ERRATA p. 4: Add the following note at the end: Note: The ground state is often referred to as being the x^2-y^2 . In the context of the molecular orbital theory as used in this thesis, the term "ground state" refers to the energetically highest occupied orbital in the Slater determinant. - p. 29 1.9: Replace Table 2 by Table 3 - p. 31 1.5: Delete the whole line and replace it by the following: are tabulated as well as some two-center integrals. For references see - p. 31 1.6: Replace Ref. 35 by Ref. 24. - p. 63 bottom: Replace Table 6 by Table 7 - p. 103 1.5:Delete the word "nearest" - p. 104: The level at the middle of the first colum is yz, not xz. - p. 105 1.5: Replace Helmheltz by Helmholtz #### THE UNIVERSITY OF MICHIGAN # COLLEGE OF ENGINEERING Department of Nuclear Engineering ## Technical Report MOLECULAR ORBITAL THEORY OF VANADIUM IN THE RUTILE STRUCTURE CRYSTALS SnO2, TiO2 AND GeO2 Sophocles Karavelas Chihiro Kikuchi ORA Project 04381 under contract with: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANT NO. NSG-115-61 WASHINGTON, D.C. administered through: OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR July 1964 This report was also a dissertation submitted by the first author in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The University of Michigan, 1964. ## TABLE OF CONTENTS | Page | |---| | LIST OF TABLES | | LIST OF FIGURES vi | | ABSTRACT | | Chapter | | I. INTRODUCTION | | II. RUTILE CRYSTAL STRUCTURE AND SYMMETRY | | Crystal Structure Additional Assumptions Oxygen sp² Hybrid Orbitals Reduction of the Secular Equation by
Group Theory | | III. LINEAR COMBINATIONS OF ATOMIC ORBITALS TRANSFORMING 20 ACCORDING TO THE I.R.'S OF THE D GROUP | | IV. COMPONENTS OF THE SECULAR EQUATIONS | | Group Overlap Integrals Two-Center Overlap Integrals Energy Matrix Elements | | V. SOLUTION OF THE SECULAR EQUATION | | Energy Eigenvalues Charge Self-Consistency Detailed Charge Self-Consistency | | VI. THE ELECTRONIC Q AND A TENSORS 61 | | The Electronic Q Tensor as a Monitor The Hyperfine Interaction as a Monitor | | VII. DISCUSSION AND CONCLUSIONS | | Discussion Conclusions | | A. General Theory B. Variational Method Applied to Linear Functions C. D ₂ L Group Character Table D. Two-Center Overlap Integrals E. Energy Eigenvalues of SnO ₂ :V, TiO ₂ :V, GeO ₂ :V F. Ground States of SnO ₂ :V, TiO ₂ :V, GeO ₂ :V | 84 | | |---|---|--| | Α. | General Theory | | | | • | | | | • • | | | | | | | | • • | | | | | | | | Point Charge Crystalline Field Calculation of SnO2:V | | | Н. | Valence State, VSIP, Valency and Promotion Energy | | | | Effect of Ligand Wave Function Admixture in the Calculation of the Orbital Zeeman Matrix Elements | | | J. | MAD Program for Solving the Secular Equations | | | Κ. | Mo^{5+} and W^{5+} in TiO_2 | | # LIST OF TABLES | Table | | Page | |-------|---|-----------------| | 1. | Crystallographic Data of SnO_2 , TiO_2 , and GeO_2 | 7 | | 2. | Coefficients of the Oxygen Hybrid Orbital | 13 | | 3. | LCAO Transforming According to the Irreducible Representations of the D $_2 \mbox{\it L}$ Group | 22 | | 4. | Transformation of the Spherical Harmonics | 25 | | 5. | Group Overlap Integrals | . 32 | | 6. | VSIP of Vanadium and Oxygen Ions | 41 | | 7. | Eigenvalues and Eigenfunctions of SnO ₂ :V for an Assumed Vanadium Charge of +.25e | 50 | | 8. | Assumed and Calculated & and TT Orbital Occupancy | 57 | | 9. | Experimental Deviations of Q. Tensors Components from the Free Electron Values for Vanadium in SnO_2 , TiO_2 , and GeO_2 | 62 | | 10. | Observed and Calculated \dot{q} Tensor Components of Vanadium in SnO_2 , TiO_2 , and GeO_2 | 69 _. | | 11. | Experimental Hyperfine Tensor Components of Vanadium in SnO_2 , TiO_2 , and GeO_2 | 73 | | 12. | Anisotropic Part of the Hyperfine Tensor Components Deduced from Experiment | 73 | | 13. | Calculated Relative Strength of the Magnetic Field at the Vanadium Nucleus Due to the Ground State Electronic Charge | 7.5 | | 14. | Calculated Anisotropic Part of the Hyperfine Tensors Normalized to Az | 7 <u>5</u> | | 15. | Reduction in Att Values Due to Ligand Orbital Parts at .40e Assumed Vanadium Charge and 35 Kcm ⁻¹ TT-Electron VSIP Reduction | 82 | | 16. | Crystal Field and Charge Transfer Contributions to the Tensor Components in SnO ₂ :V in Units | 83 | # LIST OF FIGURES | Figure | | Page | |--------|--|------| | 1. | Rutile-Type Crystal Structure | 6 | | 2. | Coordination of the Oxygen Ions in the Rutile-Type Structure | 12 | | 3. | Left-Handed Coordinate Systems Centered at the Oxygen Ligand Ions | 15 | | 4. | Spheroidal Coordinate System | 26 | | 5. | MO Energy Levels of SnO ₂ :V | 45 | | 6. | Central MO Energy Levels of SnO ₂ :V | 46 | | 7. | Central MO Energy Levels of TiO ₂ :V | 47 | | 8. | Central MO Energy Levels of GeO ₂ :V | 48 | | 9. | Fraction of the Electronic Charge of the First Thirteen MO's Assign to Vanadium | 52 | | 10. | Calculated Vanadium Charge vs. the Assumed Charge | 55 | | 11. | MO Energy Levels of SnO_2 :V for a $\uparrow \tau$ -Electron VSIP Reduction of 35 Kcm ⁻¹ (left) and 45 Kcm ⁻¹ (right) | 58 | | 12. | Calculated Vanadium Charge vs. the Assumed Charge for a T-electron VSIP Reduction of 35 Kcm ⁻¹ (left) and 45 Kcm ⁻¹ (right) | . 59 | | 13. | Allowed Crystal Field and Charge Transfer Transitions | 64 | | 14. | Calculated ∧ Tensor Components of SnO ₂ :V | 68 | | 15. | Calculated ∧ Tensor Components of TiO ₂ :V | 68 | | 16. | Calculated ∧ Tensor Components of GeO ₂ :V | 68 | | 17. | Calculated \(\bar{\text{Tensor Components of SnO}_2:\text{V for a}\) \(\frac{1}{\text{-Electron VSIP Reduction of 35 Kcm}^{-1}}\) (lower) and 45 Kcm ⁻¹ (upper) | 70 | | 18. | Calculated \(\sum \text{Tensor Components of TiO}_2:V\) for a \(\sum \text{-Electron VSIP Reduction of 35 Kcm}^{-1}\) (lower) and 45 Kcm ⁻¹ (upper) | 71 | | Figure | Page | |--|------| | 19. Calculated \(\text{Tensor Components of GeO}_2:\(\text{V} \) for a | | | ← Electron VSIP Reduction of 35 Kcm ⁻¹ | | | (lower) and 45 Kcm ⁻¹ (upper) | 71 | #### Abstract The purpose of this study is to investigate possible explanations of the observed ESR spectra in the rutile-type crystals of SnO_2 , TiO_2 , and GeO_2 , with vanadium as an impurity. The observed electronic Q tensors cannot be accounted for by the simple crystal field theory, and there is ambiguity in the energy level diagram. Molecular orbital theory is used in a semiempirical calculation with the linear combination of atomic orbitals approximation (LCAO). The crystal region consisting of the vanadium ion and the six ligand oxygen ions is selected to be studied. The atomic orbitals to be used in the LCAO approximation are chosen. These are the nine vanadium 3d, 4s, 4p orbitals, and the twenty-four ligand oxygen 2s, 2p orbitals. It is argued that the hybridization of the oxygen orbitals is needed to account for the influence of the rest of the crystal, and these hybrid orbitals are constructed. Then it is shown how Group Theory can simplify the secular equation and formulate the selection rules. The use of group theory requires the construction of LCAO transforming according to the irreducible representations (I.R.) of the $\rm D_{2h}$ group. These combinations are constructed by the method of projection operators. The group overlap integrals are calculated, and the valence state ionization potentials (VSIP) of the oxygen and vanadium ions are estimated. Then the reduced secular equations are solved using the VSIP as parameters. The best solutions are selected by using as a monitor either the vanadium charge or the q tensors. The results are compared and the need of a reduction in the original estimate of the π -electron VSIP is recognized. Also, it is concluded that charge self-consistency alone is not adequate in selecting the best solutions, but rather the detailed charge distribution among the orbitals must show self-consistency. Finally, the following results are given: - (a) The ground state in all cases is of the form $-\propto |\vec{z}^{\lambda}| + \beta |\vec{x}-\vec{y}^{\lambda}|$ where .10 $<\propto$ <.20 and $\beta\approx$.99. - (b) The pertinent to the Q tensor levels are in order of increasing energy, the xy (filled), xz (filled), yz (filled), x^2-y^2 (ground state with one unpaired electron), yz (empty), xz (empty), and xy (empty). - (d) The ground state in (a) can explain the anisotropic part of the hyperfine tensors. - (e) All obtained results seem to agree with the recently observed ESR spectra of Mo $^{5+}$ and W $^{5+}$ in TiO $_2$. #### CHAPTER I #### INTRODUCTION The purpose of this study is to investigate possible
explanations of the observed ESR spectra in the rutile-type crystals of SnO_2 , TiO_2 , and GeO_2 with vanadium as an impurity. Gerritsen and Lewis were the first to study the paramagnetic spectrum of vanadium in ${\rm TiO}_2$. They attributed the spectrum to a single 3d electron of tetravalent vanadium occupying a substitutional site in the crystal. The experimentally deduced of tensor ($Q_{\rm x}=1.915$, $Q_{\rm y}=1.913$, $Q_{\rm z}=1.956$) had almost complete axial symmetry about the z-axis, and the application of the theory of Abragam and Pryce was expected to give the splitting of the lower triplet, the However, calculation revealed inconsistencies, since the calculated splittings differed by a factor of two-and-a-half depending on whether $Q_{\rm x}=Q_{\rm x}=Q_{\rm x}=Q_{\rm x}=Q_{\rm x}$ was used. They commented that perhaps the rhombic component of the crystalline field was responsible for making the theory inapplicable. An attempt by Réi to account for the $Q_{\rm x}$ and $Q_{\rm x}$ to account for the $Q_{\rm x}$ and $Q_{\rm x}$ to account for the $Q_{\rm x}$ and $Q_{\rm x}$ to account for the $Q_{\rm x}$ and $Q_{\rm x}$ to account for the $Q_{\rm x}$ and $Q_{\rm x}$ to account for the $Q_{\rm x}$ and $Q_{\rm x}$ to account for the field and the covalent bonding proposed by Stevens $Q_{\rm x}$ was not successful either. Later, Marley and MacAvoy observed the ESR spectrum of vanadium in SnO_2 . Again the ESR spectrum was attributed to substitutional vanadium, but the q tensor showed nearly axial symmetry around the γ axis; they tried to interpret this by the improbable assumption that the doublet $\mathcal{C}_{\mathbf{Q}}$ lies lower than the triplet $\mathcal{C}_{\mathbf{Q}}$. In 1963, Kasai⁴ suggested that the rhombic part of the crystalline field has an important role in splitting the lower triplet $\mathcal{C}_{\mathbf{Q}}$. It was also argued that the $\mathbf{X}^{\lambda}-\mathbf{Y}^{\lambda}$ state would be the lowest due to the stabilizing effect of the two tin ions lying on the \mathbf{Y} -axis close to the vanadium ion. In 1964, From, Kikuchi and Dorain investigated the large superhyperfine structure in $\operatorname{SnO}_2:\mathbf{V}$. They concurred that the ground state is $\mathbf{X}^{\lambda}-\mathbf{Y}^{\lambda}$ and that the next level is the state \mathbf{X}^{Σ} . The latter was arrived at by fitting the observed \mathbf{Q} values to the usual crystalline field formulas: $$\triangle g_x = -\frac{2\Omega}{E_{yz}}, \quad \triangle g_y = -\frac{2\Omega}{E_{xz}}, \quad \triangle g_z = -\frac{8\Omega}{E_{xy}}$$ However, a point-charge-crystalline-field-type calculation showed (see Appendix G) that the levels are in the order \times^{λ} $\xrightarrow{\chi}$ \times^{λ} \times^{χ} , and \times^{χ} . The same year, Siegel⁶ observed the ESR spectrum of vanadium in tetragonal GeO_2 and obtained values comparable to that in TiO_2 and equally difficult to interpret. Since SnO_2 is an important material in the production of conducting glasses, and GeO_2 exhibits both the crystalline and amorphous state related to glasses, the study of the electronic behavior of the vanadium impurity may reveal important properties of conducting glasses. On the other hand, all three materials may have important quantum electronic properties. Theoretically, the interest is equally great because the spectra are due to a single unpaired electron, which can be thought of as the simplest case of magnetism. The principal results reported in this thesis are: - (a) The ground state is of the form $\propto | \geq^{2} > + \beta | \times^{2} > \rangle$ where .10 $< \propto <$.20 and $\beta \approx$.99. - (b) The excited states are in the order of increasing energy: $$|y \ge \rangle$$, $|x \ge \rangle$, $|x y >$ and $|z^{\lambda}\rangle$ The first two states are inverted with respect to the prediction based on the simple crystalline field formulas. - (c) The observed Q tensors and the anisotropic parts of the hyperfine tensors A can be explained. - (d) Results are applicable to the cases of Mo $^{5+}$ and W $^{5+}$ in rutile. (The electronic structures of V $^{4+}$, Mo $^{5+}$, and W $^{5+}$ are similar, with a 3d, 4d, or 5d unpaired electron outside filled shells respectively.) The general theory is given in Appendix A. Chapter II states the assumptions needed to make the calculation feasible. The difficult problem of how to restrict the calculation to a limited number of ions surrounding the impurity ion and still get reliable results is considered. Only the nearest neighbors are taken into account for the sp hybridization of the valence electrons. Group theoretical methods are used to reduce the labor of solving the secular equation. As described in Appendix A the secular determinant contains Coulomb integrals H_{ii} and group overlap integrals S_{ij} . The latter are calculated by using self-consistent field radial functions. However, the Coulomb integrals H_{ii} are taken as semiempirical parameters. This necessitates a trial and error method which is monitored by the self-consistency of the assumed and calculated vanadium charge. In addition, the g tensor is taken as monitor of the calculation. Finally the results are discussed and conclusions are drawn. ### CHAPTER II #### RUTILE CRYSTAL STRUCTURE AND SYMMETRY This chapter presents certain fundamental ideas essential for the development of the theory to be followed in dealing with the problem of vanadium in the rutile-type structures. First the rutile crystal structure is given and then the use of the symmetry properties is examined. #### 1. Crystal Structure The crystallographic data of SnO_2 , TiO_2 (rutile) and GeO_2 (tetragonal) crystals, all having the rutile structure, are given in Figure 1 and Table 1. The macroscopic symmetry is tetragonal, but the metal sites have the orthorhombic symmetry $\bigcap_{\chi \chi}$, and the oxygen sites the orthorhombic symmetry $\bigcap_{\chi \chi}$. $\bigcap_{\chi \chi}$ represents collectively the following symmetry elements: three two-fold axes perpendicular to each other, three mirror planes perpendicular to them respectively, a center of inversion, and the identity element. Figure 1 shows that for the central metal ion, each of the \times - , γ - and \geq -axes is a two-fold symmetry axis and the planes perpendicular to them are the mirror planes. Similarly, $\bigcap_{\chi \chi}$ represents collectively a two-fold symmetry axis with two mirror Fig. 1. Rutile-Type Crystal Structure | | TA] | BLE | 1 | | | | |------------------|------|-----|--------------------|------------------|-----|------------------| | CRYSTALLOGRAPHIC | DATA | OF | SnO ₂ , | TiO ₂ | AND | GeO ₂ | | | SnO ₂ | TiO ₂ | ${\sf GeO}_2$ | |----------|------------------|------------------|---------------| | Q(Å) | 4.737 | 4.593 | 4.395 | | ر (Å) | 3.185 | 2.959 | 2.859 | | γ(a. u.) | 3.876 | 3.674 | 3.502 | | γ(a. u.) | 3.887 | 3.757 | 3.637 | | cosq, | .63031 | .64815 | .63107 | | φ, | 51° | 49°.5 | 50°.9 | planes perpendicular to each other, both containing the axis. For example, the site of the oxygen ion #3 has a two-fold axis parallel to the x-axis, the diagonal plane xy as a mirror plane and the plane perpendicular to the y-axis and passing through the oxygen #3 site, as another mirror plane. The unit cell has two types of metal sites, A and B. All considerations will be referred to type A. The axes of type B are rotated 90° about the crystal c-axis with respect to type A site. ### 2. Additional Assumptions Certain assumptions needed for a semiempirical molecular orbital calculation will be considered (see Appendix A for the general theory). It is assumed that the valence electrons move in orbitals satisfying the Schrödinger equation $$H_{\text{eff}}(\mu) \Phi_{\nu}(\mu) = E_{\nu} \Phi_{\nu}(\mu) \tag{1}$$ where Heff is the one-electron effective Hamiltonian. The Heff is taken to be the <u>same</u> for all valence electrons, even when they occupy excited states. In addition, the linear combination of atomic orbitals (LCAO) $$\varphi = \sum_{i=1}^{n} C_i \varphi_i \tag{2}$$ is used to provide a trial function for solving Eq. (1). The selection of the n atomic orbitals ϕ_{i} to be used in Eq. (2) rests on intuition and experience, while the coefficients C_{i} as well as the energy eigenvalues are given by solving the secular equation, where by definition $$H_{ik} = \langle \varphi_i | H_{eff} | \varphi_k \rangle \tag{4}$$ $$S_{ik} \equiv \langle \varphi_i \mid \varphi_k \rangle \tag{5}$$ The application of the above program to a crystal is hopelessly complicated by the great number of atomic orbitals needed in the expansion of Eq. (2). Therefore further assumptions are required to simplify the problem to a solvable one. For this, a region of the crystal around the vanadium impurity is defined, as small as possible, where there is a high probability of finding a specific number of electrons. The problem is confined to this region and these electrons. Also, the interaction of the rest of the crystal must be considered. The smallest region then will be that containing the vanadium ion and the six ligand oxygen ions. The electronic configuration of the oxygen atom is $[He] 2s^2 2p^4$, and that of vanadium atom $[A] 3d^3 + s^2$, where [He] and [A] represent the core of filled shells (see Appendix A) having the helium and argon configurations respectively. The set of nine vanadium 3d, 4s, 4p, and the twenty-four oxygen 2s, 2p, orbitals will be used as the trial solution for Eq. (1); i.e., $$\oint_{\mathcal{C}} = \sum_{i=1}^{33} C_i \varphi_i \tag{6}$$ to solve the problem $$H_{\text{eff}} \phi = E \phi \tag{7}$$ Equation (3) yields a 33x33 determinant. Group theory can be used to reduce this determinant to smaller 2x2 and 3x3 secular determinants. Then
