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3 BRIEF DESCRIPTION OF EACH TASK

3.1 Theoretical Characterization of Open Microstrip Discontinuities

Faculty Supervisor: Linda P.B. Katehi
Graduate Student Participant: William P. Harokopus

Work Performed:

During the reported period, the problem of accurate characterization of mi-
crostrip discontinuities on multilayer substrates was addressed and the effects of
the dielectric structure on the circuit performance were studied. Various types
of planar discontinuities were analyzed by using a full-wave method which was
based on the solution of the integral equation for the unknown current density
on the conductors. The dyadic Green’s function for the grounded multi-dielectric
substrate was employed to develop an algorithm capable of analyzing structures
with an arbitrary number of layers. Included in the solution were both transverse
and longitudinal current components, allowing the treatment of a wide class of
irregular microstrip elements including steps of width, corners, meander lines, and
T-junctions. The unknown current distribution on the microstrip conductors was
expended by using rooftop basis functions. In this manner, the current distribu-
tion was evaluated and transmission line theory was employed to determine the
network parameters.

Numerical results from this technique have demonstrated excellent agreement
with measurements and the spectral-domain technique in the case of single di-
electric layers. The implemented method fully accounts for coupling, space, and
surface wave radiation an d for all dispersive effects.

Details of this work are presented in the publications listed below.

Publications:

1. W.P. Harokopus and P.B. Katehi, "Characterization of Microstrip Disconti-
nuities on Multilayer Dielectric Substrates Including Radiation Losses,” IEEE

Transactions on Microwave Theory and Techniques, vol.37, Dec. 1989, pp.
2058-2066, Appendix B.

2. W.P. Harokopus and P.B. Katehi, "Radiation Losses in Microstrip Antenna
Feed Networks Printed on Multilayer Substrates,” submitted for publication



in the International Journal of Numerical Modelling, Appendix D.

3. W. P. Harokopus and P. B. Katehi, ”An Accurate Characterization of Open
Microstrip Discontinuities Including Radiation Losses ”. Proceedings of the
International IEEE MTT-S meeting in Long Beach, CA, June 1989, Ap-
pendix G.



3.2 Surface Wave Radiation from Open Microstrip Discontinuities

Faculty Supervisor: Linda P.B. Katehi
Graduate Student Participant: William P. Harokopus

Work Performed:

In the previous task, open microstrip discontinuities were analyzed with the
method of moments. Circuit elements were characterized by their network param-
eters which included total radiation loss. No effort was made to separate this loss
into the individual contributions of space and surface waves. Space waves refer
to the modes radiated into the semi-infinite region above the dielectric, and sur-
face waves are modes bound in the substrate, which forms a grounded dielectric
waveguide.

~ Under this task, a more extensive study of the types and quantity of radiation
has been performed. The derived results provide guidelines for the development
of low-loss microstrip elements. For example, it is well known that the shape of
discontinuities can be altered to improve circuit performance (mitered bend and
radial stub). However, finding the influence of these and other similar modifica-
tions on the radiation loss is also important. The analysis we have performed
has provided the necessary quantitative results for determining when and why a
specific circuit modification decreases radiation loss.

The analysis presented in the publications listed below, quantifies the radiation
occuring from various mechanisms, and shows the directions of propagation of
surface wave radiation. These far-field patterns are useful for determining where
coupling through surface wave excitation may be strong. In addition, derived
results have demonstrated the strong influence that substrate composition has on
radiation properties.

In this task, the far-field patterns were obtained by the complex transforma-
tion of the space domain Green’s function to the steepest descent plane, where a
saddle point integration was performed. The contribution from the saddle point
represented the far-field spherical wave power in the half-space above the dielec-
tric. In addition, the residues from the poles captured in the contour deformation
represented cylindrical surface waves guided in the dielectric. Theoretical and ex-
perimental results were derived for microstrip stubs and bends that revealed the



effect of radiation on circuit performance, quantified the types of radiation and
showed the direction and intensity of surface wave propagation in the substrate.

Publications:

1. W.P. Harokopus, P.B. Katehi, W. Ali-Ahmad and G.M. Rebeiz, ”Surface
Wave Excitation from Open Microstrip Discontinuities,” submitted for pub-
lication to IFEE Transactions on Microwave Theory and Techniques, Ap-
pendix C.

2. W. P. Harokopus and P. B. Katehi, "Radiation Properties of Open Microstrip
Discontinuities”. Proceedings of the International IEEE AP-S meeting in San
Jose, CA, June 1989, pp.1703-1706, Appendix H.



3.3 Characterization of MIS Lines

Faculty Supervisor: Linda P.B. Katehi
Graduate Student Participant: Thomas P. Livernois

Work Performed:

MIS slow-wave structures have been studied by several researchers and have
been used widely in related MIC’s. The slowing effect can be applied to many
devices, among them delay lines, phased shifters, and tunable filters. Both single
and coupled line geometries have been analyzed using full-wave techniques. The
two rigorous methods which have been applied to these structures in the past,
namely spectral-domain analysis and finite element method, are cumbersome to
work with. The spectral approach requires the use of current basis functions which
have well behaved Fourier transforms, and the finite element method sometimes
yields spurious modes results which are difficult ot interpret.

Under this task, we have developed a technique which suffers from neither of the
above drawbacks. The Green’s function for an inhomogeneously filled rectangular
waveguide derived using this theory, was used to find dispersion characteristics for
various slow wave transmission lines. Furthermore, the characteristic impedance
for the MIS microstrip was calculated and the transverse field distributions for
various structural parameters were derived to illustrate the three distinct modes
of operation for MIS transmission Lines.

Finally, an open-end discontinuity on a highly doped GaAs substrate was char-
acterize in order to understand the effect of the doping density of the circuits
performance.

Publications:

1. T.G. Livernois and P.B. Katehi, "A Generalized Method for Deriving the
Space-Domain Green’s Function in a Shielded, Multilayer Substrate Structure
with Applications to MIS Slow-Wave Transmission Lines,” IEEE Transactions
on Microwave Theory and Techniques, vol.37, Nov. 1989, pp. 1761-1767,
Appendix A.
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2. T.G. Livernois and P.B. Katehi, ”Characteristic Impedance and EM Field
Distribution in MIS Microstrip”, in press, IEEE Transactions on Microwave
Theory and Techniques, Appendix E.

3. T.G. Livernois and P.B. Katehi, ” A Simple Method for Characterizing Planar
Transmission Line Discontinuities on Dissipative Substrates”, submitted for
publication in the IEEE Transactions on Microwave Theory and Techniques,
Appendix F.

4. T. G. Livernois and P. B. Katehi, ” Analysis and Design of Slow-Wave Struc-
tures Using an Integral Equation Approach”. Proceedings of the International
[EEE MTT-S meeting in Long Beach, CA, 1989, Appendix I.
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A Generalized Method for Deriving the
Space-Domain Green’s Function in a
Shielded, Multilayer Substrate
Structure with Applications
to MIS Slow-Wave
Transmission Lines

THOMAS G. LIVERNOIS anD PISTI B. KATEHI, MEMBER, IEEE

Abstract — An efficient technique for deriving the space-domain Green’s
function due to an arbitrarily oriented current in shielded, multilayer
substrate structures is presented. The derived Green’s function is then
used to find the dispersion characteristics of single and symmetric coupled
line MIS slow-wave structures. These results are compared to published
theoretical and experimental data to verify the theory presented.

I. INTRODUCTION

HERE HAS been considerable effort devoted to the

design and realization of monolithic microwave inte-
grated circuits (MMIC’s) for use in the f > 20 GHz region
[1]. Once fabricated, monolithic circuits are very difficult
to tune for optimum performance and this is a major
drawback [1], [2]). Accurate theoretical models of MMIC
components are required so that device performance can
be predicted confidently, thus avoiding a time-consuming
and costly production cycle. Such characterization requires
a mathematically rigorous solution for the fields in a
particular structure. The use of a Green’s function is,
therefore, appropriate. Generalized techniques for deriving
the spectral-domain or space-domain Green’s function for
multilayer substrates have been given, but only current
densities which are parallel to the layer interfaces are
allowed in these approaches [3]-[5]). These techniques find
useful application in the analysis of planar integrated
circuits and antennas embedded in layered regions. In [6],
the Green’s function for a rectangular waveguide filled
with two dielectrics is given. The inhomogeneous system of
equations encountered in [6] increases substantially with
the number of layers, thus making the required algebra
difficult and time consuming. It is the purpose of this

Manuscript received February 16, 1989; revised June 26, 1989. This
work was supported by the National Science Foundation under Grant
ECS-8602530.

The authors are with the Radiation Laboratory, Department of Electri-
cal Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109-2122.

IEEE Log Number 8930662.

paper to outline a method for deriving the space-domain
Green’s function for an arbitrarily oriented current in a
rectangular waveguide inhomogeneously filled with an ar-
bitrary number of lossy, isotropic dielectric slabs. The
approach given here is based on the principle of scattering
superposition combined with appropriately chosen mag-
netic and electric vector potentials. The major advantages
of this work are (i) the developed method for evaluating
the Green’s function can be applied to a current of any
orientation and (ii) the solution for unknown-amplitude
coefficients always reduces to having to solve 2x2 inho-
mogeneous sets of equations, regardless of the number of
dielectric layers. The scattering parameters of planar
stripline discontinuities occurring in shielded. multilayer
substrate circuitry may be numerically characterized by
following the procedure given in [7] combined with the
Green’s function obtained here. Research in this direction
is proceeding and much remains to be done [7]-[10].

MIS slow-wave structures have been studied by several
researchers and are used widely in related MIC's. The
slowing effect can be applied to many devices, among
them delay lines, phase shifters, and tunable filters. Both
single and coupled line geometries have been analyzed
using full-wave techniques [11]-[15]. The two rigorous
methods which have been applied to these structures in the
past, namely spectral-domain analysis and finite element
method, can be somewhat cumbersome to work with. The
spectral approach requires the use of current basis func-
tions which have well-behaved Fourier transforms, and the
finite element method sometimes yields spurious mode
results which are difficult to interpret. The present tech-
nique, which will be discussed in more detail later, suffers
from neither of these drawbacks. The Green's function for
an inhomogeneously filled rectangular waveguide derived
using the present theory is used to find dispersion charac-
teristics for various slow-wave transmission lines. These
results are compared to published theoretical and experi-

0018-9480,/89,/1100-1761301.00 ©1989 IEEE
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Fig. 1. Representation of inhomogeneously loaded rectangular wave-

guide as the superposition of parallel-plate structures.

ment results [16] to establish the validity and usefulness of
the analytical method given in this paper.

II. THEORY

The principle of scattering superposition was first dis-
cussed by Tai [17] and recently was used to present the
space-domain Green’s function for an inhomogeneously
filled waveguide [6]. In addition to being a somewhat
tedious approach, the vector potentials used in [6] to
generate the electromagnetic fields are the M, N, and L
functions described in [17]. The magnetic and electric
vector potentials, 4 and F, respectively, [18] are used in
the present work and the electromagnetic fields are ob-
tained as

1 1
E=—-VXF- juA+ —vVV-4
€ JWE

(1)

H=lv ><A+jwl'—.—1—vv-F. (1b)
p Jope

Fig. 1 shows an infinitesimal current source located
within a rectangular waveguide that is inhomogeneously
loaded with N isotropic, lossy dielectric layers. This wave-
guide is represented as the superposition of three parallel-
plate structures. We begin by considering the total field
maintained by J as a superposition of primary and scat-
tered fields.

Primary electromagnetic fields are generated from the
primary vector potentials 4, and F,, and must satisfy
only the boundary conditions imposed by the equivalent
parallel-plate waveguide containing J. In general, J will
have one component normal to layer interfaces, d,J,, and
one component tangential to them, 4,J,. For an arbitrarily
oriented electric current in the nth layer, the relevant
primary field boundary conditions at the source are

é"X(EP>—EP<)=0 (23)
énx(Hp>—Hp<)=élJl (2b)
VA, +k'A,=~-pd,J, (2¢)

where the ( 2 ) represents (x 2 x’). Separate application of
equations (2) for each component of J yields the desired
primary field terms. Scattered fields in the nth layer are
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derived from A" and F™ where
VD + kAP =0 (3a)
VM 4+kFM =0, n=12,--.N. (3b)

A{" and F™ must satisfy the boundary conditions im-
posed by the shorted, dielectric-filled parallel-plate struc-
tures. Primary fields result directly from J and exist only
in the layer where J is nonzero. The scattered fields result
when the dielectric layers and conducting walls are added
to the primary structure.

The total field in any layer maintained by J must satisfy
the usual source and interface boundary conditions. Both
primary and scattered potentials are chosen to be
x-directed so that the resulting LSM and LSE fields decou-
ple [3]. The proper eigenfunction expansions for these
fields may now be deduced. The primary potentials are

1
A=5 ) dkz):ﬁxm(kzlx, ylx', y)e G0 (4a)

Fx,-—f k. D (e yl' y) 0. (db)
The scattered potentials are written as

A“)—_f dk ZA"’a"’(k Ix, ylx', y)e /e

(5a)
Fx(,')-— dk ZF(’)f"’(k |x, p|x’, y')e ke
(5b)
where i denotes the layer and
[=N, i=n+l,...’N
I=n, wheni=n
=1, i=1,--,n-1.

J is assumed to be in the nth layer and A!) and F!" are
the unknown scattered vector potential amplitude coeffi-
cients in the /th layer, where /=1,n, N. All boundary
conditions in the rectangular waveguide are satisfied ex-
cept those at x = x, and x = x,. These boundary condi-
tions are written as

By + B = B+ (62
E{") + E(M = E("*D (6b)

L+ HY = H) (%

H"" +H" = H(ntl) (6d)

where the (2) and () are for x:x ) The pnmary

fields are obtained from (1) with A =d 4, and F=

The scattered fields are obtained similarly with A=d A"’
and F=4,F", i=1,2---,N. Since LSM and LSE fields
are orthogonal (18], the mhomogeneous 8x 8 set of equa-
tions resulting from (6) decouples into four inhomoge-
neous 2 X 2 sets of equations. Solving for AM, F{M), A",
F™ A® and F" and combining with (1a), (4), and (5)
yields the integral representation of the electric field any-
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where in the waveguide:
1 =
E(x,y,z|x,y,z)=2—ﬂf {_:ae

‘(k3|x’ ylx"_V')e‘_/k:(Z—:') (7)

where 4, is a unit vector along the direction of the electric
field.

The remaining task is to complete the inverse Fourier
transform of (7). This integral may be evaluated via the
calculus of residues since no branch points exist in the
integrand. In general, ¢, is made up of LSM and LSE
contributions. For both LSM and LSE modes, the inver-
'sion contour in the k_ plane is closed in the lower half for
z <z’ and in the upper half for z > z’. The distribution of
poles in he k, plane is symmetric about the origin. Com-
pleting the inverse transform of (7) for each component of
the electric field yields the dyadic Green’s function:

Z ZGLSM + Z ZGLSE (83

Ge(xIx', yly', 212')

where the electric field due to an arbitrary electric current
is now given by

E(x,y,z) =fff55(x,y,2IX’,y’.2’)

J(x',y',2’)dx'dy’dz’. (8b)

Equations (8a) and (8b) give the space-domain Green’s
function, which is useful for three-dimensional problems.
For the analysis of two-dimensional problems, fields de-
scribed in the form of (7) are appropriate. The method
presented here may also be applied to structures contain-
ing an arbitrary number of electric and magnetic sources.

