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EREFACE

This program started as a combined effort by the University
of Michigan and Hughes Aircraft Co., Torrance in August 1986. At
the time the contract was awarded, Hughes had agreed and committed
itself (see enclosed letter in the original proposal) to develop
de-embedding techniques for up to 40GHz and conduct all the
necessary measurements for verification of the theory that the
University was going to develop. This plan worked really well
during the first year. Hughes developed de-embedding procedures
and conducted measurements on open microstrip filters for up to
12 GHz.

In the summer of 1987, Hughes went through many changes in
its structure and priorities were redefined. This project was
de-emphasized and Hughes contribution reduced dramatically. As a
result, all the experiments during the second year were performed
at the University. Becausé of the state-of-the-art equipment in
our facilities and the experienced peréonell“the experiments were
conducted successfully and resulted in excellent agreement with
the theory.

For the third year we plan to move along the same lines.
Because we recognize the importance of experiments in this
project, we want to take, also, the responsibility for the
experimental part of the proposed work. All the experiments
necessary for the verification of the theory will be conducted at
our facilities and the University will cover the cost.
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1.THEORETICAL STUDY OF THIN-STRIP DISCONTINUITIES IN
SHIELDED MICROSTRIP.

Faculty Supervisor: P.B. Katehi

Graduate Student Participant: L.P. Dunleavy
Period: August 1, 1987 - July 31, 1988

Work Performed:

An integral equation method has been developed for the
accurate evaluation of shielding effects on the propagation
properties of shielded microstrip lines. The integral equation has
been derived by applying reciprocity theorem and then is solved by
the method of moments [1], [2] (Appendix A). The cases of an open
end, a gap, and parallel coupled-line -filters have been studied
extensively and results are presented-in [3], [4], [5] (Appendices
B,C,D). In addition, these results are compared to experimental
data for verificatioh of the theory. The agreement is excellent.

Program for the third year:

For the third year we plan to extend the study of shielding
effects to wide microstrip discontinuities on multilayer

substrates.
Publications and Reports:

[1] L.P. Dunleavy and P.B. Katehi, "A New Method for Discontinuity
Analysis in Shielded Microstrip: Theoretical and Computational
Considerations", Digest of the 1988 URSI Radio Science Meeting,
Syracuse, June 1988, pp. 313.



(2] L.P. Dunleavy and P.B. Katehi, " A Generalized Method for
Analyzing Shielded Thin Microstrip Discontinuities". To appear in

the IEEE Trans. on Microwave Theory and Techniques in Dec. 1988.

[3] L.P. Dunleavy, "Discontinuity Characterization in Shielded
Microstrip: A Theoretical and Experimental Study”, Ph.D.
dissertation, EECS Department, The University of Michigan, Ann
Arbor, April 1988.

[4] L.P. Dunleavy and P.B. Katehi, "A New Method For Discontinuity
Analysis in Shielded Microstrip", Digest of the 1988 IEEE MTT-S
International Symposium, New York, New York, May 1988, pp. 701-
704.

(5] L.P. Dunleavy and P.B. Katehi, "Shielding Effects in
Microstrip Discontinuities”. To appear in the IEEE Trans. on
Microwave Theory and Techniques in Dec. 1988.



2. IMPROVEMENT OF DE-EMBEDDING PROCEDURES (2-20GHz).
Faculty Supervisors: P.B. Katehi

Graduate Student Participant: L.P. Dunleavy
Period: August 1, 1987 - July 31, 1988.

Work Performed:

The improvement of De-embedding procedures, as it has been
described in [1], has been completed and results are presented in
[2] (see Appendix B). The purpose of this part of the research has
been the experimental characterization of shielded thin-strip
discontinuities for verification of the theory. The fabrication of
the test fixturing and the test circuits was performed at the
facilities of the University of Michigan. The measured data were
in excellent agreement with the theoretical predictions (2].

Program for the Third Year:

During the third year the above study on de-embedding
procedures will be repeated for the (20-40GHz) frequency range.
Measurements will be performed on wide strip discontinuities at
the University of Michigan Solid State Lab facilities. Theoretical
results will be compared to these experimental ones for
verification purposes.

Publications and Reports:
[1] P.B. Katehi, " A Theoretical and Experimental Study of

Microstrip Discontinuities in Millimeter Wave Integrated
Circuits”, NSF Annual Report, NSF-023872-1-F, September 1987.
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(2] L.P. Dunleavy, "Discontinuity Characterization in Shielded
Microstrip: A Theoretical and Experimental Study", Ph.D.
dissertation, Radiation Laboratory, The University of Michigan,
Ann Arbor, April 1988.

11



3. WIDE-STRIP DISCONTINUITIES IN OPEN MICROSTRIP.

Faculty Supervisor: P.B. Katehi

Graduate Student Participant: W. Harokopus
Period: August 1, 1987 - July 31, 1988.
Work Performed:

The analysis for wide-strip open-microstrip discontinuities has
been completed. In addition, the programs which evaluate the
current on the conducting strips have been written and checked
thoroughly. At this point, these programs have been used to find
the currents on specific discontinuities and results are presented

in (1] (see Appendix E).
Program for the Third Year:

Using the programs that we have developed so far, we will
analyze various discontinuities such as bends, T- and X- junctions
and the theoretical results , in the form of scattering
parameters, will be compared to available experimental data. Also,
the radiation properties of these discontinu}ties will be studied
extensively. Specifically, we will try to evaluate the radiated
power in the air and dielectric and the surface wave pattern. This
is going to be of great help to the designer for laying out
circuits.

Publications and Reports:
(1] W. Harokopus and P.B. Katehi, "High-Frequency Characterization

of Open Microstrip Junctions", Technical Report NSF-023827-5-T,
EECS Department, University of Michigan, Ann Arbor, June 1988.
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4. WIDE-STRIP SHIELDED DISCONTINUITIES AND INTERCONNECTS
ON MULTILAYER STRUCTURES.