the calculation is simplified and the various states can be classified according to the irreducible representations (I.R.) of the symmetry group. This allows the formulation of new selection rules that replace the ones found in atomic spectroscopy. The lack of spherical symmetry in H renders classification into s-, p-, d-, states, etc., impossible. Another question must be considered: So far, the assumptions made do not allow for any interaction from the rest of the crystal. The vanadium ion and the six ligand oxygen ions are treated as a complex, i.e., as if they were isolated in space and were not part of an extensive three dimensional structure. Complex-type calculations have been made by Wolfsberg and Helmholtz, 22 by Ballhausen and Gray, 23 and by Kuroda, Ito and Yamatera. What is needed here is a modification to account for the extensive crystal structure. To be more explicit, consider oxygen ion #5 of Figure 1 as an example. In the complex-type calculation all ions, except the central vanadium and the nearest six oxygen ions, are ignored so that only the bonding of oxygen #5 with the central vanadium is considered. The obvious bonding scheme is: (a) a hybrid orbital of the form $\sin \delta$ (2s) $_5$ + $\cos \vartheta$ (2p_z)₅ which is directed toward the central vanadium ion, resulting in a greater overlap $S(\Im)$ with the appropriate vanadium orbital than either one of the $(2s)_5$ and $(2p_z)_5$; (b) the orbital orthogonal to it $\cos \vartheta (2s)_5 - \sin \vartheta (2p_z)_5$ directed away from the vanadium ion and therefore nonbonding; and (c) the two orbitals $(2p_x)_5$ and $(2p_y)_5$ possibly involved in $\mathcal T$ - bonding. The angle ϑ is determined by the requirement that $F(\mathfrak{F}) = \frac{VSIP(\mathfrak{F})}{S(\mathfrak{F})}$ be a minimum (VSIP is discussed in Appendix H). This is done for example in ref. 23. In minimizing the fraction $F(\mathfrak{F})$, a compromise is achieved between the tendency for greater overlapping by forming ligand hybrid orbitals and the promotion energy (see Appendix H) needed for the formation of these hybrid orbitals. However, if one considers the two metal ions, with which the oxygen ion #5 is to be bonded in addition to the vanadium ion, the bonding schemes just discussed is not appropriate since none of the considered orbitals is directed toward these two metal ions. Therefore a small total overlapping will result in a less stable situation. 25,26 On the other hand, the sp^2 hybridization scheme, for which the $(2\mathrm{s})_5$ $(2\mathrm{p_z})_5$ and $(2\mathrm{p_y})_5$ orbitals form three hybrid orbitals directed toward the vanadium ion and the two metal ions, will result in a greater total overlap and therefore is more stable. The $(2\mathrm{p_x})_5$ is not hybridized with a possible involvement in $\forall \tau$ - bonding. Hybridization requires an increase in the promotion energy which is expected to be compensated by better and more numerous bondings. # 3. Oxygen sp² Hybrid Orbitals The ${\rm sp}^2$ hybridization assumption was made in an effort to account for the influence of the part of the crystal that is left outside of the region containing the vanadium ion and the six ligand oxygen ions. Now the problem of constructing these <u>hybrid orbitals</u> will be dealt with. These are linear combinations of the usual 2s, 2p functions of the same <u>center</u>, which are directed towards the neighboring metal ions, thus securing greater overlapping and therefore a larger binding energy. Since the three metal ions lie in the same plane, as in Figure 2, only the 2s, $2{\rm p}_{\rm x}$ and $2{\rm p}_{\rm y}$ atomic orbitals can be used. Furthermore the orthogonality condition is imposed on these hybrids, so that they can form bonds with the metal ions independently of each other. Such normalized hybrid orbitals along the x direction and along the directions of metal ions 2 and 3 are, respectively: $$\sin \vartheta''(2s) + \cos \vartheta''(2p_{\chi})$$ $$\sin \vartheta'(2s) + \cos \vartheta''(2p_{2})$$ $$\sin \vartheta''(2s) + \cos \vartheta''(2p_{3})$$ (8) # Fig. 2. Coordination of the Oxygen Ions in the Rutile-Type Structures where $2p_2$ and $2p_3$ are the 2p orbitals having the directions of atom 2 and 3 respectively. The same mixing coefficients are used in the last two hybrids due to symmetry. Orthogonality between the first and second hybrids gives $$\langle \sin \vartheta''(2s) + \cos \vartheta''(2p_x) | \sin \vartheta'(2s) + \cos \vartheta'(2p_2) \rangle = 0$$ (9) $$\sin \vartheta " \sin \vartheta ' + \cos \vartheta " \cos \vartheta ' \cos \vartheta _{12} = 0 \tag{10}$$ and between the second and third hybrids gives: $$\sin^2 \vartheta' + \cos^2 \vartheta' \quad \cos \vartheta_{23} = 0 \tag{11}$$ From Eq. (10), (11), the known angles $\delta_{12} = 180$ - ϕ_1 and $\delta_{23} = 2 \phi_1$, the mixing coefficients are calculated. Table 2 summarizes the results for the three crystals SnO_2 , TiO_2 , GeO_2 . The hybrid orbitals are written as $6 = \sin \delta(2s) + \cos \delta(2p)$. The longer metaloxygen bond is specified by δ ", and the shorter one by δ '. TABLE 2 COEFFICIENTS OF THE OXYGEN HYBRID ORBITALS $\mathfrak{S} = \sin \vartheta \; (2s) + \cos \vartheta \; (2p)$ | | SnO ₂ | TiO ₂ | GeO ₂ | |--------|------------------|------------------|------------------| | sin %' | .413 | .371 | .411 | | cos 3' | .911 | .929 | .912 | | sin d" | .812 | .851 | .814 | | cos J" | . 584 | . 525 | .582 | | | | | | The construction of the hybrid orbitals \mathcal{E} effects an additional simplification to the trial function ϕ in Eq. (6) and therefore to the secular determinant Eq. (3), which is reduced from 33x33 to 21x21. At each ligand oxygen ion, three \mathcal{E} orbitals replace one 2s and two 2p atomic orbitals so that the total number of functions in the expansion Eq. (6) remains thirty-three. However, of the hybrid \mathcal{E} orbitals only those directed toward the central vanadium ion will be considered in treating the selected region of the vanadium ion and the surrounding six oxygen ions. Obviously the other \mathcal{E} hybrid orbitals are involved in bonding with the neighboring metal ions. Therefore, referring to Figure 3, the following twelve ligand orbitals $$G_{i} = siyd'(2s)_{i} + cosd'(2p_{2})_{i}$$, $(2p_{y})_{i}$, $i=1,2,3,4$ $$G_{j} = sing^{"}(2s)_{j} + cosg^{"}(2p_{z})_{j}, \quad (2p_{x})_{j}, \quad j = 5, 6$$ (13) and the nine vanadium orbitals 3d, 4s, 4p will be considered in the expansion Eq. (2). Thus $$\phi = \sum_{i=1}^{2^{n}} c_{i} \varphi_{i} \tag{14}$$ In Eq. (13) the numerical subscripts of the orbitals denote the oxygen ions to which they belong, and the coordinate subscripts refer to the ligand left-handed coordinate systems of Figure 3. The use of Eq. (4) as a trial function in solving Eq. (1) results in the 21x21 secular determinantal equation: $$det | H_{ik} - E S_{ik} | = 0$$ $i, k = 1, 2 - - 21$ (15) # 4. Reduction of the Secular Determinant by Group Theory and Selection Rules This section will consider the use of group theory to reduce the secular determinant of Eq. (15) and to derive the selection rules. First a simplified argument will be presented based on the fact that the group is an Abelian group and then a general theorem of group theory will be stated. #### (a) Reduction of the Secular Determinant. The reduction of the secular determinant depends upon the following argument: The region under consideration is centered at a metal site of symmetry $\mathcal{L}_{\mathbf{k}}$. The symmetry operators of this group leave the Hamiltonian $\mathcal{L}_{\mathbf{eff}}$ invariant, i.e., they commute with it. Thus for every symmetry operator \mathbf{T} of this group: Furthermore \bigcap_{λ} is an Abelian group (the symmetry operators commute among themselves). If several operators commute among themselves it is possible to choose basis functions which are simultaneous eigenfunctions of all the operators. Any two such functions are orthogonal if they differ in the eigenvalue of any one of the commuting operators. The character table of \bigcap_{λ} group (see Appendix C) shows that there are only eight different types of basis functions for the symmetry operators. Note that the characters are the eigenvalues of the symmetry operators. This is generally true when one deals with one-dimensional I.R. Any basis function must transform according to one of the eight irreducible representations. For example the function xy belongs to the B (or N_{39} or Γ_{99}) irreducible representation. In a matrix representation based on $\frac{1}{8}$ simultaneous eigenfunctions of the symmetry operators of the $\frac{1}{2}$ group, Eq. (16) becomes $$\begin{cases} T_{ij} + jk = 2 \\ H_{ij} + jk \end{cases}$$ (17) However, the T matrix is diagonal since eigenfunctions of the T operator are used. Therefore, Eq. (17) reduces to Thus the off-diagonal matrix element $\bigcap_{i \in K}$ is zero if the eigenfunctions i and k give different eigenvalues for the operator T. Since there is always a symmetry operator with different eigenvalues in two different I.R. (it is exactly this property that distinguishes the various I.R.s), all energy matrix elements $\bigcap_{i \in K}$ are zero, if i and k refer to functions transforming according to different I.R. of the $\bigcap_{i \in K}$ group. The same applies to the matrix $\bigcap_{i \in K}$ in Eq. (15) because the whole argument can be repeated when the Hamiltonian operator is replaced by the unit operator. Therefore, if instead of the 21 atomic orbitals φ in Eq. (14) combinations of them transforming according to the I.R. of the rhombic symmetry group are used, the secular determinant Eq. (15) will be reduced to a number of smaller determinants equal to the number of the different I.R.'s contained in the combinations of the φ 's. The order of each one of these
determinants will be equal to the number of φ 's belonging to an irreducible representation. ### (b) Selection Rules. To formulate the selection rules one must find a way to determine if a matrix element of the form is identically zero or not. Let the functions $$(\lambda)$$, (λ) , and the operator (λ) transform according to the (λ) , (λ) , and (λ) transform according to the (λ) , (λ) , and (λ) is a number it should remain invariant under the application of all the symmetry operators of the (λ) group. The application of a symmetry operator to Eq. (20) results in multiplying each one of the (λ) , (λ) , and (λ) by the corresponding eigenvalue which is given in the character table in the Appendix C. Therefore the matrix element Eq. (20) is not zero only if the product of the characters (eigenvalues) which correspond to (λ) , (λ) , (λ) for every symmetry operation of the group is equal to unity. ## (c) General Theorem of Group Theory. In general, both the reduction of the secular equation and the selection rules are based on the following theorem of group theory: The matrix element M; of Eq. (20) is nonzero only if the reduction of the direct product $D^{(n)} \otimes D^{(n)} \otimes D^{(n)}$ contains the I.R. $D^{(n)} \otimes D^{(n)} D^{(n)}$ #### CHAPTER III # Chapter II-4 demonstrated that in order to simplify the secular determinant Eq. (3), combinations of atomic orbitals transforming according to the I.R. of the $\mathcal{L}_{\chi h}$ group are needed. The symmetry classification of the metal orbitals is as shown in the character table in Appendix C. For the ligand orbitals the method of projection operators is convenient in constructing the combinations which transform according to the I.R. In the case of one-dimensional representations the recipe is simply $$\phi = N \sum_{i} \chi^{(\lambda)}^{*}(T) T_{\varphi_{i}}$$ (21) where φ is any member of the original set of orbitals, $\chi^{(\lambda)}(T)$ is the character of the transformation T for the irreducible representation \mathcal{N} , \mathbb{N} is a normalization constant, and $\varphi^{(\lambda)}$ is the orbital which transforms according to the \mathcal{N} th I.R. expressed as a linear combination of the φ 's. Occasionally the function $\varphi^{(\lambda)}$ is zero. This happens when the function φ already has symmetry properties incompatible with the irreducible representation \mathcal{N} , i.e., its projection on \mathcal{N} is zero. The functions φ_i to be used in Eq. (21) are the twelve ligand orbitals in Eq. (13). For a sample application of Eq. (21) consider φ_i . The symmetry operators T applied to it give: Multiplying by the characters of the B I.R. and summing one gets: $$G_1 + G_3 - G_4 - G_2 + G_3 + G_1 - G_2 - G_4 = \mathcal{N}(G_1 - G_2 + G_3 - G_4)$$ (23) or after normalization $$\oint_{\mathfrak{R}} = \frac{\mathfrak{G}_{1} - \mathfrak{G}_{2} + \mathfrak{G}_{3} - \mathfrak{G}_{4}}{\mathfrak{R}}$$ (24) The final twelve ligand combinations are listed in Table 3. The signs in front of these functions are chosen so that the majority of the overlap integrals with the metal orbitals is positive. This is done to facilitate programming for the IBM 7090 computer. Table 3 contains also the metal orbitals given in Appendix C. The last column indicates the number of metal and ligand functions which transform according to each I.R. According to Chapter II-4, nonzero matrix elements H_{ik} and S_{ik} may occur only between functions of the same I.R. Therefore if the twenty-one functions of Table 2 are used in the expansion Eq. (14) instead of the functions Eq. (13), the secular determinant Eq. (15) splits into eight smaller ones. The dimension of these smaller determinants is exactly equal to the number TABLE 3 LCAO TRANSFORMING ACCORDING TO THE IRREDUCIBLE REPRESENTATIONS OF THE $\mathbf{D}_{2\mathbf{h}}$ GROUP | No. | 5 | 7 | ъ | 2 | | ъ | 8 | Ю | |---------------|---|--|--|-----------------|--|--|-----------------|---| | π Ligand | | | $X_5 = \frac{(P_x)_5 - (P_x)_6}{\sqrt{2}}$ | | $\chi_3 = \frac{(P_y)_1 - (P_y)_2 + (P_y)_3 - (P_y)_4}{2}$ | $\chi_{4} = \frac{(P_{y})_{1} + (P_{y})_{2} + (P_{y})_{3} + (P_{y})_{4}}{2}$ | | $\chi_{e^{-}} \frac{(P_{x})_{5} + (P_{x})_{6}}{\sqrt{2}}$ 3 | | σ Ligand | $\Phi_{ } = \frac{\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4}{2}; \Phi_5 = \frac{\sigma_5 + \sigma_6}{\sqrt{2}}$ | $\Phi_{2} = \frac{\sigma_{1} - \sigma_{2} + \sigma_{3} - \sigma_{4}}{2}$ | | · . | | | | $\Phi_{4} = \frac{-\sigma_{1} - \sigma_{2} + \sigma_{3} + \sigma_{4}}{2}$ | | Metal Orbital | 4 S; $3d_{Z}^{2}$; $3d_{X}^{2} - y^{2}$ | 3 d x y | 3 dxz | 3dyz | | 4 P _z | 4 _y | 4
