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EROGRESS REPORT

The research conducted during the second year of this study
concentrated on the following two problems; a) Characterization of
a via-hole b) Switches in coplanar waveguide. This second task
replaced the one on the characterization of superconducting
interconnects that we had proposed last year, due to the
uncertainty in the validity of the existing models which is
intesified by the lack of experimental verification. The progress

in each one of the two tasks is described below.

a) Characterization of a Via-Hole. The theoretical
formulation that we developed last year was applied to the problem
of the via but it exhibited numerical instabilities which were
inherent in the solution due to the dramatic change in size between
the via and the surrounding cavity. As a result, the method which
originally was a combination of a modal expansion and a finite
element method had to be modified in order to improve the
convergence of the solution. At first, the shape of the via was
changed to a hollow rectangular conducting post as shown in figure
1 in order to make the application and as a result the testing of
the method easier. Second, the original boundary value problem was

divided into two simpler ones; the boundary value problem i) inside

of the conducting via ( volume V;), and ii) outside the via

(surrounding volume V,). Due to the properties of the

electromagnetic field in the conducting via as oppose to the
surrounding volume the two problems can be successfully decoupled.
In fact, the fields inside the conductor of the via can be solved
through an appropriate integral equation and their values on the

surface of the via provide the outside region with appropriate
boundary conditions. Furthermore, the fields in volume V, may be

found by solving a second integral equation subject to the

appropriate boundary conditions.

During the past year we completed the formulation of the method
and we applied it to a simpler two dimenstional problem in order to
check its convergence and verify its accuracy. The problem that we

solved was that of wave propagation along the printed line of



figure 2a. The application of this method was successfull and some

preliminary results are presented on figure 2b.

During the third year, this method will be applied to the
via-hole of figure 1 in order to derive frequency dependent
equivalent circuits or scattering parameters including conductor o:

dielectric losses.

b) Switches in Coplanar Waveguide. For the complete
characterization of this circuit element, the diode's on and off
states have to be considered separately and their frequency
dependent equivalent circuits have to be derived accurately. Due t
the planar nature of these switches, an integral equation method

can be applied successfully for their analytical modeling.

During this year, results will be derived for the simple
developed, at first, for the case of a simple coplanar
discontinuity such as an open end. The details of this development

are presented in [1].

During this coming year, results will derived for this simple
discontinuity and will be compared to available experimental
data.After successfull verification of the wvalidity of the
developed programs we will proceed with the study of the switches
The theoretical data will be tested by comparing to measurements.
The experiments will be performed at NASA Louis Reasearch

Center,Ohio.
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1) Characterization of the via hole of Figure 1 using the

developed method of the combined integral equations. Results will
be given in the form of equivalent circuits or sca ttering

parameters.

2) Characterization of open end discontinuities in coplanar

waveguide using a surface integral equation. The method will be
tested by comparing to available experimental data.

3)_Extension of the method to characterize switches in coplanar

waveguide. Results will be given in the form of equivalent circuits
or scattering parameters for the on and off state of the diodes.

REFERENCES

[1] N.I.Dib and P.B. Katehi, "Theoretical Analysis of Coplanar
Waveguide Open Circuit Discontinuity"™, Radiation Lab Report, The
University of Michigan, NSF-024601-2-T, May 1989.






Figure 1: Simplified Geometry of a
Via-Hole
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THEORETICAL ANALYSIS OF COPLANAR
WAVEGUIDE OPEN CIRCUIT
DISCONTINUITY

N. Dib, P. Katehi

Radiation Laboratory, University of Michigan, Ann Arbor, MI

Abstract

The theoretical analysis of a coplanar waveguide open circuit dis-
continuity inside a rectangular cavity is presented. First, the dyadic
Green'’s function of a y- and z- directed dirac delta magnetic currents
inside a cavity will be derived. Then the method of moments will be
used to solve the integral equation for the unknown magnetic current
distribution in the slots. The scattering parameters of such discontinu-
ity could be determined from the knowledge of the magnetic current
distribution.



1 Introduction

The widespread use of microwave integrated circuits (MIC’s) in re-
cent years has caused rapid progress in its theory and technology. The
first transmission line used in MIC’s was, indeed, microstrip laid on
dielectric substrate, and then other transmission lines such as slot lines,
coplanar lines, finlines, and so on, were introduced and improved. Ini-
tially the analysis for this class of transmission lines was invariably a
quasi-TEM approximation which can yield satisfactory results at low
frequencies. However, at high frequencies its weakness becomes ap-
parent. To feature the frequency dependence of these lines, a full wave
analysis must be employed.