III. DISPERSION ANALYSIS

The shielded microstrip structures illustrated in Fig. 2
are characterized by their respective coupled integral equa-

tions:
G.V,V Gﬂ Jy E,V
. . =
GZ y GIZ Jz EZ

The components of the Green’s matrices are derived in
integral form for a three-layer waveguide, as in (7), with
the infinitesimal source located in region (2). The expan-
sions for J, and J, are chosen to satisfy their respective
edge conditions [19]. The convolution integrals resulting
from (9) are evaluated in closed form. Using one expan-
sion term for J, and J, and applying the Galerkin’s
procedure to (9) shows

(9)

M M T
Z le z le
mm=] m=1
odd odd al_fo
M M [41]—[0] - (10)
Z Slm z Ulm
i "o "odd

1763

\ LA e
160 mm UM  €=4€, J=0
€=126, CT#0

250um

=€
w S w e
(3)p~—*—-p—-—‘
(2) € =4¢, =0
[{}]
€=126, %0
(b)

Fig. 2. Geometry of single and coupled microstrip slow-wave struc-
tures.

where ¢, is the unknown amplitude coefficient for the first
expansion term of J,, and 4, similarly results from J..

For both single and coupled line structures the expres-
sions for Py, Q. Sim and U, are relatively simple
combinations of Bessel and trigonometric functions. These
are given in the Appendix. Setting the determinant of the
current amplitude matrix to zero and solving for its roots
yields the complex microstrip propagation constant k_ =
B — ja for the respective structures.

IV. NUMERICAL RESULTS

The dispersion characteristics given in this section are
for the single and coupled strip MIS structures illustrated
in Fig. 2. The pertinent dimensions are also given there.
Region 1 is the conducting Si substrate with ¢,, =12 and
region 2 is the SiO, insulating region with ¢, =4. The
effect of the induced conduction current is incorporated
into a complex permittivity in region 1. The normalized
wavelength and the attenuation constant for different cases
are plotted in Figs. 3-10. Good convergence was obtained
using one expansion term for the microstrip current com-
ponents and M =501 in the four truncated series in (10).
Roots of the matrix were found using Mueller's method
with deflation.

Figs. 3 and 4 show a comparison of phase and attenua-
tion constants between this theory, spectral analysis, finite
element method, and experimental results for a narrow
single MIS line with w =160 um. Dispersion characteris-
tics for a wide single MIS line with w=600 pm are
compared with other full-wave methods, parallel-plate
model results, and experimental results in Figs. 5 and 6.
Good agreement between this theory, experiment, and
other full-wave methods for A /Ay and a is found in all
cases studied for the single MIS line with w =160 pm.
Results for the wider strip, w =600 pm, show discrepan-
cies between his theory and the spectral-domain approach
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Fig. 4. Comparison of attenuation constant for single microstrip (w =
160 pm) with spectral-domain analysis {11}, finite element method [12],
and experimental results [16].

for larger substrate conductivities. For the case ¢ =1000
and f=1 GHz, the spectral analysis finds a very low
normalized wavelength of about 0.04. This value is unac-
ceptable considering that the Si substrate is five skin
depths thick. As a result, the electromagnetic fields are
virtually shielded from the semiconducting layer. This
drives the line into the skin effect and not the slow-wave
mode. Results derived by the method presented in this
paper indicate such a tendency. Curves generated from the
parallel-plate analysis (applicable to wide microstrips) [16]
are also plotted in Figs. 5 and 6 and are in agreement with
our theoretical data.
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Fig. 6. Comparison of attenuation constant for single microstrip (w =
600 pm) with spectral-domain analysis [11], experimental resuits [16],
and parallel-plate model [16).

Discrepancies between this theory and experimental re-
sults are also evident for the wide-strip case. Consequently,
to verify the accuracy of this approach when applied to
wide strips, a comparison of normalized dominant mode
phase constant for the w/h =2 structure analyzed in [20]
was made. Virtual exact agreement was found for the



LIVERNOIS AND KATEHI: A GENERALIZED METHOD FOR DERIVING THE SPACE-DOMAIN GREEN’S FUNCTION 16y

Cer

P W=S=160 um
-= s, *
| THIS THEORY
A
By T=005 (A e
°
oRl
EVEN
ol | Ll Ll

0.01 0.l 1.0
FREQUENCY (GH2)

Fig. 7. Comparison of normalized wavelength for even- and odd-mode
excitation of coupled microstrip lines with spectral-domain analysis [15].

10
W=S=
:E —-—{IS] $=160 yum
' —— THIS THEORY
10° E
10"k
o E
48 -
& f
02 kE
o
o
-
107 &
E
Io" JJLJL A ' LAILLl A " A lll._l,l
0.0! 0.1 1.0
FREQUENCY (GH2)
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excitation of coupled microstrip lines with spectral-domain analysis (15).

entire frequency range studied (1-100 GHz). Phase and
attenuation constants for the coupled line MIS structure
are shown in Figs. 7 and 8. The propagation characteristics
found using this theory compare very well with the spectral
analysis results. Fig. 7 shows A /A, for even- and odd-mode
excitation and Fig. 8 shows the comparison of a for even-
and odd-mode excitation.

The last two sets of data, Figs. 9 and 10, show the
frequency dependence of phase and attenuation constants
for the first two modes of the single MIS line with w =160
pm and the dominant mode of the rectangular waveguide
(no strip). These results show a clear correlation between
the second microstrip mode and dominant waveguide mode
dispersion characteristics over the entire frequency range
studied. This phenomenon was also reported in [20] for a
lossless dielectric substrate.
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Fig. 9. Frequency-phase constant characteristics or first two modes of
single microstrip and dominant mode of inhomogeneously filled wave-
guide.
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Fig. 10. Frequency-attenuation constant characteristics for first two
modes of single microstrip and dominant mode of inhomogeneously
filled waveguide.

The amount of time required to find a solution to the
determinantal equation (10) ranged from 55 seconds for
small values of the loss tangent in region (1) (i.e., o = 0.05,
f =1 GHz) to 285 seconds for larger values (i.e., o = 1000,
f = 0.5 GHz). These calculations were done on a personal
computer.

V. CONCLUSION

This paper has presented a simple, efficient technique
for deriving a physically appealing space-domain Green's
function in a shielded layered region containing an arbi-
trary number of magnetic and/or electric sources. Obtain-
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ing unknown amplitude coefficients reduces to the solution
of 2x2 inhomogeneous sets of equations, depending on
the number of different layers containing sources. The
Green’s function for an inhomogeneously filled waveguide
was derived and used to find dispersion characteristics for
various MIS slow-wave structures. The corresponding
characteristic equations are given in an appendix. The
accuracy of the results was verified by a comparison with
other published data, thus establishing the validity of the
theory presented.

APPENDIX
EXPRESSIONS FOR Py, Q,., Si,.,» AND U,, FOR
SINGLE AND COUPLED LINES

A. Single MIS Line
P, =-CCXK,
U,,=CCK,
Oim=S1m=CGCGK;.

B. Coupled MIS Lines

Even mode:
P, =- C.GIGK,
U= C1C22 CAZK 2
Oim=Sim= C1C2C3C42K3-
0Odd mode:
le = - CXC32C52K1
U= Clcz2 Cssz
Qim=Sim= C1C2C3C52K 3
where
J2wpg
1= mam\2
b)) +#

Co1 marw

2 °( 2b )

. mw
e 7)
G = >
maw
%) -
2b
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and
i vorma?
k)((2)ki3)(_7)_)
K, = —kz_— TLSM_kzzTLSE
0

L

[k @k D2 mm\2
K,= _ k(z) )TLSM—(—b—) TLSE}

may [ k@O
K3=(—b")kz k(z, Tism+Tise
Nisum
Toonr =

LSM Dyoy

_ Nise

LSE~ 5

Dy

Nism = tan(kf)d:,) [‘qkiz’ tan(kf’dz)
+e,kD tan (kPd))|
Nyse = tan(kOd;) [k @ tan (kd, ) + kD tan (k2d, )]
Dism= e,zkf) tan (k') [e,zki” tan (k"'d, ) tan (k2d,)
— 6, kP - kP[e,k? tan(kPd,) + €,k tan (k)|
Dyge = kO (kP tan (kPd,) + kP tan (kPd,)] + &2
-tan (kPd;)[k® - kP tan (k"d, ) tan (k P4, )]

k(i)-_—. wz _ ﬂ z_kz | =
( 1ok 5 7 i=1.2,3.
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Characterization of Microstrip Discontinuities
on Multilayer Dielectric Substrates
Including Radiation Losses

WILLIAM P. HAROKOPUS, Jr., MEMBER, IEEE, AND PISTI B. KATEHI, SENIOR MEMBER, IEEE

Abstract — A two-dimensional space-domain method of moments treat-
ment of open microstrip discontinuities on multi-dielectric-layer substrates
is presented. The full-wave analysis accounts for electromagnetic coupling,
radiation, and all substrate effects. The technique has been utilized to
characterize commonly used discontinuities on one and two dielectric
layers, and numerical results for step, corner, and T-junction discontinu-
ities are included.

I. INTRODUCTION

ONOLITHIC circuit applications continue to ex-

tend farther into the millimeter-wave range, ap-
proaching terahertz frequencies. At these frequencies, pla-
nar transmission line structures are required for passive
component design. In particular, microstrip components
are frequently utilized in MMIC circuit applications. Un-
fortunately, available microstrip CAD discontinuity and
circuit element models fail to account for electromagnetic
effects, which become significant with increasing fre-
quency. Without reliable CAD, microwave design engi-
neers will face unacceptably lengthy development cycles.

The preponderance of the available microstrip CAD is
based on quasi-static methods [1]-[6], equivalent wave-
guide models [7]-{10}, and semiempirical models [11). These
models require little computational effort, but fail to ade-
quately account for electromagnetic coupling, radiation,
and surface wave excitation. Quasi-static methods provide
accurate characterization only at lower frequencies, while
planar waveguide models contain limited information on
dispersion.

Consequently, an analysis accounting for electromag-
netic coupling, space wave, and surface wave radiation is
required for the characterization of microstrip discontinu-
ities, couplers, and matching elements at higher frequen-
cies. Increasingly powerful computers and innovative tech-
niques make full electromagnetic analysis a realistic
alternative in the design of high-frequency microstrip cir-
cuits. Full-wave analysis has already demonstrated accu-

Manuscript received March 31, 1989; revised July 24, 1989. This work
was supported by the National Science Foundation under Grant ECS-
8602536 and by the Army Research Office under Contract DAALO3-k-
0088 (23836-EL).

The authors are with the Radiation Laboratory, Electrical Engineering
and Computer Science Department, 1301 Beal Ave., University of Michi-
gan, Ann Arbor, MI 48109.

IEEE Log Number 8931087.

racy in modeling simple microstrip discontinuities on sin-
gle dielectric layers.

Often, microstrip discontinuities and elements are en-
closed in a package or a cavity. Jansen has performed an
analysis of irregular covered microstrip elements with a
spectral-domain technique [12]. Shielded microstrip dis-
continuities such as open ends, gaps, stubs [13], and cou-
pled line filters [14] have been studied by the method of
moments.

Nonetheless, microstrip is often used in the design of
feeding networks for monolithic antenna arrays. Unlike
shielded microstrip, open microstrip discontinuities are
free to radiate. Also, the microstrip substrate supports
surface wave modes. High-frequency microstrip design re-
quires a thorough understanding of these effects. Full
electromagnetic solutions have been performed on open
microstrip elements which are electrically thin, such as
open ends, gaps, and coupled lines [17]-[19]. These solu-
tions are based on the thin strip approximation, and utilize
one-dimensional method of moments. Under this assump-
tion, the transverse current component gives a second-order
effect and may be neglected. In addition, an analysis of
open-end and gap discontinuities in a substrate-super-
strate configuration has been performed [20]. More re-
cently, spectral-domain solution was applied to irregular
step and stub elements on a single layer [21]. However, the
characterization of these microstrip elements is far from
complete. The fact that these elements are parts of antenna
feeding networks necessitates a serious consideration of
the coupling and radiation losses and their effect on the
performance of the antenna. In addition, in monolithic
arrays, multiple dielectric layers offer many advantages in
designing feeding networks: they allow alternative solu-
tions to circuit layouts or can provide protection in the
form of superstrates. Furthermore, the appropriate combi-
nation of dielectric and semiconducting materials can cre-
ate circuits with desirable properties such as slow-wave
structures. This paper addresses, for the first time, the
problem of accurate characterization of microstrip discon-
tinuities on multilayer substrates and carefully studies the
effects of this dielectric structure on circuit performance.

The presented full-wave analysis is based on the applica-
tion of two-dimensional method of moments in the space

0018-9480,/89,/1200-2058$01.00 ©1989 IEEE
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0
Fig. 1.

Multilayer open microstrip geometry.

domain. The dyadic Green’s function for a grounded
multi-dielectric-layer configuration is employed to develop
an algorithm capable of analyzing structures with an arbi-
trary number of layers. Included in the solution are both
transverse and longitudinal current components, allowing
the treatment of a wide class of irregular microstrip ele-
ments including steps of width, corners, and T junctions.
On the microstrip conductors, both current components
are expanded by rooftop basis functions. Once the current
distribution is evaluated, transmission line theory is em-
ployed to determine the network parameters.

Numerical results from this technique have demon-
strated excellent agreement with measurement and the
spectral-domain technique in the case of single dielectric
layers. Scattering parameters will be presented for corner
and for T-junction discontinuities on one layer and on
more complicated dielectric structures. In addition, on a
single layer the more complex geometry of a meander line
containing four coupled bends will be presented. The
implemented method fully accounts for coupling, space,
and surface wave radiation and for all dispersive effects.

II. ANALYSIS

Much of the published work on full-wave analysis of
open microstrip discontinuities has been limited to struc-
tures with strip widths much smaller than the microstrip
wavelength (w < A,). Under this approximation, the
transverse current component can be considered a second-
order effect and neglected [16]. Therefore, analysis was
restricted to thin-strip discontinuities such as open ends,
gaps, and coupled line filters. Obviously, the transverse
current component is critical for the analysis of irregular
structures such as steps in width, corners, and T junctions,
and is therefore included in this analysis.

The general multilayer open microstrip geometry is
shown in Fig. 1. The dielectric layers are considered loss-
less, but the development is not limited by this assump-
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tion. The conductors have infinite conductivity, with the
strip conductor bemg of finite thickness (t < A o)
Maxwell’s equations and the application of Green’s identi-
ties yield Pocklington’s integral equation for the electri¢

field:
E(F) = ff G(7,7) (1)

where E(r) is the total electric field at the point r=
(x, y, 2), J(x y’) is the unknown current on the mi-
crostrip conducting strip, and G(F, 7”) is the dyadic Green’s
function for x- and y-directed Hertzian dipoles above a
grounded multilayer slab.

To provide for the most general solution possible, strip
conductors may be located on any interface. A general,
numerically efficient Green’s function for an arbitrary
number of layers may be derived by decomposing the
fields into LSE and LSM modes with respect to 7 [23].
Cylindrical symmetry may also be exploited by using a
Hankel transform in the transverse direction. This results
in the one-dimensional boundary value problem, which
may be simplified to a two-layer structure by using equiva-
lent impedance boundaries as illustrated in Fig. 2(a). In
Fig. 2(b), the equivalent transmission line model for this
structure is shown, from which the impedance boundaries
can be determined.