Faculty Supervisor: P.B. Katehi

Graduate Student Participant: T.G. Livernois
Period: August 1, 1987 - July 31, 1988

Work Performed:

The analysis of shielded microstrip discontinuities started in
fall 1987 and has already beén completed. As a first step to
studying these discontinuities, we tried to analyze and design
microstrip lines on multilayer substrates which included
semiconducting materials. As it is explained in [1] (see Appendix
F), we were able to derive, using full-wave analysis, a simple
equation which can be solved numerically on a PC to give the
complex propagation'constant of all microstrip modes. Theoretical
results for the case of slow-wave structures have been checked
against measurements and show excellent agreement [2]. The
superiority of this technique over the other existing ones is that
it combines accuracy with simplicity and therefore it can result
in a very efficient design procedure.

Program for the third year:

During the third year, the developed method will be extended to
more complicated structures such as bends, filters and directional
couplers printed on multi-layer dielectrics. The theoretical
results will be compared to available experimental data for

verification.
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Publications and Reports:

[1] T.G. 'ivernois and P.B. Katehi, "High-Frequency
Characterization of Interconnects on Multilayer Substrates: The
Green's Function", Technical Report NSF-023827-4-T, EECS
Department, Udiversity of Michigan, Ann Arbor, June 1988.

[2] T.G. Livernois and P.B. Katehi, " A New Method for Analysis

and Design of Slow Wave Structures". To be submitted for
publication to the IEEE Trans. on Microwave Theory and Techniques.
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5. THE EFFECT OF SEMICONDUCTING SUBSTRATES ON THE
PROPAGATING CHARACTERISTICS OF DIELECTRIC LOADED
WAVEGUIDES.

Faculty Supervisor: P.B. Katehi

Graduate Student Participant: T. Weller
Period: January 1, 1987 - July 30, 1988.
Work Performed:

In order to study the effect of semiconducting layers on the
propagation characteristics of a dielectric loaded waveguide, we
considered a single semi-conducting layer with a doping density
varying from 10!¢ to 10!¢, With N, varying in this range of values,
we evaluated the cut-off frequencies of the first few waveguide
modes. Conclusions drawn from this study are prgsehted,in [1] (see
Aﬁpendix G) and show a very interestinhg behavior in the
propagation characteristics of the waveguide modes. These
conclusions may be exténded to the case of a shielded microstrip.

Program for the second year:

A similar study will be performed in the case of shielded lines
on multi-layered semiconducting substrates. Specifically, the
complex propagation constant and wave impedance for each
microstrip mode will be studied as functions of the doping
densities of the dielectric layers.

Publications and Reports:
[1] T. Weller and P.B. Katehi, "The effect of Semi-Insulating,
Semi-Conducting Materials on the Propagation Characteristics of

Dielectric Loaded Waveguides", Technical Report NSF-023827-3-T,
EECS Department, University of Michigan, Ann Arbor, April 1988.
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A Generalized Method for Analyzing
Shielded Thin Microstrip Discontinuities

Submitted to IEEE Trans. on Microwave Theory and Tech. — April 1988

L.P. Dunleavy* and P.B. Katehi
Radiation Laboratory
Dept. of Electrical Engineering and Computer Science
The University of Michigan
1301 Beal Avenue
Ann Arbor, MI 48109-2122

Abstract-. A new integral equation method is described for the accurate full-wave
analysis of shielded thin microstrip discontinuities. The integral equation is derived
by applying the reciprocity theorem, then solved by the method of moments. In
this derivation, a coaxial aperture is modeled with an equivalent magnetic current,
and is used as the excitation mechanism for generating the microstrip currents.
Computational aspects of the method have been explored extensively. A summary

of some of the more interesting conclusions is included.

* L.P. Dunleavy is now with Hughes Aircraft Company.






I. INTRODUCTION

The need for more accurate microstrip circuit simulations has become increas-
ingly apparent with the advent of monolithic microwave integrated circuits (MMICs),
as well as the increased interest in millimeter-wave and near-millimeter-wave fre-
quencies. The development of more accurate microstrip discontinuity models,
based on full-wave analyses, is key to improving high frequency circuit simula-
tions and reducing lengthy design cycle costs. Further, in most applications the
microstrip circuit is enclosed in a shielding cavity (or housing) as shown in Figure 1.
There are two main conditions where shielding effects are significant: 1) when the
frequency approaches or is above the cutoff frequency f. for higher order modes
and 2) when the metal enclosure is physically close to the circuitry. A full-wav-e
analysis is required to accurately model these effects.

Although shielding effects have been studied to some extent in the past (e.g.
[1]), the treatment has been incomplete, particularly for more complicated struc-
tures such as a coupled line filter. Further, shielding effects are not accurately
accounted for in the discontinuity models of most available microwave CAD soft-
ware. To address these inadequacies, this paper develops an accurate method for
the analysis of thin strip discontinuities in shielded microstrip. The method pre-
sented is based on an integral equation approach. The integral equation is derived
by an application of reciprocity theorem, then solved by the method of moments.

To derive a realistically based formulation, a coaxial excitation mechanism is
used. To date, all full-wave analyses of microstrip discontinuities use either a gap

generator excitation method [2,3,4], or a cavity resonance technique [5,6]. Both of



these techniques are purely mathematical tools. The former has no physical basis
relative to an actual circuit. The latter is also abstract, since in any practical circuit
some form of excitation is present. In fact, one of the most common excitations in
practice comes from a coaxial feed (Figure 1). A magnetic current model for such
a feed is used in the present treatment as the excitation.

In addition to developing the theory, computational aspects of the solution are
explored extensively. This is an important area that has been largely neglected
in the presentation of numerical solutions of this nature. Most significantly, it is
shown that an optimum sampling range may be specified that dictates how to di-
vide the conducting strip for best computational accuracy. The method developed
in this paper has been applied to study the effect of shielding on the characteristics
of discontinuities of the type shown in Figure 2. Numerical results from this study
are presented in a companion paper [7] and are seen to be in excellent agreement

with measured data.



II. THEORETICAL FORMULATION

The details of the theoretical derivation for the present method are given in [8].
Hence, only a sumnié.ry of the key steps is described below.

A. Integral Equation

In the theoretical formulation, a few simplifying assumptions are made to re-
duce unnecessary complexity and excessive computer time. Throughout the anal-
ysis, it is assumed that the width of the conducting strips is small compared to
the microstrip wavelength A, (the “thin-strip” approximation). In this case, the
transverse component of the current may be neglected. While substrate losses are
accounted for, it is assumed that the strip conductors and the walls of the shielding
i)ox are lossless, and that the strip has infinitesimal thickness. These assumptions
are valid for the high frequency analysis of the microstrip structures of Figure 2,
provided good conductors are used in the metalized areas.