× | | Пгh | N
gig | N _{3g} | Nzg | N ₄₉ | 2 | N _{3u} | N _{2u} | N
24 c | | | ۵ | a | U | ۵ | | Ш | Z | I | $\sigma_i = \sin \theta' S_i + \cos \theta' (P_2)_i$, $\sigma_i = \sin \theta' S_j + \cos \theta'' (P_2)_j$ i = 1, 2, 3, 4 j = 5, 6 appearing in the last column of Table 3. Thus one gets eight secular equations of the form $$\det \left| H_{ik} - E S_{ik} \right| = 0 \tag{25}$$ where i, & refer to the five functions of the A I.R., to the two functions of the B I.R., etc. The eigenstates belonging to the different I.R. are denoted by A_1 , A_2 , A_3 , A_4 , A_5 ; B_1 , B_2 ; C_1 , C_2 , C_3 ; . . . H_1 , H_2 , H_3 . For example, a 5x5 determinant corresponds to the I.R. A (or N ig or Γ ig) with five eigenfunctions of the form $$C_{1}|45\rangle + C_{2}|3d_{2}\rangle + C_{3}|3d_{x^{2}-y^{2}}\rangle + C_{4}|\Phi_{1}\rangle + C_{5}|\Phi_{5}\rangle$$ (26) For a particular case, the five coefficients $C_{\bar{l}}$ and the five eigenstates $A_{\bar{l}}$, obtained by solving the corresponding secular equation, are given in Table 7 of Chapter V-2. #### CHAPTER IV #### COMPONENTS OF THE SECULAR EQUATIONS In order to solve the secular Eq. (25), the overlap integrals $S_{i,k}$ and the energy matrix elements $H_{i,k}$ as defined in Eqs. (4) and (5) must first be determined. The indices refer to the functions of Table 2 and not to the atomic orbitals. This chapter describes ways of obtaining the $S_{i,k}$. ## 1. Group Overlap Integrals When combinations of ligand functions transforming according to the various I.R.'s are used, the overlap integrals $\mathcal{L}_{\overline{l}}$ are called group overlap integrals because they involve more than one two-center overlap integrals. Their evaluation is straightforward but tedious. For example, consider the D I.R. for which there are the metal orbital $\mathcal{L}_{\overline{l}}$ and the ligand $\mathcal{L}_{\overline{l}}$ are called group overlap integral is given by $$I = \int \chi_2^* (3d_{\gamma_2}) d\tau \qquad (27)$$ By substituting χ_{λ}^{*} from Table 3: $$\int = \frac{1}{2} \left[\langle (p_y)_1 | 3d_{yz} \rangle - \langle (p_y)_2 | 3d_{yz} \rangle - \langle (p_y)_3 | 3d_{yz} \rangle + \langle (p_y)_4 | 3d_{yz} \rangle \right] (28)$$ An integral like (p)/3d is called a <u>two-center integral</u> because the function (p) is centered at the oxygen ion #1, and the $3d_{yz}$ at the vanadium ion. Since there are many tabulations of two-centered integrals referred to a spheroidal coordinate system (see Figure 4) one must express the central metal orbital $$3d_{y} = R(r) \sin \Theta : \sin \Phi \cos \Theta$$ (29) in four different coordinate systems which have their $\not\supseteq$ -axis pointing towards the ligand oxygen #1, #2, #3, and #4 respectively, and their x , y - axes parallel to the x , y axes of the left-handed systems at the individual ligand oxygen. Figure 3 shows that the above-mentioned transformation can be accomplished by substituting for $\cos \ominus$, $\sin \ominus \cdot \sin \Phi$ and $\sin \ominus \cdot \cos \Phi$ the expressions given in Table 4, where x and y are angles in the rotated coordinate systems, which play the role of y and y of the old system. TABLE 4 TRANSFORMATION OF THE SPHERICAL HARMONICS | Ligand | cos 🖯 | Sin⊖ sin⊅ | Sin $igophi$ cos $igoplus$ | |--------|----------------------------|---------------------------|----------------------------| | 1 | -sin∝ sinβ | A - B | - T - A | | 2 | -sin $\propto \sin \beta$ | A + B | + [- [| | 3 | -sin \propto sin β | -A + B | + L + V | | 4 | -sin ∝ sinβ | -A - B | - T + V | | 5 | -cos∝ | $\sin \propto \sin \beta$ | -sin $ imes$ cos β | | 6 | +cos ∝ | -sin∝ sinβ | -sin $\propto \cos \beta$ | | | | ` | , | Fig. 4. Speroidal Coordinate System where A = $\cos \varphi_1 \cdot \sin \alpha \cos \beta$, B = $\sin \varphi_1 \cdot \cos \alpha$, $\Gamma = \sin \varphi_1 \cdot \sin \alpha$ $\cos \beta$, $\Delta = \cos \varphi_1 \cdot \cos \alpha$. Therefore $$\begin{split} &I_{=\frac{1}{2}} \left[\langle P_{y} | R(r) \langle -\sin\alpha\sin\beta \rangle (\cos\varphi_{1}\sin\alpha\cos\beta - \sin\varphi_{1}\cos\alpha \rangle \right) \\ &- \langle (P_{y})_{2} | R(r) \langle -\sin\alpha\sin\beta \rangle (\cos\varphi_{1}\sin\alpha\cos\beta + \sin\varphi_{1}\cos\alpha \rangle \right) \\ &- \langle (P_{y})_{3} | R(r) \langle -\sin\alpha\sin\beta \rangle (-\cos\varphi_{1}\sin\alpha\cos\beta + \sin\varphi_{1}\cos\alpha \rangle \right) \\ &+ \langle (P_{y})_{4} | R(r) \langle -\sin\alpha\sin\beta \rangle (-\cos\varphi_{1}\sin\alpha\cos\beta - \sin\varphi_{1}\cos\alpha \rangle \right) \\ &= \frac{1}{2} \langle (P_{y}) | R(r)\sin\alpha\sin\beta \langle -4\sin\varphi_{1}\cos\alpha \rangle \right) \\ &=
\frac{1}{2} \langle (P_{y}) | R(r)\sin\alpha\sin\beta \langle -4\sin\varphi_{1}\cos\alpha \rangle \\ &= \frac{1}{2} \sin\varphi_{1} \langle (P_{y}) | 3d_{y_{2}} \rangle \\ &= 2\sin\varphi_{1} \langle P_{y} | 3d_{y_{2}} \rangle \\ &= 2\sin\varphi_{1} \langle P_{y} | 3d_{y_{2}} \rangle \end{split}$$ The $\langle 2p | 3c | m \rangle$ is a two-center overlap integral. Following this method and neglecting any ligand-ligand overlapping, the following (30) nonzero expressions for the group overlap integrals were obtained for each I.R. $$A 14 = 2 \left[\sin \frac{3}{2} + \cos \frac{3}{2} \right]_{i}$$ $$A 15 = \sqrt{2} \left[\sin \frac{3}{2} + \cos \frac{3}{2} \right]_{i}$$ $$A 24 = -\left[\sin \frac{3}{2} + \cos \frac{3}{2} \right]_{i}$$ $$A 25 = \sqrt{2} \left[\sin \frac{3}{2} + \cos \frac{3}{2} \right]_{i}$$ $$A 34 = \sqrt{3} \left(\cos^{2} \varphi_{i} - \sin^{2} \varphi_{i} \right) \left[\sin \frac{3}{2} \right]_{i}$$ $$A 34 = \sqrt{3} \left(\cos^{2} \varphi_{i} - \sin^{2} \varphi_{i} \right) \left[\sin \frac{3}{2} \right]_{i}$$ B (N39) BIN=2 $$\sqrt{3}$$ sing cos q[sino/2s|3de)+coso(2p|3de)] (32) c (N2g) $$C_{12} = 2\cos\varphi_{1} \langle 2p_{\pi} | 3d_{\pi} \rangle_{1}$$ $C_{13} = \sqrt{2} \langle 2p_{\pi} | 3d_{\pi} \rangle_{1}$ (33) D (N49) $$D12 = 2 \sin q \left(2p_{\pi} | 3d_{\pi} \right)_{i}$$ $$E (N3u)$$ $$E 12 = \sqrt{2} \left[\sin 2 \left(2s | 4p_{e} \right) + \cos 2 \left(2p_{e} | 4p_{e} \right) \right]_{i}$$ $$E 13 = 2 \left(2p_{\pi} | 4p_{\pi} \right)_{i}$$ (35) $$212=2\sin\varphi\left[\sin\theta\left(2s\left|4p_{e}\right|+\cos\theta\left(2p_{e}\right|4p_{e}\right)\right]_{i}$$ (36) $$\frac{H (N4w)}{H 12 = 2\cos\varphi_{1}[\sin 2/2s | 4p_{e}) + \cos^{2}(2p_{e}| 4p_{e})]_{1}}{H 13 = \sqrt{2}(2p_{H}| 4p_{H})_{1}}$$ (37) where \bar{l} stands for the shorter vanadium-oxygen distance and \bar{l} for the longer one. A, B, C, D, E, Z, H stand for N₁, N₃, N₂, N₄, N₄, N₃, N₂, N₄, and N₄, and the numbers denote the orbitals in the corresponding I.R. as listed in Table 2. For example, C13 denotes the group overlap integral of the first (i.e., $3d_{yz}$) and third (i.e., $3d_{yz}$) orbitals in the N₂, I.R. # 2. Two-Center Overlap Integrals It was seen that the group overlap integrals can be expressed in terms of two-center overlap integrals. In this paragraph the method of calculating the latter will be considered. For example, let the integral $25 |4p_6|$ be calculated when the distances are in atomic units and the radial parts are given as $$R(2s) = N_a r_a e^{-r_a r_a}$$ and $R(4p) = N_b r_b^2 e^{-r_b r_b}$ (38) Note that the normalization constants $\,{\rm N}_a\,\,$ and $\,{\rm N}_b\,\,{\rm are}$ given for the radial part only. Then $$\langle 2S | 4_{p_{e}} \rangle = N_{a} N_{b} \int_{\alpha}^{\infty} e^{-\frac{\pi \kappa}{4\pi}} \int_{\alpha}^{\infty} e^{-\frac{\pi \kappa}{4\pi}} \cos 3\sqrt{\frac{3}{4\pi}} d\tau$$ (39) Observing that in the spheroidal coordinate system of Figure 4 $$\kappa = \frac{R}{2} (\xi + \eta) \qquad r_{\alpha} \cos \theta_{\alpha} = \frac{R}{2} (1 + \xi \eta)$$ $$r_{\beta} = \frac{R}{2} (\xi - \eta) \qquad r_{\beta} \cos \theta_{\beta} = \frac{R}{2} (1 - \xi \eta)$$ $$d\tau = (\frac{R}{2})^{3} (\xi^{2} - \eta^{2}) d\xi d\eta d\varphi$$ (40) and defining $$\begin{aligned} p &= \frac{1}{2} (\mu_{a} + \mu_{b}) R \\ g &= \frac{1}{2} (\mu_{a} - \mu_{b}) R \\ A_{n}(p) &= \int_{-\infty}^{\infty} e^{-px} \times^{n} dx \\ B_{n}(q) &= \int_{-\infty}^{\infty} e^{-qx} \times^{n} dx \end{aligned}$$ (41) the integral $\langle 25 | 4p \rangle$ becomes $$\langle 2s | 4p \rangle = \frac{N_a N_b \sqrt{3}}{4\pi} \int_{\xi=1}^{\infty} \int_{\eta=1}^{1} \int_{\varphi=0}^{2\pi} e^{-\xi p - \eta g} \left(\frac{R}{2}\right) (\xi + \eta) \left(\frac{R}{2}\right) (\xi - \eta) \cdot \\ \cdot \left(\frac{R}{2}\right) (1 - \xi \eta) \left(\frac{R}{2}\right)^3 (\xi^2 - \eta^2) d\xi d\eta d\varphi$$ $$= N_{e} N_{b} \frac{\sqrt{3}}{2} \left(\frac{R}{2}\right)_{\xi}^{6} \int e^{-\xi p} \left(-\xi^{5} B_{1} + 2\xi^{3} B_{3} - \xi B_{5} + \xi^{4} B_{7} - 2\xi^{5} B_{4} + B_{4}\right) d\xi$$ $$= N_{0} N_{0} \frac{\sqrt{3}}{2} \left(\frac{R}{2} \right)^{6} \left[-A_{5} B_{1} + 2 A_{3} B_{3} - A_{1} B_{5} + A_{4} B_{0} - 2 A_{2} B_{2} + B_{4} \right]$$ (42) Similar expressions for the two-centered integrals needed in this work have been derived and are listed in Appendix D. The A and B integrals are tabulated in Refs. 32, 33, 34, and overall two-center integrals in Ref. 35. For the present problem the integrals A and B were calculated by a MAD program using the following SCF radial functions. 23,27 For oxygen R (2s) = .5459 $$\bigoplus_{\chi}$$ (1.80)+.4839 \bigoplus_{χ} (2.80) R (2p) = .6804 \bigoplus_{χ} (1.55)+.4038 \bigoplus_{χ} (3.45) For vanadium R (3d) = .52430836 $$\phi_3$$ (1.8289)+.49893811 ϕ_3 (3.6102) + .11312810 ϕ_3 (6.8020)+.00545223 ϕ_3 (12.4322) R (4s) = R (4p) = -.02244797 ϕ_1 (23.9091)-.01390591 ϕ_2 (20.5950) +.06962484 ϕ_3 (10.16666)+.06773727 ϕ_3 (9.3319) -.09707771 ϕ_3 (5.1562)-.024620956 ϕ_3 (3.5078) +.04411542 ϕ_4 (3.8742)+.36068942 ϕ_4 (1.8764) +.608999600 ϕ_4 (1.1462)+.14868524 ϕ_4 (1.7800) and $$\Phi_{\eta}(\mu) = N r^{\eta - 1} e^{-\mu r}$$ $$N = \sqrt{\frac{(2\mu)^{2\eta + 1}}{(2\eta)!}}$$ (45) The final results for the group overlap integrals (see Appendix D) are given in Table 5. TABLE 5 GROUP OVERLAP INTEGRALS | | SnO ₂ | TiO ₂ | GeO ₂ | |-----|------------------|------------------|------------------| | A14 | .494 | .495 | .525 | | A15 | .425 | .445 | .456 | | A24 | 148 | 162 | 180 | | A25 | .217 | .233 | .255 | | A34 | 053 | 045 | 063 | | B12 | .251 | .278 | .305 | | C12 | .090 | .112 | .128 | | C13 | .099 | .113 | .126 | | D12 | .110 | .131 | .157 | | E12 | .604 | .627 | .630 | | E13 | .325 | .359 | .395 | | Z12 | .504 | .474 | .502 | | H12 | .409 | .404 | .408 | | H13 | .227 | .243 | .259 | # 3. Diagonal Energy Matrix Elements The most subtle point in solving the secular Eq. (25) is the estimation of the energy matrix elements. Since these cannot be obtained from first principles, semiempirical methods to approximate them from known experimental spectroscopic data will be developed. Two types of energy matrix element are distinguished in the secular Eq. (25): (a) the diagonal elements $H_{\tilde{l}\tilde{l}}$, called Coulomb integrals, and (b) the off-diagonal ones $H_{\tilde{l}\tilde{l}}$, called resonance integrals. The Coulomb integral H_{ii} gives the potential energy of an electron in the i-th orbital. It can be taken equal to the free atom (or ion) ionization energy of an electron on this orbital to the zero-th approximation. For a hybrid orbital, the weighted average is taken, and for an orbital consisting of linear combination of ligand orbitals again the ionization energy of one of the similar ligand orbitals is taken. However, a better estimate of the H_{ii} 's is obtained by means of the concept of the valence state ionization potential (VSIP). A discussion of the procedure is given by Moffitt²⁹ (see also Appendix H). To use Moffitt's tables 29 for the oxygen VSIP, a binding scheme must be adopted. Here it will be shown that the adoption of the ionic states $^{+}$ and $^{+}$ for the oxygen and vanadium respectively, can satisfy the symmetry requirements and the production of the ESR spectrum in a homopolar binding scheme with oxygen $^{-}$ hybridization. From Figure 1 the spatial arrangement of ions in the rutile structure suggests a valency of three ($^{+}$ 03) for the oxygen ions and a valency of six ($^{+}$ 06) for the metal ions. This implies that there are three and six electrons with uncorrelated spins in the respective valence states (see Appendix H). The oxygen ion configuration giving valency of three is According to Figure 2 and the discussion in Chapter II-3, the 2s, $2p_x$, and $2p_y$ form hybrid orbitals with three spin-uncorrelated electrons. The other two electrons will occupy the $2p_z$ orbital forming the socalled <u>lone pair</u>. Such an electron will be denoted as p_ℓ . For an overall crystal neutrality the metal ions must have a double negative charge. This implies that for vanadium there are seven valence electrons outside the argon core. This is expected if one considers the six bonds with the surrounding oxygen ions and the single unpaired electron which produces the ESR spectrum. The bonding scheme fits the requirement of the symmetry and of the number of electrons except that oxygen has a much greater electronegativity than vanadium, ¹¹ and Pauling's electroneutrality principle ¹¹ asserts that the charge on each ion is in the range -le to +le. One can overcome these difficulties by assuming a partially ionic character of the bonds so that electronic charge is shifted towards the ligands, resulting in a small positive charge for vanadium and a correspondingly small negative charge for the oxygen ions. As it will be seen, the molecular orbital calculation will determine this ionicity of the bonds. In this sense the charges O⁺, V² will be considered from now on as nominal charges. Of course, none of the above problem arises if one considers a purely ionic bonding with $\sqrt{4+}$ and $\sqrt{3-}$. The nearest noble gas configuration is achieved for oxygen and metal ions except for $\sqrt{^{4+}}$ which is left with one valence electron producing the ESR spectrum. However, it is believed that a purely ionic bonding is generally rare outside the I-VII compounds. The VSIP's of \bigcirc ⁺ calculated here are 416396 cm⁻¹, 277022 cm⁻¹, and 253122 cm⁻¹ for an s-, p-, and p - electron respectively. The oxygen atom in the rutile structures is assumed to have the configuration with three unpaired spins. The corresponding valence state, according to Moffitt, is designated as $5\frac{2}{5}\times\sqrt{3}$ with promotion energy $$\frac{1}{2}(^{4}P) + \frac{1}{4}(^{2}P) + \frac{1}{4}(^{2}D) = 154626.63 \text{ cm}^{-1}$$ The fact that 2s, $2p_{\rm X}$,