After application of the inverse Hankel transform, the
solution to the resulting boundary value problem is a
compact, computationally efficient space-domain Green’s
function. For a multilayer geometry with the strip conduc-
tor located on the top layer (at the dielectric-air interface)
the components of the Green’s function are given by

[(x', y’) dx’dy’

e—juoz
G, =G, = f Ay(Ap) ey c,,h,,erz,hz,--~)d>‘
1 dz coJo()\p) _/uoz
T2 de/O A
Ugl, 1
we, fz(}\,e,l,h,,e,z,hz,---)
Who
- dA (2)
fl(x'tr"hlvtrz’hb'“)]
2
ny= Vx=_l._d_[m"0(x”) ~Jjup
: 27 dxdy /o A
Ugll, 1
‘O(o fz(x,f’l,hl,(,z,hz,"')
Wity
- d\ (3)
fl(x,c,l,hl.c,fhzu--)}

with p={/(x - x')*+(y - y')*. In (2) and (3) the semi-
infinite integration is over the spectrum of spatial frequen-
cies A(N = k2 + k?), and the parameters u,(n=0,1.- )
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Fig. 2. Derivation of general multilayer Green's function (a) Equivalent
impedance boundaries. (b) Transmission line analogue.

are given in terms of A by the following relation:

u,=yks - N (4)

where k, is the wavenumber in the nth layer. In addition,
in (2) and (3) the functions f,(A,¢,,hy, -
f5(A,€,, hl,---) are the characteristic equations for the
TE and TM surface wave modes, respectively, and have
the form

1-T,
(N6 by, -0 )= u0+“l(1+rl,;) (5)
fi(A ey, h1,- ) =+ Uy (1+1 2) (6)
(1-T,,)

where [, and T, are the reflection coefficients looking
into the substrate, as shown in Fig. 2(b). The surface wave
characteristic equations contain all of the information for
the dielectric layers not adjacent to the current source
within the parameters I, ,. For the case of a single laver.

) and’
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the solution simplifies to the space-domain Sommerfeld
Green's function [24], [25}):

o Itz

f Uo(xp)————fl(A -

 d? Jo(Ap)
ugz
T dy e a

Gxx

Wity
d\
fl(A’crl’hl)}
(7)

[“0“1 1
weg (N €, hy)

G -G 1 (0 d? y
= = — —— —Jugz
== T 00 ) dxdy

Uyl 1 Whko
weg fl()"erphl) f1(>‘ € h

Jo(xp)
A

Sow

where
JACY N ) (9)
fz(",‘m hl) (10)

In the above, ¢, is the relative dielectric constant, and h,
is the thickness of the substrate.

The method of moments [26] is applied to transform
Pocklington’s integral equation to a system of linear equa-
tions. The microstrip discontinuity is subdivided into over-
lapping squares. The transverse and longitudinal current
components on the microstrip are expanded over these
squares by finite series

= uy + u, coth juh,
=¢€,uy+ u, tanh juh,.

N+1 M+1
=Y X Ljwm(x.y) (11)
n=]l m=]
N+1 M+1

L=L X Dnitu(x.y) (12)
n=]l mm=]

where
Jim(x5 ) = [f(x)8a(¥)] (13)
(x5 y) = [8.(x) ()] (14)

In (11) and (12), 1,,, is the unknown current amplitude at
the (n, m)th position of the subdivided element. The func-
tions f, and g, are subdomain shaping or basis functions
and are consistent with the current boundary conditions.
The subdomain basis functions have piecewise-sinusoidal
variation in the longitudinal direction and constant varia-
tion in the transverse direction according to

sin k(x,, = %) ,
—u Xp KX S Xy

sinkl,
L(x)={ sink(x'-x,_,) (15)
' T enk, X, €X'<x,
0, else
and
galy)= (b Iy
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(a)

Fig. 3.

(W]

Current on T junction excited by gap generators (¢, =4, h =0.4 mm, W =0.2 mm). (a) Current component J,(x, y).

(b) Current component J,(x, y).

In the above, / = x,,,— x,, and k is a scaling parameter
chosen to vary between k, (free-space wavenumber) and k
(wavenumber in the dielectric). The numerical solution has
shown that best stability occurs when the scaling constant
is chosen close to the guide wavelength. Substitution of the
above into Pocklington’s integral equation (1) yields a
system of linear equations in the form

N+l M+1

E+AE, =Y Y zmrpm+zppm (1)
n=1 m=1
N+1 M+1

E,+AE,= Y Y zZyrpm+Zyrpm (18)
n=l m=1

where Z["(i, j=x, y) constitutes the contribution of the
jth component of current to the ith component of the
electric field from the current element on the (am)th
subdivision. The terms AE, and AE, represent the errors
in the electric field due to the approximations made in the
current.

During the derivation of the Green’s function, all appli-
cable boundary conditions for the grounded multidielectric
geometry were applied, with the exception of the condition
on the microstrip conductors. This condition, which states
that the tangential electric field has to go to zero on the
surface of the conducting strips, will be enforced through
the method of moments procedure. In addition, it has been
shown that Galerkin’s procedure represents a strong condi-
tion on the minimization of the errors AE, and AE,. For
this procedure, the following inner products are defined:

Vou= Cn(F), E)

= [T [TUEABE)[()g(y) dxdy (19)

Yoot

Vv:; = <jvu(F)* E',)

=f."""/v""(E,v+A5v)f-(Y)8..(x)d-xdy (20)

Ym -1

where f,(x) and g,(y) are testing functions identical to

the basis.functions and »=1,---,N+1,and p=1,--- | M
+ 1. In view of (19) and (20), equations (17) and (18) result
in the following matrix equation:

V2.0, (4 ¢ 4l | D Sl I 0
zyxy zyve||\L"| | Vi

where ZIJM%(I,J = X,Y) represent blocks of the imped-
ance matrix, I; is the vector of unknown x and y current
amplitudes, and V; is the excitation vector which is identi-
cally zero everywhere except at the position of the source.
Once the matrix inversion is performed, the current ampli-
tudes on the feeding lines are known.

In order to extract the scattering parameters, the discon-
tinuity is excited systematically at all ports by delta gap
generators. Assuming a unimodal field excited on the
microstrip feeding line, beyond a reference plane the cur-
rent forms TEM-like standing waves. Transmission line
theory can then be used to extract the scattering parame-
ters for a network from the standing wave patterns on the
feeding lines. The presence of the gap is reflected in the
excitation vector, where

V"‘—{l if x,=x

8 21
0 else @)

and

1 ify=y

"= w8, 2

€ {0 else (22)
In the above, x, and y, are positions of an x-oriented and
a y-oriented gap generator respectively.

In Fig. 3, the three-dimensional plot depicts the current
on a T junction excited at all three of its ports by gap
generators. As illustrated, the current assumes a uniform
standing wave pattern along the feeding lines of the dis-
continuity. With a length of feed line longer than that
shown, the current SWR and the positions of minima can
be determined. The considered minima are away from the

discontinuity, far enough for higher order modes to have



2062

vanished. The reflection coefficient at a reference plane
X = L looking in any port is

oL SWR -1
( )_SWR+1

where SWR is the current standing wave ratio, and X, i3
the position of a current minimum. The microstrip guide
wavelength A, has been previously determined from a long
open-ended line.

From the reflection coefficient, the normalized input
impedance may be determined according to

1+T(L)

To evaluate the network parameters, an N-port discon-
tinuiy must be excited by N independent excitations. In
the case of a symmetrical two-port, even and odd excita-
tions may be employed. For the even case the gap genera-
tors are of equal magnitude and phase, and for the odd
case they have equal magnitude and are out of phase by
180°. The even and odd input impedances, obtained from
(23) and (24), may be combined to give the elements for
the Z matrix, which for the case of a symmetric network
take the form

PYRELIVED SRVI W

(23)

(24)

, ezl 3y
n= ) (25)
Zy=12, (26)
Zlo - 7t
Z,=——5— (27)
2
Z,,=12,. (28)

In the above, Z!¢(®) refers to port 1 under an even (odd)
excitation. For nonsymmetric networks and multiport net-
works similar expressions may be obtained. The scattering
parameters are obtained from the Z matrix by a simple
transformation.

Finally, the total radiation losses may be determined
from the known relation

Prad
P

=1- |Sn|2 - |sz|2- (29)

mn
III. EVALUATION OF IMPEDANCE MATRIX
ELEMENTS

The numerical evaluation of the Sommerfield integra-
tions involved in the Green's function is quite involved. A
detailed discussion of the evaluation of the Sommerfeld
integrations has been included in a previous work [29] by
one of the authors and will not be discussed further here.

In the matrix equation of Section II, the terms ZXX%
and ZYY: represent the interactions between the x or y
components located in the (n, m)th and (», u)th cells. The
terms ZXY, % and ZYX,, represent the interaction be-
tween the x and y components located in the (n, m)th and
(»,p)th cells. The computation of all of the 2 (NM)?
interactions would be extremely time consuming. Yet, the
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Fig. 4. Toplitz impedance matrix.

number of computations can be greatly reduced noting the
following points. For the directly coupled blocks, due to
the symmetry and the even valueness of the Green’s func-
tion with respect to the x and y separations, all interac-
tions between subsections depend only on the magnitudes
|x = x’| and |y — y’|. For the cross-coupled blocks, the
symmetry and the odd valueness of the Green’s functions
may lead to similar conclusions. Thus, vectors of impedance
matrix elements may be precomputed and catalogued ac-
cording to separations for various substrates and subsec-
tion sizes. These libraries can then be used repeatedly for
discontinuity analysis.

A typical impedance matrix is plotted in Fig. 4. As
illustrated, the matrix is Toplitz, with the diagonal ele-
ments being the largest by an order of magnitude. Al-
though not done in the following results, it appears evident
from the figure that interactions of subsections electrically
distant may be ignored. This could result in further savings
in computer time.

IV. NUMERICAL RESULTS
A. Single-Layer Discontinuities

The presented technique has been applied to character-
ize the discontinuity shown in Fig. 5(a). This matching
section is printed on a 10 mil substrate of relative permit-
tivity 9.9. Over the frequency range of interest, the mi-
crostrip section and the substrate thickness are electrically
small (<A ¢)- As expected, our moment method algo-
rithm has found radiation losses insignificant for this
example. Fig. 5(a) and (b) shows the magnitude and phase
of the scattering parameters as compared to measurement.
As illustrated, the agreement with measurements for mag-
nitude and phase is excellent. In particular, the agreement
of the phase is within 2.5° across this frequency range. The
measurements were performed by TI using a cascade prober
and an 8510 automatic network analyzer.

1) Radiation Losses: Radiation losses for open mi-
crostrip elements can be significant at millimeter-wave
frequencies. To illustrate the ability of the analysis pre-
sented here to account for space and surface wave losses, a
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(50.0), €, =99, h=10 mil. (a) Magnitude. (b) Phase.

microstrip stub on a single microstrip layer was compared
to previously published data obtained with the spectral-
domain technique [21]. The microstrip stub contains a
T-junction discontinuity and an open end and is printed
on a 1.27 mm substrate of dielectric constant 10.65. As
illustrated in Fig. 6, the agreement between our space-do-
main technique and the spectral-domain technique is very
good. The quantity denoted G in the graph corresponds to
IS;11% +1S,/% which may be subtracted from 1 to deter-
mine the total radiated power. The quarter-wave resonance
occurs just beyond 10 GHz. Also included in the plot are
measurements obtained by Jackson [21].

2) Single-Loop Meander Line: Multiloop meander lines
are frequently used in such MMIC’s as traveling wave
amplifiers for their slow-wave properties. The formulation
presented in this paper has been applied to simulate a
single-loop meander line in order to illustrate the versatil-
ity of the method in modeling irregular microstrip discon-
tinuities. Furthermore, the consideration of a single-loop
instead of a multiloop line speeds up the computation and
reveals very explicitly the effect of distributed discontinu-
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Fig. 7. Design curve for meander line (¢, = 9.9, h =10 mil).

ities and electromagnetic coupling on the slow-wave prop-
erties of the structure.

The line is printed on a 10 mil alumina substrate (¢, =
9.9). The magnitude of S,, is shown in Fig. 7 as a function
of frequency for three values of the width-to-spacing ratio
(w/s). In addition, Fig. 8 shows the normalized phase
velocity around the loop (v’/v) as a function of frequency,
where v is the phase velocity on a microstrip line of length
equal to the mean path length of the loop. These results
indicate, in this frequency range, that the parasitics in the
loop increase the phase velocity v’, which in turn tends to
reduce the overall slow-wave effect of the meander line.

B. Multilayer Microstrip Discontinuities

A powerful advantage of the presented formulation is its
ability to model multilayer substrates by replacing the
single-layer Green’s function with the multilayer function.
The full-wave procedure was applied to a microstrip cor-
ner discontinuity on a substrate having two dielectric
layers. The magnitudes of the scattering parameters are
shown in Fig. 9. The multilayer corner has been analyzed
on four different substates: A) a 40 mil layer of alumina
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(¢, =10.2); B) a 40 mil layer of Duroid (¢, = 2.2); C) a 20
mil layer of Duroid on a 20 mil layer of alumina; and D) a
20 mil layer of alumina on a 20 mil layer of Duroid.

There is significant difference in radiation between the
two multilayer cases. The radiation from the structure
having Duroid over alumina is considerably greater than
the structure having alumina over Duroid, as illustrated in
Fig. 10. It is believed that for this structure the loss is due
primarily to surface wave radiation. Therefore. case D
couples less power into surface waves than case C. This
phenomenon is believed to be related to the suppression of
surface wave excitation reported by Jackson [27] in his
study of antenna elements.

A two-layer microstrip stub was also analyzed. Shown in
Fig. 11 are the magnitudes of the scattering parameters for
a stub on substrate having a layer of GaAs (¢, =12.2) on
quartz (¢, = 4.0). Both layers are 0.2 mm thick. Also in-
cluded are the scattering parameters for a stub having the
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same dimensions on a single layer of quartz. The single-
layer example has a resonant frequency at 41 GHz. The
higher effective dielectric constant for the two-layer case
creates a stub having a smaller resonant length, and results
in a downward shift in frequency for the null of |S12|. The
radiation losses for both stubs are included in Fig. 12. As
illustrated, the multilayer stub shows a tendency to radiate
less. This indicates that multilayer substrates may be uti-
lized to reduce radiation losses.

V. CoNCLUSION

A versatile analysis of microstrip discontinuities has
been presented. The two dimensional method of moments
technique has demonstrated excellent agreement with mea-
surements and other theoretical data derived for a single
layer. A powerful extension of the method allows the
treatment of discontinuities on more complicated dielectric
structures. This is accomplished by employing the Green's
function for a conductor-backed multidielectric layer, re-
sulting in the ability to model with full electromagnetic
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analysis a wide variety of nonuniform microstrip configu-
rations.

Numerical results for corner and T-junction discontinu-
ities have been presented on two dielectric layers. Addi-
tionally, the ability of the formulation to model larger
elements composed of these building blocks has been
demonstrated by the inclusion of a design curve for a
meander line.

The full-wave technique accurately accounts for cou-
pling, space wave, and surface wave radiation. Curves of
radiation losses are presented for the corner and stub
elements.
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Abstract-Radiation properties of open microstrip discontinuities are investigated
using a fullwave integral equation technique. The total radiation loss of bends and
stubs has been separated into the individual contributions of space and surface
wave excitation. With the inclusion of radiation loss, the analysis is well-suited
for the study of elements frequently utilized in monolithic arrays. Patterns de-
picting the power propagating in the substrate have been computed and verified

experimentally.
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of low-loss microstrip elements. For example, it is well known that the shape of
discontinuities can be altered to improve circuit performance (eg. mitered bend,
radial stub). However, finding the influence of these and similar modifications
on the radiation loss is also important. This analysis will provide the necessary
quantitative results for determining when and why a specific circuit modification
decreases radiation loss.