Consider the geometry of Figure 1. In most cases the coaxial feed, or “launcher”,
is designed to allow only transverse electromagnetic (TEM) propagation, and the
feed’s center conductor is small compared to a wavelength (kr, < 1). In these
cases, the radial electric field will be dominant in the aperture and we can replace
the feed by an equivalent magnetic surface current M, [9]. This current is some-
times called a “frill” current. The source M, induces the current distribution Js
on the conducting strip and produces the total electric field E** and the total
magnetic field H** inside the cavity as indicated in Figure 1.

Now consider a cavity geometry Sirm'lar to Figure 1, with the strip conductors

as well-as the coaxial input and output removed. Assume a test current J, existing



on a small subsection of the area which was occupied by the strip. The fields inside
this new geometry are denoted by E,, and H,. Using the reciprocity theorem, the

two sets of sources (M,, J,; and jq) are related according to

J[ ]G B= By i) do= [ [ [ J- B 1)

where V represents the volume of the interior of the cavity.

Note that reciprocity theorem has been widely used for developing integral
equations similar to (1) for applicaltion to antenna and scattering problems {10,
11,12]. Since J, - E*! is zero everywhere inside the cavity, the right hand side of
(1) vanishes. Reducing the remaining volume integrals in (1) to surface integrals
results in

/ /S Bz =) Jds = / /S Bz =0): Mds. (2)
where S,¢rip is the surface of the conducting strip and Sy is the surface of the coaxial
aperture(s). For one-port discontinuities, S, represents the surface of the feed on
the left hand side of Figure 1, while for two-port discontinuities, S; represents both
feed surfaces. An integral equation similar to (2) can be derived for the case of
gap generator excitation by setting M, = 0 and assuming that E is non-zero at
one point on the strip [8].

In order to solve the integral equation (2), the current distribution J, is ex-

panded into a series of orthonormal functions as follows !:

J=9@) Y hay(a)2 (3)

! The assumed time dependence is ¢/%¢.



where I, are unknown current coefficients and N, is the number of sections consid-
ered on the strip (Figure 3). The function % (y) describes the transverse variation

of the current and is given by [2,13]

— Yo-W/2<y<Yo+ W/2
by =1 -2 (4)

0 otherwise
where W is the width of the microstrip line and Y} is the y-coordinate of the center
of the strip with respect to the origin in Figure 1.

The basis functions a,(z) are described by

[ sinlK(zp1-2)]
Ty ST < Tppr

lin(K’:)
a,(z) = 9 ﬂ%‘(’,\;a&‘n Tp-1 ST LT ()
; 0 otherwise
for p # 1, and
e 0=zl
ap(z) = (6)
0 otherwise

for p = 1, where

K is a scaling factor, taken to be equal to the wave number in the dielectric
T, is the z-coordinate of the pth subsection (= (p — 1)I,)
I, is the subsection length (I; = z,41 — ;) .

For computation, all of the geometrical parameters are normalized with respect to
the dielectric wavelength (\q4); hence the normalized scaling factor is equal to 2.
The integral equation (2) can now be transformed into a matrix equation by

substituting the expansion of (3) for the current J,. The result may be put in the
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form
(2]{1} = [V] . | (7)
In the above, [Z] is an N, x N, impedance matrix, [I] is a vector comprised of the

unknown current coefficients I, and [V] is the excitation vector. The individual

elements of the impedance matrix are given by

Zo= [ [ Balz=)-24 (1) 2y (z)da ®)

where S, is the area of the two subsections on either side of the point z,. The

elements of the excitation vector are found according to
V, = / A, Mds. (9)
S .

Once the elements of the impedance matrix and excitation vector have been

computed, the current distribution is found by solving (7) as follows:

=217 [V] . (10)

B. Evaluation of impedance matriz elements

Before evaluating the elements of the impedance matrix, the Green’s function
associated with the electric current J, is derived. To do this the cavity is divided
into two regions: region 1 consists of the volume contained within the substrate
(z < h), while region 2 is the volume above the substrate surface (z > A).

The integral form of the electric field is given in terms of the Green’s function,

b
y E}= —jwm,///V KT+7€%66) -(5‘)'—’] - Jdv' (11)



where k? = w?uo¢;. The index ¢ indicates that the above holds in each region (i.e.
for ¢ = 1,2).

In (11), Gisa dyadic Green’s function [14] satisfying the following equation
VG + kG = ~T6(F=7) . (12)

where I is the unit dyadic (= 2+ gy + 22), 7 is the position vector of a field point
anywhere inside the cavity, and 7 is the position vector of an infinitesimal current
source.

Because of the existence of an air/dielectric interface, and the assumption of a

unidirectional current, the dyadic Green'’s function will have the form
G =Gl it +G 35 (13)

The dyadic components of (13) are found by applying apbropria.te boundary con-
ditions at the walls: £ =0, and a; y = 0, and b ; and z = 0, ¢ ; and at the

air-dielectric interface [8]. These components may be expressed as

Gl = Yo AN cos k,z sin kyy sin k{(Vz (14)
m=1n=0

G® = 3 5 BWY sink,z sinkyy cosk{Vz (15)
m=1n=0
(> <] oo

G® = Y S A® cosk,z sink,y sin kP (z - c) (16)
=1n=0
moo (]

GV = D Z B®) sink,z sink,y cosk{P(z - ¢) (17)
m=1n=0

where
kz = nr/a (18)
k, = mnr/b (19)



kD = (k- k2- k2 (20)
kD = (k3 -k2- k2 (21)
ki = wypoer (22)
ko = wy/poto, (23)

and

A0 TPn o8 k.z' sin k,y’ tan k{D(h — c) (24)
mn abd,pmn cos kDh

—pn cos k.2’ sin k,y' tan kA

A® = 25
abdymn cos kg)(h —¢) (25)
BY —pn(l — €)k; cos kzz' sink,y’ tan kDA tan kP (h - ¢) (26)
e ' abdyndamn cos kR | '
B0 — —pn(1 — €k, cos k,z' sin kyy’ tan kDA tan k?)(h - ¢) 27)
mn abdymndamn COS kﬁz)(h —¢)
In (24)-(27), € is the complex dielectric constant of the substrate and
2 for n=0
Pn = (28)
4 forn#0
dimn = £ tan kMDA — kM tan kP(h - ¢) (29)
damn = ke tank®(h - ¢) — kM tan kMh . (30)