and $2p_{\rm y}$ hybridize does not change this energy, as the configuration remains unchanged. This is called first-order hybridization. To estimate the ionization potential (I.P.) of an sor p-electron, the valence state of the final configuration must also be considered. Thus, for an s-unpaired electron $$sp^4(\sqrt{s}) \longrightarrow p^4(\sqrt{s})$$ for a p-unpaired electron $$sp^4(\sqrt{2}) \longrightarrow sp^3(\sqrt{2})$$ for a $p_{\mathbf{p}}$ -electron of the lone pair $$sp^4(V_3) \longrightarrow sp^3(V_4)$$ Therefore: VSIP of $$\binom{s}{p}$$ = (I.P. of 0^+ ground state)-promotion energy to $sp^4(V_3)$ + +promotion energy to $\binom{p^4(V_2)}{sp^3(V_2)}$ of 0^{++} = $$(283550.9 \text{ cm}^{-1})$$ - $(154626.63 \text{ cm}^{-1})$ + $\begin{pmatrix} 287472.15 \\ 148097.82 \\ 124197.90 \end{pmatrix}$ = $\begin{pmatrix} 416396.42 \text{ cm}^{-1} \\ 277022.09 \text{ cm}^{-1} \\ 253122.20 \text{ cm}^{-1} \end{pmatrix}$ (47) as the promotion energies to $p^4 \left(\bigvee_{2} \right)$, $Sp^3 \left(\bigvee_{2} \right)$ and $Sp^3 \left(\bigvee_{4} \right)$ of 0^{++} are given by: $$\frac{3}{4}(^{3}P)_{+\frac{1}{4}}(^{1}D), \quad \frac{3}{8}(^{3}D^{\circ})_{+\frac{1}{8}}(^{1}D^{\circ})_{+\frac{3}{8}}(^{3}P^{\circ})_{+\frac{1}{8}}(^{1}P^{\circ})$$ and $$\frac{5}{16}(^{5}S^{\circ}) + \frac{3}{16}(^{3}S^{\circ}) + \frac{6}{16}(^{3}D^{\circ}) + \frac{2}{16}(^{1}D^{\circ})$$ respectively. The VSIP of O and O are calculated next and found to be 222000 cm⁻¹, 115300 cm⁻¹, and 98968 cm⁻¹ for an s-, p-, and p - electron of O respectively, and (80000 cm⁻¹), 16200 cm⁻¹, and 3710 cm⁻¹ for the corresponding electrons of O . The procedures are as follows: It was seen that the polarity of the bonds is expected to decrease the positive charge on the oxygen center and most likely to reverse it. In such a case the VSIP will be different, clearly smaller, so that it needs to be re-estimated. Since the tables give spectroscopic data of the elements with integral electronic charge, the VSIP of fractional charge is to be obtained by interpolation. Next we need to see how to estimate the VSIP of an oxygen which is effectively neutral (or with -1/e) charge) because of the polarity of the bonds. For this it is assumed that the VSIP of the isoelectronic ion will be a good approximation. For an effectively neutral oxygen or for ________, the neutral nitrogen atom N o and the carbon negative ion C are considered instead. All VSIP for N o and C , except for the 2s electron of C are obtained from a table given by Skinner and Pritchard. A value of about 10 eV is not unreasonable for the C 2s electron. The procedure of calculating the VSIP is the same as in the previous paragraph. The values taken from the tables of Skinner and Pritchard are: (a) Valence state energies in eV. | $\operatorname{\mathfrak{sp}}^4(V_3)$: | C - | (9.38) | extrapolated | |---|----------------|--------|--------------| | | N | 14.23 | | | ${\rm sp}^3({\rm V}_4)$: | С | 8.14 | | | | N ⁺ | 11.64 | | | $\operatorname{sp}^3(V_2)$: | C | 9.69 | | | | N ⁺ | 14.03 | | | $p^4(V_2)$: | C | - | | | | N+ | (27.2) | extrapolated | (b) Ionization potentials in eV. $$C^{-}(s^{2}p^{3}, {}^{4}s)$$ $C(s^{2}p^{2} {}^{3}P)$ 1.7 $N(s^{2}p^{3}, {}^{4}s)$ $N^{+}(s^{2}p^{2} {}^{3}P)$ 14.5 Finally the VSIP of the vanadium d electrons are estimated. The results are summarized in the following table. | | V ⁺⁺ (Co ⁺⁺) | $V^+(Fe^+)$ | V°(Mn°) | |----|-------------------------------------|--------------------------|------------------------| | 4p | 165658 cm ⁻¹ | 102308 cm^{-1} | 38722 cm ⁻¹ | | 4s | 219465 | 127369 | 54762 | | 3d | 295997 | 141178 | 62516 | Moffitt does not give tables for 3d electrons, so the following procedure was adopted. The isoelectric series for vanadium in the rutile structure with nominally seven electrons, but with an effective charge of zero, +le and +2e, is Mn°, Fe⁺, Co⁺⁺. According to Moore's tables and notation, ²⁸ the I.P. of Mn° (α 6 S) to Mn⁺(α 7 S) is 59960 cm⁻¹. The average of the two states of Mn°, α 8 P°(α S+4P α) and α P°(α S+4P α S), is 21257.74 cm⁻¹; therefore VSIP of 4p electron $$\approx 59960-21237.74-0=38722.26 \text{ cm}^{-1}$$ (48) The average, also, of the two states of Mn°, $\alpha^6D(\alpha^5D+45\uparrow)$ and $\alpha^4D(\alpha^5D+45\downarrow)$, is 19784.41 cm⁻¹; the average of α^5D of Mn⁺ is 14586.16 cm⁻¹. Therefore VSIP of 4s electron $$\stackrel{\sim}{=}$$ 59960-19784.41+14586.16=54761.75 cm⁻¹ (49) The same procedure is applied for Fe $^+$ and Co $^{++}$. The 3d VSIP for Mn $^\circ$, Fe $^+$, and Co $^{++}$ are estimated from the tables given by Slater 31 and Watson. 27 In Table 6 the valence state ionization potentials for the vanadium charge range 0 to +.65e and the corresponding oxygen range 0 to -.325e are tabulated. Interpolation is used to obtain the VSIP's of the electrons on the vanadium orbitals 4p, 4s, 3d and on the oxygen orbital of the lone pair p , for various fractional net charges of the vanadium and oxygen ions. For the electrons on the hybrid orbitals $$G_i = sind(2s) + cosd(2p)$$ (50) the VSIP's are the weighted averages: (VSIP) = $$\sin^2 \vartheta$$ '(VSIP of 2s)+ $\cos^2 \vartheta$ '(VSIP of 2p) (51) These are calculated for the integral values of the net ionic charge and then interpolated. The values of sin 3' and cos 3' are taken from Table 2. These VSIP's present a weak point in all semiempirical calculations. However, there are two reassuring factors: (a) the use of isoelectronic-ion parameters does not affect the type and relative positions of molecular orbitals as the isoelectronic principle asserts, ³² and (b) since the VSIP's are used as parameters in solving the secular determinant even the numerical results will not be greatly different if the right parameters are chosen. # 4. Off-Diagonal Energy Matrix Elements The off-diagonal energy matrix elements, or resonant integrals, $+ \frac{33}{100}$ are even more difficult to estimate. Mulliken's that $H_{i,i}$ is 1.5 to 2 times the quantity $S_{i,j}$ ($H_{i,i} + H_{i,i}$)/2 is often followed. Wolfsberg and Helmholtz used both 1.67 and 2. More recently Gray and Ballhausen, 23 and Lipscomb 38 used 2. However, the geometric mean seems to give a better fit than the arithmetic mean, so throughout this work $H_{i,j}$ will be approximated by $$H_{i\dot{\delta}} = -9.5_{i\dot{\delta}} \sqrt{H_{i\dot{i}} H_{\dot{\delta}\dot{\delta}}}$$ (52) TABLE 6. VSIP OF VANADIUM AND OXYGEN IONS | | | | | Vanadi | Vanadium Ionic Cha | Charge | | | |--------------------------|------------------------------|--------|--------|--------|--------------------|--------|--------|--------| | | | +.000 | +.050 | +.100 | +.150 | +.200 | +.250 | +.300 | | | 4 | 038722 | 041968 | 045215 | 048461 | 051707 | 054954 | 058200 | | | 5 7 | 054839 | 057965 | 061092 | 064218 | 067344 | 070471 | 003820 | | (| 30 | 062516 | 065680 | 068844 | 072008 | 075172 | 078336 | 081500 | | $\sin 2$ | %
Q | 896860 | 096240 | 093512 | 090784 | 088056 | 085328 | 082600 | | | ² 6 ⁻⁷ | 135335 | 132063 | 128790 | 125518 | 122245 | 118973 | 115700 | | C
E | 6 | 187962 | 184352 | 180741 | 177131 | 173521 | 169910 | 166300 | | T10 ₂ | 92
Og | ı | 1 | 1 | 1 | ı | l | ı | | | ৾ | 131835 | 128563 | 125290 | 122018 | 118745 | 115473 | 112200 | | Ç | Ó | 194962 | 191352 | 187741 | 184131 | 180521 | 176910 | 173300 | | $\frac{\text{GeO}_2}{2}$ | 85
एक | ı | 1 | 1 | 1 | ı | ı | ı | | | <u>6.</u> | 135195 | 131923 | 128650 | 125378 | 122105 | 118833 | 115560 | | | 6 | 188242 | 184632 | 181021 | 177411 | 173801 | 170190 | 166580 | TABLE 6--Continued | | | | | Vanadi | Vanadium Ionic Cha | Charge | | | |------------------|------------------|--------|--------|---------|--------------------|--------|---------|--------| | | | +.350 | + .40 | +.45 | 1 | +.55 | + 09 | +.65 | | | 4P | 061546 | 064893 | 068239 | 071585 | 074932 | 078278 | 081624 | | | ·
5 | 076726 | 079853 | 083500 | 087000 | 001000 | 094500 | 097500 | | | 30 | 084664 | 087828 | 090992 | 000560 | 001660 | 103000 | 107000 | | SnO_2 | %
Q | 080000 | 077500 | 07 5000 | 072600 | 020000 | 067 500 | 065500 | | | ~ (j) | 112000 | 109100 | 106200 | 103200 | 100200 | 000860 | 095500 | | | Ó | 162700 | 159500 | 156200 | 153000 | 150000 | 146500 | 143500 | | TiO_2 | 95
Ozy | · • | ı | 1 | ı | | ı | 1 | | | ં | 108500 | 105600 | 102700 | 002660 | 002960 | 004200 | 092000 | | | 5 | 169700 | 166500 | 163200 | 160000 | 157000 | 153500 | 150500 | | GeO_2 | 9 | ı | ı | ı | ı | ı | ı | ı | | | 6 | 111860 | 108960 | 106060 | 103060 | 101860 | 098260 | 092360 | | | ti ⁻⁰ | 162980 | 159780 | 156480 | 153280 | 150280 | 146780 | 143780 | | | | | | | | | | | #### CHAPTER V ### SOLUTION OF SECULAR EQUATION ### 1. Energy Eigenvalues Chapter III showed that the original secular Eq. (15) is reduced to other smaller Eqs. (25) by using LCAO transforming according to the I.R. of the $D_{\rm Q}$ $\mu_{\rm c}$, group. To each I.R. corresponds a secular equation whose order depends on the number of functions belonging to it. For example, Table 3 shows that there is a secular equation of fifth order corresponding to the irreducible representation A. The group overlap integrals $S_{\rm i}$ and the diagonal energy matrix elements $H_{\rm i}$ were calculated in Chapter IV (see Tables 5 and 6). The latter is found to vary with the assumed ion charge. The former, however, does not seem to vary appreciably, according to the SCF calculations of Watson, 27 so that no correction is applied. The off-diagonal energy matrix elements are found by the approximation Eq. (52). Secular Eqs. (25) are solved on the IBM 7090 computer, using a program written in MAD language (see Appendix J). The input consists of diagonal energy matrix elements H_{ij} and the group overlap integrals S_{ik} . The off-diagonal elements H_{ij} are calculated by the program
following Eq. (52). The output consists of the one-electron eigenstates and eigenvalues of the vanadium and oxygen valence electrons in the MO scheme. Also, the fraction of the orbital charge that can be assigned to vanadium is given (for more details on this see the next section, V-2). Thus in Figure 5 the electron eigenvalues of SnO_2 :V are shown. The VSIP of vanadium in the range 0 to +65e and of oxygen in the corresponding region 0 to -.325e are taken from Table 5 and used as parameters (see below). Only nineteen orbitals are shown: two others, A_5 and E_2 , having energies around +90 Kcm⁻¹, are omitted. The central part of Figure 5 is drawn again in Figure 6. The levels are designated according to their symmetry. The subscripts are used to distinguish the various levels of the same symmetry. Similar curves for TiO_2 :V and GeO_2 :V are drawn in Figures 7 and 8 respectively. Energy eigenvalues are tabulated also in Appendix E. The similarity of the three spectra for SnO_2 , TiO_2 , and GeO_2 is striking, as well as the fact that the relative positions and values of the energy levels are sensitive to small changes in the ionic charge. Figure 5 shows that the A_3 level crosses the four levels E_3 , H_3 , $|\mathrm{X}_3>$, C_2 . The levels A_2 and B_2 cross some levels also. Similar results apply for the TiO_2 :V and GeO_2 :V. Now a justification is needed for treating the VSIP's as parameters. The difficulties in obtaining reliable values of the VSIP's were explained in Chapter IV. On the other hand, it is noticed that the energy eigenvalues depend rather critically on the VSIP's used. Therefore, any calculation based on a single set of VSIP's (i.e., on one Fig. 5. MO Energy Levels of $SnO_2:V$ Fig. 6. Central MO Energy Levels of SnO₂:V Fig. 7. Central MO Energy Levels of ${\tt TiO_2:V}$ Fig. 8. Central MO Energy Levels of ${\sf GeO}_2$:V assumed vanadium charge) cannot be expected to give results in quantitative agreement with experiment. Thus it is clear that to find the best set of VSIP another physical quantity is needed to monitor the calculation. Usually the ionic charge is taken as the means of achieving self-consistency. This is explained below. # 2. Charge Self-Consistency To select the best set of VSIP's and thus the solution of the secular Eqs. (25), the vanadium charge is taken as a monitor. A trial and error method is as follows: (a) A vanadium charge is assumed. (b) The corresponding VSIP's of vanadium and oxygen are selected from Table 6 and the secular equations are solved. (c) This solution is then used to calculate the vanadium charge which is compared to the assumed value. (d) The above procedures are repeated with different assumed vanadium charges until agreement is reached in step (c). When agreement is reached one says that charge self-consistency is fulfilled. To carry out this program one must determine which MO's are occupied and then calculate the charge on the vanadium ion from the MO's. The charge is calculated (see Appendix J) as follows: The solution of the secular Eqs. (25) provide twenty-one eigenvalues and eigenfunctions. A typical set of eigenvalues and eigenfunctions is given in Table 7. The simplest normalized eigenfunctions, like the B_1 , are of the form $$\psi = c_1 \phi_{van} + c_2 \phi_{lig}$$ (53) | Energy in c | Eigenfunctions | |------------------------|---| | 86743 E ₂ | $ -1.356 4p_{2}+.894 \Phi_{6}>+.569 \alpha_{4}>$ | | 80660 A ₅ | -1-283145>076/22>+-075/x2-y2>+-827/0,>+-675/05> | | -1182 Z ₂ | $ -1.134 4p_{1}+.775 \Phi_{3}\rangle$ | | -8235 H ₂ | 1-1.098 4p/>+.623/\$4>+.416/76> | | -58941 A ₂ | $ 018 45\rangle + .999 22\rangle + .133 x^2-y^2\rangle + .365 \Phi_1\rangle325 \Phi_5\rangle$ | | -59396 B ₂ | $ -9831\times y\rangle + .5541\Phi_{2}\rangle$ | | -68666 C ₃ | $ 852 \times2>+.434 91>+.483 91>$ | | -71053 D ₂ | 860/y=>+.614/0x2> | | -78298 A ₃ | 1.067 HS>132 122>+.989 122>+.006 \$1>+.003 \$5> | | -85328 C ₂ | $ 0000001 \times 2 > +.743 \propto_1 >669 \propto_5 >$ | | -85328 N _{Lu} | | | -87380 H ₃ | | | -88314 E ₃ | 1-178/4P2>138/06>+.934/0X4> | | -90600 D ₁ | -523/y=>+.797/Xx> | | -92019 C ₁ | 1.5401x=>+.5171x1>+.5741X5> | | -122743 H ₁ | | | -124155 Z ₁ | | | -125185 B ₁ | 1.3171xv>+,879.17 | | -130140 A ₄ | .261 45>201 28>051 x-y2>+.795 \$\Pi>138 \$P\$> | | -171422 E ₁ | . i | | -174822 A ₁ | | The orbital charge normalized to 1 is $$\int \psi^{2} d\tau = c_{1}^{2} + 2c_{1}c_{2} \langle \phi_{\text{van}} | \phi_{\text{liq}} \rangle + c_{2}^{2} = 1$$ (54) Following Mulliken's suggestion, 34 the fraction of MO charge on the vanadium is set equal to the charge C_1^2 found purely on vanadium, plus half of the overlap charge $\mathcal{N}_{C_1} \mathcal{C}_{\mathcal{N}_1} \mathcal{C}_{\mathcal{N}_2} \mathcal{C}_{\mathcal{N}_1} \mathcal{C}_{\mathcal{N}_2} \mathcal{C}_{\mathcal{N}_1} \mathcal{C}_{\mathcal{N}_2} \mathcal{C}_{\mathcal{N$ $$C_{\perp}^{2} + C_{\perp} C_{2} S_{\vee - 1}$$ (55) The generalization of this procedure to more complicated orbitals is obvious. In Figure 9 the fraction of the MO charge assigned to vanadium is plotted for the first thirteen molecular orbitals of SnO_2 :V vs. the assumed vanadium charge. It is observed that this fraction does not change for some of the MO's such as A_3 , E_3 , H_3 , C_2 , and $|X_3>$. This is exemplified in Appendix F for the A_3 level. For the six MO's B_1 , A_4 , C_1 , C_1 , C_1 , C_1 this variation is larger. Next we need to determine which of the above orbitals are occupied. A total of twenty-five electrons need to be accommodated in the MO's. There are three electrons from each oxygen ion--two electrons on 2p orbital and one a & hybridized one--and seven electrons from the vanadium ion, as seen in Chapter VI-3. Following Pauli's principle, two Fig. 9. Fraction of the Electronic Charge of the First Thirteen MO's Assign to Vanadium electrons are accommodated in each MO starting from the energetically lower one until the number of electrons is exhausted. The above twenty-five electrons are divided into two groups, twelve electrons on the oxygen 2p orbitals and thirteen electrons on the metal and $\mathfrak S$ oxygen orbitals. The nonhybridized oxygen 2p orbitals are distinguished from the rest because they have an almost symmetrical orientation with respect to the vanadium ion and two of the neighboring metal ions, so that their charge can be considered as belonging equally to any one of the crystal regions centered at the vanadium ion and the two neighboring metal ions. On the other hand, other orbitals assign their charge completely to the region centered at the vanadium ion. The assumption of having twelve electrons in 2p ligand orbitals and thirteen in metal or $\mathscr C$ orbitals is compatible with the situation that exists at the right-hand side of Figures 5 and 9 (i.e., for an assumed vanadium charge close to zero). In fact, the six orbitals C_1 , D_1 , E_3 , H_3 , A_3 , and A_2 accommodate twelve electrons on 2p oxygen orbitals. The rest are placed in metal and A_3 orbitals. When the twenty-five electrons are exhausted, it is seen that the ground state is the A_3 