The analysis presented quantifies the radiation occuring from each mechanism,
and shows the directions of propagation of surface wave radiation. These far-field
patterns are useful for determining where coupling through surface wave excita-
tion may be strong. In addition, results will be shown demonstrating the strong
influence that substrate composition has on radiation properties.

The far-field patterns are obtained in this paper by the complex transformation
of the space domain Green's function to the steepest descent plane, where a saddle
point integration is performed. The contribution from the saddle point represents
far-field spherical wave power in the half-space above the dielectric. In addition,
the residues corresponding to poles captured in the contour deformation represent
cylindrical surface waves guided in the dielectric. Theoretical and experimental
results are presented for microstrip stubs and bends that detail the effect of radi-
ation on circuit performance, quantify the types of radiation which are occuring,

and show the direction and intensity of surface wave propagation in the substrate.



2 Theory

2.1 Computation of Current Distribution

A cross-section of the microstrip structure is shown in Figure 1. The conductors
are lossless and their thickness is much smaller than a wavelength. The substrate
is of thickness h and is assumed lossless. The electric field may be written in terms

of the space domain integral equation

E(z,y,z //, K2+ VY- G(z,y,2/2',y, 2) - J(s')ds' 1=0,1 (1)

with ko and k; being the wave numbers in free-space and dielectric regions respec-

tively, and where
J(s') = L(<',y)E + Jy(:z:’,y')g (2)

is the current on the conducting strips. The components of the dyadic Green's

function [29]]
G(2,y,2/2 ¥, 2) = Guaidd + Gopid + Gpyiid + Gy (3)

are represented by Sommerfeld integrals, given in Appendix A.

The microstrip discontinuity is subdivided into rectangles, and the method of
moments is applied with roof-top basis functions. These basis functions are consis-
tent with the current boundary conditions; having piecewise sinusoidal variation
in the longitudinal direction and constant variation in the transverse direction.

With the application of Galerkin's method, the integral equation is reduced into

a matrix equation



where Z represents the impedance matrix, I is the vector of unknown x and y
current amplitudes, and V' is the excitation vector which reflects the position of
the source. The matrix inversion is performed providing the current amplitudes
on the discontinuity and the feeding lines. The microstrip structure is excited by
infinitesimal gap generators. More details on the excitation and application of the

method of moments may be obtained in [21).

2.2 Far-Field Radiation

The electromagnetic fields generated by the microstrip element may be com-
puted from the integral equation once the microstrip current is known. As shown in
figure 2(a), the original path of integration was along the positive real axis. Along
this path, a finite number of singularities corresponding to excited surface waves
are encountered between the free space (ko) and the dielectric (k) wavenumbers.
In the method of moments procedure, this integration was performed exactly by
a combination of numerical and analytical techniques [34]. To obtain the radiated
far-fields, the integral is transformed to the steepest descent plane by the complex
mapping

A = kgsina. (4)

Figure 2(b) shows the new path of integration in the a-plane. The quantaties
shown in the parenthesis correspond to the points mapped from the A-plane to the

a-plane. The poles now lie along the line defined by Re(a) = 7/2, between the

points Im(a) = 0 and Im(a) = vk. v is mapped from the point k in the A-plane



according to

k = kosin (7/2 + jvi) (5)

vk = cosh™!(e,). \9)
Asymptotic approximations are made for the Hankel functions as shown in ap-
pendix B. The contour of integration (Figure 2(b)) is then deformed into the
steepest descent path(31]. A saddle point integration is performed, with the saddle
point equal to the spherical observation angle (a = 8). During the contour defor-
mation, a finite number of surface wave simple pole singularities are captured as
shown. These will be discussed in the following section.
To obtain the fields for a microstrip discontinuity, one returns to the electric
field integral equation. In the far-field, the electric field can be written in spherical

coordinates as

Ey = kir; + 7)) (7)
Ey = Rrg+7Y) 8)

with
75 = [ [[Gucos(6)cos(6) = Gursin (L' ¥ )de'dy (9

T o= //s'[GW cos (8) sin (@) — G,y sin (8)]J, (', y')dz'dy’

"= / /SI[-G,,sin(¢)]J,(a:’,y')dz’dy’
= / /S,[Gwcos(¢)]Jy(z',y’)dz’dy'

Inserting the results of the saddle point analysis (Appendix B) and the values

of the microstrip current obtained from the method of moments, the electric field

5



can be written in the form

Jwio  ,eZ0R) T R(g) JGO)(1-¢) |
Ey 5y kg [fl(g, ) cos (8) — 0 20R) sin (8)]
[Arz(8, 0) cos( )+ Ary(8, 6) sin (8)]
N A A () . , |
Ed’ - - or kO koR fl(a, h) [A (0? ¢) sin (¢) - Ary(91 ¢) Cos (¢)]

where the terms A,;(0, ¢) and A,,(0, ¢) contain the spatial integrations of the basis
functions with the Green’s function phase terms. These integrations are performed

analytically and result in the expressions given below

N+1 M+1
Arz(g, ¢) = 4e (]1\028111( sm(qb))[z Z I:r: e(JymKosm(G)sm( )) (]:z:nKosm(G)cos ))]

n=1 m=1

sm(Ko2$1n( )sin(@)) cos (I Kpsin (8)cos (o)) — cos (k,!)

10

Kosin (6)sin(¢) K, sin (K,I)[1 - %‘1 in ()% cos (¢)*] (10)
N+1 M+1

Any(0,) = 4euxoésin(0)cos(¢))[2 S [3,, elismKosin (6)sin (4)) oiza K sin (9 sn (61
=1 m=1

51n(K0251n( )cos( )) cos ({Kqsin (8)sin (¢)) — cos (k,!) (1)

Kosin(f)cos(¢) K, sin (K,I)[1 - -’-,filzsin(é?)2 sin (¢)*]
where the quantaties [ and k, represent the subsection length and scaling constant
for the basis functions, respectively. More detailed information on the rooftop
basis functions is available in [21].4 The fields depend, therefore, on two factors:
A substrate contribution, resulting from the Green's function and containing all
the information about the substrate; and a shaping contribution, resulting from
the spatial dependence of the source and containing all the information about the
shape and current distribution over the conducting strips. Consequently, these two
factors may be handled independently to reduce loss.

The total far-field space wave power is obtained by integrating the poynting



vector over a hemisphere centered around the discontinuity.

1 rr 2 [E? E?
PP /0 /0 : [7’01 + Eﬂ rsin (6)d0dé (12)

2.3 Surface Waves

During the contour deformation of the previous section, a finite number of
singularities were captured as shown in figure 2. These singularities correspond to
excited surface wave modes that fall into two types: a) Tranverse Electric (TE,),
or b) Tranverse Magnetic (T'M,) to the dielectric-air interface. The poles are
determined by the zeroes of two analytic functions present in the denominator of

the Green’s function given by

fi(a) = = cos (a)sin (koh\/€, — sin (@)®) + j\/€&; — sin (a)? cos (kohy/ € — sin (a)?)
(13)
for (TE,) waves, and

fa(a) = =\/e, — sin (a)? sin (kohy/€, — sin (@)?)+j€, cos (@) cos (kohy/€, — sin (a)})

(14)
for (T M,) waves. It is now a simple matter to obtain field patterns in the dielectric
(8 = 7/2) by the application of Cauchy’s residue theorem. The total number of

poles is determined by the operating frequency and the substrate parameters. The

pole locations are given by
L .
arM =5+ n= 1, Nru (13)

s .
arg =3 +jvm m =1, Nrg (16)



where N7ar and Nrg are the number of excited TM and TE modes, respectively.
The far-fields are determined by computing the residues of the singularities and
are given in Appendix C.

The power in a particular mode is found from thek poynting vector. The surface

wave power at the dielectric interface is given by

NTM .
R e o
| cos ($) Arz() + sin (8) Ary(9)[? (17)

for TM waves, and
NTE 20110 cosh?(vm )sinh?(vy) , | —
PTTE(¢) - Z 0% Ko / ( z ( )(Sln (koh €, —sin (0)2))2
m=0 ir Ifl(a)l lﬂ'/2+1um

|sin (6) Arz(8) + cos (¢) Ary(9)I° (18)

for TE waves. In equations (17) and (18) the terms A,;(¢) and A, (4) are given
by equations (10) and (11), with the quantity ko cosh (v,) replacing kg sin (9).
The total power in TM and TE modes may be found by integrating the poynting

vector over a cylindrical surface centered at the discontinuity

o v B . H?
™ _ g
P™ — /_ h /o ——2 pdgd: (19)
o r2r F . H*
TE _ (] z
PTE - /_ h /O =4 pdpdz. (20)

3 Results

In the following sections, examples of total radiation loss and surface wave far-
field patterns will be presented for microstrip open-end, radial stub, and bend
discontinuities. As mentioned, these surface wave patterns are useful for deter-

mining directions of strong coupling between adjacent discontinuities. Space wave

8



far-field patterns have a null along the dielectric substrate, except under very rare
circumstances (at the cutoff of higher order surface wave modes), which are not
applicable to the presented results. Furthermore, surface wave radiation is in the
form of cylindrical waves which decay less rapidly with distance than spherical
space waves. It is therefore reasonable to conclude that surface waves play a ma-
jor role in undesirable electromagnetic interference. In addition, the extraction of
the exact amount of both types of radiation will help in the design of low-loss ele-
ments and extend the use of microstrip circuitry farther into the millimeter wave
region. The first of the following sections will give examples of total surface and
space wave losses; the second section includes examples which depict the direction
of surface wave propagation.

3.1 Space and Surface Wave Radiation Losses

3.1.1 Stubs

In Figure 3, examples of open-ended and radial microstrip stubs are shown.
These elements are frequently utilized in matching networks. The radial stub is
generally utilized for its greater bandwidth. In Figure 4, the contributions of space
and surface waves to total radiation loss is given for the open-ended stub. In the
lower frequency range, the space wave contribution is slightly larger. However,
the surface wave loss increases sharply with frequency, overtaking the space wave
power at 20 GHz. Beyond 20 GHz, the total radiation loss increases sharply
due to a corresponding increase in surface wave loss. The total radiation loss
approaches half of the input power at 34 GHz. This is a significant amount of

loss for an element on a substrate with practical electrical dimensions for (M)MIC



applications.

Radiation loss for the radial stub, shown in Figure 5, exhibits a similar behavior
to the open-ended stub, except that the sharp increase in surface wave and total
radiated power is shifted upward. This behavior results in less radiation loss in the
20-30 GHz range of operation, but greater loss above 30 GHz. The lowest order
TEy mode activates between 35 and 36 GHz, therefore, only one surfa.;e wave
mode is excited in this example. The loss is expected to continue to increase until
the first higher order mode is excited, and then it will oscillate as reported in [32].
Although the shape of the metallization has a strong influence on the total loss,
it does not appear to have a greater influence on either type at lower frequencies
as shown in Figure 6. However, above 30 Ghz the radial stub radiates a higher

percentage of power into the excited surface wave mode.

3.1.2 Mitered bend

Chamfering of microstrip bends is a common practice for the reduction of input
VSWR. The example shown in Figure 7 clearly illustrates that mitering can result
in lower radiation loss as well. The losses between the mitered and right-angle
bend are effectively equal until 20 GHz (h = .127),;). Beyond this frequency, the
right-angle bend clearly radiates more power. Figure 8 shows that, once again, the
radiation is dominated by surface waves at high frequencies. However, the mitering
produces a reduction in both space and surface wave power as illustrated in Figure
9, where both the mitered and unmitered cases exhibit identical percentages of
surface wave loss. As shown in the inset to Figure 7, the reflected power is much

smaller for the mitered case over the entire frequency range. This improvement

10



results from a decrease in both the excess reactance and the radiation resistance at
the bend. Therefore, mitering effectively increases the useful range of operation of
the bend element. A similar discontinuity printed on a lower permittivity substrate

would exhibit lower, but still significant, surface wave losses.

3.2 Surface Wave Patterns

The preceeding analysis was utilized to obtain patterns in the substrate for
the T My surface wave mode. As previously mentioned, this mode is excited at
any operating frequency. Accordingly, it is important to know the direction and
amount of propagating power. Theoretical and experimental patterns were ob-
tained at 10 GHz for microstrip stub and bend discontinuities printed on a 96
mil duroid (€, = 2.3) substrate. The duroid substrates were machined into 5 inch
diameter circular sections whose edges were gradually tapered as shown in Figure
10, to minimize the reflection of the surface wave at the edge of the substrate.
The microstrip element, in this case a radial stub, was etched from the copper
metallization on the top face of the substrate. The experimental setup is shown in
Figure 11. The substrates were elevated onto a rotating pedestal and surrounded
by absorber to minimize multiple reflections. Each element was fed at the edge of
the substrate with a 10 GHz signal and a resonant dipole was positioned near the
edge to measure the pattern. The pedestal was then rotated to alter the obser-
vation angle (#). Absorber was placed over the microstrip launcher to minimize

extraneous radiation.
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3.2.1 Open-Ended Line

The experimental results for a 100 ohm (W=100 mil) open-ended line was com-
pared to the theoretical results derived by the previously presented method. Ini-
tially, the theoretical model assumed that the discontinuity was fed by a semi-
infinite line, to remove the radiation effects of the finite line length and isolate the
radiation of the open-end. Figure 12 shows that the theoretical results agree well
with the experimental results. The open-ended line radiates power in the T Mj sur-
face wave along the longitudinal axis of the line. The experimental results include
the effect of finite line length as demonstrated by the side-lobes in the pattern. To
verify the presence of these lobes, the theoretical results were re-computed consid-
ering the finite length of line as utilized in the experiment. The new theoretical
results and experimental data were now in excellent agreement(Figure 14). Also

note that the beamwidth of the surface wave pattern became narrower.

3.2.2 Radial Stub

The TM, surface wave pattern of the previously shown radial stub was mea-
sured. The 350 mil radial portion swept out an angle of 90 degrees and was fed
by a 100 ohm microstrip line. Radial stubs are useful as broader band elements in
(M)MIC design. Figure 14 shows the theoretical results for semi-infinite and finite
length lines, as compared to experiment. The results are very similar to those
obtained for the open-ended line, with the surface wave power excited along the

longitudinal axis.
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3.2.3 Bend Discontinuity

A two-port right-angle bend discontinuity, shown in Figure 15, was fabricated
and measured. Experimentally, port 2 was left open-ended at a distance of two free
space wavelengths from the bend discontinuity. The theoretical model assumed a
semi-infinite feed line (shown as ¢ = 0 direction in picture), and that the second
port was left open-ended, but extended far from the discontinuity. This extension
maintains the standing wave ratio on the line, but removes the effects of the open
end and finite line lengths; thus, isolating the effect of the bend. Shown in Fig-
ure 16, the agreement between theory and experiment is good. The experimental
results show the the combined effects of finite line length and the open-end. This
results in the mild dis-agreement between the theory and experiment around 45
degrees. The side-lobe present at 90 degrees in both the theoretical and experi-
mental results comes from the power reflected at the open-end which returns to
the bend and radiates there. This lobe would be smaller if the second port were

matched.