In view of (11)-(30), the elements of the impedance matrix may be put in the

following form 2:

jw;loK214 NSTOP
Zyp = ———5=CC Pn €08 kT, cos kT
w 16absin® K1, ,g, ‘ P
{Sinc [-;-(k, + K)t,] Sinc [%(k, - K)z,,]]2 LN(n) (31)

2The expression given here for the impedance matrix elements, and that given shortly for the excitation vector
elements apply to the case of an open-end or series gap. Slight modifications are necessary for analysis of parallel
coupled line filters.



with LN (n) given by the series

MSTOP
LN(n)= Y. Lmun- (32)

m=1
The series elements L,,, are given by
nlsin(k,Yo)Jo (25%)]? tan kM tan kP(h — c)
[k tan kR - K2V tan K (h - o)
» kz k3
[k@er (1- q) tan k@ (h - c) — kP (1 - ;g) tan k(M|

Lmn =

- , (33
(K7€ tan kP (h ~ c) — & tan k] (33)
where Y, is the y-coordinate of of the center of the strip, and
snt fort#£0
Sinc(t) = I ‘ # (34)
‘ 1 fort=0
I 2 for g=1 v
@ = (35)
| 4 otherwise
Ry = %(k + k), (36)
Ry = %(k — k)L, . (37)

C. Evaluation of the Ezcitation Vector Elements

The formulation for the excitation vector elements for the one-port case will now
be carried out. The case for two-port excitation is a straightforward extension (8).

To evaluate the excitation vector elements according to (9), we need to find the
magnetic field H, and the frill current M, = M¢$. An approximate expression for

the frill current is given by [9]

é (38)

where



Vo is the complex voltage applied by the coaxial line at the feed point
ry is the radius of the coaxial feed’s outer conductor
ro is the radius of the coaxial feed’s inner conductor
p, ¢ are cylindrical coordinates referenced to the feed’s center.
Substituting from (38) into (9) yields (with ds = pdpdd)
Vi, = —-1;—(‘%'—)-//3! H;d,(z = 0)dpd¢
= _E‘('{;'—{)' [ / /s‘,‘) HO(z = 0)dpdg + / /s(!,) HQ(z = 0)dpdg| (39)

where

5}1) is the portion of the feed surface below the substrate/air interface (z” =

psing < —t)
5}2) is the portion of the feed surface above the substrate (z” = psin ¢ > —t)

Hg’ (z=0)and H é:)(a: = () are the é components of the magnetic field, in regions
1 and 2 respectively, evaluated on the plane of the aperture.

After solving for the magnetic fields H},(z = 0) and substituting the resulting
expressions into (39), the following formulation is produced for excitation vector
elements:

—‘/DCQI{I; NSTOP
In (-u) dabsin KI, =

SUke + )L Sine [5(k, ~ K)L] [MN () (40)

V, =

cos k. z,

-Sinc [

10



where M N(n) is expressed in terms of the series given by

MSTOP
MN@n)= Y My,. (41)

m=1

The series elements M,,,, are given by the following integral
M, = // Minn dpdg
-/ /S(,)Ms,}z, dpdg+ [ /s(,)M(” dpdé . (42)
The above integrations are performed numerically, with the integrands M, given
by
MO = cogpell) cosk,(pcosd+ Y.)sinkM(psin ¢ + k)

—sin¢ cgi,)m sin k,(p cos  + Y,) cos kM (p sin?& + h.) (43)

for p and ¢ in region 1, and
MB = cospcl® cosk,(pcosd + Yy)sin kP (psind — ¢+ h.)

—sin¢ cg,)m sink,(pcosd + Y. coskP(psing —c+h.). (44)

for p and ¢ in region 2. In (43), and (44) Y., and h. are the the y and z coordinates

of the coaxial feed, and

1)
V. = N :1”"‘ {k(l)k(z’e tan k®(h - ¢)
2mn
= [(kM)? + k(1 - €7)] tan KM} (45)
onk, tan kP (h - c) w
) = 4 cos R sin kY Jo(ky— 5 (46)
) - G EDE® pan kO
ymn kdemn z "z z
— [k - k31~ €)] tan kD(h - )} (47)
) w
D = @nk, tan k{Mh L w Y 48
e T cos kP )sm vYo Jo( vy (48)
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The above outlines the theory for computing the current distribution on the
conducting strips of shielded microstrip discontinuities. The next step is to use
the current distribution to derive the network parameters of the discontinuity under
consideration. However, since the methods used to derive network parameters are
described elsewhere [2,8,15], only a brief summary is given in Appendix I.

The theoretical method developed above has been implemented in a Fortran
program. The remainder of the paper addresses computational aspects of the

solution for the current distribution and discontinuity network parameters.
III. COMPUTATION OF CURRENT DISTRIBUTION

To gain insight into the nature of the computations, we will now examine plots
of a typical impedance matrix, excitation vector, and current distribution for an
opeﬁ-ended microstrip line.

Figure 5 shows the amplitude distribution of a typical impedance matrix. It
is seen that the amplitude of the diagonal elements is the greatest and it tapers
off uniformly as one moves away from the diagonal. Another observation is ﬁhat
the matrix is symmetric such that Z,, = Z,, for any p and ¢, which is expected
from (31). When the impedance matrix of Figure 5 is inverted, the amplitude
distribution is as shown in Figure 6. The inverted impedance matrix shows a
sinusoidal shape for any given row or column.

Figure 7 shows the amplitude distribution for the excitation vector. The ampli-
tude is highest over the subsection closest to the feed then tapers off smoothly. In
contrast, the excitation vector for the gap generator method has only one non-zero

value, at the position of the source.
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Multiplying the inverted impedance matrix by the excitation vector of Figure 7
yields the current distribution of Figure 8. It can be seen that the shape of the
current is similar to.that exhibited by the first column of the inverted impedance

matrix. This is not surprising given the shape of the excitation vector.
IV. CONVERGENCE OF Z, AND YV,

In the expressions of (31), and (40) for the impedance matrix and excitation
vector elements, the summations over m and n are theoretically infinite. The
number of elements included in these series depends on the convergence behavior
of Z,, and V, with the summation indices.