Recently, new uniplanar circuit configurations for monolithic MIC’s
were proposed [1]. The fundamental components in these uniplanar
MIC'’s are the coplanar waveguides (CPW), slot lines and air bridges
(Fig. 1).

Coplanar waveguides (CPW) offer several advantages over conven-
tional microstrip line: there is no need for via holes which simplifies
mounting of active and passive devices and they have low radiation
loss. These as well as other advantages make CPW ideally suited for
MIC’s [2].

This report presents a full wave analysis of one type of coplanar
discontinuity, namely the CPW open circuit. The ultimate goal of
this study is to characterize various coplanar discontinuities up to the
terahertz region. This is intended to be a step towards characterizing
the coplanar air bridge discontinuity and other discontinuities.



conductor

dielectric substrate

Fig.1 A bridged coplanar waveguide



2 Analysis

2.1 Introduction

A CPW open circuit is shown in Fig. 2. The CPW lies inside a
rectangular cavity with a multidielectric structure. The main steps in
the formulation of the problem are as follows:

1. Derive the fields in the two regions directly above and below the
conductor strip.

2. Formulate the integral equation.

3. Solve this equation using the method of moments.

In the formulation, a few simplifying assumptions are made to re-
duce the complexity of the problem:

1. The width of the slotS is small compared to the coplanar line
wavelength Ag. This will facilitate the assumption of undirectional
magnetic currents in the slots with negligible loss in accuracy.

2. The dielectric layers are lossless and the conductors are perfect.
However, the analysis can be easily extended to take losses into
consideration.

3. The time dependence is of the form e’** which will be suppressed
throughout the analysis.

4. The input is a travelling wave with variation e?** where 3 is the
propagation constant of an infinite coplanar line [3].

2.2 Derivation of Green’s Functions

In this section, the tensor Green’s function [G] will be derived for the
fields in regions (1) and (2) (see Fig. 2). The transmission line theory
will be used to transform the surrounding layers into an impedance
boundary. Throughout the analysis, LSE(TE—z)and LSM(TM —z)
modes are used to derive the Green’s function.

The dyadic Green’s function denotes the fields of a point source.
Hence, the electric field can be computed from



Fig.2 Acutview of acoplansr waveguide open circuit discontinuity

inside 8 cavity .



E:/.,f-ézds’+/.lll—l-5'£d5' (1)

where the integration is done over the surface of the source. In rect-
angular coordinates [G]%;, for example, becomes

=e

Gy = Guodd + Guydj + Goé2
+ Gueiid + Gy dd + G2
+ Guaid + Guysy + G,53 @)

where G;; is the jth component of the electric field due to a unit i-
directed electric current element. In the same manner, the magnetic
field can be derived as

a-= s'f-sz‘;,dS;+/s'M-52dS’ (3)

In our problem, the two slots are assumed to have magnetic currents.
In order to obtain the scattering parameters, the distribution of this
magnetic current must be determined. Using the equivalence principle,
our original problem is divided into four subproblems, Fig. 3. We
have to solve for the Green’s functions in both regions due to magnetic
currents in the y and z directions. After that has been accomplished
the continuity of the tangential fields at the interface will be used to
arrive at the integral equation.

2.2.1 Green’s function in region (1) for a z-directed magnetic current

The fields due to an infinitesimal z-directed magnetic current inside a
cavity will be derived. Fig. 4 shows the structure with the magnetic
current alleviated from the ground of the cavity. The magnetic current
is assumed to be

M=a,z-2")o(y—vy)8(z-2") (4)
Notice that at the end of the analysis =’ will be substituted by zero.
As mentioned before, a hybrid mode analysis (LSE and LSM) will
be considered [4].
The following vector magnetic potential A and electric vector po-
tential F for the LSM and LSE modes respectively are assumed
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Through the manipulation of Maxwell’s equations

Vx E=—-jwuH (6)
v x H = jweE (7)
along with
— 1 - -
A = ~9x4 @®)
m
B = -%6xﬁ' ©)

one can obtain the field components in terms of (5) as

e
2

E, = jwlpeaigy—%g% (n
2

E. = jwlueai(;bz %Z_Z/S (12)

s

2
B, = i-%f_+ju}ueaa:t:gy 14
H, - 1%, 1 & 15)

uwoly jwpedzdz

Both vector potentials should satisfy the homogeneous wave equa-
tion (away from the source)

Vi + k¥¢=0 (16)
v 4+ k=0 (17)



where k2 = wlpue,-

As shown in Fig. 4, it is assumed that the current source divides the
cavity into two regions I and II. Applying the method of separation of
variables to solve (16) and (17) with the following boundary conditions

