestrian, drivers 

will be able to learn about the performance of the system by confirming the alerts with 

what they see during daytime.  Additionally, they are likely to receive implicit feedback 

about the visibility problem of pedestrian detection at night. 
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Although the display concept is simple, the system would require an underlying 

set of sensors and computing algorithms that are not available on most current systems.  

It is expected, however, that in the next few years the hardware and software for such 

systems will be available as research is currently underway in this direction (Bertozzi et 

al., 2004; Fang et al., 2003; Nanda and Davis, 2002; Shashua, Gdalyaho, and Hayun, 

2004; Xu, Liu, and Fujimura, 2005; Zhao and Thorpe, 2000). 

 

 

Figure 1.  Proposed pedestrian warning (“pedestrian icon”). 
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METHOD 

Subjects 

Sixteen licensed drivers participated in this experiment: eight young drivers (ages 

23 to 30, mean 26) and eight older drivers (ages 62 to 76, mean 66).  All subjects’ 

corrected vision was 20/40 or better (mean of younger drivers was 20/19, mean of older 

20/28), as tested using an Optec 2000 Stereo Optical Vision Tester.  

Apparatus 

Vehicle Setup 

Two Nissan Altimas, equipped with data acquisition systems (DAS), were used 

for this experiment.  The DAS recorded the exact position of the vehicle using a 

differential global positioning system (DGPS) and also recorded the timing and position 

at which two digital inputs were activated.  One input was a button that was used by the 

experimenter to mark when the subject reported they first identified a pedestrian.  A 

second input was connected to the experimenter’s laptop computer and recorded the point 

at which a pedestrian warning was turned on.  A schematic diagram of the experiment 

setup is shown in Appendix A. 

Pedestrian Warning 

A pedestrian warning icon (Figure 1) appeared on a 5.6” LCD.  When the 

experimenter determined, using DGPS, that the vehicle was 150 m from the pedestrian, 

the pedestrian warning icon appeared on the display.  (A post-test analysis of all warning 

distances showed that the actual distance at which the warning was initiated was 150 m 

with a standard deviation of 12 m.)  The warning disappeared after the car passed the 

pedestrian (Figure 2).  In order to avoid cases in which the driver might miss the 

pedestrian warning, the warning was designed to be very conspicuous at about 50x50 

mm.  The luminance of the icon was approximately 11.3 cd/m2 (measured in the blue 

area). 
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Figure 2.  An illustration of the view from the driver seat.  A pedestrian mannequin is 
shown at a distance of about 30 m, and the pedestrian warning is on.   
(The image has been modified to enhance the pedestrian and adjust the lighting of the 
pedestrian icon.) 

Route and Pedestrians 

Subjects drove the instrumented vehicles on a 20-mile route that consisted of rural 

roads.  Most sections had no streetlights.  Speed limits varied from 45 mph to 55 mph.  

Figure 3 shows the route and the positions of pedestrians.  Pedestrians were simulated by 

6 ft (180 cm) inflatable mannequins that were dressed in dark denim clothes and were 

facing traffic about 3 m from the edge of the lane (shown in Figure 4).  The reflectance 

ratio of the clothes was 6.6% for halogen headlamps.  The median reflectance of 

pedestrian clothing has been reported to be about 5% (Bhise et al., 1977, Figure 6-9).  

Subjects drove the route twice, encountering each of seven pedestrians on each pass.   
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Figure 3.  Route map. 

 

Figure 4.  Image of mannequin pedestrian standing. 

    : Pedestrian 
    : 1st pass 
    : 2nd pass 
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Video Clip (Face Camera) 

A low-light face camera was directed at the subject’s face to collect glance data.  

Digital video clips were captured by a DVCAM digital video cassette recorder (Sony 

DSR-20).  Figure 5 shows an example of the face video. 

 

Figure 5.  Example of the face video. 

Procedure 

The experiment was performed from nautical twilight until about four hours after 

nautical twilight during the summer and fall of 2006.  Subjects were instructed to drive 

normally while using only low-beam headlights except in an emergency.  An 

experimenter in the back seat provided driving directions.  The experimenter told them in 

advance whether the pedestrian would be on the right side only or could be on either side 

of the road, and whether the pedestrian warning would be active.  The subjects said 

“pedestrian” as soon as they saw a pedestrian (mannequin) on the side of the road.  The 

experimenter pressed a button as soon as the subject said “pedestrian.”  The exact 

position at which the button was pressed would then be marked by the data acquisition 

system.  When the vehicle just passed the pedestrian, the experimenter released the 

button to mark the position of the pedestrian.  (A post-test analysis of all button releases 

revealed a mean precision of 2.1 m (range: 0.1 to 4.9 m) in the recorded position of the 

button release.) 