4 Conclusion

Simple formulas have been presented to characterize power loss from open mi-
crostrip discontinuities. The technique utilizes microstrip current distributions
obtained with the method of moments. The formulas allow the separation of total
loss into the individual contributions of space wave and surface wave radiation,
and indicate which direction surface wave power is propagating within the sub-

strate. Results presented show that on high density substrates, high frequency
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radiation loss is dominated by the T M, surface wave. This mode is excited along
the longitudinal axis of the stub and bend discontinuities shown, and may have a
narrow beamwidth. An example of a mitered bend was shown to radiate less power
than its right-angle counterpart. Such a minor topology change had a significant
influence on total radiated power, without having a more significant impact on
either of the two types. This is reflected in an equal percentage reduction in both
space and surface wave radiation. It is known, from published work on microstrip
antennas, that the substrate structure plays an important role in the surface wave
radiation. Therefore, an element showing improved loss performance on a single
layer, such as the mitered bend, will show further improvement when printed on a

multiple layer substrate designed to have lower substrate losses.
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Appendix A

The components of the space domain green’s function are given by

Gz = ny
G.r = tan ($)Gy
Ger = Gy

G.r = tan(9)G.y

—Juﬂo(l—e,)cosqS/ Jl(/\p)smhuhcoshu(z+h)

jw 0 sinhuh _, .
-’%‘;f_,’/ JO(Ap)me XA Z>0 (21)
pro .., sinh uh cosh uh
— €,) COS Ji( Yot A2\ Z >0
TR [ e SR
Jwpo smhu (z+h)
27rlc2/ Jo(A 0 h) —— ) Z<0

M\ Z<0

2mk? fi(A ) fa(A R)

with p = \/(z = 2')? + (y — ¥')?, uo = /A2 — k¢, and u; = /A2 — k?. The equations f,(),h)

and fy(A, h) represent characterisic equations for surface wave modes given by

f1(A, k) = ugsinh uh + u coshuh (22)

f2(A, h) = €,ug cosh uh + usinh uh (23)

where in the above, ¢, is the relative dielectric constant, and A is the thickness of the substrate.

These components of the Green’s function may be tranformed from semi-infinite to infinite inte-

grations through the relationships

To(39) = 3THS (p) + HP(Ap) (29
1(00) = 51H ) + HP(3p) (25)
HP (M) = ~H§(=2p) (26)
HP (M) = H{"(-)p) (27)

Resulting in the expressions in the free-space region (z > 0)

it huh
Grs = Gyy = -1o22 / HY(Ap)e ~ugs Sinhuk \ 4y (28)

G.r =tan d’Gzy =

FETY) Fi(\ B)

. 00 i
LBy -er)cos¢/ 1'f§1)('\l’)e.“"‘Em"l'cﬂ’\?dA (29)
-00

4nk3 Fin I Fa(h, By
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Appendix B

To find the far-field patterns above the dielectric, the components of the of the Green’s

function are more appropriately given in spherical coordinates according to
p=rsinf (30)
z=rcosf (31)
After substitution of (30) and (31) into (28) and (.29), the form of the Green’s function becomes
4mkd

Gz =Gy = qua/ H(l) 1kosm(9)sm( e~ jkor cos (8) cos (o) (32)

jsin(kohy/ €, = sin (@)%
fi(a)
Jw%(l €)cos (¢ / H(”(rlcosm(ﬁ)sm( ))e 3 kor cos (8) cos (o)

k3 cos (a) sin (a)da

Glt = tan ¢G:y

| jsin (kohy/€, — sin (a)?) cos (kohy/€, — sin (a)?)
fi(@)fa(a)

Where the surface wave characteristic equations become

fi(a) = —kg cos(a)sin (kohy/ €, — sin(a)?) + Jkoy/ € — sin (a)? cos (kohy\/ €, — sin(a)®) (33)

for TE surface waves and

k3 cos (a) sin (a)zda

faa) = =ko\/€r — sin(a)2 sin (kohy/ €, — sin(a)z) + jko€, cos (a) cos (kghy/ €, — sin (0)2) (34)

for TM surface waves. Far-field patterns(rko >> 1) are desired. Under this condition, the Hankel
functions may be replaced by their respective large argument approximations

2j e-jrko sin (8) sin (a)

Trko \/sin () sin (a) (35)

2] Jc-Jrko sin (0)sin (a)

xrky \/sin ()sin (a)

H,(,l)(rko sin (8)sin(a)) =

Hgl)(rko sin (f)sin (a)) =

resulting in the final expressions

’ 2 | F —a -
st_Gw ]W#o 1".20 J (a) e-ikorcos(8-a) 4o (37)
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JwWpe | 2j G(a)e=ikorcos(8-a)
iz =t y = ——— — r
G an ¢G,, - ,/mo(l €r) cos ( / fl SR da (38)

F(a) = Mﬁ‘ijsm(koh e — sin (a)?) (39)
sin (8) sin (a)

: 2
Gla) = —% sin (kohy\/€, — sin (@)?) cos (koh1\/€, — sin (a)®) (40)

The saddle point is to the observation angle (a = §). The saddle point integration is performed

with

resulting in

. -jkoR
Go = jwp, e(=ikoR) F(6) elikolz" sin (8) cos ($)+y' sin (8) sin (#)]) (41)

o1 kR fi(0,h)

(=jkoR) iG(9
_ Jwle . e iG(8)
Ceo = S (1=e)eos(9)—p 18, h) (8, h)
e(]lco[: sin (8) cos (¢)+y' sin (8)sin(9)])

These expressions give the far-field patterns above the substrate (space wave patterns). They
are spherical waves as seen by their spatial dependence %;2. In the phase terms of the above
expressions R = r + (z'sin () cos (¢) + ' sin (6) sin (4)), and the amplitude terms 1 have been

replaced by %
Appendix C

Surface wave fields resulting from application of Cauchy’s theroem.

é _ kowpo ¢)N§' y/€r — cosh?( (va) cosh®(v,) sinh(v,) (43)
‘ o 2 Jeohvm Uy hllgsinm

sin [ko\/c, — cosh?(v, h]e""""“"("‘)c"‘“‘ sinh (va) Z>0
NTM
k2 !f —cosh (V) cosh(v,) sinh(v
Hy ° ¢) § : ) (t0) (44)

- 2l o hVle.:.
He = ko Z cosh u,.)cosh(u,.)smh(u,,)
] T @ h)llg+0,
sin [ko\/e.- - cosh?(v, h]c"""“‘“""e"‘“ sinh (va) Z>0
E = kowpo s (4) Nf’ cosh?(v,) sinh?(v,) o-ikopcoah (va)
! 2 xpk <~ Vcoshv,

cos (kg /€, — cosh?(v, )(z + h)) 7<0

[fa(e Bl g 45,
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. k2 . NTM
Hy = SiaL} icos(cﬁ) Z cosh(vn) sinh (1) e~1kopcosh (vn)
2 mpko Vcosh vy, ‘

n=0
cos [ko /€, — cosh?(v,)(z + h)]
[fé(aa h)]l%"'i”n

Z<0

and for the TE case

K h3(
g, = -5 [ 0 Z cosh*(vpy, )sinh(vy,)
9 7rplco \/cosr,hum[_fl o, h)]|z4j,

sin [komh]e""”c“h(”m) “harshiva) 750

E; = _M\/_ Z cosh(vm )sinh(vm)
2 mpko ¢ Veoshvm[fi (e, h))| 5 +jv,
sin [komh]e-”wc“h(”m)e—kozSmh(v,,.)
H, = _ffol\/_ % cosh?(vm )sinh(vm)
2y meko Veosh U £, (0, M| 40,
e-ikopcosh (vm) i [ko\/m:—)(z+h)] Z <0

kow o cosh(vm)sinh(vm)

E, = --2Ho —m S )
¢ e Z Veoshvmlfi(@ Wl 470m
¢~ ikopcosh(vm) gip [lcm/er — cosh?(v,)(z + h)] Z<0
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‘Figure 1: Open Microstrip Geometry
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Figure 11 Fxperimental Setup for Surface Wave Pattern Measurements (¢, = 230 =

Sl W = otmil)
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Abstract-The effect of the substrate structure on the radiation properties of mi-
crostrip array feed networks is investigated with a space domain integral equation
technique. Results for space and surface wave losses are presented for corner dis-
continuities printed on substrate/superstrate, and two-layer substrate structures.

Comparisons are made to the single layer case.
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1 Introduction

Vertical integration of active devices with passive radiating elements offers many
advantages such as reduced area and shorter interconnect lines. Unfortunately,
such integration schemes suffer for a variety of reasons including the availability
of reliable models for passive circuits and radiating elements. In most mono-
lithic array applications, the feeding structure and antenna elements are made of
microstrip. Despite the advantages of the microstrip technology, radiation from
discontinuities included in microstrip feed structures [1]-[7] reduce the gain of the
antenna, and deteriorate the array patterns. As a result, models for these loss
mechanisms on the array performance should become an important part of the
array design procedure.

Microstrip arrays often have, for their protection, a cover or superstrate layer,
which has also been reported to improve the gain of microstrip dipoles. This
gain-enhancement technique, based on the elimination of surface waves, has been
discussed extensively in the literature [8]-[9]. As mentioned in this work, total
eiirnination of the surface waves is not practical with commercially available sub-
strates, however, a moderate improvement in gain is realizable. Nonetheless, the
presence of the superstrate, whether it is used in a planar array for improved per-
formance or protection, must be considered carefully. In this planar configuration,
the superstrate increases the substrate thickness, which, in turn, may trigger higher
radiation in the feed network. These higher losses can offset the increase in ar-
ray gain and further complicate the design. Furtherrhore, superstrates reduce the

operating frequency range by lowering the cut-off frequencies of the higher order



microstrip and surface wave modes.

In this paper a fullwave method of moments technique [7] is employed to analyze
the radiation properties of microstrip discontinuities often encountered in feeding
networks printed on multilayer substrates. In addition, the space and surface wave
contributions [10]-[13] are evaluated and it is demonstrated that the utilization of

a superstrate may result in higher radiation losses and lower overall array gain.

2 Theory

Consider the open microstrip structure having a superstrate as shown in Figure
1(a) or a multi-layer substrate as shown in Figure 1(b). The conductors are lossless
and their thickness (t) is much smaller than a wavelength. The substrate is of
thickness h, and is also assumed lossless. The electric field may be written in

terms of the current as shown below

B(e,y,) = [ [ RT4991Gi(e,0, 2/, ¢, )Ty emods’ (1=0,1,2) (1)

where k; and é.—(x, y,z/x',y',7’) are the wavenumber and dyadic Green’s function
in region (i), and |

J(@,y) = L', y)2 + Jy(2',¥')i 2)
is the planar current on the conducting strips. The components of the dyadic

Green’s function used in equation (1) are expressed in terms of Sommerfeld inte-

grals [7),(14),(15] as shown below

uen 2,0 = (22 [ oo el 5 ®

Gz, 2/54',0) = (22‘-‘,;-) 3(¢) /‘,”Jl(xp)zzf(z)?l’(v;);;j();)dx (@



where

p= V-2 +@-y) (5)
cos(9) E=z

o(4) = | (6)
sin(¢) {=y

and with Mege(X), Mee(), fi(A), and fo()) given in appendix A. In equations
(3) and (4), fi(A), and fy()) are analytic functions with discrete zeroes. The
contributions from these zeroes give the power propogating in the substrate in
the form of transverse electric (TE) and transverse magnetic (TM) surface waves,
respectively.

To obtain the electric current density over the conducting strips, the method of
moments is applied {16]. A rectangular region containing the microstrip disconti-
nuity is subdivided into rectangles (see figure 2) and the current is expressed as a

superposition of known basis functions multiplied by unknown coefficients.

Nz41 M:+1

Jx(z'y') = Z Z Lol fas(2)gm. (¥)] (7)

ng=1me=1

Ny+1 My+1

Jy(z',y') = Z Z m[fn, gmg( z')] (8)

ﬂy—l m,—l

where the pairs (n,,m.) and (n,,m,) indicate the nodes in the mesh for the X-

current and Y-current, respectively. In addition, the function f,,(¢') gives the



longitudinal dependence of each component

( Sin_k:i(fiﬁ;ﬂ gng S 5’ S §n5+1
sin k4 (€' -
! s,in R A=t fﬂ— S 5, S fn
Ful)=§ ‘ ‘ )
0 Else
\ (€,¢) = (z,9),(y,2)
while gm,({’) gives the transverse dependence
(1 Gy SO S Cnen
gme(C’) =40 Else (10)
L (60 =(=,y),(y,2)

In the above, i = £n41 — én,y and k, is a scaling parameter chosen to vary
between kq (free space wavenumber) and k; (wavenumber in the highest permitivity
dielectric region).

With the substitution of equations (7)-(10) into equation (1), the original inte-

gral equation can be written in the form

N,+1 M,+1
E; + AE;

B [ [ Kexl2,/2',9) o (@)om, () de'dy' (11)

n,_l m,—l

Ny+1 My+1

+ E Z I,’fm/[S,’Czy(-’c,y/x',y')fn,(y')gm,(x’) dz'dy’

ny=1 my=1
Ns+1Ms+1
E,+AE, = B [ [ Kuel,0/2 ) on( o, () de'd’ (12)

ﬂ’—l m,—l

Ny+1 My+1

¥ n,z=l m§1 Ixm //;' KW(I’ y/l", y')fn,(y')ym,(z') dz'dy'

where K¢(z,y/2',y")(€,¢ = z,y) are integro-differential operators given by

8 a
Kec(z,y/2'y) = fo [(k’6«+ agac)F“+ 50 Fyc| d) (13)
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and where Fy; and F,, are functions of A of the following form

Fee = (;vukoz) Jo(Ap) Z¢c(2 )A;ic((/\/\)) (14)
_ Who N, (A)
FZC - (27!']6%) ¢(¢)JI(AP)ZZC(Z)fl(/\)cfz(/\) (15)

In equations (11) and (12) the errors AE; and AE, are introduced under the
approximations made for the unknown current distributions in equations (7)-(10).
The z derivative in equation (13) may be replaced by an ( derivative resulting in

the modified form for the operator Kg:

g d?
Kee(z,y/2'y) = /0 Kk26«+3€36) f<<+5@fz<] Jo(Ap)dr  (16)
feo = Fy (17)

Who ' g NZ()
& '(%rks) 2N AM (18)

where 8¢ is the kronekker delta and Z’;¢(2) is the first derivative of Z,¢(z) with

respect to z. In this manner, the first order Bessel function in equation (15) is
eliminated and the p dependence in all Sommerfeld integrals is in the argument of
a zero’th order Bessel function of the first kind.

The application of Galerkin’s méthod for error minimization reduces equations

(11) and (12) to a matrix equation

[#](1]-v]

where Z is the impedance matrix, I is the vector of unknown x and y current

amplitudes, and V is the excitation vector. The impedance matrix is a square



matrix containing four sub-matrices as shown below

[2]- 2] [ 2]

(4] [2]

The elements of each submatrix are given by

Zez(nymy vy 1) = (fo,(2')gm. (¥, Kazy f5,(2)90.(y)) (21)
Zry(nym, v, p) = (fa,(2')gm. (¥')s Koy, £1, ()9, (2)) (22)
Zya(nymy v, 1) = (fuy (¥ )m, (2)s Ky, fo2(2)g0.(y)) (23)
Zyy(nymy v, ) = {fa, (4)9m, (), Koy £, (¥)90,(2)) (24)

where the pair (vg, pe)(€ = z,y) indicates the testing poihts. The terms Z,, and
Z,, are called the direct-coupled terms because the direction of the testing field
and the current component are the same, while the terms Z;, and Z,, are the

cross-coupled terms.

The double inner product in equations (21)-(24) is of the form

(ridmer Kecs Fucgin) = [ [ da'dy’ [ [ dody (faegme Kec fuctuc) — (29)

where S, and S’ represent the surface of the microstrip conducting strips.