E,,=0 at z=0,l
E';"z=0 at z=0,a
EyI'IzzO at ©=0

one can obtain

¢! = T B2 [Amnsin(ky(z — dy))

n=o“~m=o
' mT nrT

+ Bmncos(ka(z — di))]cos(—y)cos(—z)
ot - = 2,"1°=02$=00mn3in(k,a:)cos(%—y)coa(?z)

vl = 32 v [Kn.sin(ky(z —dy))
+ Npncos(ky(z — dy))]sin( T—n;ty)sin(iltz)
il = Z;';OE;',';:ODmnco.s(ktm)sin(?y)ain(Elr-z)

In the above equation, the following equation is satisfied

where

mn nw
—,k, = — and kf = wlne

k., =
y a [

To simplify the notation, one can consider

o(z,y,z) = 2"2m$(m)cos(kyy)cos(k,z)
Y(2,y,2) = ZpZpnip(z)sin(k,y)sin(k,z)

(18)
(19
(20)

1)
(22)

(23)
(24)

(25)
(26)
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Fig.4 The magnetic source raised to apply the boundary conditions .
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where

l pa
Pdlz) = %/;/o d(z,y,z)cos(kyy)cos(k,z)dydz 27)

: l pa
Y(z) = % / / d(z,y, z)sin(kyy)sin(k,z)dydz (28)
dS(cc) and gZ(:c) can be considered as the coefficients of the double
Fourier series of ¢ and . In other words, one can consider them as ¢
and v in the Fourier domain.
Substituting (25) and (26) in (10) - (15) one can obtam the fields in
the Fourier domain as

E, = - [k? — k2]¢ (29)
jwper _

= 1. - 1 oY

E, = - k.o + Fwpe k, 52 30)

_ 1 1 B

z = —_ky¢+ kz_‘(-b' (31)
61 jwupe; Oz

H, = k* - k316 (32)
Jwpe

~ 1 0

v _]wp.el y6z+ k¢ 33)

[ Y P (34)
Jwue; Oz p

where

E, = .2 E_sin kyy)sin(k,z) 35)

E, EmEnEy cos(kyy)sin(k,z) (36)

E, T EnE.sin(kyy)cos( k. z) (37

H, E,,,Z,,f},cos(kyy)cos(k,z) (38)

H, EnZnHysin(kyy)cos(k,z) 39)

H, = I,.X, H,cos( kyy)sin(k,z) 40)
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Expressions for q.S and zZ are obtained from (21) - (24) as

#' = Apnsin(ke(z —dy)) + Bncos(ks(z — dy)) 41)
¢ = Cpnsin(k,z) (42)
'¢-v1 = Kpnsin(kz(z —dy)) + Npncos(kz(z —dy)) (43)
P = Dmncos(kqx) (44)

Up to this point, one has to solve for the constants 4, B,C, D, K and
N, where the subscript mn will be suppressed for simplicity.

The following six boundary conditions will be employed to solve
for the six unknowns,

El=El at z2=2 (45)
H; = Hyu at z =12 46)
H =HT ot z=2 47)
EI
(—H—”})LSE =Z%F at z=d, (48)
EIZ
( HVI LM — ZLSM gt 2 = d, 49)
Ir _ pl _ R o !
E’y Ey =8z —z')o(y—y)o(z—2') 50)

In equation (48) and (49), ZF5® and Z[M are the LSE and LSM
impedances looking up at ¢ = d;,. These can be computed using
transmission line theory. That is, each layer is simply considered a
transmission line with a characteristic impedance (ZL5% or ZLSM)
and an eigenvalue ki where

12



kY + k2+k: = wlne
K

LSE i
)(Zo )I =
we;

%f—t and (ZfSM)f =

T

Equations (48) and (49) should be satisfied for each LSE and LSM
mode, respectively. ’

Equation (50) signifies the discontinuity in the y-component of the
electric field due to the magnetic source. In the transform domain, the
boundary conditions (45) - (50) become

El=E" at z=1¢ (51)
IH = I?;I at z =2 (52)
H' =A" at z=2¢ (53)
EI
(G2 = 2% at z=dy (54)
B
(ﬁ—j)“M =ZPM gt z=d, (55)
(B — EI) = ‘2—6 sin(k,z')cos(k,y')é(z — 2’ 56
y y! = m 2 yy )o(z — ") (56)
al
where
€m = 1 m=0
2 m#0

Equation (56) can be obtained by substituting (36) in (50) and using
the orthogonality properties of the sin’s and cos’s.