with one unpaired electron. However, on the left-hand side of the figures (assumed vanadium charge close to +.60e) the situation is different since twelve electrons go into the first six orbitals, and the next four into C_1 and D_1 orbitals. The latter are of metal character and not of ligand 2p. The next orbital A_3 is also of metal character. This results from the fact that the metal orbitals are more stable than the oxygen 2p ones in this region of the assumed charge. If all the twelve electrons of the ligand 2p orbitals migrate to metal orbitals only one-third of them would be attracted to vanadium orbitals and the other two-thirds into neighboring metal orbitals, provided no drastic energetic changes occur with respect to vanadium ones. Therefore in such a case only seventeen electrons $(13+1/3\cdot12)$ need be accommodated. It was seen that the left-hand part of the diagram can accommodate at least eighteen electrons before 2p ligand orbitals are used. This implies that only seventeen electrons have to be placed on the left, giving again, A_3 as the ground state. The situation at the center of the diagram is not clear. Fortunately the slopes of the C_1 and D_1 curves in Figure 9 are quite steep at the center, so that the ambiguity region is reduced appreciably. In both cases, the wave function for the ground state ${\bf A}_3$ can be written as a Slater's determinant $$\begin{vmatrix} A_1 & \overline{A_1} & \overline{E_1} & \overline{E_1} & \overline{C_1} & \overline{C_1} & \overline{C_1} & \overline{C_2} & \overline{C_3} \end{vmatrix}$$ (56) The unpaired molecular orbital A_3 determines the transformation properties of the determinant. The same results hold true for ${\rm TiO}_2$:V and ${\rm GeO}_2$:V. The net vanadium charge can now be calculated using Figures 5 and 9 and the fact that seventeen electrons are placed on the MO when the assumed vanadium charge is greater than +.35e and twenty-five when it is less than +.30e. Figure 10 plots the calculated vs. the assumed vanadium charge in the region 0 to +.65e for ${\rm SnO}_2$:V. Charge self-consistency is shown to occur for an assumed value of about +.27e. Similarly, +.26e and +.25e are obtained for ${\rm TiO}_2$:V and ${\rm GeO}_2$:V. Table 7 Fig. 10. Calculated Vanadium Charge vs. the Assumed Charge gives the eigenfunctions and eigenvalues for SnO_2 :V corresponding to +.25e. # 3. Detailed Charge Self-Consistency Usually a semiempirical calculation stops when charge self-consistency is achieved. However, for an overall consistency of the
calculation the detailed electron distribution and the VSIP's should be compatible. That is, not only must the assumed and calculated net charges agree, but also there must be an agreement at the assumed and calculated orbital charge distribution which determines the VSIP. As shown in Figure 9, at the assumed vanadium charge of +.25e the six $\[\]$ -bonding orbitals give rise to the electronic charge distribution on the average as follows: 15% on the central metal ion and 85% on the six ligand oxygen ions, although it was assumed a 50% distribution when the VSIP's were calculated in Chapter IV-3. Similarly, for the π -orbitals C_1 , C_2 , D_1 , E_3 , H_3 , and \mathcal{L}_3 , a 100% distribution on the ligand ions was assumed in contrast to the calculated distribution which shifts roughly 35% of the electronic charge to the metal ion for the orbitals C_1 and D_1 and 7% for the orbitals E_3 and H_3 . On the average, 14% of the π -orbital charge is shifted towards the metal ion. Therefore, relatively, the π -orbital VSIP's should be increased and the π -orbital VSIP's decreased. In order to see the effect of such a correction, the calculations were repeated in the region from +.60e to +.40e by reducing the VSIP's of the +T -electrons only. The results for +SnO₂:V with a reduction of 35000 cm⁻¹ and 45000 cm⁻¹ are shown in Figures 11, 12, and 9. In Figure 9 the dotted lines represent changes produced by the \mathbb{T} reduction of 35 Kcm⁻¹. Charge self-consistency occurs at about +.40e. It is observed that there is a change in the energy level position of the C , D , E , H , and $|\times_3\rangle$ symmetries as well as in the electronic charge distribution. Table 8 summarizes the assumed electronic charge occupancy of the $\[\[\]$ and $\[\]$ oxygen orbitals in the bonding scheme of Chapter IV as well as in the calculated one. TABLE 8 ASSUMED AND CALCULATED & AND TT ORBITAL OCCUPANCY | Orbital | Assumed | Calc | ılated | |---------|---------|----------------------|-----------------------------------| | | | no TT VSIP reduction | 35 Kcm ⁻¹ TT VSIP red. | | Ø | 50% | 85% | 76% | | TT | 100% | 86% | 94% | It is observed that the calculated values in the second column of Table 8 imply a correction to the VSIP calculated in Chapter IV. The smaller charge of the TI orbitals (86%) with respect to the assumed one (100%) indicates a reduction of the corresponding VSIP due to the decrease in the electron-electron repulsion energy. Similarly, the VSIP of the \circlearrowleft orbitals should be increased. In the last column the results are listed when the \intercal T electron VSIP is reduced by 35 Kcm⁻¹. Fig. 11. MO Energy Levels of SnO₂:V for a 7-electron VSIP Reduction of 35 Kcm⁻¹ (left) and 45 Kcm⁻¹ (right) Fig. 12. Calculated Vanadium Charge vs. the Assumed Charge for a 77-electron VSIP Reduction of 35 Kcm⁻¹ (left) and 45 Kcm⁻¹ (right) The charge occupancy of the π orbitals increases to 94% while that of the $\mathcal E$ orbitals decreases to 76%. These changes are in the direction that requires smaller reduction in the π electron VSIP. Therefore, in principle, consistent values of VSIP should exist with respect to the occupancy of the π and $\mathcal E$ orbitals by the electronic charge. The determination of these consistent VSIP does not seem feasible without additional information (see also Chapters VI-1 and VII-2). #### CHAPTER VI # THE ELECTRONIC q AND A TENSOR In this chapter the electronic tensor is used as a monitor instead of the ionic charge. The solutions that satisfy the tensors are singled out and compared with those found in Chapter V. The hyperfine tensor A provides additional checking. # 1. The Electronic Q Tensor as a Monitor As stated in the Introduction, the purpose of this work is to attempt an explanation of the observed ESR spectra in the rutile-type crystals having vanadium as an impurity. In Chapter V-2, the valence electronic levels were found using self-consistency. Since these solutions can be used to calculate the electronic tensors, the next step would be to compare the experimental results on the quantum tensors with the calculated ones. However, due to the approximate nature of the semi-empirical methods, the set of VSIP's which gives the best charge self-consistency is not necessarily expected to give the best fit for the quantum tensor. Furthermore, in Chapter V-3, the need of changing the VSIP's to obtain detailed charge self-consistency is pointed out. The need of these facts it is felt that the experimental tensors have to be used as monitors in selecting the best solutions out of the many ones found in Chapter V. This procedure is followed in this section. The experimentally found deviations of the ${\bf q}$ tensor from the free electron value are given in Table 9. TABLE 9 EXPERIMENTAL DEVIATIONS OF % TENSORS COMPONENTS FROM THE FREE ELECTRON VALUES FOR VANADIUM IN SnO₂, TiO₂, GeO₂ | | $\Delta_{ extsf{g}_{ extsf{xx}}}$ | $\nabla^{\delta^{\lambda\lambda}}$ | $\triangle_{g_{\xi\xi}}$ | |---------------------|-----------------------------------|------------------------------------|--------------------------| | SnO ₂ :V | 061 | 097 | 057 | | TiO ₂ :V | 085 | 087 | 044 | | GeO ₂ :V | 079 | 079 | 037 | The theory for the Q tensor when the ground state is a singlet (orbital) has been worked out by Pryce. 35 The components of the most general Q tensor are given by $$g_{i\bar{\delta}} = \mathcal{A}\left(\delta_{i\bar{\delta}} - \mathcal{A} \wedge_{i\bar{\delta}}\right) \tag{57}$$ where $$\Lambda_{i\dot{\delta}} = \sum_{m\neq 0} \frac{\langle 0 | \hat{L}_i | n \rangle \langle m | \hat{L}_{\dot{\delta}} | 0 \rangle}{E_m - E_0}$$ (58) is a real, symmetric, positive, definite tensor and \supset is the spin-orbit coupling constant. Excited states are denoted by $|\gamma\rangle$. Using the transformation properties of the eigenfunctions and the operators as shown in Appendix C and recalling that the ground state belongs to the identity I.R., one observes that: - (a) All off-diagonal elements $\bigwedge_{i,j} \left(\begin{array}{c} i \neq j \end{array} \right)$ in the relation Eq. (57) are identically zero. The reason is that in Eq. (58) the excited state \bigwedge should belong to the same I.R. with the corresponding operator $\begin{pmatrix} i \\ j \end{pmatrix}$ for a nonzero matrix element and each one of the $\begin{pmatrix} i \\ j \end{pmatrix}$, $\begin{pmatrix} i \\ j \end{pmatrix}$, $\begin{pmatrix} i \\ j \end{pmatrix}$ transforms according to a different I.R., namely, D, C, and B respectively (see Appendix C). - (b) The only nonzero diagonal matrix elements $\bigwedge_{i,j}$ occur with excited states belonging to the B, C, or D I.R. The ESR spectra of vanadium in SnO_2 , TiO_2 , and GeO_2 , reveal an electronic spin of S=1/2 Therefore, the excited states can occur in two ways: In the expression (56) of the ground states as a Slater determinant either the orbital A_3 is replaced by one of the higher lying orbitals of symmetry B, C, D or one of lower lying orbitals of symmetry B, C, D is replaced by the A_3 orbital (see Figure 13). The operators $\hat{L} = \sum_{j=1}^{N-1} \hat{L}_j$ are one-electron operators, so that $$\left\langle \left\{ A_{1}\bar{A}_{1}E_{1}\bar{E}_{1}-D_{1}D_{1}A_{3}\bar{A}_{3}\right\} \right| L_{x}\left| \left\{ A_{1}\bar{A}_{1}-D_{1}\bar{D}_{1}A_{3}\right\} \right\rangle =\pm\left\langle D_{1}\left| \ell_{x}\right| A_{3}\right\rangle \text{ etc. } \tag{59}$$ There are two eigenfunctions of type B, two of type D, and three of type C that must be considered (the B_1 , B_2 , D_1 , D_2 , C_1 , C_2 and C_3 of Table 6). Using the following relations: Fig. 13. Allowed Crystal Field and Charge Transfer Transitions $$\hat{\ell}_{x}|x^{2}-y^{2}\rangle = -i|x^{2}\rangle$$ $$\hat{\ell}_{x}|z^{2}\rangle = -i\sqrt{3}|y^{2}\rangle$$ $$\hat{\ell}_{y}|x^{2}-y^{2}\rangle = -i|x^{2}\rangle$$ $$\hat{\ell}_{y}|z^{2}\rangle = i\sqrt{3}|x^{2}\rangle$$ $$\hat{\ell}_{z}|x^{2}-y^{2}\rangle = 2i|x^{2}\rangle$$ $$\hat{\ell}_{z}|z^{2}\rangle = 0$$ (60) and neglecting contributions from the nonmetal parts of the orbitals (see Discussion) one gets: $$\frac{1}{2} \sum_{x=1}^{2} \frac{\left[\left(\frac{d_{x}(y+1) - \alpha_{x} i\sqrt{3}(y+1) \alpha_{x}$$ (61) $$3 \wedge_{xx} = 5 \left[\frac{d_{x}^{2}}{E_{D_{x}} - E_{A_{3}}} - \frac{d_{x}^{2}}{E_{A_{3}} - E_{D_{1}}} \right] \left[\alpha_{x^{2}} + \alpha_{2} \sqrt{3} \right]^{2}$$ (62) $$3 \wedge_{yy} = 5 \left[\frac{c_3^{2}}{E_{C_3} - E_{A_3}} - \frac{c_1^{2}}{E_{A_3} - E_{C_1}} \right] \left[a_{x^2 - y^2} - a_{z^2} \sqrt{3} \right]^{2}$$ (63) $$3 \bigwedge_{22} = 3 \left[\frac{b_{2}^{2}}{E_{B_{2}} - E_{A_{3}}} - \frac{b_{1}^{2}}{E_{A_{3}} - E_{B_{1}}} \right] \left[2 \alpha_{x^{2} - y^{2}} \right]^{2}$$ (64) where $\Omega_{\tilde{l}}$, $b_{\tilde{l}}$, $C_{\tilde{l}}$, $d_{\tilde{l}}$ are the coefficients of the corresponding metal parts in the molecular orbitals A, B, C, and D respectively, and \tilde{l} is the one-electron spin orbit coupling constant. The minus sign before the second term in the first brackets is due to the fact that the charge transfer transitions affect electrons with opposite spin. The coefficients $\Omega_{\tilde{l}}$, $D_{\tilde{l}}$ and the energy terms E_{A_3} , E_{B_1} were obtained in Chapter V for the range of the assumed vanadium charge +.65e to 0. This range is extended to -.40e in this chapter. The needed energy matrix elements in the interval 0 to -.40e are taken from Chapter IV-3 with the necessary interpolations. The calculated values of \bigwedge_{i} are plotted in Figures 14, 15, and 16 for $SnO_2:V$, $TiO_2:V$, and $GeO_2:V$ respectively. A significant point to note is that \bigwedge_{i} is always larger than \bigwedge_{i} . From the Eq. (57) one gets $$\Delta_{g_{ii}} = -2\lambda \Lambda_{ii} \qquad i = x, y, \neq \qquad (65)$$ Therefore, the calculated
$\triangle_{\frac{1}{2}}$ is always absolutely larger than $\triangle_{\frac{1}{2}}$ although the experimental results (see Table 9) show the opposite. The spin-orbit parameter \bigcirc is taken as constant in the range 140 cm⁻¹ to 250 cm⁻¹ according to Moore's spectroscopic tables. The results so far indicate that none of the sets of the VSIP derived in Chapter IV can be compatible with the observed 9 tensors. In Chapter V-3, the first need for a change of the VSIP's used was seen. Now an additional factor is added. It is interesting to see what changes in the values of the VSIP's are needed to account for the observed 9 tensor and how these changes compare with the results found in Chapter V-3. So far Q was not considered. For this problem one notes that the calculation of $\bigwedge_{\frac{1}{2}}$ involves the energy levels A_3 , B_1 , and B_2 (see Figure 13). These levels remain unchanged by the π electron VSIP reduction mentioned in Chapter V-3, in contrast to $\bigwedge_{\chi\chi}$ and $\bigwedge_{\chi\chi}$ which involve the levels $D_{\tilde{l}}$ and $C_{\tilde{l}}$. The last two sets of levels are both affected by the π -electron VSIP reduction. TABLE 10 $\label{eq:components}$ OBSERVED AND CALCULATED $\mbox{\it \$\mu}$ TENSOR COMPONENTS OF VANADIUM IN \mbox{SnO}_2 , $\mbox{\it TiO}_2$, AND \mbox{GeO}_2 | | g _× | g _y | g _z | |--------------------------|----------------|----------------|----------------| | obs. | 1.939 | 1.903 | 1.943 | | SnO ₂ :V cal. | 1.943 | 1.903 | | | obs. | 1.915 | 1.913 | 1.955 | | TiO ₂ :V cal. | 1.928 | 1.898 | | | obs. | 1.921 | 1.921 | 1.963 | | GeO ₂ :V cal. | 1.949 | 1.819 | | | | | | | The components of \$\int \tensors were calculated with a \$\pi\$-electron VSIP reduction of 35 Kcm\$^{-1}\$ and 45 Kcm\$^{-1}\$ in the interval +.60e to +.40e of the assumed vanadium charge. The results are plotted in Figures 17, 18, and 19 for \$\Sin_2:V\$, \$\TiO_2:V\$, and \$\GeO_2:V\$ respectively. The upper part of each figure corresponds to the 45 Kcm\$^{-1}\$ reduction. In the case of \$\Sin_2:V\$ agreement is achieved at +.40e with 45 Kcm\$^{-1}\$ reduction. A charge self-consistency calculation requires a vanadium charge of +.41e (see Figure 12). Therefore, an almost exact coincidence of the two methods is reached. Similar results can be found with \$\TiO_2:V\$ and \$\GeO_2:V\$, although a greater \$\pi\$-electron VSIP reduction is needed (10 Kcm\$^{-1}\$ to 20 Kcm\$^{-1}\$ more). Fig. 17. Calculated \bigwedge Tensor Components of SnO₂:V for a π -electron VSIP Reduction of 35 Kcm⁻¹ (lower) and 45 Kcm⁻¹ (upper) Fig. 18. Calculated \bigwedge Tensor Components of TiO₂:V for a $\sqrt{\ \ }$ -electron VSIP Reduction of 35 Kcm⁻¹ (lower) and 45 Kcm⁻¹ (upper) The result of the previous paragraph is that a choice of the TT-electron VSIP can be made so that the calculated value of $Q_{\frac{1}{2}\frac{1}{2}}$ is the same as the experimental value. Thus Table 10 is completed. Whether this choice of the VSIP represents also the crystal reality and not just a mathematical device is not known. It is observed, though, that the change needed by the Q tensor in the VSIP of T-electrons coincides with the similar need of the detailed charge self-consistency (see also Chapter VII-2). # 2. The Hyperfine Interaction Tensor A The hyperfine tensor A can also be used to check the results found in Chapter V. The anisotropic part of the hyperfine tensor A depends on the form of the ground state wave function, and the discussion that follows is limited to this state. The ESR spectra of vanadium in SnO_2 , TiO_2 , and GeO_2 reveal a strong hyperfine interaction of the unpaired electron with the vanadium nucleus. Experimental values of the hyperfine tensor in units of 10^{-4} cm⁻¹ are given in Table 11. Since the relative sign of the hyperfine tensor components cannot be determined, they are assumed to be all of the same sign so that the isotropic part becomes maximum. Subtraction of the isotropic part leads to the following components of the anisotropic part listed in Table 12. TABLE 11 $\begin{tabular}{llll} \hline EXPERIMENTAL & HYPERFINE & TENSOR & COMPONENTS & OF & VANADIUM \\ & & IN & SnO_2, & TiO_2, & AND & GeO_2 \\ \hline \end{tabular}$ | | A _x | Ay | Az | |---------------------|----------------|----|-----| | SnO ₂ :V | 21 | 44 | 144 | | TiO ₂ :V | 31 | 43 | 142 | | GeO ₂ :V | 37 | 38 | 134 | TABLE 12 ANISTROPIC PART OF THE HYPERFINE TENSOR COMPONENTS DEDUCED FROM EXPERIMENT | | A ^{anis} | Anis