2.1 Evaluation of the Impedance Matrix

The computation of the elements in the impedance matrix requires the evalu-
ation of quadruple spatial integrals present in equation (25), as well as the semi-
infinite Sommerfeld integrals in the Green’s function. The Sommerfeld integrals are
computed by a real-axis integration in the complex A-plane[17] using an extraction

of the singularities technique which effectively takes into account the contribution
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from the simple pole singularities of the integrand (see Figure 3). For a lossless
substrate these poles lie on the real axis between the free space wavenumber (k)
and the highest wavenumber of the other layers (M AX (ky, k2)). The residues of
the poles correspond to radiated power in the form of TM and TE modes propagat-
ing within the substrate layer. For the grounded substrate configuration, the TM,
surface wave mode has no cutoff frequency. For monolithic arrays and (M)MICS
it is desirable to operate at a frequency whe;e only this mode is excited so that
radiation losses remain low.

For simplicity, the semi-infinite Sommerfeld integrals are divided into two re-
gions. A combination of numerical and analytical techniques is employed td eval-
uate the integrals in each region separately. The first region extends from 0 to the
parameter A and the se;ond from [A-oo]. The parameter A is chosen to satisfy

the condition

Ay = tanh (/A7 — K2 ) = 1 (26)
where the index (i) refers to the electrically thinest dielectric layer which is adjacent
to the microstrip structure. When ) is greater than A, simplifications made in the
integrand result in improved accuracy and reduced numerical and computational
effort.

In view of the above, the elements of the impedance matrix may be written as

Ze=24+23% &=z (27)



2.1.1 Evaluation of Zg‘(

Considering equations (16),(25), and (26), Z{(n,m, v, u) is given by the follow-
ing expression:

ZsA((n9maVa/‘) = 56( £€€(A) (f'negm¢7 JO(AP), fucgu() (28)

2

d
+ Ree(A )(fﬂggmg’ 6{6{ Jo(Ap), fvcguc)

where L¢e(A) and Rec(A) are integral operators given by

A
Leg(A) = k?/O d) fee (29)

Re(4) = [ M+ fu (30)

The real-axis evaluation of the Sommerfeld integrals with simple pole singulari-
ties is given in {17]. As mentioned, the double inner products contain quadruple
integrals which would result in unacceptable numerical error and excessive CPU
time, if the integrations were performed numerically. This difficulty has been over-
come by reducing the integrals to convergent series. Along these lines, the Bessel

function and its derivatives may be written in integral form as

1 ,
= — jMz—-z')cos é jA(y—y') sing
Jo(Ap) o /;*e ¢ dé (31)
il == 7 giMz=2) o0 A (y=1) sin
320y ——Jo(Ap) = 7 -r(]Acos¢) (jAsing)"¢ ¢ dé(32)

Embploying these relations the quadruple integrals can be reduced to quickly con-

LEmploying these relations the quadruple integrals can be reduced to quickly con-
Employing these relations the quadruple integrals can be reduced to quickly con-

verging series as shown in Appendix A. The series are of the form
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where &,¢ = 2,y(€ # (), and p = \/( = €n)?* + (Cu — Gme)®. Although these
summations result in a considerable reduction of computations, they still require

the vast majority of CPU time.

2.1.2 Evaluation of Z?Z’

The contribution for the interval from (A ,00) can be written

Z2) = (fas9mar K, fi902) (36)
Z8) = (fubmer K, Fuy90) (37)
Z8) = (fay9myr K, fraia) (38)
ZED = (fayImys K&, £y 90) (39)
where
K9 = [ (6 gt g he| WO (@

When A is chosen according to equation (26), simplifications may be made in the

integrand of the Green’s function resulting in the expressions

K(°°) 'H(°°) Hé?) (41)



where

- 5 52 1
He = {h(c [5“+6£6<] ha ag@(} \/p2+(f—(t_$)2
and
" pe e MA(A)
HY = / d\ [hc<(5£<+5§ag) h"b_EB—C]J( p)ef(A) ‘

In equations (42) and (43), f(A), k¢, and h,¢ are constants given by

1
2[1 - &(A)] f(A)

he =

1 1 2
hye = 37 (A) ([1 —&(A)]  [(era +€&1)(1 = ‘3(‘4))])

with
k}
f4) = |+ i
Bk
T {AT- K
6o = €r1 k2 — k3

2(er1 + €72) 4(A? - K?)

(42)

(46)
(47)

(48)

for the case of a superstrate/substrate configuration. When the superstrate is not

present €1, and ¢, are replaced by the quantities €,o, and €1, respectively.

Substitution of (41) into (36)-(39) gives

o A
( ) = <fn¢grnp He( afvcg#() (fnggmuﬂg()a fu<9uc)'

(49)

The quantity containing 'Hg‘:) can be handled in exactly the same manner as Z.

The derivatives present in the double inner product involving 'Hg?) can be elimi-

nated through integration by parts, resulting in the expressions

K4 1
(fredmes Fr i e foeGue)
VAt
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In equations (50) and (51), p4—g are functions of { and ¢ given by

)

Ph = (=P +(E+E— b+ )

Py = ((=CV+(E+E, b —l)

(= ¢+ (€46 —np)’

P = (=" +Cup = Cme)" + (€ + & —€n)’

pg = (¢ +Cu - Cme)” + (€ + & —nc + le)?

RS
qQw
I

pr = (= + G = Cm )+ (E+ b = &)
Pé = (l( - C’ + Cu( - CM<)2 + (é + El‘e - 6"( + I€)2 (52)

2.2 Numerical Considerations

2.2.1 Formation of the Impedance Matrix

As mentioned in the previous section, the discretization of the entire (M)MIC

surface enclosing the microstrip discontinuity (Figure 2) has been performed. The
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reason for this approach is two-fold. On one hand, it allows the maximum uti-
lization of symmetry inherently present in the open microstrip problem as will
be discussed shortly. Secondly, this type of discretization is not discontinuity de-
pendent, and other elements having the same substrate may be analyzed without
the re-evaluation of the impedance matrix elements. For the desired microstrip
element, a simple routine correctly fills the impedance matrix from these pre-
existing -elements according to the discontinuity shape and the known boundary
conditions. Therefore, if a design is to be made on a specific substrate (such as
GaAs or Alumina), impedance matrix elements can be pre-computed and stored
in libraries, and re-used indefinitely for the synthesis of the desired performance.
However, it must be noted that for very large problems, solving the matrix can be
as time-consuming as generating the matrix elements.

The mesh of Figure 2 shows a total of (N;M;), (i = z,y) node points resulting
in a total of (N;M;)? + (N,M,)? interactions for the direct terms (Z,,, Z,,) and
(N;M.N,M,) interactions for the cross-coupled terms (Z,,, Z,,) . Fortunately, this
number can be reduced signiﬁcaﬁtly by symmetry and reciprocity. From equations
(21)-(25) it can be shown that the spatial dependence in the direct terms is an even
function of the quantities (z — z') and (y — y’). Furthermore, the cross-coupled

interactions are odd functions of these quantities. Therefore, elements may be

catalogued according to these properties, resulting in large reductions in compu-
tational effort. The number of elements computed for the particular submatrix
Z;; is reduced to N;M;,(i,j = z,y) which is the square root of the previously

given numbers. This is not true for shielded microstrip where the proximity of a
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subsection to a cavity or waveguide wall is reflected in the spatial dependence of

the Green’s function.

A three-dimensional view of the impedance matrix is shown in Figure 4. The
matrix is toplitz and diagonally dominant with the diagonal elements being the
largest contribution by an order of magnitude. The large values of elements off
the diagonal results from interactions of adjacent cells and their location in the

impedance matrix depends on the ordering of the nodes.

2.2.2 Convergence With Respect to the Parameter A

The computational effort required for this problem is greatly influenced by
the choice of the parameter A in equation (26). The CPU time needed in the
calculation of Zg§ does not depend on A and is significantly less than the computer
time required for the computation of ZEA(. On the other hand the CPU time for the
computation of ZE’} increaées linearly with increasing A. Therefore, the value of A
must be chosen as small as possible, while still achieving numerical convergence.
Figures (5) and (6) show the convergence of the phase of Sy, and the radiated power
as a function of A. Table 1 shows the correspondence between the parameters A
and A;. It can be seen that the network parameters show no change for values
of A; above .95. Below A; = .9 the phase S;; and the radiation loss gradually

deteriorate until the estimated values become completely unacceptable at 4, = .7.
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Table 1: Choice of A for microstrip Corner Discontinuity of Figs. 5 and 6.

£ (10 GHz) | VA*—%?- H | A, = tanh (VA? — k2 - H)
20 0.867 7
24.8 1.098 8
32.3 1.472 9
39.6 1.832 95
56.5 2.647 99
80.6 3.800 999

2.3 Computation of Network Parameters and Radiated Fields

The solution of the matrix equation yields the current on the microstrip con-
ducting strips as shown in Figure 7 for a T-junction discontinuity. This current
clearly shows the formation of standing waves and the edge effect. From the current
distribution the network parameters may be computed as shown in (7]. The radi-
ated fields may be obtained from the integral equation. This is done by applying

a saddle point integration technique as given in [13].

3 Numerical Results

As discussed extensively in the literature [8], the efficiency of a printed antenna
depends on the shape and size of the antenna and on the electric size and con-
sistency of the dielectric substrate. An extensive study performed by [8],[9] has
shown that the use of an appropriate combination of substrate and superstrate

layers can improve the radiation performance by eliminating the surface waves. In
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monolithic array applications, where the individual antennas are fed by extensive
feeding networks, an improvement in the radiation efficiency of the antennas by
this technique will increase the parasitic radiation. As a result, the techniques for

surface wave suppression have to be re-evaluated.

In this paper, substrate/superstrate and two-layer substrate combinations made
of duroid (¢, = 2.2) and GaAs (¢, = 13), materials widely used in circuits, are con-
sidered and the effect of parasitic radiatiog is computed. Specifically, total radia-
tion losses, and the percentages of surface wave and space wave power are evaluated

as functions of the frequency and are compared to the single-layer substrate case.

o Substrate-Superstrate Configuration

Figure 8 shows the total radiated power as a function of frequency for a
right-angle bend printed on a 40 mil duroid substrate with and without a 16
mil GaAs cover. The comparison shows clearly the effects of the superstrate
| from 10 GHz to 20 GHz. In the loWer half of the frequency band, the su-
perstrate tends to reduce losses slightly. However, at higher frequencies, the
total radiated power has incréased by 90% due to the presence of the cover.
As Figures 9 and 10 indicate, this excess radiated power comes from the en-
hancement of space wave radiation which is very desirable in antennas. In
monolithic a.rra.js printed on single layer dielectric substrate a careful design
of the feeding network could provide parasitic radiation many dBs lower than
the primary radiation from the array. The replacement of the single layer by

a substrate/superstrate configuration for array efficiency improvement could
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increase the power radiated by all the discontinuities included in the feeding
structure by 90%. As a result, the level of the total parasitic radiation could
become unacceptably high and could deteriorate the array pattern substan-

tially.
e Two-Layer Substrate

In this case, two different comparisoné_are performed. At first the total power
radiated by a right-angle bend printed on a 56 mil duroid is compared to
the same bend printed on 40mil-duroid/16mil-GaAs substrate and shows a
20% increase at the upper end of the frequency band mainly coming from
the enhancement of the space wave radiation (see Figures 11 and 12). Much
higher radiated power is observed when the geometry of the single layer bend is
modified to preserve the 1000m input/output-port characteristic impedance
observed in the two-layer case. The excess loss observed in this case is due to

the effects of electrically thick substrates which have been reported in [1].

In both of the above reported cases, the frequency range was chosen so that only
one mode is excited in the substrate. Furthermore, the presence of the superstrate
or of a second layer with a higher dielectric constant tends to reduce the power of
the excited surface wave and increase the power radiated into space waves. These
effects have to be taken into account when techniques for enhancement of the

radiation efficiency are applied in arrays fed by extensive feeding networks.
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4 Conclusion

Radiation losses for microstrip corner discontinuities printed on substrates with
one and two dielectric layers, and/or a superstrate are presented. The losses were
evaluated with a space domain integral equation approach and were separated into
space and surface wave components. It was found that a superstrate, often used
for protection or gain enhancement of antenna elements, may increase the loss
of the 1;nicrostrip feed network considerably. This would result in lower overall
gain. Therefore, a tradeoff exists between the enhancement of radiation from the
antennas and the undesirable radiation in the feed network.

Another comparison between a corner discontinuity on a single layer of duroid,
-and on a two layer structure (GaAs/duroid) having the same total thickness,
showed that the radiation losses were comparable when the conducting strips had
the same width. However, it was found that the loss was influenced by the strip
width. Specifically, when the width in the single layer case was widened to create
the same characteristic impedance as the two layer case, the loss was substantially

higher.
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Appendix A

This appendix contains the functions included in the expression of the Green’s
function in equations (3)-(4) The functions are given below for three different

substrate configurations.

o Substrate-Superstrate Configuration

The functions for the substrate-superstrate geometry of Figure 1(a) in the

region (0 < Z < h,) are given by

Ne(D) = A (53)
Nzg(A) = Uo (54)
Z{c = w0 cosh [jul(z - hl)] — Ug sinh [jul(z - hl)] (55)

Ze = [lhH() - udf(V)] sinh [jui(z — k)]

+ w1t [f2(A) = €1 f1(A)] cosh ([jur(z = hy)] (56)
with u; = /k? — X%, The expressions f,()) and f,(A) are the characterisic
equations for surface wave modes given by

fi(A) = ug[uy cosh (juyhy) + uz coth (uzhs) sinh (juy by )]
+ uy [uysinh (ju1hy) + ug coth (jughy) cosh (juyhy )] (57)
fa(A) = uy[eauy sinh (jujhy) coth (Fugha) + €1uz cosh (juy by )

+  €n1ug [€,3uy coth (juzhy) cosh (jughs) + €.1ug sinh (juyhy)] . (58)
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o Two-Layer Substrate

The functions for the two-layer case in Figure 1(b) for the region (Z > 0) are

given by

Nee(X)
Ne(X)

Zg

[ug cosh (juyhy) + ug sinh (juyhy) coth (jughsy)) A (59)
je,ug [€r2uy cosh (juphy) coth (juzhy) + €,1u; sinh (Furhy)]

[uy cosh (juyhy) + ua coth (uzhs) sinh (juy by ))

jui [ug sinh (jurhy) + ug coth (juzhs) cosh (juihy)] (60)
[erauy coth (juzha) cosh (juzhs) + €1ug sinh (juihy)] (61)

Z’-f = e—juoz (62)

o Single-Layer Substrate

The expressions for the single layer case may be obtained from equations

(57)-(60). After some simplification they can be written as

Negg(A) = sinh (jurhy)A (63)
Ni(A) = [(1 —¢,)sinh juyh cosh ju,h] \? (64)
fi(A) = ugsinhjuyh + u; cosh ju;h (65)
fa(A) = e€wugcosh juyh + u; sinh ju b (66)
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Appendix B

The quadruple integrals (25) for direct coupled x-x interactions can be written

(Frs &)9ma '), alA0), fs (@)01s(4)) (67)
= [ [Ldcdy’ [ [ dedy(fan(@)gm(s) Jo(A) fu (2)gus (0]

rel&)me 3, 2z o(30), ()0 (9)

= [ [ i | [ ety [l 3500 o))

and for cross coupled x-y terms

2

(fre(2')gm. (¥'), aaa 0(A0)s fuy(2)9, (¥)) (69)
2
= / /S da'dy’ / /S dzdy [fn,(x')gm,(y') afayJo()\p) f,,y(y)g“y(a:)]

Employing the integral representation for the first order bessel function in

equations (31)-(32), the above may be simplified to the expressions

(fas(z")gm, (¥'), Jo(Ap), fur(2)9us(¥))

- _21_ / 1\ (Eve =5h,) €08 (8) i MU =i, ) s (4)
T
(R(X cos (#)))*U(A cos (8))U(= cos (¢))de (70)

2

l)gm 8 53 9o08), o200, )

- _21; /_ " (7 cos §)eiNFs=7hs) 08 (#) Mg~V in(4)
R(A cos (4))*U(A cos (6))U(—A cos (¢))d¢ (71)
2
(n&ma (8), 5 o30), (910 (2)

= 21 / (jAsin @)(j A cos §)el (v ~7ns) <08 (¢) g1\ (v ~Yms ) sin (4)
T
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R(A cos (¢))R(Asin (¢))U(A cos (¢))U(—Asin (¢))d¢ (72)

The quantaties R and B are convergent series having the form

R\con(¢) = 3 Aulhcos(6)* (73)
Ulheos(¢) = 3 BiAcon (6) (74)
where
A = (ll—cos(klz)u §<—1>“(f§;§iu) ©
B = (-1P(L)™ (76)

B = J(=1)"(l)™"

considering the integral representation for the zero’th order Bessel function
these expressions can be re-written as a summation of derivatives of the zero’th

order Bessel function appearing in the main text (equations 33-35).
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a. Substrate-Superstrate

b. Two-layer Substrate

Figure 1: Multilayer Open Microstrip Geometry
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a. Typical Discretization

N

b. X-directed Mesh Y-directed Mesh

Figure 2: Sub-division of (M)MIC area around Corner Discontinuity
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Figure 4: Impedance Matrix
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CHARACTERISTIC IMPEDANCE AND EM FIELD
DISTRIBUTION IN MIS MICROSTRIP

by

Thomas G. Livernois and Pisti B. Katehi
Radiation Laboratory
Department of Electrical Engineering
and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

steristic impedance for the MIS microstrip is calculated using a space
domain representation of EM fields; obtained numerical results are compared to published
experimental data. Transverse field distributions for various structural parameters are presented
and used to illustrate the three distinct modes of operation for MIS transmission lines.