If (30) and (34) are substituted in (54) and (55), the following can
be obtained

B = jﬁ ZL5E» (57)
wy

and

13



K = —jk—szMN (58)

This will reduce the problem to solving 4 equations for 4 unknowns.
Taking into consideration the other 4 boundary conditions (51) - (53)
and (56) and after simplification, one can obtain

C = ¢4 (59)

jwukydd
= —=—A 6
PR ©0)
k, a
LSM

K = wzp,elzl k:Z,E (61)
. ky, a

N = ]w”k,k,ZA (62)

where

2 61 kz . ! /

A = sin(k,z" )cos(kyy') (63)

—_c . _—
a™ Ak -k

where a zero was substituted for ¢’ and

@ = jﬁzf”cos(k,dl)—sz‘n(k,dl) (64)
wh
b = .sin(lc,,dl)—j%—E-Zf‘SMcos(ktdl) (65)

In this manner, expressions for the six unknowns have been derived.
Substituting (57) - (65) in (41) and (43), one can obtain complete
expressions for ¢! and 4 from which ¢(z,v, z) and ¥(z,vy, z) can be
derived. Using (29) - (40), the Green’s functions (the fields due to a
unit magnetic current element in the z-direction) for this subproblem
are as follows

2¢ 1 k
EM\1 _ _Z&m 11Ky
(G = DL W
2
*  [stin(ky(z — dl))]wku61 Zf’SM

14



+ Jjwpcos(k.(z —dy)))
*  sin(k,z')cos(kyy')sin(kyy)sin(k,z) (66)

where (GEM)! is E, in region 1 due to M,.

.dem k,
P )y L
sz
(ks —ﬁ)-}l-sinm(z—dm
. . kz ~

+ (Zf#’: Z{oF — ——]kwknySMg)-cos(kz(z —dy))]
1 zlvz

* sin(k.z')cos(kyy')sin(k,z)cos(kyy) (67)

m €1 k.
(GEM? = ;%3-7'3 e
ky ZE5M g e, + k2k, ZLSED
]wp.elk,,b
b

Jeos(ky(z — dy))

[(—X
k

sin(k,z')cos(kyy')sin(k,y)cos(k,z) (68)

(=%
+

sin(ky(z — dy))]

HM\1 __ —Qem'ﬁ' 1
(Gzc ) - ZZ a

w ol Jwp

[sin(k:(z — dy)) + %Zf‘SEcos(k,(w —dy))]
sin(k,z')cos(k,y')sin(k,y)cos(k,z) (69)

15



kiky, _rsg , wieikyd rsum
wzﬂzelzl + k,’;é Zl )]
sin(k,z')cos( kyy' )sin(k,y)cos(k,z) 70)

¢ € k
HM\,1 __ =tm 1 z
(G0 = zﬂ Zm al & kZ-—k?

—kok,  juwkla

‘ jwﬂfl kmkz Z
2 2

wiple; kik, b
sin(k,z')cos(k,y')sin(k,z)cos(k,y) 71)

+ sin(ky(z —dy)) - ( Z{5M)

2.2.2 Green’s function in region (1) for a y-directed magnetic current

Fig. 5 shows the structure under consideration with the magnetic cur-
rent alleviated from the ground of the cavity. The magnetic current is
assumed to be

M =a,b(z —z')6(y — y')6(z — 2) (72)

The same method used in 2.2.1 will be applied here. Equations

(18) - (44) are applicable also to the structure of Fig. 3. Moreover, the
boundary conditions (51) - (55) still hold in addition to

(Ef — EI') = 6(z — 2')é(y — ¥/)é(z — =) (73)

which can be written as

) - § 2 i 1 — ! n
E,-E, = alencoa(k,z )sin(kyy' )o(z — ') (74)

where

€. = 1 n=0

= 2 n#0

Simplifying the boundary conditions equations, the following expres-
sions are derived

16
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Fig.S The magnetic current source raised to apply boundary conditions
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A4 = e — Py kz.sm(kyy')co.s(k,z')
ke
B = j—Z°%4
wy
C = éA
ad
- Jw“ b kzky
k, a
_ LS ZLsM Yy
K v
k, a
N = -
koky b

2 €4 k

where a and b are given by (64) and (65) and

c =

~

d =

k
cos(kqdy) + jw—:LZf'SEsin(k,dl)

cos(kzd;) + jll:—e-ZfSMsin( k.d;)

Finally, the dyadic Green’s function is

(GoMy

+

‘)

1 k.