During the first pass of the route, drivers did not have any prior knowledge of the 

number of pedestrians or their positions.  During the second pass, some of the pedestrians 

were on the opposite side of where they had been before, but some were in the same 

position as in the first pass. 
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Experimental Design and Data Analysis 

Experimental Design 

Pedestrian detection was the primary dependent variable of this experiment.  Two 

independent within-subject variables were manipulated: warning (with or without 

pedestrian warning) and pedestrian side (whether the pedestrian was on the right side 

only or on either side of the road).  The experimental design was fractional factorial such 

that each subject drove by each of seven pedestrians only twice—with and without a 

warning.  Table 4 shows an example of the order in which one subject encountered 

pedestrians.  The order was counterbalanced across subjects.  For each age/gender group 

of four subjects, the four possible orders of warning presence (yes/no) and of side of 

pedestrian (right/both) were assigned to each subject. 

In the last trial of the experiment, a pedestrian warning was not provided for any 

subject.  For the subjects that were in the experimental condition of pedestrian warning 

present, the absence of a warning was a surprise.  For the subjects that were in the “no 

warning” condition, this trial was in agreement with the description of the condition.   

Table 4 
Pedestrian position and warning. 

First pass Second pass 
Location Pedestrian 

position Warning Pedestrian 
position Warning 

1 Right No Either (Right) Warning 
2 Right No Either (Left) Warning 
3 Right No Either (Right) Warning 
4 Right No Either (Right) Warning 
5 Right Warning Either (Right) No 
6 Right Warning Either (Left) No 
7 Right Warning Either (Right) No 
8   Either (Right) No 
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Data Analysis 

The detection distances were analyzed using a mixed-model design while taking 

into consideration the confounding of run with the presence of warnings and the 

positioning of the pedestrian.  A detection distance of zero was assigned to cases in which 

there was no detection of the pedestrian.  A total of 222 data points out of 240 possible 

data points (16 subjects x 15 pedestrians) were collected.  The lost 18 data points were 

the results of a missing pedestrian, a vehicle parked next to the pedestrian, etc. 
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RESULTS 

Detection Distance 

Detection distance was marked by the experimenter from the point at which the 

subject said “pedestrian” to the point at which the vehicle passed the pedestrian.  

Detection distance without a warning (34 m) was significantly shorter than with a 

warning (44 m) F(5,84) = 2.92, p < 0.05.  As expected, older subjects had shorter 

detection distances (31 m) than did younger subjects (46 m) F(1,10.7) = 6.22, p < 0.05.  

The interaction between age and warning was not statistically significant (Figure 6). 
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Figure 6.  Pedestrian detection distance by age and warning. 
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Overall, detection distances were longest when pedestrians were expected to be 

on the right side of the road only and shorter when pedestrian were on either side of the 

road F(2,36.8) = 7.18, p < 0.01.  Within the latter condition, detection distances were 

shortest when pedestrians were on the left side of the road (Figure 7). 

Detection distance improved the most by the presence of the warning when 

pedestrians were on the left side of the road, from 16 m without a warning to 34 m with a 

warning.  When pedestrians could be on either side of the road and were on the right side, 

detection distance improved only slightly from 36 m to 39 m.  When pedestrians were 

expected to be only on the right side, the improvement was from 38 m to 49 m. 
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Figure 7.  Pedestrian detection distance by pedestrian location and the presence of a 
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Detection Accuracy 

The proportion of missed pedestrians was defined as the number of pedestrians, of 

all the trials in that condition, to which the subject did not say “pedestrian”.  The 

proportion of missed pedestrians without a warning (13%) was significantly higher than 

with the warning (5%) (Figure 8).  The proportion of misses was improved the most by 

the presence of the warning when pedestrians were on the left side of the road.  It 

improved from 31% without a warning to 15% with a warning.  When pedestrians could 

be on either side of the road and were on the right side, the ratio of missed pedestrians 

decreased from 11% without a warning to 6% with a warning.  When pedestrians were 

expected to be only on the right side, the ratio of missed pedestrian decreased from 9% to 

2%.  It should be noted that all but one of the misses occurred with older subjects.  As 

shown in Figure 9, reduction in the proportion of misses was related to an increase in the 

mean detection distance.  
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Figure 9.  Detection distance and the proportion of missed pedestrians. 
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Exploratory Glance Analysis 

The number of gaze shifts was defined as the number of noticeable changes in the 

eye gaze direction in the interval from 30 s until 5 s before the pedestrian.  In the warning 

condition, this interval never included a time during which the subject had already 

received the warning (because the warning was delivered less than 5 s before the 

pedestrian).  The analysis was exploratory and consisted of only three younger subjects, 

for which good video data were available.   