INTRODUCTION

Slow-wave transmission lines have been extensively studied both experimentally and
theoretically, [1-4]. Depending on its structural and material parameters, a typical guide can
support three distinct modes: i) quasi-TEM, ii) skin-effect, iii) slow-wave. The operation
mechanism for each mode will be briefly discussed in this paper. The simplest slow-wave
transmission line is the MIS (metal-insulator-semiconductor) microstrip. When the conductvity of
the semiconducting layer is small the substrate may be treated as a low-loss dielectric; electric and
magnetic fields penetrate through the substrate to the ground plane and this is called the quasi-TEM
mode. When the conductivity is quite large the lossy layer behaves like an imperfect ground plane;
electric and magnetic fields are virtually shielded from it and both are concentrated primarily in the
thin insulating layer. This case is termed the skin-effect mode. When the conductivity is such that
the magnetic field penetrates into the semiconducting layer but the electric field does not, the slow- -
wave mode exists. Under these conditions, the electric and magnetic energies are spatially
separated. This causes a large relative increase in the line capacitance, while the line inductance

changes little.

The result is an extremely low phase velocity and relatively smaller propagation losses (as
compared to the quasi-TEM and skin-effect modes). The slowing effect can be used to fabricate

phase shifters, delay lines and related devices.

Until recently, (3], rigorous calculation of MIS line parameters were done using either
spectral analysis or finite elements. In [3], a space domain analysis of several slow-wave
transmission lines was given. The present work uses the space domain representation of the
electromagnetic fields supported by an MIS microstrip line to calculate characteristic impedance;
numerical results are compared to published experimental data. Transverse EM field distributions

are also given and they illustrate clearly the existence of the three modes of operation discussed.



THEORY

Figure 1 illustrates a shielded MIS microstrip transmission line. The electromagnetic fields
mamtamed by the impressed currents on the conducting stnp may be expressed in the space
domain via the method given in [3]. Once the expressions for the fields are found, it is easy to
calculate the characteristic impedance. The complex Poynting vector is integrated across the
waveguide aperture to find the total complex power flow. The power-current definition for

characteristic impedance is then used.
NUMERICAL RESULTS

A.  Characteristic Impedance

The characteristic impedance of the MIS line shown in Figure 1 was calculated versus
frequency for ¢ = 0.05 (Q.cm)-!, w = 160um, and d = lum. Waveguide dimensions and layer
permittivities are also given there. The real part of Z, is plotted in Figure 2 and experimental
results, [4], are also shown. The imaginary part of Z, for this structure is compared with
experimental results in Figure 3. Clearly, excellent agreement is found for both cases. When f > 2
GHz, Re [Z,] increases rapidly. This is due to the transition from the slow-wave to the quasi-
TEM mode, as shown by the frequency-resistivity chart given in [5]. Since the relative line
capacitance decreases during this transition, we would expect an increase in Re [Zy]. The
imaginary part of Z, reaches a maximum of about 18 Q at f = 5 GHz and then decreases for
increasing f. Im [Z,] essentially results from reactive power flow. Since the line capacitance

decreases during this transition, so too does the reactive energy flow. Hence, the decrease in Im

[Zo] is expected.

Changes between operation modes as a function of frequency in the MIS line are gradual
processes, [4]. Consequently, line parameters ought to change similarly. Both our results and the

experimental data show this tendency.



B. T Field Distributi

Electromagnetic field distributions maintained in the shielded MIS transmission line,
spatially oriented as shown in Figure 4, may be used to illustrate the three distinct modes of
operation. The space-domain analysis lends itself to easily obtainable plots of the magnitude of the
transverse EM fields versus the 2-d aperture. Figures 5 through 10 show such graphs, with each
case being clearly identified. For all field plots, w = 500 um and d = | pm. The quasi-TEM
sifuation, Figures 5 and 6, shows that both electric and magnetic fields penetrate completely
through the sub$Mtc. At the other extreme, however, we see in Figures 7 and 8 for the skin-effect
mode that neither field penetrates; both are essentially concentrated beneath the microstrip
conductor. Between these limiting cases lies the slow-wave mode distributions, shown in Figures
9 and 10. The electric field in this case is shielded from the semiconducting layer while the
magnetic field is not. The result is the expected spatial separation of electric and magnetic energies.
The transverse field edge singularity is seen in all field plots. To clearly determine the mode of

operation, the frequency-resistivity chart developed by Hasegawa et al was utilized.
CONCLUSION

A rigorous study of MIS microstrip transmission lines has been presented. Characteristic
impedance values obtained in the analysis were compared to published experimental results and
excellent agreement was found. Also, spatial EM field distributions were presented and they

clearly illustrate the three distinct modes of operation for MIS transmission lines.
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TRANSMISSION LINE DISCONTINUITIES ON
DISSIPATIVE SUBSTRATES

Thomas G. Livernois and Pisti B. Katehi

Radiation Laboratory
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ABSTRACT

A simple, least squares sum curve fitting technique is presented which accurately models
surface currents on planar transmission lines. This approach is useful for characterizing
discontinuities occurring in MIC's fabricated on dissipative substrates. Numerical results for the
microstrip open-end on a lossy GaAs substrate are given.



INTRODUCTION

Costly design cycles which occur during the fabrication of microwave MIC's serve to
illustrate the need for accurate characterization of passive planar transmission structures. In
particular, microstrip discontinuities occurring in shielded substrate geometries have received a
great deal of recent attention and several different full-wave methods have been proposed,
[1,2,3,4,5]. In these works, the microstrip circuitry is located on either an assumed lossless or a
low-loss substrate. Multi-function MIC's built on GaAs substrates, in general, contain regions
with different conductivities, [6]. These regions cannot be considered low-loss in many cases.
Consequently, the scattering behavior of microstrip discontinuities on dissipative substrates is of

practical interest.

In this paper, a simple technique for characterizing microstrip discontinuities on lossy
substrates is given. Numerical results (S11) for the microstrip open-end on a GaAs substrate are
given versus substrate thickness for various values of substrate conductivity and operating

frequency.

THEQRY

The geometry of a shielded microstrip open-end is shown in figure 1(a). The method
presented here to characterize the microstrip open-end may be used in conjunction with any full
wave method which yields the surface current distribution on the metallized region [1,4]. The
space domain integral equation approach has been experimentally verified, (7], and is utilized in
this paper. The present formulation is virtually identical to that in [1] except the Green's function
is derived using the technique given in [8]. Other details pertaining to the method may be found in

[1]. The current distribution on the microstrip line is obtained from the well-known relation:

M=(Z1" V] (1



In the region on the strip between the discontinuity reference plane and the excitation point

(say, a distance of Ag/4 from each) an ideal transmission line current exists as long as the operating
frequency is below the cutoff frequency of the shielding structure. This is illustrated in figure
1(b). Note that this criteria is satisfied for all results given in this paper. When the dielectric
substrate is considered lossless, the scattering parameters are obtained in a straight-forward manner
using the constant SWR on the input line and lossless transmission line theory, [1]. However,

when substrate losses are appreciable the SWR on the line is not a constant and the surface current

is a complex quantity, no longer completely imaginary or completely real. In addition, the location
of minima and maxima is difficult to determine, as is deciphering the propagation constant on the

line. Therefore, the technique used on assumed lossless structures is impractical.

The uses of MIC's continue to extend to higher and higher frequencies where substrate
losses cannot, in general, be neglected for passive structures. As a result, a new method for

finding device scattering characteristics under these conditions is necessary.

Consider the region on the input line for the microstrip open-end shown in figure 1(b);
higher order evanescent modes excited by the source and the discontinuity are negligible. In this
vicinity, only the dominant microstrip mode propagates. The associated surface current may be

written as that of an ideal transmission line:
g, =Thetab 4 g, @

where § =z - lg/4. Using a vector optimization method, the expression for current given by (2)
may be curve fitted to the actual current distribution obtained from (1). This is accomplished by
minimizing the square of the modulus of the sum of the differences between the actual current from
(1) and the model current from (2) at several points along the & axis. In general, J:, ] -z’ and kg are

complex quantities. Once these variables are determined, the input reflection coefficient of the port



can be computed. The normalized input impedance and generalized scattering parameters are then
obtained in a straightforward manner, [1]. Although in this paper we give computed results for the

microstrip open-end, a one-port structure, the method is applicable to mhltiport structures.

NUMERICAL RESULTS

The accuracy of the method described here was verified by comparison with results in [1,7)

for the microstrip open-end on an assumed lossless alumina substrate. Excellent agreement was

observed.

For the results given in this paper, a=b=2mm and W=100um, and the discontinuity
reference plane is at the physical end of the strip. The non-zero conductivity of the substrate is

incorporated into a complex permittivity.

Computed values of the magnitude and phase of S11 for the microstrip open-end on a GaAs
substrate are plotted versus substrate thickness, for various operating frequencies and
conductivities, in Figures 2 and 3, respectively. The commercially available microwave CAD

package, Touchstone [9], was used to generate results for Sp; for comparison purposes.

Regardless of substrate parameters ¢ and h or operating frequency, Touchstone predicts that
IS11/=1. Consequently, this result is not illustrated in Figure 2. Also, Touchstone yields results
for the phase of S1; which depend only on the operating frequency and substrate height.

Therefore, only one set of data is plotted for each frequency in Figure 3.

These results show that the magnitude of Sy is changed appreciably by changes in
conductivity with substrate héight and operating frequency held constant. On the other hand, the
phase of Sy is virtually unaffected. The CAD package Touchstone does not account for the

variation of IS1)! but reasonably good agreement with this theory is observed for the phase of Sy1.



The slight difference in the phase computations between this theory and Touchstone could be due

to the fact that Touchstone does not include the effect of shielding structure side-walls.

CONCLUSION

A simple technique for characterizing planar transmission line discontinuities on dissipative
substrates has been presented. Numerical results show that for the microstrip open-end with a
fixed substrate thickness and operating frequency, the magnitude of Sy decreases while the phase
of S11 changes very little with increasing substrate conductivity. These tendencies are not '
surprising, since under the above conditions the phase constant of J; changes little and the

attenuation constant increases.
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AN ACCURATE CHARACTERIZATION OF OPEN MICROSTRIP
DISCONTINUITIES INCLUDING RADIATION LOSSES

William P. Harokopus, Jr. and Pisti B. Katehi

The Radiation Laboratory
University of Michigan, Ann Arbor MI.

Abstract-An accurate full-wave analysis of a variety
of open microstrip discontinuities and circuit elements
has been performed. The technique has been employed
to characterize microstrip corners, steps, and match-
ing sections. A two-dimensional application of Method
of Moments is utilized to solve Pocklington’s Integral
equation in the space domain. The analysis accurately
accounts for dispersion, space wave, and surface wave
radiation. Scattering parameters are obtained for the
circuit element or discontinuity by using transmission
line theory.

INTRODUCTION

The accurate characterization of passive microstrip ele-
ments and discontinuities is critical to the development
of increasingly higher frequency MIC and MMIC cir-
cuits. Additionally, when microstrip circuits are com-
bined with monolithic antenna elements, as in a phased
array, the understanding of the electromagnetic inter-
actions between circuit and antenna elements is crucial.

Previously, open microstrip discontinuities have been
analyzed primarily by quasi-static methods (1], (2] or
by equivalent waveguide models {3], [4]. Quasi-static
techniques yield models with no frequency dependence,
while equivalent waveguide models contain limited in-
formation on dispersion. Neither technique accounts for
space and surface wave radiation, and they are there-
fore restricted to lower frequencies where these effects
are not significant.

Consequently, the study of microstrip elements at
higher frequencies requires a rigorous full electromag-
netic analysis which accounts for radiation and all sub-
strate effects. The full-wave analysis of open microstrip
structures printed on a single layer has been performed
by Katehi [5], and Jackson and Pozar (6]. However, the
work performed assumed electrically thin elements, and
was restricted to simple structures such as open-ends or
gaps. The full-wave analysis presented here is a rigor-
ous extension of [5] to more complex elements which
form the building blocks to many multi-port microstrip
networks. The following approach requires a solution to
the integral equation relating the electromagnetic fields
to the current on the microstrip. On the plane of the
microstrip discontinuity, both current components are
expanded into finite series.

CH2725-0/89/0000-0231801.00 © 1989 IEEE

Two dimensional Method of Moments and Galerkin's
procedure are then utilized. This technique allows the
characterization of a wide range of planar microstrip
elements. In addition, the method is applicable to the
study of antenna elements.

This formulation has been shown to accurately char-
acterize microstrip corners, steps, stubs, and simple
impedance matching sections. Numerical results are
shown in this paper for typical two-port discontinuities,
and a comparison is made to Touchstone *.

ANALYSIS

The open microstrip geometry is shown in figure 1.
Pocklington’s integral equation relates the electric field
to the current on the microstrip. Both directions of cur-
rent (J;, J,) on the plane of the microstrip conductor
are considered allowing the analysis of a wide range of
planar microstrip elements. The electric field on the
plane of the microstrip conductor (z = 0) is

E,(z,y,0)=L[ Gee(z,y32,y) §7(2',Y) (1)
+ Goylz,y:2,y") (e y)lde'dy’
B(2,,0) = [[ Gule.yiz'\y) 5°(y)
+ Gyulz,y:2',y) (e y)ldz'dy’

where the expressions G;;(z,y;z’,y') are components of
the dyadic green’s function for a Hertzian dipole above
a grounded dielectric substrate (7},[8].