As seen from (31), the convergence of the impedance matrix is described mainly
by the convergence of LN(n). Figure 9 shows the typical variation of LN(n) with
m and n. Most of the éontributions from LN(n) to the impedance matrix are
concentrated in the first several n values. The convergence over m is good, and
it appears that performing the computations out to m = 200 may be sufficient.
Note, however, that the allowable truncation points for the summations over m
and n vary with the geometry. The values quoted here are for illustration purposes
only.

The computation of Z,, over n is illustrated for a typical impedance matrix in
Figureb 10. Shown is the convergence behavior for one row (g = 32) of the 64 x 64
element impedance matrix of Figure 5. This behavior is representative of that for
any row. After only a few terms the diagonal element (p = ¢ = 32) rises above the
others, and after adding 100 terms the amplitude distribution is well formed.

Similar conclusions can be drawn for the convergence of the excitation vector

13



elements with respect to the summation indices m and n.
V. CONVERGENCE OF NETWORK PARAMETERS

The convergence behavior of the elements of the impedance matrix and excita-
tion vector is important to examine, yet the more relevant question remains: how
are the final rgsults affected by various convergence related parameters?

To answer this question, a series of numerical experiments were carried out,
and the main results are presented here. As illustrated in Figure 4, an open end
discontinuity can be represented by either an effective length extension L.y or
an equivalent capacitance c,,. The microstrip effective dielectric constant e,z is
calculated from the distance between two adjacent maxima of the open-end current
distribution (Figure 8).

The experiments investigated the convergence behavior of L.s; and e.s; with
respect to the sampling rate N, (= 1/I;), and the truncation points NSTOP,
MSTOP for the summations over n and m respectively. These numerical experi-
ments have been grouped into three separate categories each exploring a different

aspect of the convergence behavior 3.

3The parameters used for the plots shown in this section are the following: ¢, = 9.7,W = h = .025",a =
35", b=c=.25", f = 18GHz.
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A. Effect of K-value

Using the program mentioned above, data was generated to plot L.ss and €4y
versus N, for severa] different values of the normalized scaling factor K of (5) and
(6). Figure 11a shows the convergence behavior of L.s; for a typical case. It is
seen that a relatively flat convergence region exists for all the K-values between
about 40 and 100 samples per wavelength. Outside this region the convergence
behavior depends on K.

At first glance, it aﬁpears that the best convergence is achieved for higher
K-values (e.g. K = 8r); however, quite the opposite conclusion results from exam-
ining the ¢.;; computation. As can be seen from Figure 11b, the best convergence
for €.z is obtained for low K-values.

Based on these and other observations [8], it was determined that a value of K =
27 gives thé best overall convergence behavior for the L.ss and €.ss computations.

B. L.g4, €.gy Convergence on n and m

To investigate the convergence of the network parameter computations with
the summation index n, several program runs were executed for different values
of NSTOP, with MSTOP fixed at 1000. Data was generated to plot L.;; and
€.ss versus n for several I; values. Figure 12a shows that for all the I values,
good convergénce on n is achieved after 500 terms. The same can be said for the
convergence of €.;.

In examining the convergence behavior with n it was found that, for a given
subsection length [, cavity length a, and truncation point NSTOP, a maximum

sampling limit exists beyond which the computed current becomes completely
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erratic. This is called the erratic current condition and is given by the following

simple relationship:

NSTOP
—

NSTOPx*l,<a or N;> (49)

Outside of the region defined by (49), the numerical solution appears to be
completely stable. To investigate the convergence behavior with respect to the
summation index m, NSTOP was fixed at 500, and the program was run for
different values of MSTOP. Figure 12b shows that L.;; converges well on m after
about 500 terms. The convergence behavior of ¢.;; on m, was found to be similar
to that for L.y;.

C. Optimum Sampling Range

In this last numerical experiment, the effect of varying I, on the numerical
accuracy of the matrix solution was examined. Tﬁis Wa.s done by studying the
variation of the matrix condition number [16], with respect to [/, for a fixed matrix

size . After studying several cases it was found that an optimum sampling range,

may be defined by the following choice of subsection length I,

1.5a 4a
NSTOP =% < NsTO0P"

(50)
Sampling within this range automatically avoids the erratic current condition and
provides the best accuracy in the matrix solution, and also in the solution for
network parameters.

To support this last claim, consider the plot of Figure 13. It is seen that the opti-

mum sampling region specified by (50) coincides directly with the flat convergence

region for the L.;; calculation. This consistency between the optimum sampling
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region and the flat convergence region for the L.s; calculation was observed in all

the cases examined [8].
VI. SUMMARY

In the theoretical part of the presented research, a method of moments formu-
lation for the shielded microstrip problem was derived based on a more realistic
excitation model than used with previous techniques. The formulation follows from
the reciprocity theorem, with the use of a frill current model for the coaxial feed.

Computational considerations for implementing the theoretical solution were
studied extensively. Several numerical experiments were presented that explored
the convergence and the stability of the solution. Most significantly, it was found
thg.t an erratic current condition and an optimum sampling range exist; both of

these are given by very simple relationships.
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APPENDIX I

A. One-Port Network Parameters (Open-End Discontinuity)
The effective length extension (Figure 4) for an open-end discontinuity is given
by

A
Leff = "f' - dmaz . (’51)

where d.z is the distance from the end of the line to a current maximum.

The normalized equivalent capacitance (Figure 4) can be expressed as

o = 5in2B,dmez  _ 8in2B; L.y
P 7 w(l = cos2Bgdmaz)  w(l+cos2B,Lesy)

(52)

In the above, f, is the phase constant of microstrip transmission line.
B. Two-Port Network Parameters (Gap discontinuity, Coupled Line Filters)
For the computation of two-port network parameters, the strip geometry is
assumed to be physically symmetric with respect to the center of the cavity (in
both the z and y directions of Figure 1). The network parameters are determined
by analyzing the currents from the even and odd mode excitations as discussed in
[2,8,15].

The normalized impedance parameters are given by according to

ze + zo
2%, — 2¢
212 = —""—""IN2 v (54)

where 2§y and 2}y are the input impedances of the even and odd mode networks.