{—sin( ko(z — dy)) - =L zLsM

k=
cos(ky(z — dy))]

sin(kyy')cos(k,z')sin(kyy)sin(k,z)

18
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2 € k
EM\1 _ 1
L ) o

. kz kz a
[sin(ke(z — dy)) - (= + = =)
€1 €1 b
k, a k.k,
+ coslke(e = dy)) - (o= - 3 - ZETM 4 I SISE))
Kz b €LWH
sin(kyy')cos(k,z')sin(k,z )ws(kyy) (84)
9 k
M1 =& y
(Gye ¥§az€"a k2 — k2
_ S "ky kz -
[sin(ks(z —dy)) - ( o +— ke b)
+ costha(a —dy)) - (—jXeku grse |, K @ piem)
* we L k.k, b
sin(kyy')cos(k,z')sin(kyy)cos(k,2) (85)
1
HM\1 _ _y__
T

(sin(kal(z — dy) + = 25 cos(kalz — dy)]
wy

sin(kyy')cos(k.2')cos(kyy)cos(k,z) (86)

2¢, € k
(@M = zn:m al'?z-'ki—yklz
. kZk LSE wle k? a LSM
[sin(ke(z —d1)) - ( wzuz_yq 2777 — —_kgky EZI
ko k jwk? a
k. (z —dy))- zY_ z
+ cos(ky(x —dy)) (]wﬂﬁ kk, b)]

sin(k,y' )cos(k,z' )sin(k,y)cos(k,z) 87
v v
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2¢, € k
(GM) = ZZ—"‘T'kz_yklz

2 2 ~
[sin(kq(z — dy)) - ( bck: jrs LULIC‘EZ{’SM)

wiple; ! k2 b
Ckzk, wk,a
+ cos(kz(z —dy))-(J +75—3)]
W€y kz b
sin(kyy')cos(k.2')sin(k,z)cos(k,y) (88)

Up to this point, the dyadic Green’s function

Gp = (GEM)'92 + (GEM) 45+ (GEM)'ys
+ (GEM)135 4+ (GEM)zg) + (GEM) 23 (89)

Gy = (GEM)'gs 4 (GEM)lgy 4 (GEM)15;
+ (GEM)z5 4 (GEM)lzg 4 (GEM) 33 (90)

have been obtained.

2.2.3 Green’s function in region (2)

The fields in region (2) (see Fig. 3) due to unit magnetic currents in
the y and z direction are to be derived. Fig. 6 shows both structures to
be solved. The scalar potentials in the Fourier domain can be written
as

¢! = Asin(k,(z — d;)) + Bcos(k,(z — dy)) 91)
q;” = Csin(kzz) (92)
¥ = Ksin(ky(z —dy)) + Ncos(ka(z — dy))] (93)
d.:" = Dcos(k,z) (94)

The boundary conditions that apply for both structures in Fig. 6 are

20
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Fig.6 Structures to be solved to obtain Green's function in region (2).
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E'=E" ot z=2' 95)

I}yj = fI;I at ¢ =12' (96)

H =H" at z =2 C2))

(%)LSE =—Z5F at ¢ =d, (98)
JoLll

(Fm)=-2"" ot e=4d 99

where ZISP and ZLSF are the impedances at = d, looking in the
negative x-direction.
For Fig. 6a, a discontinuity in Ey exists such that

1 I I 2 . / ' '
E,-E/ = ;jemszn( k.z")cos(kyy' )b(z — ') (100)

While a discontinuity in E, exists for Fig. 6b
- ~ 2
EIf _Er= —lencos(Ic,.z')sin(kyy')li(:c —z') (101)
a
One can notice the similarity between (91) - (94) and (41) - (44). In

addition, the boundary conditions (95) - (101) are the same as the ones

applied in 2.2.1 and 2.2.2 except that Z;**“**) replaces z;°#(*¥),

d, replaces d;, (—e¢,,) replaces (¢,,) and (—¢,) replaces €,. So, in
general, the Green’s function in region (2) are similar to those in region
(1) with the following changes

ZILSE Z;;SE
ZILSM ZzLSM
d, — d,

€n — —€n
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€m — —€m

€ — €

In summary, the Green’s function for the open circuit coplanar line
discontinuity (inside a cavity) has been determined in this section. This
was accomplished by working with Maxwell’s equations and by rep-
resentation of our source as dirac delta functions. Then, boundary
conditions were applied to solve for the fields

2.3 Application of Method of Moments

In order to obtain the fields inside the cavity, one should integrate over
the source coordinates (i.e. the slots).