Two-dimensional Method of Moments is utilized. The
two unknown current components are expanded into fi-
nite series of unknown amplitudes multiplied by known
basis functions. The basis functions chosen are rooftop
functions which allow for sinusoidal variation in the
longitudinal direction and for constant variation in the
transverse direction according to

N+l M+1

Je= Y Y Lninm(@'sy) (2)

n=1l m=1

N+1M+1

z E I m]nm(z ay (3)

n=1 m=1

! Touchstone is & microwave CAD software package available from EESOF
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Jam(@¥) = [fal(z)gm(y")] (4)

inm(@¥") = [9a(2") fm(y)] (9)
with
sink(zn4y -2’ '
N sin Fl; Tn ST < Topr
fﬂ(z) = { lhxk"ns.z" :Zn-” Tn1 < 7' <z, (6)
and
gm(y) = { 1 Ym-1 LY S ymn (7

In equations (6) and (7) Iz = Zn41 — Tn, and k is
a parameter which is equal to the wavenumber in the
dielectric.

These series are substituted into Pocklington’s Inte-
gral equation (1), and Galerkin’s method is applied to
enforce the boundary condition on the microstrip con-
ducting strip. The inner products

(Ezy3*(2,9)) (8)

(Ey,5¥(2,9)) 9)
which represent the weighted average of the electric field
on the surface of the conducting strip are set to zero.

The resulting system of linear equations can be written
in matrix form as

Zxx Zxy || I:
Zyx Zyy || 1,

i)

where Z;;(i = z,y : j = z,y) represent blocks of the
impedance matrix, I; is the vector of unknown x and y
current amplitudes, and Vj is the excitation vector which
is identically zero everywhere except at the position of
the source. After the matrix inversion is performed, the
current amplitudes on the feeding lines are known. If only
the fundamental microstrip mode is present, the current
forms a uniform standing wave. For the case of a two-port
discontinuity, the even and odd excitation technique is
employed to determine the 2-port scattering parameters
through transmission line theory.

RESULTS AND DISCUSSION

To accurately calculate scattering parameters, the cur-
rent must form a uniform standing wave pattern away
from the discontinuity being measured. At and near the
discontinuity, power is launched into space and surface
waves, and higher order microstrip modes are present.
Additionally, at high frequencies (or more specifically
electrically thick substrates) higher order modes have
been observed on the microstrip line away from the dis-
continuity. The presence of these higher order modes
complicates the analysis. Nevertheless, for practical ap-
plications it is desirable to choose dimensions and dielec-
tric permittivity so that only the fundamental microstrip
mode propagates away from the discontinuity. In this
case, the scattering parameters are easily computed from
the current standing wave patterns.

Figure 1: Open Microstrip Geometry

|
:20 mil 40 mil

Er-9.9 50 mil
h=10 mil

Figure 2: Longitudinal Current On Matching Section

Figure 3: Transverse Current On Matching Section
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For an impedance matching section on a 10 mil sub-
strate of permittivity 9.9, the longitudinal and trans-
verse current components are shown in Figures 2, and 3
for the even excitation case. As illustrated, the current
forms a uniform standing wave pattern on the feeding
lines of the discontinuity. The scattering parameters
are easily determined and are compared to Touchstone
with good agreement (Figure 4).

In Figure 5 the scattering parameters for a microstrip
corner on a 20 mil substrate with a dielectric permittiv-
ity of 9.9 are shown to be in excellent agreement with
Touchstone from 6-14 GHz ( Touchstone model is valid
to 14 GHz).

The final numerical example clearly shows the ef-
fect of space and surface wave losses on circuit perfor-
mance. The two-port scattering parameters for an open
ended tuning stub are examined. The stub has a quar-
ter wave resonance at 41 GHz. The phase of the scat-
tering parameters for the microstrip tuning stub are in
good agreement with Touchstone (Figure 6). Nonethe-
less, the radiation and surface wave losses are quite large
and become a dominate effect over this frequency range.
Figure 7 shows the radiated power as a function of fre-
quency.

—
:20 mi 40 mil
L
30 - 50 mi -1
2 €99 '
3 he 10 mil
2
2
&
i)
b3
100 -
0= $11-Thus Research
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i
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1000 L
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3
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1000 K
1500 -
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Frequency(GHz)

Figure 4: Scattering Parameters of Matching Section

Beyond 30 GHz, the radiated power increases sharply.
The radiation losses can also be seen in the failure of
our Sy; to reach 1 (0 DB) as the Touchstone simulation
does at the stubs resonance. The loss is due to space
waves and the T My surface wave. The T A, surface
wave has a zero cutoff frequency in open microstrip.

Such an example shows that the accurate charac-
terization of space and surface wave radiation losses is
critical to MMIC design. In addition, other microstrip
elements will be presented [9] which demonstrate radi-
ation and substrate effects.

CONCLUSIONS

An accurate fullwave analysis of a varicty of open mi-
crostrip discontinuities has been presented. Numerical
results for the technique have demonstrated good agree-
ment with the commercially available microwave soft-
ware package Touchstone at lower frequencies. The pre-
sented technique accounts fully for radiation losses and
all substrate effects. thus facilitating the development
of more accurate high frequency circuit models.
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Figure 5: Scattering Parameters of Microstrip Corner
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RADIATION PROPERTIES OF OPEN MICROSTRIP
DISCONTINUITIES

William P. Harokopus, Jr.*
Pisti B. Katehi
Center for Space Terahertz Technology
University of Michigan
Ann Arbor MI 48109

Abstract

The radiation properties of a variety of open microstrip discontinuities have
been studied. The full electromagnetic analysis performed has been shown to
accurately characterize microstrip corners, steps and matching sections. The
technique employed solves Pocklington’s integral equation for the unknown cur-
rent distribution of the conducting sections by an application of method of
moments in the space domain. The radiated field is evaluated using a steepest
descent method. The analysis accurately accounts for all substrate effects.

Introduction

The accurate characterization of passive microstrip elements is critical for
the application of these elements in monolithic antenna arrays. Of particular
importance is the radiation properties of these elements. Previously, open mi-
crostrip discontinuities have been analyzed primarily by quasi-static methods
(1], (2] or by equivalent waveguide models (3], (4]. Quasi-static techniques yield
models based on low frequency characteristics, while equivalent waveguide mod-
els contain limited information on dispersion. Neither technique accounts far
space and surface wave radiation, and are therefore restricted to lower frequen-
cies where these effects are not significaat.

In addition, rigorous full electromagnetic solutions which include radiation
and all substrate effects have been performed by P. B. Katehi [5], and Jackson
[6]. Also, Yang (7] performed a full wave analysis for a substrate-superstrate
configuration. However, the work performed assumed electrically thin elements,
and was restricted to simple structures such as open-ends or gaps. The ap-
proach presented in this paper, based on the previous analysis of the author,
allows the modeling of more complex planar elements such as steps, corners,
and T-junctions (8].

The presented technique employs method of moments to generate a system
of linear equations from Pocklington's integral equation. The system is inverted
to find the current on the microstrip section. On the plane of the microstrip.

1989 TEEE AP-S International Symposium, Vol. III, op. 1703-1704.



both current components are included. From the current, the far-fields may be
obtained both in and above the substrate.

Analysis

The open microstrip geometry is shown in figure 1. Maxwell's equations
combined with Green’s vector identities result in Pocklington’s integral equation
which relates the electric field to the current on the microstrip. Both directions
of current (7%(z’,y’),7¥(z’,y’)) on the plane of the microstrip conductor are
considered to allow for the analysis of a wide range of planar elements. The
electric field on the plane of the microstrip conductor (z = 0) is

Ez(r,y,O)=/‘,[Gu(z,y;r',y')1 (=',9) + Gey(z,y: 2, y)5* (2, y)de'dy’
E,,(J:,y,O)=/"[G ( ,y,z y) ( ay)+Gw( I, U T 1y) (z',y')]dz'dy' (1)
Where G..(z,y;2',y'), Gey(2,¥: 2, ¥'), Gye(2,¥52',¥'), Gy (2, 5 2/, y') are com-

ponents of the dyadic green’s function for a Hertzian dipole above a grounded
dielectric substrate [9],[10].

The two components of the unknown current are expanded into finite series
of unknown current amplitudes multiplied by known basis functions.

N+1M+1

3" Z} lemjnm(z’y) (2)
N+1 M+1
h= L X Bnitnl (3)

‘In the above, the sub-domain basis functions (33.(z',¥') J¥m(z',y')) are chosen

to have sinusoidal variation in the longitudinal direction and constant variation
in the transverse direction.

These series are substituted into Pocklington’s Integral equation (1), and
Galerkin’s method is applied to enforce the boundary condition on the mi-
crostrip conducting strip. The resulting system of linear equations can be writ-
ten in matrix form as

Zxx Zxy || L|_| Vs (4)
Zyx Zyy I, Vi
where Z;;(i = z,y : j = z,y) represent blocks of the impedance matrix, [; is the
vector of unknown x and y current amplitudes, and V; is the excitation vector
which is identically zero everywhere except at the position of the source. The

matrix inversion is performed to determine the current on the structure.

The scattering parameters are obtained by transmission line theory, and the
total power radiated into space and surface waves is given by

1-|S112-|S512)2 (3)
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Once the microstrip current is known, the radiated far-fields may be obtained
through an asymptotic evaluation of the integrals in the equation for the electric
field [11]. The Green's function is mapped to the steepest descent plane and
the contour is deformed along the steepest descent path. The Green’s function
contains analytic functions in its denominator whose zeroes correspond to sur-

face wave modes. During the contour deformation, these poles are captured and
contribute to the far-field in the dielectric.

The presented technique was used to characterize a single loop meander
inductor. The radiated power over a wide frequency range is shown in figure 2.
As shown, the radiated power above 30 GHz is quite significant. This example
illustrates the need to account for radiation in the design of microstrip networks.
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ANALYSIS AND DESIGN OF SLOW-WAVE STRUCTURES USING
AN INTEGRAL FQUATION APPROACH

Thomas G. Livernois and Pisti B. Katehi

Electrical Engineering and Computer Science Department,
The University of Michigan, Ann Arbor, MI 48109-2122

ABSTRACT

An integral equation formulation
which yields dispersion characteristics
for planar transmission lines on
layered, lossy substrates is presented.
Galerkin's procedure in the space
domain is used and roots of the
resulting characteristic equation
provide the desired phase and
attenuation constants. Numerical
results are compared to those found in
the literature for the MIS slow-wave
structure.

1. INTRODUCTION

MIS structures have been studied
by several researchers and are used
widely in related MIC's. The slowing
effect can be applied to many devices

such as: i) delay lines, ii) phase
shifters, iii) tunable filters, and iv)
others. The early work of Hasegawa et

al [1], provided useful physical
insight to the electromagnetic
characteristics of the MIS microstrip
transmission line, as do several
subsequent articles, (2] - [7].
Unfortunately, some of this work is
restricted to relatively low
frequencies, thus, it is not useful for
designing state-of-the-art monolithic
MIC's. The remaining methods, namely,
Finite-Element Analysis (FEA) and
Spectral Domain Analysis (SDA), are
somewhat cumbersome to work with.
Consequently, accurate design criteria
are difficult to obtain. This paper
outlines a rigorous method for
characterizing shielded, layered,
planar transmission lines. The
presented approach, even if based on an
integral equation method, results in
relatively simple design equations
which can be programmed very
efficiently in a personal computer.
Dispersion characteristics found by
this technique for the MIS microstrip

CH2725-0/89/0000-1131$01.00 © 1989 I[EEE
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transmission line are compared to
published theoretical and experimental
results.

II. THEORY

Every planar structure is
characterized by a coupled set of
equations which relate the Green's
function for the metallic waveguide
(Figure 1) to the microstrip currents
carried by the perfectly conducting
strip. This set can be put into the
following form:

In this approach, the four components
of the matrix are expressed in terms of
LSM and LSE waves generated by the
appropriate infinitesimal electric
currents, [8]. The expansions for Jy

and J, are chosen to satisfy their

respective edge conditions. The
primary advantage of this technique

X=3
€
Ho € R
X= Xq
<
Ho €
)(:Xl2
Ko €
Y
0 v=h
Fig. 1. Geometry of MIS slow-wave structure.

(a= 1.am, D = 10.0mm, xg, = 0.251mm, x;3 = 0.250mm)
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results from the orthogonality of LSM
and LSE modes. When solving for
amplitude coefficients of the
generating vector potentials, the
boundary conditions on all tangential
fields are invoked. This results in an
apparent inhomogeneous 4x4 system of
equations. However, this system
decouples into two 2x2 sets of
equations which relate LSM and LSE
amplitude coefficients separately.
convolution integrals resulting from
(1) are evaluated in closed form.
Using one expansion term for J, and J,

and applying the Galerkin's procedure
to (1) shows:

¥
a
LEN
oed

The

)

y
n
Yin
L
oad

[ “

Ls,

a=i *i

odd odd

where c; is the unknown amplitude

coefficient for the first expansion
term of J, and d; similarly results from
Jg-
Pims Qims Sim and Uy, are rather simple
combinations of Bessel and
Trigonometric functions, and are given
in (9]. Setting the determinant of the
current amplitude matrix to zero and
solving for its roots yields the
complex microstrip propagation constant

In equation (2) the expressions for

C f-a.

z

III. NUMERICAL RESULTS

The dispersion characteristics
given in this section are for the MIS
structure with dimensions given in
figure 1. Two different microstrip
widths are considered. Region 2 is the

lossy Si substrate with €., = 12 and
region 1 is the Si0, insulating region
with €., = 4. The effects of the

induced conduction current are
incorporated into a complex
permittivity in region 2. The
normalized wavelength and attenuation
constant for different cases are
plotted in figures 2 - 5. Good
convergence was obtained using one
expansion term for the microstrip
current and M = 501 in the four
truncated series in (2). Roots of the
matrix were found using Mueller's
method with deflation.

13
Good agreement between this
theory, FEA, SDA, and experiment for

A/A, and @ is found when W = 160W.
This data is shown in figures 2 and 3.

Results for the wider strip,
given in figures 4 and 5 with

W = 6004m, show discrepancies between

this theory and the spectral domain
approach for larger substrate

conductivities. For the case € =
and £ = 1 GHz the spectral analysis
finds a very low normalized wavelength
of about 0.04. This value is
unacceptable considering that the Si
substrate is five skin depths thick.

As a result, the electromagnetic fields
are virtually shielded from the
semiconducting layer. This drives the
line into the skin effect and not the
slow wave mode. Results derived by the
method presented in this paper indicate
such a tendency. Curves generated from
the parallel plate analysis (applicable
to wide microstrip), (1], are also
plotted in Figures 4 and 5 and are in
agreement with our theoretical data.
Figures 4, 5 also show experimental
results plotted for various cases.

Good quantitative agreement was found
for smaller substrate conductivities
while qualitative tendencies are
observed for larger substrate

1000

conductivities.
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Fig. 3. Comparison of attenuation constant with SDA (2], finire
element (3], and experimental results {l], for W = 1§Cu.
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Fig. 4. Comparison of normalized wavelength with SDA (2! and
experimental and parallel plate model results [l), for

w = 6004.
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‘Fig. §. Comparison of attenuation constant with SCA [Z; an:

experimental and parallel plate model results [il, 1o

w = 600U.

IV. CONCLUSION

An efficient, accurate method
useful for characterizing layered,
planar transmission lines has been
presented in this paper. Numerical
results were compared to other
published work.

This method has been proved very
accurate and efficient for studying
lines on insulator-semiconductor
substrates. The technique is based on
an integral equation formulation and
results in design equations which can
be simply programmed on a personal
computer. The validity of the
numerical results was verified by
comparing to available theoretical and
experimental data.
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