The scattering parameters for the network may be derived using the following

18



relations:

_ g _hzl-zh
Snu = Sp= D (55)
- g, = 2m
S12 = Sy = D (56)
where
D =23 + 22, - 2% (57)
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Figure 1: Basic shielded microstrip geometry.
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Figure 2: Discontinuity structures addressed in the present research.



Figure 3: Strip geometry for expansion of longitudinal current into overlapping sinusoidal basis
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Figure 4: Representation of a shielded microstrip open-end.
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Figure 5: Impedance matrix for an open-end.
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Figure 6: Inverted impedance matrix for an open-end. The sinusoidal shape of any row or column
corresponds to the shape of the current distribution.
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ABSTRACT

DISCONTINUITY CHARACTERIZATION IN SHIELDED
MICROSTRIP: A THEORETICAL AND EXPERIMENTAL STUDY

by
Lawrence Patrick Dunleavy

Chairperson: Pisti B. Katehi

The need for more accurate modeling of microstrip discontinuity structures
has become apparent with the advent of Monolithic Microwave Integrated Circuits
(MMICs) as well as the push to higher millimeter-wave frequencies. The devel-
opment of accurate microstrip discéntinuity models, based on full—wa,ve‘ analyses,
is key to improving circuit simulations and reducing lengthy design cycle costs.
In most applications, radiation and electromagnetic interference are avoided by
enclosing microstrip circuitry in a shielding cavity (or housing). The effects of the
shielding can be significant, even when the top of the cavity is several substrate
heights above the circuitry. Shielding effects are not adequately accounted for in
the discontinuity models used in most microwave CAD software.

A new integral equation method is described for the full-wave analysis of
shielded microstrip discontinuities. The integral equation is derived by an applica-
tion of the reciprocity theorem and then solved by the method of moments. Two
types of circuit excitation are considered: a coaxial excitation method developed
here, and the widely used gap generator method. Several numerical experiments
are presented that lead to very useful relationships governing the convergence and
stability of the method of moments analysis of this problem. Most significantly, an
optimum sampling range is defined that provides the most accuracy in the matrix

solution.



Numerical and measured results are presented for microstrip effective dielectric
constants, and the network parameters of open-end and series gap discontinuities,
and two coupled line filters. For the effective dielectric constant, as the size of
the shielding cavity is reduced, the difference between the numerical and CAD
package results becomes significant. Conversely, for an open-end discontinuity,
choosing a smaller shielding cavity extends the frequency range over which the
equivalent capacitance is relatively constant. The numerical results are in excellent
agreement with measured data obtained using a variation of the thru-short-delay
de-embedding technique. A case in point is that of a four resonator coupled line
filter. The numerical results accurately predict the filter performance in every
way, whereas discrepancies are observed in the CAD model predictions. It is

demonstrated that these discrepancies are mainly due to shielding effects.
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CHAPTER I

INTRODUCTION

L1 Motivati

Millimeter-wave integrated circuits are important for a variety of scientific and
military-a.pnlica.tions, and a wide range of solid state circuitry has been developed
in both hybrid and monolithic form. However, the inability to accurately predict
the electrical characteristics of various circuit components is a serious barrier to
the widespread and cost effective application of these technologies. In fact, even at
microwave frequencies, computer simulations of Monolithic Microwave Integrated
Circuit (MMIC) components are often inadequate leading to lengthy design cycles
with many costly circuit design iterations. The development of more accurate
microstrip discontinuity models, based on full-wave analyses, is‘key to improving
microwave and millimeter-wave circuit simulations and reducing lengthy design
cycle costs.

Typical microwave and millimeter-wave IC’s contain various active and pas-
sive elements interconnected by microstrip transmission lines as illustrated in Fig-
ure 1.1. In the vicinity of transmission line junctions and other discontinuities,
parasitic effects occur that can significantly modify circuit operation. These dis-
continuity effects can be modeled by the use of lumped equivalent circuits or by

1



Figure 1.1: Typical millimeter-wave integrated circuit structure. Ac-
curate modeling of discontinuities is key to cost effective
designs.

generalized matrix representations; however, the models are only as accurate as the
analysis technique used to derive them. Several techniques have been applied, and
approximate models exist for most common discontinuities. However, for MMICs
and for both hybrid and Monolithic Millimeter-wave Integrated Circuits (MICs),
additional theoretical and experimental research is needed to establish the accuracy

of these models and to develop improved models where needed.

One area where this is true is for shielded microstrip discontinuities. As shown
in Figure 1.2, there are three basic classes of microstrip. In open microstrip the
top of the substrate is left open to the air. In this case, surface waves and radiation
from circuit elements is unavoidable. In covered microstrip, a conducting cover is
present, but no side walls are present, and in shielded microstrip the circuitry is

enclosed in a rectangular waveguide.
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This last category, shielded microstrip, is the most common for practical appli-
cations. In fact, usually the microstrip circuit is completely enclosed in a shielding
cavity (or housing) as shown in Figure 1.3. This prevents radiation and electro-

magnetic interference and it also supresses surface wave modes.

The effect of the shielding on discontinuity behavior can be significant, and
requires accurate modeling, at high frequencies. There are two main conditions
where this is true. The first occurs when the frequency approaches or is above the
cutoff frequency above which higher order modes can propagate within the shielded
structure. The second occurs when the metal enclosure is physically close to the
circuitry. A full-wave analysis is required to accurately model shielding effects.
These effects are not adequately accounted for in the discontinuity models used in
most available CAD packages. The theoretical part of this thesis addresses this
area.

There is also a great need for experimental data. Published experimental data
on microstrip discontinuites is very limited, especially for high microwave (above
X-band) and millimeter-wave frequencies. Such measurements are not trivial, but
a;re essential to verifying the accuracy or at least the reasonableness of theoretical

results. This was the motivation for the experimental part of this work.

1.2 Thesis Objectives

The overall goal of this research is to use full-wave analysis techniques com-
bined with experimental data to study some relatively basic shielded microstrip
discontinuities. This research is intended to aid in the development of an accurate
data base for all kinds of microstrip discontinuities. Such a data base has several
uses: 1) existing CAD models can be checked against it to determine their regions
of validity, 2) it can be used to develop new and more accurate, C.A.D. models ,

and 3) it can be used to improve experimental methodology. For example, it can
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Figure 1.2: Three basic classes of microstrip.
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Figure 1.3: Basic geometry for the shielded microstrip cavity prob-
lem.

be used to help characterize microstrip standards for measurement calibration and
verification.