The number of gaze shifts without a warning where the pedestrian could be on 

either side of the road (5 glances per 25s) was higher than all the other conditions (2.5 

glances per 25s) (Figure 10).   
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Figure 10.  Driver’s eye gaze shifts from 30s to 5s before the pedestrian detection. 
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Subjective Workload 

Subjective workload was rated by the subjects at the end of the experiment on a 

scale of 1 to 10 where 1 represents extremely low workload and 10 represents extremely 

high workload.  The rating of driving with a pedestrian warning system (3.8) was lower 

than without it (6.0), F(1,14.5) = 26.6, p < 0.0001.  The rating of detecting pedestrians 

only on the right (4.0) was lower than detecting them on either side of the road (6.0) 

F(1,14.5) = 20.1, p < 0.001.  The interaction between warning and pedestrian side was 

not significant. 
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Figure 11.  Subjective workload by pedestrian location and presence of a pedestrian 
warning. 
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CONCLUSIONS 

The pedestrian warning improved pedestrian detection in several ways.  It 

improved overall detection distance from 34 to 44 m.  The proportion of missed 

pedestrians decreased overall from 13% to 5%.  Subjective workload (on a 10-point 

scale) decreased from 6.0 to 3.8.  We attribute the improvement to directing the driver’s 

attention to the presence of a pedestrian mannequin just before it could be seen.  It should 

be noted that in the unalerted condition drivers were in fact looking around more than in 

the alerted condition, as demonstrated in the exploratory glance analysis.  Nevertheless, 

detection was not better because of the increased looking.   

It may be that the effect of the warning would be even greater in actual use, given 

that the drivers in this experiment were probably always substantially more alert to the 

possible presence of pedestrians than most drivers are in the real world, thus diminishing 

the contrast between the nominally alerted and unalerted conditions of the experiment.  

The best estimate that we have of the difference between pedestrian detection by drivers 

in an explicitly alerted state versus detection in a state that is a reasonable approximation 

to normal, unalerted driving is probably the data of Roper and Howard (1938).  They 

conducted an experiment in which 46 subjects drove an instrumented car at night.  They 

used a surprise test in which a pedestrian mannequin unexpectedly appeared directly in 

the lane of travel of their subjects at the end of a headlight evaluation experiment.  The 

distance at which drivers first released pressure from the accelerator was measured and 

compared to their detection distance for the same object in repeat runs under the same 

physical conditions.  The results indicate that the average driver perceived the unexpected 

obstacle only half as far away as when it was expected.  Figure 12 shows the cumulative 

distribution of the ratio between the detection distance of the obstacle when unexpected 

and when expected. 
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Figure 12.  Distance at which a driver perceives an unexpected obstacle  
(Roper and Howard, 1938). 

 

In light of Roper and Howard’s findings, it may be that the positive effect of a 

pedestrian warning would be greater than was found in the present experiment.  Subjects 

in the present experiment were instructed to respond to pedestrians and were therefore 

expecting them.  The addition of a pedestrian warning served as a temporal cue to “look 

even harder” and indeed improved detection distance.  It is possible that in many real-

world situations detection distance with the warning would be even higher than in the 

present experiment because drivers could switch to high-beam headlights.  In contrast, in 

most real-world situations, without the warning, detection distance and miss rates would 

be less than in the present experiment because drivers would not be as prepared to detect 

a pedestrian as they were in the experiment.   

Another way in which the current experiment may underestimate the real-world 

benefits of the warning provided by the icon is in terms of how the warning might affect 

general preparation to respond to and avoid a pedestrian.  The present experiment 

measured only the effects of the warning on seeing distance.  In addition to improving 

seeing distance, the warning provided by the icon would allow drivers in the real world to 
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begin some avoidance responses to pedestrians before they are visible—e.g., slowing 

down, being prepared to steer, or brake. 

The subjective ratings of workload and the exploratory analysis of glances indeed 

suggest that subjects were vigilant when the warning was not present.  They looked 

around more and experienced heavier workload than when the warning was available.  

This is probably a result of the experimental instructions to find pedestrians and of the 

subjects’ attempt to “do well” in the experiment.  It is likely that in real-world situations 

drivers would not be as vigilant and would not keep their workload at high levels 

continuously unless prompted by an automated system.  

The results of the present study are not sufficient in themselves to evaluate the 

overall effectiveness of the sort of night vision system that is described here, but they do 

demonstrate the potential effectiveness of the minimal driver interface for increasing 

pedestrian detection.  It is likely that keeping the driver interface as simple as possible 

would also have favorable effects on the driver workload imposed by the system, 

although that aspect of the system was not directly tested here.  Although we have 

proposed what is virtually the simplest possible driver interface, there are clearly other 

solutions between our proposed display and existing displays (e.g., Graf et al., 2005).  For 

example, the display might include information about the distance to the detected 

pedestrian, the relative location of the pedestrian and the number of new pedestrians.  

More research is needed to understand what design would provide the most benefit.  The 

decision on whether to add additional elements to the display should include an 

assessment of the added workload or distraction they would add during normal operation, 

when the display is not actively helping the driver avoid pedestrian crashes (which occur 

only once per 300 million vehicle miles traveled for fatal crashes, and once per 26.5 

million vehicle miles traveled for nonfatal crashes).  Additionally, there should be an 

assessment of whether including additional information in the display might provide 

benefits in terms of driver acceptance or understanding of the system. 
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APPENDIX A – EXPERIMENTAL VEHICLE SETUP 

 

 

 
1: LCD for warning 
2: Face camera 
3: Laptop 
4: GPS on vehicle roof used for 

detecting the warning point 
5: Video converter  
6: DV recorder 
7: Video camera display 
8: Button for position marking 
9: Data acquisition system 
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