Ay | Aanis
Az | | |---------------------|-------------------|------------|-------------|--| | $snO_2:V$ | - 49 | -26 | 75 | | | TiO ₂ :V | -41 | -29 | 70 | | | GeO ₂ :V | -33 | -32 | 65 | | | | | | | | In Chapter V-2, it was found that the A_3 level was the ground state. Its form is given in Table 7 of Chapter V. In Appendix F the coefficients of the metal parts of the A_3 level are listed for the interval +.65e to -.50e of the assumed vanadium charge. The variation of these coefficients is negligible. Therefore any result based on these coefficients does not depend critically on the assumed vanadium charge. For the discussion of the anisotropic part of the hyperfine tensors only the parts of the ground state wave functions that contain the metal $|\times^2 - \times^2 \rangle$ and $|\times^2 \rangle$ states are needed. These are taken from Appendix F. The vanadium charge is taken as +.40e because of the results found in Chapter VI-1. Using the relation $$| \times^{\mathfrak{A}} - \times^{\mathfrak{A}} \rangle - \sqrt{3} | \neq^{\mathfrak{A}} \rangle = \mathcal{A} | \times^{\mathfrak{A}} - \neq^{\mathfrak{A}} \rangle$$ (66) and the coefficients in Appendix F, one gets SnO₂:V .912 | $$x^2-y^2 > +.154 | x^2-z^2 >$$ TiO₂:V .929 | $x^2-y^2 > +.126 | x^2-z^2 >$ (67) GeO₂:V .907 | $x^2-y^2 > +.160 | x^2-z^2 >$ The field produced at the center by an electron in the orbital $|\times^2-y^2\rangle$ has a relative strength of 1, 1, and -2 when an external magnetic field is applied along the x, y, and z axes respectively, while for the orbital $|\times^2-z^2\rangle$ it is 1, -2, and 1. When the occupational probability for an orbital is less than one, the relative strengths have to be multiplied by that probability. For example, the coefficient of the $|\times^2-y^2\rangle$ state of $\mathrm{SnO}_2:V$ is .912 in Eq. (67), the occupational probability is $(.912)^2 \approx .82$ and the field produced at the nucleus will be proportional to .82, .82, and -1.64. In this way, one gets from Eqs. (67) the following relative strengths of the magnetic field and therefore of the hyperfine interaction. TABLE 13 CALCULATED RELATIVE STRENGTH OF THE MAGNETIC FIELD AT THE VANADIUM NUCLEUS DUE TO THE GROUND STATE ELECTRONIC CHARGE | , | | х | у | z | |---------------------|--------------|------|------|--------| | SnO ₂ :V | from x²-y² | .820 | .820 | -1.640 | | | 1x2-22> | .026 | 052 | .026 | | | Tota1 | .846 | .768 | -1.636 | | TiO ₂ :V | | .881 | .833 | -1.714 | | GeO ₂ :V | | .854 | .782 | -1.636 | | | | | | | Normalizing them to the $A_{\rm Z}^{\rm amis}$ of Table 11 one gets the results in Table 14. TABLE 14 CALCULATED ANISOTROPIC PART OF THE HYPERFINE TENSORS NORMALIZED TO A 2 715 | | A anis | A ^a mis
y | A _z anis | | |---------------------|-------------|-------------------------|---------------------|--| | SnO ₂ :V | -39 | -36 | 75 | | | TiO ₂ :V | - 36 | -34 | 70 | | | GeO ₂ :V | -34 | -31 | 65 | | The agreement with the experimental data of Table 11 is good. For $SnO_2:V$ and $TiO_2:V$, it is noted that a greater contribution of the $|E\rangle$ state is required than indicated by the coefficients in Appendix F. #### CHAPTER VII ## DISCUSSION AND CONCLUSIONS In conclusion, a summary of the obtained results is presented with some additional discussion. ## 1. Summary of Results The main results found in this work are: - (a) The ground state is found to be A_3 , which is mainly $x^2 y^3$ as Kasai⁴ and From, Kikuchi, and Dorain⁵ indicated earlier, but with a small admixture of 2^{3} and an even smaller admixture of 4s orbital. These admixtures are caused by the rhombic component of the crystalline field. In a tetragonal or axial field this admixture would be symmetry forbidden. As evident from Appendix F, the admixture coefficients are relatively constant over a wide region of the assumed vanadium charge from +.65 to -.50. The relatively lower admixture of the 2^{3} state in 2^{3} can be attributed to the smaller rhombicity that this crystal presents with respect to the other two. - (b) The ordering of the levels involved in the Q_1 tensor is found invariably to be $B_1(xy)$, $C_1(xz)$, $D_1(yz)$, $A_3(x^2-y^2)$, $D^2(yz)$, $C_3(xz)$, $B_2(xy)$ in increasing energy 42 (see Figures 5, 6, 7, 8, and 11). The levels D_2 , C_3 , and B_2 above the ground level $A_3(x^2-y^2)$ correspond to the levels of the crystal field theory. It is observed that $D_2(yz)$ is below $C_3(xz)$ whereas the simple crystal field theory predicts the reverse order. The formulas (62), (63), and (64) derived in Chapter VI-1 show the importance of the \geq^{λ} admixture in calculating the Δq values. For example, in SnO_2 :V the relative importance of admixture is given by the fraction $$\frac{\left[\alpha_{x^{2}-y^{2}}^{2}-\alpha_{z^{2}}\sqrt{3}\right]^{2}}{\left[\alpha_{x^{2}-y^{2}}^{2}+\alpha_{z^{2}}\sqrt{3}\right]^{2}} = \frac{\left[.989+.133\sqrt{3}\right]^{2}}{\left[.989-.133\sqrt{3}\right]^{2}} \simeq 2.5$$ (68) This fraction shows that the admixture of $-.133 \mid \cancel{2^{\lambda}} \rangle$ in the ground state introduces a factor of 2.5 in the value of \triangle_{yy} with respect to \triangle_{yx} . The numerical values of the coefficients are taken from Appendix F. (Note that this admixture gives an occupational probability of the state $\cancel{2^{\lambda}}$ of less than 2%.) - (c) The small admixture of \ge^{2}
function is important also in explaining the features of the anisotropic part of the hyperfine tensor components. - (d) Although a tetragonal symmetry implies a \Im tensor of axial symmetry, the converse is not always true. The same ordering of levels can be compatible with very different \Im tensors, as found in $\operatorname{SnO}_2:V$ and $\operatorname{TiO}_2:V$. (f) Using the above ground states and neglecting the effects of any charge transfer transition and of any admixture of ligand functions in the excited states $D_2(yz)$, $C_3(xz)$, and $B_2(xy)$, the following sequences of levels satisfy the observed $\frac{Q}{2}$ tensors. | | sno ₂ :v | TiO ₂ :V | GeO ₂ ∶V | |---------------------|-----------------------|-----------------------|-----------------------| | В ₂ (ху) | 31900cm ⁻¹ | 42400cm ⁻¹ | 53200cm ⁻¹ | | C ₃ (xz) | 11000cm ⁻¹ | 10700cm ⁻¹ | 8160cm ⁻¹ | | D ₂ (yz) | 1650cm ⁻¹ | 1895cm ⁻¹ | 4550cm ⁻¹ | | A ₃ | 0 | 0 | 0 | For the sake of comparison, the calculated levels of SnO_2 :V are given below when a reduction of the $\uparrow \uparrow \uparrow$ -electron VSIP of 35 Kcm⁻¹ and 45 Kcm⁻¹ are used (see Chapter VI-1) Reduction in T-Electron VSIP | | 35 Kcm ⁻¹ | 45 Kcm ⁻¹ | |---------------------|----------------------|----------------------| | B ₂ (xy) | 24202 | 24202 | | C ₃ (xz) | 7599 | 6767 | | D ₂ (yz) | 5315 | 4662 | | A ₃ | 0 | 0 | | | | | (g) Finally, the discussion in the next section shows that the ligand parts of the MO, which were neglected in the calculation of the \bigcirc q. in Chapter VI-1, may have absolute contributions of from 5% up to 25%. # 2. Discussion The freedom in choosing the VSIP of the \uppi -electrons independently from the \uppi -electrons is enough to bring the values in the right region although the necessary reduction in the above VSIP is found to be somewhat large. Further study of this matter is desirable. For the moment one can observe that even within the framework of this calculation a smaller reduction of the \uppi -electron VSIP is really needed. The \uppi values are due to the interplay of the spin-orbit coupling and the orbital Zeeman perturbations. In formula (58) one of the matrix elements is due to 3 + 5 and the other to 1 + 1. Due to 1 + 3 dependence of the S - O coupling parameter, only metal-metal and ligand-ligand terms need be kept in the first matrix element. In the second matrix element, though, the metal-ligand terms may become appreciable depending on the overlapping of metal and ligand functions. Since the A₃ level consists almost exclusively of metal functions, no correction is needed in the S - O matrix elements. The correction due to the orbital Zeeman term amounts in substituting $$d_{i}\left[d_{i}+d_{i}'\langle x_{x}|y_{z}\rangle\right] \qquad \text{for } d_{i}^{x}$$ $$c_{i}\left[c_{i}+c_{i}'\langle x_{x}|x_{z}\rangle+c_{i}''\langle x_{s}|x_{z}\rangle\right] \qquad \text{for } c_{i}^{x}$$ $$b_{i}\left[b_{i}+b_{i}'\langle \Phi_{x}|x_{x}\rangle\right] \qquad \text{for } b_{i}^{x}$$ $$(69)$$ in formulas (62), (63), and (64) respectively, where the orbitals $B_{i}(i=1,2), C_{i}(i=1,3), \text{ and } D_{i}(i=1,2) \text{ are written as follows:}$ $B_{i}: b_{i}|\times y\rangle + b_{i}'|\Phi_{x}\rangle$ $C_{i}: c_{i}|\times 2\rangle + c_{i}'|\gamma_{1}\rangle + c_{i}''|\gamma_{5}\rangle$ $D_{i}: d_{i}|\gamma_{2}\rangle + d_{i}'|\gamma_{2}\rangle$ (70) (see Appendix I). Since the coefficients b_2 , c_3 , and d_2 of the corresponding antibonding orbitals are negative, a reduction is implied in the calculated values of $\bigwedge_{\begin{subarray}{c}1\end{subarray}}$ by using the Eqs. (62), (63), and (64). Similarly, the positive coefficients b_1 , c_1 , and d_1 of the bonding orbitals imply also a reduction in the values of $\bigwedge_{\begin{subarray}{c}1\end{subarray}}$. A numerical calculation gives the reductions of $\bigwedge_{\hat{i}\hat{i}}$'s listed in Table 15, when the assumed vanadium charge of +.40e and the \bigwedge -electron VSIP reduction of 35 Kcm⁻¹ are used. TABLE 15 REDUCTION IN At +.40e ASSUMED VANADIUM CHARGE AND 35 Kcm⁻¹ TT-ELECTRON VSIP REDUCTION | | SnO ₂ :V | TiO ₂ :V | GeO ₂ :V | | |----|---------------------|---------------------|---------------------|--| | | 4.5% | 6.0% | 8.5% | | | | 5.5% | 8.5% | 10.5% | | | s. | 25.0% | 45.0% | 47.5% | | | | | | | | From Table 15 one observes that the inclusion of the ligand part has the greatest effect on $\bigwedge_{\begin{subarray}{c} \ge 2}$. In Chapter VI-1 the reduction of the TT-electron VSIP was used for the purpose of reducing $\bigwedge_{\begin{subarray}{c} \ge 2}$. Now a more careful calculation of the orbital Zeeman matrix elements with the inclusion of the ligand part shows that the required TT-electron VSIP reduction is less by about 10 Kcm⁻¹ to 20 Kcm⁻¹ than the original estimate. However, Table 15 is somewhat misleading for the following reason. The much greater percentage in the reduction of the $\bigwedge_{\begin{subarray}{c} \ge 2 \end{aligned}}$ with respect to the $\bigwedge_{\begin{subarray}{c} \times \times \end{aligned}}$ and $\bigwedge_{\begin{subarray}{c} \times \times \end{aligned}}$ is partly due to the greater contribution of the charge transfer process. The latter point is made clear in Table 16 where the contributions from crystal field and charge transfer transitions are shown. If one decides to consider the reductions in the $\bigwedge_{\overline{l}\overline{l}}$ s due to the ligand orbital part, then the calculated values of the $\bigwedge_{\overline{l}\overline{l}}$ s become too small to fit the observed $\bigwedge_{\overline{l}\overline{l}}$ s. Thus a point corresponding to a smaller vanadium charge than the .40e is needed, according to Figures 14, 15, and 16, for such a point the charge transfer contribution to $\bigwedge_{\overline{l}\overline{l}}$ becomes much smaller than the value listed in Table 16. A rough estimate gives 18%, 22%, and 25% for the last row of Table 15. TABLE 16 CRYSTAL FIELD AND CHARGE TRANSFER CONTRIBUTIONS TO THE TENSOR COMPONENTS IN SnO₂:V IN UNITS OF 10⁻⁵cm (.40e METAL CHARGE AND 35 Kcm⁻¹ REDUCTION IN TT -ELECTRON VSIP) | | \wedge^{xx} | \bigvee_{λ} | V ⁵⁵ | |-----------------|---------------|---------------------|-----------------| | Crystal field | 10.014 | 17.797 | 13.853 | | Charge transfer | 170 | 538 | -2.529 | | Tota1 | 9.844 | 17.529 | 11.325 | This thesis has been concerned with the properties of vanadium in SnO_2 , TiO_2 , and GeO_2 . Recent ESR spectra of Mo^{5+} and W^{5+} in TiO_2 have been reported. 44 Comments on these experimental results are given in Appendix K. #### APPENDIX A #### GENERAL THEORY The Hamiltonian for a system of & nuclei and N electrons is $$H = \sum_{i}^{k} \left(-\frac{t^{2}}{2M_{i}} \nabla_{i}^{2} \right) - \frac{t^{2}}{2m} \sum_{i}^{N} \nabla_{i}^{2} + \sum_{j < i}^{k} \frac{Z_{i} Z_{j}' e^{2}}{Y_{i} i'} - \sum_{i}^{N} \sum_{j}^{k} \frac{Z_{i} e^{2}}{Y_{i} i'} + \sum_{i < i}^{N} \frac{e^{2}}{Y_{i} i'}$$ $$(A-1)$$ To this Hamiltonian one should have added terms depending on the electron spin, the nuclear spin, quadrupole moments, etc., but due to their smallness in comparison with H they are neglected. Thus the Hamiltonian H in Eq. (A-1) is spin independent. The Schrödinger equation for a stationary state is $$H \Psi = E_{\text{total}} \qquad (A-2)$$ The Born-Oppenheimer approximation simplifies Eq. (A-2) to $$\left\{-\frac{t^{2}}{2m}\sum_{i}^{N}\nabla_{i}^{2}+\sum_{i < i}\frac{2i2i^{2}e^{2}}{\gamma_{i}^{2}i^{2}}-\sum_{i}^{N}\sum_{j}^{N}\frac{2ie^{2}}{\gamma_{i}^{2}j}+\frac{N}{i}\sum_{i < i}\frac{e^{2}}{\gamma_{i}^{2}i^{2}}\right\} + \sum_{i < i}\frac{e^{2}}{\gamma_{i}^{2}i^{2}} \left\{ \frac{e^{2}}{\gamma_{i}^{2}i^{2}} \right\} = E \left\{ \frac{1}{2}el \right\}$$ (A-3) Equation (A-3) is simplified to $$\left\{ \sum_{i}^{N} \left(-\frac{k^{2}}{2m} \nabla_{i}^{2} - \sum_{j}^{k} \frac{2j}{r_{ij}^{2}} \right) + \sum_{i < i'} \frac{e^{2}}{r_{ii'}^{2}} \right\} \stackrel{1}{\downarrow} = \stackrel{1}{\downarrow} \stackrel{1$$ by using the definition $$E_{el} = E - \sum_{i < j'} \frac{z_i}{v_{ij'}} \frac{z_{i'} e^{\lambda}}{v_{ij'}}$$ (A-5) Unfortunately, only approximate numerical solutions of Eq. (A-4) can be obtained by the use of high speed computers in the very simple cases of small molecules. The difficulty comes from the last term giving the electron-electron interactions # The Electron-Independent Model. The simplest (and crudest) approximation in solving Eq (A-4) is to neglect completely the electron-electron interaction, i.e., to solve the equation: $$\sum_{i}^{N} \left(-\frac{\hbar^{2}}{2m} \nabla_{i}^{2} - \sum_{j}^{k} \frac{Z_{j} e^{k}}{r_{ij}} \right) \Phi_{el} (1, 2 - N) = E_{el} \Phi (1, 2 - N)$$ (A-6) As the Hamiltonian is a sum of one-electron operators, the solutions of Eq. (A-6) are of the form of product functions: where the Φ^{\prime} S are solutions of the equation $$\left(-\frac{t^{2}}{2m}\nabla_{i}^{2}-\sum_{k}^{k}\frac{Z_{i}e^{2}}{v_{ij}}\right)\Phi_{k}(i)=\mathcal{E}_{k}\Phi_{k}(i) \tag{A-8}$$ A wave function $\Phi_{\kappa}(i)$ which depends on the spatial coordinates of one electron only is generally called an <u>orbital</u>. If the one-electron wave function depends on the spatial and spin coordinates it is called a <u>spin-orbital</u>. When the Hamiltonian is independent of spin, a spin-orbital is a product of an orbital and a spin function like $\Phi_{\kappa}(i) \propto (i)$ or $\Phi_{\kappa}(i) \beta(i)$ Thus, every product function of the form (A-7) can produce χ^{N} product functions, if spin is included. However, not all of them are necessarily possible, on account of the Pauli's principle and the indistinguishability of the electrons, which are both satisfied if a product function like $$\Phi_{\mathsf{K}_{1}}(1) \propto (1) \Phi_{\mathsf{K}_{2}}(2) \beta (2) - - - \Phi_{\mathsf{K}_{N}}(N) \propto (N) \tag{A-9}$$ is replaced by the