The specific objectives of the present research may be summarized as follows:

e Develop a new theoretical method for computational analysis of shielded

microstrip discontinuities
e Explore the use of a practical excitation mechanism
o Investigate high frequency microstrip measurement techniques
¢ Conduct an experimental study in close correlation with the theoretical work

The primary objective is to develop an accurate and computer efficient method
for full-wave analysis of discontinuities in shielded microstrip. This method is to be

demonstrated by obtaining numerical results for practical discontinuity structures
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- for which the thin-strip approximation ! applies.
Another objectivé is to investigate ways to use practical circuit excitation mech-
anisms in the theoretical solution. To date, all full-wave analyses of microstrip
| discontinuities use either a gap generator excitation method [5,11], or use a cav-
ity resonance technique (without actually exciting the circuit)(8,10] to determine
discontinuity parameters. Both of these techniques are purely mathematical tools.
The former has no physical basis relative to an actual circuit. The latter is also
abstract, since in any practical circuit some form of excitation is present. To derive
a more realistically based formulation, the use of a coaxial excitation mechanism
is to be explored and compared to the gap generator method. |
A final objective is to conduct an experimental study to aid in the verification
of the theory. As part of this study, a number of techniques are to be assessed
qualitatively as to their suitability for high frequency (X-band and higher) mea-

surements. Limitations on measurement accuracy are also to be addressed.

1.3 Accomplishments

In this thesis, the research objectives outlined above are accomplished as fol-
lows. A new method is developed for the analysis of discontinuities in shielded
microstrip. In the analysis one of two different types of excitation can be used: the
first is a coaxial excitation method, and the second is the gap generator approach
discussed above. It is shown that with gap generator excitation, the current is
disrupted over the region surrounding it; while with coaxial excitation, the cur-
rent is undisturbed and uniform along the length of the strip. However, for the
evaluation of discontinuity parasitics, the final results appear to be unaffected by

the method of excitation. The validity of the thin-strip approximation for the

1 The thin-strip approximation assumes that the width of the conducting
strips is small compared to a wavelength.
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structures considered in this thesis is also examined.

To demonstrate the method, numerical results are presented for open-end and
series gap discontinuities, and a four resonator coupled line filter. These results are
compared to other full-wave analyses, to data from Super Compact and Touchstone
2, and to measurements. The measurements were performed by the author using
a variation of the TSD de-embedding technique [44].

The contribution of this thesis is in three areas: theoretical, computational,
and experimental. The theoretical contribution is in the derivation of the method
of moments solution for the problem of Figure 1.3. This derivation is based on
modeling the coaxial feed with a magnetic frill current (Chapter 2). To the au-
thor’s knowledge, this is the first time that the frill current approach has been
applied to the shielded microstrip problem. From a computational point of view,
extensive‘ numerical convergence experiments were performed that lead to some
surprisingly simple relationships governing the convergence and stability behav-
ior of the method of moments solution for this problem (Chapter 3). Finally, as
part of the experimental study, a novel perturbation analysis was applied to study
the effect of connection repeatability errors on microstrip de-embedding accuracy
(Chapter 4). The experimental results demonstrate the accuracy and usefulness
of the theory developed here and also suggest some areas where improvements can

be made (Chapter 5).

1.4 Brief Review of Theoretical Approaches

As mentioned above, several approximate techniques exist for microstrip discon-
tinuity analysis. The published literature on this subject is voluminous. However,

a few comments are in order before discussing full-wave solutions.

1 Super Compact and Touchstone are microwave CAD software packages
available from Compact Software and EESOF respectively.
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1.4.1 Quasi-Static Techniques

Quasi-static techniques are well established and described in standard texts
[1]-[3). With these techniques, equivalent circuits are derived in terms of static
capacitances and low frequency inductances. Convenient analytical formulas for
discontinuity parasitics are possible, yet their accuracy is questionable for frequen-
cies above a few GHz. Also, most existing models based on these techniques ignore

shielding effects.

1.4.2 Planar Waveguide Models

Planar waveguide models provide a frequency dependent solution. In this ap-
proach, an equivalent planar waveguide geometry is proposed for the microstrip
problem. The transformed probiexn is then solved using an appropriate analyt-
ical technique, such as mode matching [4]. Models derived from this technique
are generally considered accurate to higher frequencies than those derived from
quasi-static models.

However, thé method does not provide an adequate model for shielded mi-
crostrip. As discussed in Chapter 5, the higher order modes in shielded mi-
crostrip are essentially rectangular waveguide modes. The mode behavior of a
planar waveguide is quite different than for rectangular waveguide. Its applica-
bility even for the dominant microstrip mode is questionable, since the dominaat
mode in shielded microstrip is the result of an infinite summation of evanescent
waveguide modes. This is not to say that reasonable predictions are not possible
with this method, only that its application for the shielded microstrip problem is

not rigorous.
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1.4.3 Rigorous Full-Wave Solutions

As described above, for many applications, the limitations of the above two
techniques cannot be tolerated, and a more accurate solution is required.

A full-wave solution® that meets this requirement was developed by Katehi
to treat discontinuites in open microstrip [5,6]. This technique has so far been
applied to solve for various discontinuities in open microstrip. The new analytical
methodology presented here is an extension of the approach of Katehi to shielded
microstrip configurations. |

While rigorous solutions to shielded discontinuities have been advanced by oth-
ers, their is a need for further research in this area. The most extensive work has
been performed by Jansen et al. [7]-[9]. Although reasonable results have been
deménstrated for several microstrip structures, there has been little accompanying
experimental verification, and only limited comparisons to other rigorous numer-
ical solutions. The primary reasons for this have most likely been the difficulties
of performing the measurements, as discussed herein, and the existence of only
a few other rigorous solutions ( [10]-(12]). Further, the only published results
from the other rigorous solutions that the author is aware of is for the open-end

discontinuity.