B = // M-GYds (102)
E? = —//MrG ds’ (103)
a o= //M’d” (104)
a o= —//.IM-GH ds' (105)

The choice of the same magnetic current M to compute the fields
in both regions reflects the continuity of the tangential electric field in
the slot region. The negative sign that appears in (103) and (105) is
due to the fact that the assumption

MY =EMN xg, =M (106)
leads to
M® = E®) % (—a,)=-M (107)

The remaining boundary condition to be used in order to arrive at
the integral equation is the continuity of the tangential magnetic field
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HY). = HZ), (108)

in the slots regions. Equation (108) may be written as

HY = H® (109)
HY = H? (110)

If the magnetic current is assumed to be

M = a,M, + a. M, (111)

the following equations for the magnetic field in both regions can be
obtained

HY = // My(GEM)' 4 M, (GEM)'|ds' (112)
HY = //[M GEM' | M, (GEM)' )4y (113)
HD = - [ [[M(GEM) + M(GEMlds’  (114)
H® = - [ [IMGEM) + M(GEMlds'  (115)

where (GE.M )‘ is the H,, component due to M,, component in the ith
region. Substituting in (109) and (110), one can obtain the following
integral equations

[ [ MG +G) + MAGH +GZds’ = 0 (116)
/ / M, (G + G@) + M(GR +GP)ds' = 0 (117)

where the superscript H, M is suppressed for simplicity. The integral
equations (116) and (117) are to be solved for the unknown magnetic
current distribution using the method of moments.

The method of moments is a numerical technique used for solving
functional equation for which closed form solutions cannot be obtained
[S]. By reducing the functional relation to a matrix equation, known
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methods can be used to solve for the unknown current distribution.
The general steps involved in the moment method for the computation
of surface currents can be summarized as follows:

1. The integral equation for the electric or magnetic field in terms
of the unknown surface electric and/or magnetic currents is for-
mulated. The resulting integral equation can be put in the form

L3 = (&) (118)
where L., is an integral operator on J, and/or M,, and § is a
vector function of either £ and/or H.

2. The unknown currents are expanded in terms of known, basis

functions as
Jo = D aid (119)
i=1
M, = Zb,«b,— (120)
ij=1

where the a}s and bls are complex co_efﬁciengs and N, and N,
are the number of basis functions for J, and M, respectively.

3. A suitable inner product is defined and a set of test (or weighting)
functions W is chosen. If (119) and (120) are substituted in (118)
and the inner products with the weighting functions are performed,
the results may be expressed as

WA _ _ N, _ _
Y ai < Woy Lop( i) > + ) bj < Wy, Lop(%;) >=< Wy, § >
i=1 j=1
(121)
where the inner product is defined as

<a,5>=//a-5 ds (122)

In Galerkin’s procedure, which will be adopted here, the test func-
tions are chosen to be the same with the basis functions.
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4. A matrix equation is formed after the integrals (122) are computed.
The unknowns in the matrix equation are the current amplitudes
a; and b; which can be solved for by matrix inversion. One
can notice that the method is computationally intensive, but with
the advent of faster computers the moment method has become
feasible.

In our problem, equations (116) and (117) represent the general
integral equation (118). Now, applying step (2), the y-component of
the magnetic current will be expanded as

M
My =3 bpdp(y,2) (123)

p=1
The z— component of the magnetic current will be assumed to be
composed of 5 components, incident and reflected travelling waves in
eachslot (y; <y <y +Wi,pnn +Wi+s<y<y+ Wi + Wy +3)
up to some point z = z; and the sum of basis functions for z > z; (see

Fig. 7). That is

M, = [(A;& + B )u(y —y1) —uly — 31 — Wy))

+ (A& 4 Bzejﬁzl(u(y —pn—Wi—38)—uly—y1 — Wi —s — Wy))|
%

(u(2) —u(z — 2,))
N
+ [Z aﬂfﬂ(y,Z)]‘Ul(Z - zl)
n=1

where (3 is the propagation constant in the coplanar waveguide and u( -)
is the unit step function. Substituting (123) and (124) in the integral
equation (116) and (117). The following expressions can be obtained

- [ [4& Y + 6@
- / / 4, (G + GD)ds’

= [ [ B (6 + s + [ [ Bae Y + 6
L3 S2
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Fig. 7 Geometry for use in basis function expansion of magnetic current .
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[ o6 20 GG) + Gy

=1

M
t b
N

/
+ Y [ [ 1,06 + G)as

(125)

and

~ [ [ e+ o
[ e+ e

- / [ B (GR + 62hds + [ 2 [ Baei® (R + GD)as'
+ Zb//qs,,y, (G + GP)ds’

+ Zan L [ 82 0GR + 62da (126)

where s, denotes the area for which y; <y <y +Wyando < z < 2,
and s, denotes the area for which y; + Wi +s <y <y + Wi +s+ W,
and 0 < z < z;. Sp and S, are the area over which ¢, and f, are
defined respectively. Galerkin’'s procedure will be applied where the
test function are the same as the basis functions.