normalized Slater determinant, which will be abbreviated usually as $$\left| \Phi_{\kappa_{1}}^{(1)} \propto (1) \Phi_{\kappa_{2}}^{(2)} \beta(2) - \dots \Phi_{\kappa_{N}}^{(N)} (N) \propto (N) \right|$$ (A-10) ## Self-Consistent (SCF). The previous approximation, in neglecting the electron-electron interaction term, brought a great simplification of the problem, but one does not expect to get anything like the true energy eigenfunctions and eigenvalues. In the SCF approximation, each electron is considered to move in a fixed effective electric field which is obtained by averaging over the positions of all the other electrons, in addition to the field produced by the nuclei. Therefore, each electron is expected to be described by an orbital (or a spin-orbital) and the Hamiltonian becomes again a sum of one-electron operators with product functions as solutions of the Schrodinger's equation. Using a trial function of the form: $$\Psi_{el} = \Phi_{l} (1) \Phi_{l} (2) - \dots \Phi_{l} (N)$$ (A-11) and applying the variational principle to minimize $$E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} \tag{A-12}$$ where H is the Hamiltonian in Eq. (A-4) one gets 8 the following N Hartree equations: $$\left\{ -\frac{t^{2}}{2m} \nabla_{i}^{2} - \sum_{k}^{k} \frac{2i}{\gamma_{ik}} + \sum_{i'=1}^{N} \left\langle \Phi_{i'}(2) \middle| \frac{e^{2i}}{\gamma_{ii'}} \middle| \Phi_{i'}(2) \right\rangle \Phi_{i}(1) = \\ - E_{i} \Phi_{i}(1)$$ $$(A-13)$$ If, instead of a product function, a Slater determinant like Eq. (A-10) is used one gets 9 the following N Hartree-Fock equations: $$\left\{ -\frac{4^{2}}{2m} \nabla_{i}^{2} - \sum_{j}^{k} \frac{2_{j} e^{2}}{V_{i,j}^{2}} + \sum_{i=1}^{N} \left\langle \Phi_{i}^{2}, (2) \middle| \frac{e^{2}}{V_{j,k}^{2}} \middle| \Phi_{i}^{2}, (2) \right\rangle \right\} \Phi_{i}^{(1)} - \sum_{i=1}^{N} \left\{ \left\langle \Phi_{i}^{2}, (2) \middle| \frac{e^{2}}{V_{j,k}^{2}} \middle| \Phi_{i}^{2}, (2) \right\rangle \right\} \Phi_{i}^{2}, (1) = E_{i} \Phi_{i}^{2}, (1)$$ $$i' \parallel \qquad (A-14)$$ The term self-consistent field is appropriate since each $\Phi_{\tilde{l}}$ depends on every $\Phi_{\tilde{l}}$ and whichever orbital $\Phi_{\tilde{l}}$ one chooses, it must come as a solution of the Schrodinger equation in which the potential energy due to all the other orbitals has been calculated by means of the $\Phi_{\tilde{l}}$ 5. The self-consistent orbitals are obtained by iterations. In general, the results of SCF calculations are good but the calculations are quite complicated and lengthy, and the wave functions are expressed in a numerical table or at best as sums of many analytical functions. ### Atoms. If there is only one nucleus, i.e., k = 1, and the potential $$\sum_{\substack{i=1\\i\neq i}}^{N} \left\langle \Phi_{i'}(2) \middle| \frac{e^{2}}{|\gamma_{ii'}|} \middle| \Phi_{i'}(2) \right\rangle$$ is, if necessary, averaged (approximation) over all directions so as to be always spherically symmetric, then the Hamiltonian of the Hartree equations (A-13) becomes spherically symmetric and the solutions can be expressed 8 as hydrogen-like orbitals. $$\Phi_{n,\ell,m} = \int_{n,\ell} (r) \Theta_{\ell,m} (\theta) \Phi (\varphi) \qquad (A-15)$$ This is in agreement with an empirical method that ${\bf Slater}^{10}$ had suggested earlier. ## Molecules (Complexes, Solids). The presence of many nuclei does not allow spherical symmetry (even approximately), and the problem of solving Eq. (A-13) or Eq. (A-14) becomes extremely difficult. Only for the hydrogen molecule have SCF-molecular orbitals (SCF-MO) been obtained. An approximation that is widely used in "small molecules" like HF, H₂, CH, CH₂ . . . is to consider a linear combination of atomic orbitals centered on the nuclei of the molecule (the term "molecule" will be used collectively for molecules, complexes, and solids), i.e., $$\Phi_{i} = \sum_{\alpha} c_{i \alpha} \Phi_{\alpha}$$ (A-16) See Refs. 13 to 19. ## Semiempirical Methods. The result of the Hartree SCF method was to change the Hamiltonian of Eq. (A-4) into a sum of one-electron operators of the form: $$H_{i} = \frac{-k^{2}}{2m} \nabla_{i}^{2} - \sum_{j}^{k} \frac{z_{j} e^{2}}{v_{ij}} + \sum_{i'=1}^{N} \left(\Phi_{i'}^{*}(2) - \frac{e^{2}}{v_{ii'}}, \Phi_{i'}(2) \right) dv_{2}$$ (A-17) The last sum of integrals is the operator whose expected value expresses the Coulombs potential energy of the i-th electron (strictly speaking of an electron in the i-th orbital) due to the average field of the rest of the electrons, and it is different for different orbitals. However, if two orbitals are approximately in the same relative position with respect to the others, one anticipates almost the same expectation values. This idea is reflected, also, in the Slater's rules which give the same screening constant of for all the orbitals of the same group. The case of complex molecules is certainly more involved as there is no spherical symmetry in the Hamiltonian. As a more complex situation needs more drastic measures, the following assumptions are made: - (a) Electrons are divided into core and valence electrons. - (b) Core electrons form closed shells that affect the motion of the valence electrons only through the screening of the corresponding nuclei. - (c) Each of the valence electrons moves on an orbital Φ_{\checkmark} satisfying the Schrodinger equation: $$H_{eff}(\mu) \Phi_{\nu}(\mu) = \left\{ -\frac{\hbar^{2}}{2m} \nabla_{\mu}^{2} - \sum_{\bar{\delta}}^{k} \frac{\Xi_{\bar{\delta}}^{*} e^{2}}{V_{\mu\bar{\delta}}} + \nabla(V_{\mu}) \right\} \Phi_{\nu}(\mu)$$ $$= E_{\nu} \Phi_{\nu}(\mu)$$ (A-18) where 2^* is the effective charge of the j-th nucleus and $\sqrt{(\text{L}_{\mu})}$ is the average potential energy of the valence electron due to the rest of the electrons. (d) The function $V(\underline{V})$ is the same for all valence electrons even if they occupy orbitals corresponding to an excited state of the group of valence electrons. (e) $\frac{\lambda^*}{\delta}$ 5 and $\sqrt{(\underline{r})}$ are not to be used explicitly. Suppose that one knows the H_{eff} and let $\{\varphi_i\}$ be a complete, but not necessarily orthogonal, set of one-electron functions that obey the same mathematical restrictions as the valence orbitals. Then one can always expand Φ , in an infinite series: $$\Phi_{\mathbf{v}} = \sum_{i}^{\infty} \mathbf{c}_{i} \varphi_{i} \qquad (A-19)$$ Substituting in Eq. (A-18) $$H_{eff} \sum_{i=1}^{\infty} c_i \varphi_i = E \sum_{i=1}^{\infty} c_i \varphi_i$$ (A-20) and multiplying on the left by φ_{δ}^* $(\hat{\xi} = \perp, 2, \ldots)$ and integrating one gets an infinite number of equations: $$\sum_{i=1}^{\infty} c_i \left[\left[\varphi_i^* + \frac{1}{e_{ff}} \varphi_i d\tau - E \right] \varphi_i^* \varphi_i d\tau \right] = 0 \quad j=1,2...\infty$$ (A-21) Since there are mathematical and practical difficulties in dealing with an infinite number of equations, one generally restricts the expansion (A-19) to a small number γ of functions φ_i hoping that with the proper selection of φ_i^{γ} S and the best coefficients C_i^{γ} S the approximation $$\Phi_{\mathbf{v}} \sim \sum_{i=1}^{m} \mathbf{e}_{i} \varphi_{i} \qquad (A-22)$$ will be adequate. The selection of the proper G_1 's rests on intuition and experience, but the best coefficients G_1 's are determined rigorously by the variational method, i.e., one minimizes $$E = \frac{\int \Phi_{\nu}^{*} H_{eff} \Phi_{\nu} d\tau}{\int \Phi_{\nu}^{*} \Phi_{\nu} d\tau}$$ (A-23) Thus (see Appendix B), the following secular equations and secular determinants are obtained: $$\sum_{i=1}^{m} c_i (H_{ik} - ES_{ik}) = 0 \qquad k = 1, 2 - - m \quad (A-24)$$ $$\det |H_{ik} - ES_{ik}| = 0$$ $i, k = 1, 2 - - m$ (A-25) where by definition $$H_{ik} = \int \varphi_i^* H_{eff} \varphi_k d\tau$$ and $S_{ik} = \int \varphi_i^* \varphi_k d\tau$ (A-26) Since the Hamiltonian operator is hermitian $H_{\tilde{i}\tilde{i}} = H_{\tilde{i}\tilde{i}}^*$ and $H_{\tilde{i}\tilde{j}} = H_{\tilde{j}\tilde{i}}^*$; if the functions φ_i^2 S are real, as is almost always the case, then $H_{\tilde{i}\tilde{j}} = H_{\tilde{j}\tilde{i}}$. As for the set of orbitals $\varphi_{\tilde{i}}$ to be used, generally, atomic orbitals centered at the different nuclei are selected so that $\Phi_{\tilde{i}\tilde{j}} = \frac{1}{\tilde{i}\tilde{i}\tilde{i}} = \frac{1}{\tilde{i}\tilde{i}\tilde{i}}$. Is a linear combination of atomic orbitals (LCAO). The selected atomic orbitals are the energetically lower valence orbitals as the atoms-in-molecules 14 method implies. At an infinite separation of the nuclei, the valence electrons are rigorously on atomic orbitals. However, at a smaller separation of the nuclei the LCAO is only an approximation. #### APPENDIX B ## APPLICATION OF THE VARIATION METHOD TO LINEAR FUNCTIONS Substituting relation (A-22) into (A-23) and using definitions (A-26) $$E = \frac{\sum_{i,j}^{m} c_i c_j H_{ij}}{\sum_{i,j}^{m} c_i c_j S_{ij}}$$ (B-1) Normalization of Φ requires that $$\sum_{i,j}^{m} C_{i} C_{j} S_{ij} = 1$$ (B-2) Bringing the denominator on the left side and differentiating with res- pect to C_k , one gets $$\frac{\partial E}{\partial c_{k}} \sum_{i,j}^{m} c_{i} c_{j} S_{ij} + E \frac{\partial}{\partial c_{k}} \sum_{i,j}^{m} c_{i} c_{j} S_{ij} = \frac{\partial}{\partial c_{k}} \sum_{i,j}^{m} c_{i} c_{j} H_{ij}$$ (B-3) For a minimum in energy, necessarily $$\frac{\partial E}{\partial c_k} = 0 \qquad k = 1, 2 - - \infty \qquad (B-4)$$ Therefore $$E = \frac{\partial}{\partial c_k} \sum_{i,j}^{m} c_i c_j S_{ij} = \frac{\partial}{\partial c_k} \sum_{i,j}^{m} c_i c_j H_{ij}$$ (B-5) $$E 2 \sum_{i}^{\infty} c_{i} S_{ik} = 2 \sum_{i}^{\infty} c_{i} H_{ik}$$ (B-6) $$\sum_{i=1}^{n} c_i (H_{ik} - ES_{ik}) = 0 \qquad k = 1, 2 - - m$$ (B-7) For a nontrivial solution, necessarily $$|H_{ik} - ES_{ik}| = 0$$ (B-8) The coefficients C_i 's are determined by solving the
equations: $$\sum_{i\neq 1}^{\infty} \frac{c_i}{c_1} \left[H_{ji} - E S_{ji} \right] = -H_{j1} + E S_{j1}$$ (B-9) for the ratios $\frac{c_i}{c_i}$ and then using the normalization condition (A-2). APPENDIX C GROUP CHARACTER TABLE FOR THE SINGLE-VALUED IRREDUCIBLE REPRESENTATIONS | | | | E | c ₂ | c ₂ ^y | c ₂ | I | Gf | 6
V | σ _ν | | |-------|-------|-----------------|---|----------------|-----------------------------|----------------|----|----|--------|----------------|----------------------| | A | T29 | N ¹⁸ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 322-4; x2-72; 5 | | В | Teg | Nzg | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | xy ; _ \frac{1}{2} | | С | 13g | Nag | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | ≥× ; Ly | | D | T49 | : 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | y≥; L _x | | | Tu | N _{Im} | 1 | . 1 | 1 | 1 | -1 | -1 | -1 | -1 | | | E | rau | | 1 | . 1 | -1 | -1 | -1 | -1 | 1 | 1 | 7 | | Z | 13w | Nzu | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | У | | H | 1 4 h | 1 | 1 | -1 | -1 | 1 | -1 | 1_ | 1 | -1 | X | | N, | lg & | N39 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | Nug | | | | N4g | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | N ₃ g | | N^3 | `å ⊗ | Nug | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | Nag | | | 9 | N _{HW} | 1 | 1 | 1 | 1 | 1. | 1 | 1 | 1 | $N^{\dagger \delta}$ | #### APPENDIX D # TWO-CENTER OVERLAP INTEGRALS The two-center overlap integrals are calculated using the following formulas: $$\begin{split} &+ \lambda_{2}B_{1} + 2A_{1}B_{3} - A_{3}B_{4} \\ Q_{1} &= \langle 2P_{6} | 3s \rangle = N_{1}N_{1}\frac{\sqrt{3}}{2}\left(\frac{R}{2}\right)^{6} \left[-A_{3}B_{4} + A_{1}(2B_{3} - B_{5}) + 2A_{2}B_{4} - 2A_{3}B_{1} + A_{4}(B_{6} - 2B_{2}) + A_{5}B_{1} \right] \\ Q_{2} &= \langle 2P_{6} | 4s \rangle = N_{1}N_{1}\frac{\sqrt{3}}{2}\left(\frac{R}{2}\right)^{7} \left[A_{1}B_{5} + A_{1}(B_{6} - 3B_{4}) + A_{2}(-3B_{5} + 2B_{3}) + A_{3}(2B_{4} + 2B_{2}) + A_{4}(2B_{3} - 3B_{1}) + A_{5}(-3B_{2} + B_{6}) + A_{6}B_{1} \right] \\ R_{1} &= \langle 2P_{1} | 3P_{1} \rangle = N_{1}N_{1}\frac{3}{4}\left(\frac{R}{2}\right)^{6} \left[A_{1}(-B_{3} + B_{5}) + A_{1}(B_{2} - B_{4}) + A_{2}(B_{1} - B_{5}) + A_{3}(-B_{6} + B_{4}) + A_{4}(-B_{1} + B_{3}) + A_{5}(B_{6} - B_{2}) \right] \\ R_{2} &= \langle 2P_{1} | 4P_{1} \rangle = N_{1}N_{1}\frac{3}{4}\left(\frac{R}{2}\right)^{7} \left[A_{1}(-B_{2} + B_{4}) + A_{1}(2B_{3} - 2B_{3}) + A_{2}B_{4} - A_{2}B_{4} + A_{3}(-2B_{5} + 2B_{1}) + A_{4}(B_{2} - B_{6}) + A_{5}(2B_{3} - 2B_{1}) + A_{6}(-B_{2} + B_{6}) \right] \end{split}$$ The radial parts are given by $\Re(\mu) = N_{\mu} \gamma^{n-1} e^{-\mu \gamma}$. However, many times the radial part of an ms, mp or md function is given with a smaller exponent as in (38) or as a sum of functions of different exponents as in (44). In such a case one should be careful to look for the proper principal quantum number. For example, the computed expression of $25/4p_6$ in the text will appear as $25/3p_6$ in the tables since the radial part of $4p_6$ is given as $8(4p_6) = N\gamma^{n/2}e^{-\mu \gamma}$ and not as $8(4p_6) = N\gamma^{n/2}e^{-\mu \gamma}$. Values of the two-center integrals are given below. | | $SnO_2:V$ | TiO ₂ :V | GeO ₂ :V | |------------------|-----------|---------------------|---------------------| | Kį | .109 | .128 | .146 | | Κ- _δ | .108 | .120 | .132 | | $^{\mathrm{L1}}$ | 002 | 002 | 003 | | | SnO ₂ :V | TiO ₂ :V | GeO ₂ :V | |--|---------------------|---------------------|---------------------| | $^{ m L1}$ $ar{m{\delta}}$ | 002 | 002 | 002 | | L2 _L | .403 | .429 | .450 | | L2į | .402 | .419 | .434 | | М1 _і | 002 | 002 | 003 | | м1 į | 002 | 002 | 002 | | M2 L | .265 | .286 | .304 | | M2 j | .264 | .277 | .290 | | n ī | .113 | .124 | .131 | | $ar{oldsymbol{\delta}}^{ ext{N}}$ | .113 | .120 | .125 | | o _i | .071 | .086 | .101 | | ٥į | .070 | .080 | .089 | | P1ι | 004 | 005 | 006 | | P1 j | 004 | 004 | 005 | | P2i | .178 | .170 | .159 | | P2 } | .179 | .174 | .168 | | Q1 _i | 005 | 006 | 007 | | Q1 j | 005 | 005 | 006 | | Q2 į | .156 | .157 | .159 | | $^{\mathrm{Q2}}$ $\dot{\mathbf{j}}$ | .156 | .158 | .159 | | R1; | 001 | 001 | 001 | | $^{ ext{R1}}$ $ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$ | 001 | 001 | 001 | | R2 | .162 | .181 | .198 | | R2 - | .161 | .173 | .184 | APPENDIX E ENERGY EIGENVALUES IN Kcm⁻¹ FOR SnO₂:V | .65 | . 55 | .45 | .35 | .30 | .20 | .10 | .00 | |----------------------|----------------------|----------------------|-----------------------|----------------------|----------------------|-----------------------|------------------------| | 111. E ₂ | 106.5E ₂ | 101. E ₂ | 94.5E ₂ | 90.5E ₂ | 82.5E ₂ | 73.5E ₂ | 67. A ₅ | | 93.5A ₅ | 91.5A ₅ | 88. A ₅ | 84.5A ₅ | 83. A ₅ | 78.5A ₅ | 73. A ₅ | 63. E ₂ | | 1.5Z ₂ | 1.5Z ₂ | 1.5Z ₂ | $1.5Z_2$ | 1. Z ₂ | 1. Z ₂ | 1. Z ₂ | 1. Z ₂ | | -10. H ₂ | -10. H ₂ | -9.5H ₂ | -9. H ₂ | -8.5H ₂ | -8. H ₂ | -7. H ₂ | -6. H ₂ | | -61. C ₃ | -64.5C ₃ | -64.5B ₂ | -62.5B ₂ | -61. A ₂ | -57. A ₂ | -52.5A ₂ | -48. A ₂ | | -62.5D ₂ | -66. В ₂ | -65.5A ₂ | -62.5A ₂ | -61. B ₂ | -57.5B ₂ | -53.5B ₂ | -49. B ₂ | | -65.5C ₂ | -66. D ₂ | -67.5C ₃ | -69.5C ₃ | -69.5C ₃ | -67.5C ₃ | -63.5C ₃ | -58. C ₃ | | -65.5 | -69. A ₂ | -70. D ₂ | -72. D ₂ | -72. D ₂ | -69.5D ₂ | -65. D ₂ | -59.5D ₂ | | -66.5B ₂ | -70. C ₂ | -75. C ₂ | -80. C ₂ | -81.5A ₃ | -75. A ₃ | -69. A ₃ | -62.5A ₃ | | -70. Н _З | - 70. | - 75. | -80. | -82.5C ₂ | -88. C ₂ | -93.5C ₂ | -99. C ₂ | | -71. A ₂ | -74. H ₃ | -78.5H ₃ | -83. H ₃ | -82.5 | -88. | -93.5 | -99. | | -71.5E ₃ | -75.5E ₃ | -79.5E ₃ | -84. E ₃ | -85. Н _З | -89.5H ₃ | | -99.5H ₃ | | -107. A ₃ | -99. A ₃ | -91. A ₃ | -84.5A ₃ | -86. E ₃ | -90.5E ₃ | -95. E ₃ | -99.5E ₃ | | -108. D ₁ | -101. D ₁ | -94. D ₁ | -91. D ₁ | -90. D ₁ | -92. D ₁ | -95.5D ₁ | -100. D ₁ | | -108.5 c_1 | -101.5 c_1 | -95. C ₁ | -92.5 ${f c_1}$ | -91.5 C $_1$ | -93. C ₁ | -96. \mathtt{C}_{1} | -100.5 c_1 | | -115. H ₁ | -115. H ₁ | -116.5H ₁ | -118.5 H_1 | -121.5H ₁ | -125. H ₁ | -130. H ₁ | $\textbf{-135.5H}_{1}$ | | -118.5Z ₁ | | | | | -126. Z ₁ | | | | -122. B ₁ | | | | | -127.5B ₁ | | | | -127. A ₄ | | | | | -131.5A ₄ | | | | -159. E ₁ | | | | | -174. E ₁ | | | | -164. A ₁ | | | | | -177. A ₁ | | | ENERGY EIGENVALUES IN Kcm⁻¹ FOR TiO₂:V | .65 | . 