The inner product of (125) with ¢,(y,2),k = 1, ---m, is performed
which will result in M equations, each one of the following form

- /s [ 417 (G1) + G2 uly, 2)ds'ds
. / A, (G + G2))gu(y, 2)ds'ds
= / / Be’ﬂ’(G(,L)+G(,§))¢k(y,z)da'ds

+ / B,e?P¥( G’(l) + G(z))tbk (y,z)ds'ds
Se VS2
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M
+ Zb//¢py, NGQ) + G2 e(y, 2)ds'ds

+ Zan / / faly, 2 NG + G2 ) uly, 2)ds'ds  (127)

In the same manner, performing the inner product of (126) with
fely,z), k=1,--- N, N equations are obtained as

= [ | e (GR + G2 fuly, 2)do'ds
Sk VS

— / A6~ (G 4 0@ fily, 2)ds'ds
Sk /S,

= / Ble’ﬂz’(G(l) + G(z) ) frely, 2 ds'ds
S V51

+ / Bejﬁz(G1)+G(2) ) frly, z)ds'ds
Sk

M
(1) (2) /
+ Z_:b /s,,/ 6oy, 2 NGy + G ) fily, z)ds'ds

p=1
N

+ 2 //fny Z) G + G fily, z)ds'ds  (128)

p=1

where S, in (127) is the area over which ¢i(vy, z) is defined, while
in (128) denotes the area over which fi(y,z) is defined. Notice that
the Green’s functions are in terms of the source coordinates (y’ and z')
and the observation point coordinates (y and z). The Green’s functions
are obtained from (69) - (71) and (86) - (88).

Finally, the inner product equations (127) and (128) are solved to
form the matrix equation. The matrix equation obtained will be of the
following form
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I

[Y] 1] (129)

L N

where (Y] is an (M + N +2) x (M + N +2) matrix and [] is a vector
of (M + N + 2) elements where

_ _/ A A egﬁz G(1)+G(2) ¢j(y,z)d8’d-9

for1 <3 <M and

I = /s SlAé""(G(’) + GO fi_mly, z)ds'ds
- /s : Azéfﬂ"(Gg?+G§’,’)f,-_M(y,z)da'ds (131)
2

for M +1 < j < M + N. The elements of [Y] are obtained from
(127) and (128) giving the following expressions. For 1 <i < M

vii,1) = [ [ &(GY + Gy, 2)ds'ds
Y(3,2) = //S e (G + G )pi(y, z)ds'ds  (132)
2

For3<;j<M+2

Y(i,j) = /S /S b2y NG + Gdily, z)ds'ds  (133)

For M +3<j<M+N+2
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Y(z ] // f] M-2 y’ )(G(l) + G(z) ¢z y7 ds ds (134)

For M +1<:<M+N

vi,1) = [ [ (6L +CD)finly,2)ds'ds  (135)
Y(4,2) = /S/S P (GY) + GD) fi_m(y,z)ds'ds  (136)

Forj<j<M+2

Y(4,5) = /s [ 95y, 2 NG + G fimnaly, 2)ds'ds  (137)

For M +3<j<M+N+2

Yiii) = [ [ fiosalys 2 NGW + CD)fiomly, 2)ds'ds (138)

It can be observed that two more equations are needed to solve for
the (M 4+ N + 2) unknowns. The basis functions are chosen to be
piecewise sinusoidal functions as shown in Fig. 7 such that

sin(k™(y — yp))
(y) = — <y<
¢p ) 5ln(k*(yp+l = Yp)) Y= ¥ =Vpn
sin(k™(Ypr2 — y))
- <y<
sm(k*(yp+2 ~ Yor1)) Yp+1 S Y = Yp+2

= 0 elsewhere (139)

where kx = w, /li€. 57 and €.y is the effective permitivity of the copla-
nar waveguide defined as

€eff = (g')z (140)

where g, is the free space propagation constant. The 2z — variation of
¢, 1s assumed to be unity over the slot.
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The basis functions for M, are

sin(k*(z; — 2))

o
N
il
K\
|
N
[
N
~N

sin(k*(z9 — 2z1))

sin(k*(zp41 — 2))
= < z<
f(2) sin(k*(2p41 — 2p)) = E S A

Si'n( k*(Z — Z2p+1 ))
= < z<
sin(k*(zp — zp-1)) 1= 2= %

for2<p<Zfandy, <y<y; +W;

sin(k™(zp43 — 2))

fp(z) = 2p+3 <z< Zp+2

3in(k*(zp43 — 2pt2))
sin(k™(z — zp41))

= Zpta S 2 S Zpya

sin(k*(2pys — 2p+1))

(141)

(142)

for Y +1<p<N-lady +Wi+s<y<y+Wi+s+W,

sin(k*(z — 2y 41))

sink*(zy42 — ZN+1))

In(z) =

ZNy2 S 2 < zZN41

(143)

So, the other two equations needed can be obtained by imposing the

continuity condition of the magnetic current M, such that

Ale—jﬁn + ﬂlejﬂ" =a
and

Aze—.‘iﬂlx + Bzeiﬁzx = ay
So, one can write

Y(M+N+1,1)
Y(M+N+1,M+3) = &

Y(M+N+2,2) = —¢n
Y(IM+N+2,M+N+2) = &P
IM+N+1) = 4
IIM+N+2) = A,
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Finally, the integrals involved in the elements of [Y] and [I] can be
performed analytically. In fact, one can find that seven integrals only
have to be performed to get the elements of the matrices. Appendix
A shows the derivation of these integrals. Once the element of [Y']
and (]| are determined, (129) can be solved for the unknown current
amplitudes by inverting [Y'].

Using the derived current distribution in the slots, one can deter-
mine the scattering parameters characterizing the open and coplanar
waveguide discontinuity.

3 Summary

The open circuit CPW discontinuity has been analyzed theoretically in
this report. The dyadic Green’s functions for y and z directed dirac
delta magnetic currents, placed in a rectangular cavity, were obtained.
The fields were assumed to be a superposition of LSE and LSM
modes. Then, the continuity of the tangential electric and magnetic
fields in the slot region was used to arrive at the integral equation.
Finally, the integral equation was solved using the method of moments
to obtain the unknown magnetic current distribution from which the
scattering parameters can be evaluated.

This study is intended to be a step towards characterizing various
CPW discontinuities including the CPW air bridge. A computer pro-
gram, that solves the CPW open circuit discontinuity, is in the process
of writing.
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Appendix A

n+wW,
, = / cos(kyy)dy,
y

1

1, . . .
= ic-[”n( ky(y, + Wy) — sin(ky,y, )] k, #0
v

- W1 Icy:O

n+W, +S+W;
/ cos(kyy)dy
y

1+Wi1+S

1. . .
k—[szn(ky(yl +wy + 8+ wz)) — sin(ky(yr + wy + 3))] ky #0
Y

Wz ky -':0

= /21 eP*sin(k,z)dz

o

1 , .
= m_g 5 (k. — k,e?P* cos(k,21) + jﬂe""l sin(k,z))
21 +li+g
= / cos(kyz)dz
z1+l4

1
= E’["in(kz(zl+ld+g))—3in(kz(zl+lz))] k. #0

= g k., =0

]. z2 . ) ) |

S'I:n(k*(zz -2 )) ‘/21 Sln( kzZ)Sln(k (22 — z“dz
1 1

P

sin(k*(z3 — 2z1)) . 2
k*sin(k,z;)cos(k™(29 — 2,)) + k,cos(k,z;)sin(k™(z; — 21 ))]

- [—k"sin(k,z;)
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N

i

1 Zver ;
sun(k,z)sin(k*(z — ZN41))dz

Sin(k*(zN-u - ZN,+1>)‘) ZN12

1

sin(k*(zy,, — Zny)) W =k sinlkezy )
k'sin(kzzzvn)cos(k’(zwn — ZN42))
kzcos(kzzzv+z)s9in(k*(zzv+1 = 2§42))]

I

+

Vit in(k.y) sin(k*(y — y;))
] .
vi vy sain(k*(y; 1 — Yi))
Yitz . (k™ (y3 —y))
“sin(k —
/y..-u s yy)-%n(k"(yﬁz — Yit1)) Y
k* 1

T sin(k* § —Y;
k2 — k2 sm(k*(y,-ﬂ—y;)) (°™(yiy2 Yiv1))
[‘3i"(kyyi+z)3in(k*(yi+z - ¥))
sin(kyy,-)sin(lc‘(y,-+z = Yit1))

Sin(kyyi+1 )sin(k'(yi.,.z = ¥i))]
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