55 | .45 | .35 | . 30 | .20 | .10 | .00 | |-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----------------------|----------------------| | 153.5E ₃ | 147. E ₃ | 139.5E ₃ | 130.5E ₃ | 125. E ₃ | 114. E ₃ | 101. E ₃ | 87.E ₃ | | 105. A ₅ | 103. A ₃ | 99.5A ₃ | 95. A ₅ | 93. A ₅ | 88. A ₅ | 82. A ₅ | 75.5A ₅ | | -8.5Z ₂ | -8. Z ₂ | -8. Z ₂ | -7.5Z ₂ | -7. Z ₂ | $-6.5Z_2$ | -6. Z ₂ | -5. Z ₂ | | -9. H ₂ | -8.5H ₂ | -8.5H ₂ | -8. H ₂ | -7.5H ₂ | -7. H ₂ | -6.5H ₂ | -5.5H ₂ | | -59.5C ₃ | -60. B ₂ | -59. B ₂ | -57.5B ₂ | -56. B ₂ | -53.5B ₂ | -50. B ₂ | -45.5A ₂ | | -60. B ₂ | -62.5C ₃ | -61.5A ₂ | -59. A ₂ | -57.5A ₂ | -54. A ₂ | -50 . A ₂ | -46. B ₂ | | -61. D ₂ | -64.5A ₂ | -65. C ₃ | -66.5C ₃ | -66.50_3 | -65. C ₃ | -61. C ₃ | -56.5C ₃ | | -65.5C ₂ | -65. D ₂ | -68. D ₂ | -69.5D ₂ | -69.5D ₂ | -67.5D ₂ | -63.5D ₂ | -58.5D ₂ | | -65.5 | -70. C ₂ | -75. C ₂ | -80. C ₂ | -81.5A ₃ | -75. A ₃ | -69. A ₃ | -62.5A ₃ | | -66.5A ₂ | - 70. | - 75. | -80. | -82.5C ₂ | -88. C ₂ | -93.5C ₂ | | | -70.5H ₃ | -74.5H ₃ | -79. H ₃ | -83. H ₃ | -82.5 | -88. | | - 99. | | -72.5E ₂ | -76. E ₂ | -80.5E ₂ | | -85.5H ₃ | 00 77 | | -99.5H ₃ | | -107. A ₃ | -99. A ₃ | -91. A ₃ | | | | | -100. E ₂ | | -108.5D $_1$ | -101.5D $_1$ | -95. D ₁ | -92. D ₁ | | -93. D ₁ | | -100.5D ₁ | | -109. C ₁ | | | -94. C ₁ | | | | -101. C ₁ | | -112.5 \mathbb{H}_1 | | | | | | -126.5 H_1 | | | -115. Z ₁ | | | | | | -127. Z ₁ | | | -122. B ₁ | | | | | | -129.5B ₁ | | | -126. A ₄ | | | | | | -132. A ₄ | | | -165.5E ₁ | | | | | | -188. E ₁ | | | -170.5A ₁ | | | | | | -189.5A ₁ | | ENERGY EIGENVALUES IN Kcm⁻¹ FOR GeO₂:V | .65 | .55 | .45 | .35 | .30 | .20 | .10 | .00 | |----------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|---------------------|----------------------| | 176. E ₃ | 170. E ₃ | 161.5E ₃ | 151.5E ₃ | 145.5E ₃ | 133. E ₃ | 118.5E ₃ | 102.5E ₃ | | 137.5A ₄ | 135.5A ₄ | 130.5A ₄ | 125. A ₄ | 122.5A ₄ | 116. A ₄ | 108.5A ₄ | 99.5A ₄ | | .5z ₂ | . 5Z ₂ | .5Z ₂ | | 5.5H ₂ | -4. H ₂ | -5. H ₂ | -4.5H ₂ | -4.5H ₂ | -4. H ₂ | -4. H ₂ | -3.5H ₂ | | -56.5B ₂ | -56.5B ₂ | -54.5B ₂ | -53. B ₂ | -52. B ₂ | -49.5B ₂ | -45.5A ₅ | -41.5A ₅ | | -60.5A ₅ | -59. A ₅ | -56. A ₅ | -53.5A ₅ | -52. A ₅ | -49. A ₅ | -46. B ₂ | -42.5B ₂ | | -57.5C ₃ | $-60.5C_3$ | -63. C ₃ | -64. C ₃ | -64. C ₃ | -62.5C ₃ | -59. C ₃ | -55. c ₃ | | -59.5D ₂ | -62.5D ₂ | -65.5D ₂ | -67. D ₂ | -67. D ₂ | -65. D ₂ | -61. D ₂ | -56.5D ₂ | | -65.5C ₂ | -70. C ₂ | -75. C ₂ | -80. C ₂ | -81.5A ₃ | -75. A ₃ | -69. A ₃ | -62.5A ₃ | | - 65.5 | - 70. | - 75. | -80. | -82.5C ₂ | -88. C ₂ | -93.5C ₂ | -99. C ₂ | | -71. Н _З | -77. E ₂ | -79.5H ₃ | | -82.5 | | -93.5 | - 99. | | -73. E ₂ | -90. H ₃ | -81. E ₂ | | -85.5H ₃ | | | -99.5H ₃ | | -107. A ₃ | -99. A ₃ | -91. A ₃ | -85. E ₂ | -87. E ₂ | -91.5E ₂ | | -100. E ₂ | | -109. D ₁ | -102.5D ₁ | -96.5D ₁ | -93.5D ₁ | -93. D ₁ | -94. D ₁ | -97. D ₁ | -101. D ₁ | | -109.5C ₁ | -103. C ₁ | -97.5 C $_1$ | -95. C ₁ | $-94.5C_1$ | -95.5 $\mathbf{c_1}$ | -98. C ₁ | | | -115. H ₁ | -119.5Z ₁ | -116.5 H_1 | -118.5H ₁ | -120.5H ₁ | | | | | -118.5Z ₁ | | | | -122.5Z ₁ | | | | | -125.5B ₁ | | | | -125.5B ₁ | | | | | -129.5A ₂ | | | | -130.5A ₂ | | | | | -160. E ₁ | | | | -169.5E ₁ | | | | | -166.5A ₁ | | | | -174. A ₁ | | | | $\mbox{APPENDIX F} \\ \mbox{VARIATION OF THE $\not\equiv^{\mbox{$\mathcal{V}$}}$ AND 4S ADMIXTURE IN THE GROUND STATE $\mbox{$A_3$}$ }$ | SnO ₂ :V | | | | TiO ₂ :V | | | GeO ₂ :V | | | |-------------------------------|------|-----|--------|---------------------
----------------|-------|---------------------|----------------|--------| | Assumed
Vanadium
Charge | 4s | Sy | ×2- y2 | 45 | ₹ [%] | ×2-y2 | 45 | ₹ [%] | ×2- y2 | | .65 | .073 | 139 | .986 | .068 | 114 | .992 | .082 | 140 | .987 | | . 55 | .071 | 135 | .988 | .059 | 110 | .992 | .078 | 136 | .987 | | .45 | .069 | 133 | .989 | .058 | 108 | .992 | .077 | 135 | .988 | | .35 | .068 | 132 | .989 | .057 | 108 | .992 | .076 | 134 | .988 | | .30 | .068 | 132 | .989 | .057 | 107 | .993 | .076 | 134 | .988 | | .20 | .067 | 131 | .989 | .056 | 106 | .993 | .075 | 133 | .988 | | .10 | .067 | 130 | .989 | .056 | 106 | .993 | .749 | 133 | .988 | | .00 | .066 | 130 | .989 | .055 | 105 | .993 | .074 | 132 | .988 | | 10 | .065 | 130 | .989 | .055 | 105 | .993 | .074 | 132 | .988 | | 20 | .065 | 129 | .989 | .054 | 105 | .993 | .073 | 132 | .989 | | 30 | .064 | 129 | .990 | .054 | 104 | .993 | .073 | 131 | .989 | | 40 | .064 | 128 | .990 | .053 | 104 | .993 | .072 | 131 | .989 | | 50 | .063 | 128 | .990 | .053 | 103 | .993 | .072 | 130 | .989 | | | | | | | | | | | | ### APPENDIX G ## POINT CHARGE CRYSTALLINE FIELD CALCULATION OF THE ELECTRONIC LEVELS OF SnO₂:V Using Watson's radial functions the following splitting of the nearest 3d vanadium electronic levels is obtained. The number of the nearest ions, which have been considered in each case, is written in parentheses. The cases with 8 and 32 nearest ions are considered closest to reality because the corresponding total charge of the complex is zero. ### Appendix G Table #### APPENDIX H # VALENCE STATE, VALENCE STATE IONIZATION POTENTIAL (VSIP), VALENCY AND PROMOTION ENERGY A simplified discussion of the water molecule is given to clarify the above ideas. less than in the free atom by the amount $\frac{3}{4}$ (0) + $\frac{1}{4}$ (15867.7), where the factors $\frac{3}{4}$ and $\frac{1}{4}$ take into account the spin multiplicity. From this example, it is obvious that the valence state is <u>not</u> a spectroscopic state and excitation to it is not physically possible. It is a non-stationary state. The amount $\frac{3}{4}$ (0) + $\frac{1}{4}$ (15867.7) is usually referred to as the <u>promotion energy</u>. In general, the orbital part of the valence state of an ion can be a linear combination of the form $\alpha | \lambda s + \beta | \lambda p$, for example, which is referred to as a hybrid orbital. In this case, the promotion energy might have, also, a contribution from the hybridization. ### APPENDIX I ## EFFECTS OF THE LIGAND ORBITAL PART IN THE CALCULATION OF THE ZEEMAN MATRIX ELEMENTS Using the notation in Eq. (70) for the calculation of \bigwedge_{xx} one has the matrix elements: $$\begin{array}{l} \left(\alpha_{2^{1}} | z^{2} > + \alpha_{x^{2} - y^{2}} | x^{2} - y^{2} > \left| \hat{L}_{x} \right| d_{1} | y \geq > \right) \otimes \\ \otimes \left(d_{1} | y \geq > + d_{1}' | \gamma_{x} > \left| \hat{L}_{x} \right| \alpha_{2^{2}} | z^{2} > + \alpha_{x^{2} - y^{2}} | x^{2} - y^{2} > \right) \\ = \left(\alpha_{2^{2}} | z^{2} > + \alpha_{x^{2} - y^{2}} | x^{2} - y^{2} > \left| d_{1} \left[i | x^{2} - y^{2} > + i \sqrt{3} \right] z^{2} > \right] \right) \\ \otimes \left(d_{1} | y \geq > + d_{1}' | \gamma_{x} > \left| \alpha_{2^{2}} (-i \sqrt{3}) | y \geq > + \alpha_{x^{2} - y^{2}} (-i) | y \geq > \right) \right. \\ = \left(d_{1} | \alpha_{2^{2}} | \sqrt{3} + \alpha_{x^{2} - y^{2}} | \left(d_{1} (-\alpha_{2^{2}} | \sqrt{3} - i \alpha_{x^{2} - y^{2}}) < \gamma_{x} | y \geq > \right) \right. \\ + \left. d_{1} (-\alpha_{2^{2}} | \sqrt{3} - i \alpha_{x^{2} - y^{2}}) < \gamma_{x} | y \geq > \right] \\ = \left(\alpha_{x^{2} - y^{2}} + \alpha_{2^{2}} \sqrt{3} \right)^{2^{2}} d_{1} \left[d_{1} + d_{1}' \langle \gamma_{x} | y \geq > \right] \end{array}$$ $$\begin{array}{l} \left\langle \alpha_{2^{2}} \right| \stackrel{>}{\stackrel{>}{\stackrel{>}{\stackrel{>}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}{\stackrel{>}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}{\stackrel{>}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}}{\stackrel{>}{\stackrel{>}}{\stackrel$$ #### APPENDIX J ### COMPUTER PROGRAM IN MAD LANGUAGE FOR SOLVING THE SECULAR EQUATIONS (25) ``` $COMPILE MAD, EXECUTE, PUNCH OBJECT PRINT COMMENT $1 SOLUTION OF THE CHARACTERISTIC VALUE PROBLEM 1 (A-LB)X=0 $ PRINT COMMENT $0 WHERE A AND B ARE SYMMETRIC MATRICES, AND B 1 IS POSITIVE DEFINITE $ DIMENSION A(400,V), B(400,V), X(400,V), APRIME(400,V), E(400,V) DIMENSION D(400,V), UT(400,V), R(400,V), ST(400,V), 15(400,V), LAMBDA(400,V), YT(400,V) EQUIVALENCE(D.R.ST.E), (UT.S.YT.X), (APRIME, LAMBDA), 1(V(2),N) VECTOR VALUES V=2,1,0 INTEGER N.I.J.K.CH START READ AND PRINT DATA EXECUTE ZERO (A(1,1) ... A(N,N),B(1,1)...B(N,N)) READ AND PRINT DATA THROUGH LOOP1, FOR I = 2 \cdot 1 \cdot I \cdot G \cdot N THROUGH LOOP1, FOR J = 1 \cdot 1 \cdot J \cdot E \cdot I A(I_{9}J)=-2.*B(I_{9}J)*SQRT.(A(I_{9}I)*A(J_{9}J)) A(J \bullet I) = A(I \bullet J) LOOP1 B(J,I) = B(I,J) IND1=5. IND2=5. IND3=5. IND4=5. IND5=5. IND6=5. THROUGH LOOPIA, FOR I=1,1, I.G.N*N LOOP1A D(I)=B(I) SCFACT = 1. IND1=EIGN.(D(1),N.1.)UT(1).SCFACT) WHENEVER IND1.E.3. CONTINUE OR WHENEVER IND1.E.1. PRINT COMMENT $0 B MATRIX NOT ACCEPTED BY SUBROUTINE $ TRANSFER TO FND OR WHENEVER IND1.E.2. PRINT COMMENT $0 CHARACTERISTIC VALUES OF B MATRIX SCALED BY$ PRINT RESULTS SCFACT TRANSFER TO END END OF CONDITIONAL THROUGH LOOP2, FOR I=1,1,1.G.N WHENEVER D(I,I).LE.O. PRINT COMMENT $0 B MATRIX IS NOT POSITIVE DEFINITE $ TRANSFER TO END OTHERWISE R(I,I)=D(I,I)\cdot
P\cdot -\cdot 5 LOOP2 END OF CONDITIONAL THROUGH LOOP3, FOR I=1,1,I.G.N THROUGH LOOP3, FOR J=1,1, J.G.N WHENEVER I.E.J CONTINUE OTHERWISE R(I,J)=0. END OF CONDITIONAL LOOP3 IND2=DPMAT.(N.ST(1),UT(1)) WHENEVER IND2.E.O., TRANSFER TO END THROUGH LOOP 5, FOR I=1.1,I.G.N THROUGH LOOP 5, FOR J=1.1.J.G.N S(I,J)=ST(J,I) ``` ``` APRIME(I,J)=ST(I,J) LOOP5 IND3=DPMAT.(N.APRIME(1).A(1)) WHENEVER IND3.E.O., TRANSFER TO END IND4=DPMAT.(N.APRIME(1),S(1)) WHENEVER IND4.E.O.. TRANSFER TO END THROUGH LOOP6. FOR I=2.1. I.G.N THROUGH LOOP6, FOR J=1,1, J.E.I LOOP6 APRIME(I_9J) = APRIME(J_9I) SCEACT =1. IND5=EIGN.(LAMBDA(1),N,1,YT(1),SCFACT) WHENEVER IND5.E.3. CONTINUE OR WHENEVER IND5.E.1. PRINT COMMENT $0 APRIME MATRIX NOT ACCEPTED BY SUBROUTINE $ TRANSFER TO END OR WHENEVER IND5.E.2. PRINT COMMENT $0 CHARACTERISTIC VALUES SCALED BY $ PRINT RESULTS SCFACT END OF CONDITIONAL IND6=DPMAT.(N,YT(1),ST(1)) THROUGH LOOP7, FOR I=1,1,1.G.N XSUMSQ = 0. THROUGH LOOP8, FOR J=1,1, J.G.N THROUGH LOOP8, FOR K=1,1,K.G.N XSUMSQ=XSUMSQ+X(I,J)*X(I,K)*B(J,K) LOOP8 ROOT = XSUMSQ.P..5 THROUGH LOOP7, FOR J =1,1, J.G.N LOOP7 X(I,J)=X(I,J)/ROOT PRINT COMMENT SO CHARACTERISTIC VALUES $ THROUGH LOOP8A, FORI=1,1,1.G.N PRINT RESULTS LAMBDA(I,1) PRINT COMMENT $0 THE ROWS OF THE FOLLOWING MATRIX ARE THE NOR LOOP8A IMALIZED CHARACTERISTIC VECTORS $ PRINT RESULTS X(1,1)...X(N,N) DIMENSION MA(5).MB(2).MC(3).MD(2).ME(3).MZ(2).MH(3). 1HOVA(5), HOVB(2), HOVC(3), HOVD(2), HOVE(3), HOVZ(2), HOVH(3), 2CHA(5), CHB(2), CHC(3), CHD(2), CHE(3), CHZ(2), CHH(3) WHENEVER CH.E.1 THROUGH LOA , FOR J=1,1,J.G.5 MA(J)=S(J+1)*S(J+1)+S(J+2)*S(J+2)+S(J+3)*S(J+3) \label{eq:hova} \begin{split} &\text{HOVA(J)=S(J+1)*S(J+4)*B(1+4)+S(J+1)*S(J+5)*B(1+5)+S(J+2)*S(J+1) 1J,4)*B(2,4)+S(J,2)*S(J,5)*B(2,5)+S(J,3)*S(J,4)*B(3,4) CHA(J) = MA(J) + HOVA(J) PRINT RESULTS MA(J) . HOVA(J) . CHA(J) LOA OR WHENEVER CH.E.2 THROUGH LOB , FOR J=1,1,J.G.2 MB(J) = S(J + 1) * S(J + 1) HOVB(J) = S(J+1) + S(J+2) + B(1+2) CHB(J) = MB(J) + HOVB(J) PRINT RESULTS MB(J) . HOVB(J) . CHB(J) LOB OR WHENEVER CH.E.3 THROUGH LOC ,FOR J=1,1,J.G.3 MC(J)=S(J+1)*S(J+1) HOVC(J)=S(J,1)*S(J,2)*B(1,2)+5(J,1)*S(J,3)*B(1,3) CHC(J) = MC(J) + HOVC(J) LOC PRINT RESULTS MC(J) . HOVC(J) . CHC(J) OR WHENEVER CH.E.4 THROUGH LOD , FOR J=1,1,1,J.G.2 MD(J) = S(J+1) * S(J+1) ``` ``` HOVD(J) = S(J,1) + S(J,2) + B(1,2) CHD(J)=MD(J)+HOVD(J) LOD PRINT RESULTS MD(J), HOVD(J), CHD(J) OR WHENEVER CH.E.5 THROUGH LOE ,FOR J=1,1,J.G.3 ME(J)=S(J,1)*S(J,1) HOVE(J)=S(J+1)*S(J+2)*B(1+2)+S(J+1)*S(J+3)*B(1+3) CHE(J) = ME(J) + HOVE(J) LOE PRINT RESULTS ME(J), HOVE(J), CHE(J) OR WHENEVER CH.E.6 THROUGH LOZ , FOR J=1,1,J.G.2 MZ(J) = S(J_{+}1) + S(J_{+}1) HOVZ(J)=S(J+1)*S(J+2)*B(1+2) CHZ(J) = MZ(J) + HOVZ(J) LOZ PRINT RESULTS MZ(J) , HOVZ(J) , CHZ(J) OR WHENEVER CH.E.7 THROUGH LOH ,FOR J=1,1,J.G.3 MH(J) = S(J,1) * S(J,1) HOVH(J) = S(J+1) + S(J+2) + B(1+2) + S(J+1) + S(J+3) + B(1+3) (L)HVOH+(L)HM=(L)HHO PRINT RESULTS MH(J) +HOVH(J) +CHH(J) LOH END OF CONDITIONAL WHENEVER SCFACT.E.1. CONTINUE OTHERWISE PRINT COMMENT SO ERROR MATRIX NOT COMPUTEDS TRANSFER TO END END OF CONDITIONAL PRINT COMMENT SO INDIGATOR VALUES S END PRINT RESULTS IND1, IND2, IND3, IND4, IND5, IND6 TRANSFER TO START END OF PROGRAM SDATA N=5,CH=1 A(1,1)=-81080.,A(2,2)=-096700.,A(3,3)=-096700.,A(4,4)=-105200., A(5,5)=-154800., B(1,1)=1.,B(2,2)=1.,B(3,3)=1.,B(4,1)=.493677,-.148237,-.052744,1., B(5,1)=.416020,.190671,B(5,5)=1., N=2,CH=2 * A(1,1)=-96700.,A(2,2)=-105200., B(1,1)=1..B(2,1)=.251278,1.. N=3,CH=3 * A(1,1)=-086000.,A(2,2)=-79400.,A(3,3)=-79400., B(1,1)=1.+B(2,1)=.089535,1.+B(3,1)=.099466,0.,1.+ N=2 , CH=4 * A(1,1)=-086000.,A(2,2)=-79400., B(1,1)=1.,B(2,1)=.110280,1., N=3 • CH=5 A(1,1)=-55800.,A(2,2)=-163230.,A(3,3)=-79400., B(1,1)=1.,B(2,1)=.612076,1.,B(2,1)=.322816.0.,1., * N=2 + CH=6 * A(1,1)=-62520.,A(2,2)=-105200., B(1,1)=1...B(2,1)=.504168,1... N=3,CH=7 A(1.1)=-55800..A(2.2)=-112800..A(3.3)=-79400.. B(1,1)=1,,B(2,1)=,409328,1,,B(3,1)=,227028,0,,1,, ``` APPENDIX K Recently the ESR spectra of Mo $^{5+}$ and W $^{5+}$ in TiO $_2$ were observed. The following values for the $_2$ and A tensor components were found experimentally | | 9× | δ ^λ | g.₹ | A _x
(in | Ay
10-4cm-1 | A _z | |-----------------------------|--------|----------------|--------|-----------------------|----------------|----------------| | $TiO_2:Mo^{5+}$ | 1.8155 | 1.7923 | 1.9167 | 24.66 | 30.80 | 65.73 | | ${\tt TiO}_2: {\tt W}^{5+}$ | 1.4731 | 1.4463 | 1.5945 | 40.51 | 63.34 | 92.01 | Following the calculation in Chapter VII-1, the ground state wave functions and the crystal field energy levels listed below were found: | | Ground State w.f. | Energy Levels | |------------------------------------|---|--| | TiO ₂ :Mo ⁵⁺ | 324 2 ¹ > +.945 x ¹ / ₂ y ¹ > | $\Delta E(xy) = (2\pi)(43.000)$
$(xz) = (2\pi)(12.800)$ | | _ | 9 | $(\times_{3^{-}},) = (3)^{(.368)}$ | | TiO ₂ :W ⁵⁺ | 397 \(\frac{2}{2}\rangle\) +.920 \(\frac{\lambda}{-} \gamma^{\lambda} \rangle\) | $\Delta E(xy) = (2x)(83.500)$
$(x \ge 1 = (2x)(3.930)$ | | | | $(\chi^{2}) = (2) (.247)$ $(\chi^{2} - \chi^{2}) = 0$ | - 20. V. Heine, Group Theory in Quantum Mechanics, Pergamon Press (1960), p. 102. - 21. V. Heine, Group Theory in Quantum Mechanics, Pergamon Press (1960), p. 119. - 22. M. Wolfsberg and L. Helmheltz, J. Chem. Phys. <u>20</u>, 837 (1952). - 23. C. J. Ballhausen and H. B. Gray, Inorg. Chem. <u>1</u>, 111 (1962). - 24. C. J. Ballhausen, Ligand Field Theory, McGraw-Hill, New York (1962), 162. - 25. L. Pauling, J. Am. Chem. Soc. 53, 1367 (1931). - 26. R. S. Mulliken, J. Am. Chem. Soc. <u>72</u>, 4493 (1950). - 27. R. E. Watson, Iron Series Hartree-Fock Calculations Solid State and Molecular Theory Group, MIT Press (1959). - 28. C. E. Moore, Atomic Energy Levels, NBS Circ. 467 (1949, 1952, 1958). - 29. W. Moffitt, Repts. Prog. Phys. 17, 173 (1954). - 30. H. A. Skinner and H. O. Pritchard, Trans. Faraday Soc. <u>49</u>, 1254 (1953). - 31. J. C. Slater, Phys. Rev. <u>98</u>, 1039 (1955). - 32. C. A. Coulson, Valence, Oxford University Press (1961). - 33. R. S. Mulliken, J. Chimie Physique 46, 497 (1949). - 34. R. S. Mulliken, J. Chem. Phys. <u>23</u>, 1833 (1955). - 35. M. H. L. Pryce, Proc. Phys. Soc. (London) <u>A63</u>, 25 (1950). - C. P. Slichter, Principles of Magnetic Resonance, Harper and Row, New York (1963). - 37. R. Lacroix et G. Emch, Covalence et resonance paramagnetique, Helvetica Physica Acta <u>35</u>, 592 (1962). - 38. L. L. Lohr, Jr. and W. N. Lipscomb, J. Chem. Phys. <u>38</u>, 1607 (1963). - 39. J. D. Roberts, Notes on Molecular Orbital Calculations, W. A. Benjamin, New York (1961). - 40. D. K. Rei, Sov. Phys. Solid State 3, 1845 (1962). - 41. K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 542 (1953). - 42. S. Karavelas, C. Kikuchi, and H. Watanabe, Bull. Am. Phys. Soc. $\underline{9}$, 403 (1964). - 43. I. Chen, On the Theory of Superhyperfine Interaction in Iron Group Ion Complexes, PhD Thesis, University of Michigan, 1964. - 44. T. Chang, Bull. Am. Phys. Soc. 9, 568 (1964). UNIVERSITY OF MICHIGAN 3 9015 03024 3904