1.5 Description of Theoretical Methods

The theoretical method developed here is addressed to the shielded microstrip
geometry shown in Figure 1.3. The shielding box forms a rectangular ‘cavity,
which —for most practical uses- is cutoff for the highest frequency of operation.

That is, the cavity dimensions are usually such that the coupling of microstrip

3 A full-wave solution, refers to the application of a rigorous electromagnetic
analysis to the microstrip geometry, making as few assumptions as possible.
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modes into higher order waveguide modes is avoided. However, as far as the the
current distribution is concerned, the solution presented here is accurate whether
the cavity is cutoff or not. Above this cutoff frequency the onset of higher order
modes distort the current distribution and the definition of circuit behavior in the
usual way, by a transmission line model, becomes ambiguous.

The theoretical method is based on Galerkin’s implementation of the method
of moments. A flow chart illustrating the method is shown in Figure 1.4. First,
the required matrix equation is derived. In this derivation, the coaxial feed is
represented by an equivalent magnetic current source. The reciprocity theorem is
then applied to establish an integral equation that relates this magnetic current
source and the electric current on the conducting strips to the electromagnetic
fields inside the cavity. By expanding the electric current into a series of sinusoidal
subsectioné.l basis functions, the integral equation is trmfoﬁned into a inatrix
equation. In a e;imila.r way, the reciprocity theorem is applied for the case of gap
generafor, and an identical form results forvthe elements of the impedance matrix.

Next, the Green’s function is derived and used to evaluate the electric and
magnetic fields within the cavity. The Green’s function is derived by applying
boundary conditions to the problem of Figure 1.3 with the conducting strips re-
placed by an infinitesimal current source on the substrate/air interface. This is a
common approach in solving boundary conditions of this type [16].

Finally, the matrix equation is solved to compute the current distribution.
Based on the current, either an equivalent circuit or scattering parameters are

derived to characterize the discontinuity being considered.

1.8 Description of Experimental Study

To obtain verification data for the theoretical method of this thesis, an ex-
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RECIPROCITY THEOREM

'

METHOD OF MOMENTS

l

MATRIX EQUATION
[ZIL1] = (V]

'CURRENT DISTRIBUTION
ON CONDUCTING STRIPS

l |

SCATTERING EQUIVALENT
PARAMETERS CIRCUIT MODEL

Figure 1.4: Flow chart illustrating theoretical approach for charac-
terizing microstrip discontinuities.
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perimental study was conducted in cooperation with Hughes Aircraft Company *.
As discussed in Chapter 4, the lack of experimental data on microstrip disconti-
nuities is mainly due to the difficulties with removing test fixture parasitics from
the measurements (called de-embedding), and the non-repeatability of microstrip
connections. To address these issues, a study of de-embedding techniques was con-
ducted, from which it has been concluded that the most suitable technique for the
measurements of this thesis is the thru-short-delay (TSD) method. Also, a connec-
tion repeatability study was carried out [14,15], and the results were used to decide
on how to best implement TSD de-embedding, and they were used to approximate
the associated uncertainty in de-embedding‘ accuracy. S-parameter measurements

were then obtained for an open-end discontinuity, three series gap discontinuities

with different gap widths, and two coupled line band pass filter structures.

4 Hughes Aircraft Company, Microwave Products Division, Torrance,
California.



CHAPTER II

THEORETICAL METHODOLOGY

2.1 Assumptions

In this solution, a few simplifying assumptions are made to reduce unnecessary
complexity, and excessive computer time. Throughout the analysis, it is assumed
that the width of the conducting strips is small compared to the microstrip wave-
length A,. In this case, unidirectional currents may be assumed with negligible
loss in accuracy. While substrate losses are accounted for, it is assumed that the
strip conductors and the walls of the shielding box are lossless, and that the strip
thickness is negligible. For the computation of two-port network parameters (Sec-
tion 2.7.2), the strip geometry is assumed to be physically symmetric with respect
to the center of the cavity (in both the z and y directions of Figure 1.3). Also,
to simplify notation, the assumed time dependence is e’“*, and it is suppressed
throughout the dissertation.

The above assumptions are valid for the high frequency analysis of the mi-
crostrip structures of Figure 2.1, provided good conductors are used in the metal-
ized areas. The first three structures of Figure 2.1, the open-end, the series gap

and the coupled lines are discontinuity structures. The last one, the thru-line,

13
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Figure 2.1: Microstrip structures for which thin-strip approximation
is valid. ‘
is not. The thru-line is included since it is a useful test case, and it is used to

determine the microstrip propagation constant «,.

2,2 Method of Moments Formulation

The method of moments is a well established numerical technique for solving
electromagnetic problems [17],(18]. A review of the basic approach is given in
Appendix A. This section makes use of the method of moments to set up a matrix
equation that provides for a computer solution to shielded microstrip discontinuity
problems.

For the most part, the theory presented applies to the use of a coaxial excitation
mechanism, based on the frill current model. A few comments are made, however,
to indicate how the theory differs for the use of a gap generator excitation model.

In the matrix equation, the only significant difference is the excitation vector used.
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- 2.2.1 Application of Reciprocity Theorem

Reciprocity Theorem for Coaxial Excitation

Consider the geometry of Figure 1.3. In most cases the coaxial feed, or “launcher”;
is designed to allow only transverse electromagnetic (TEM) propagation, and the
feed’s center conductor is small compared to a wavelength. In these cases, the ra-
dial electric field will be dominant on the aperture and we can replace the feed by
an equivalent magnetic surface current, sometimes called a “frill” current, whose
only component is in the ¢ direction (i.e.M, = My@) !. This method of modeling
the feed with a magnetic current source will be discussed further in Section 2.5.
The magnetic current source is coupled with the current distribution J, on the
conducting strip to produce the total electric field E™t and the total magnetic
field H** inside the cavity as indicated in Figure 2.3.

We now propose an independent test current source J, existing only on a small
subsection of the conducting strip as shown in Figure 2.4. Using the reciprocity

theorem, the two sets of current sources are related according to

[ ][ B=By i) do= [ [ [ J,- B -

where the volume V is the interior of the cavity.

Since J, is z-directed and zero everywhere except over one subsection of the

conducting strip, the right hand side of ( 2.1) reduces to

R A T P

! & refers to the cylindrical coordinate referenced to the center of the feeding
aperture (see Figure 2.2.)




16

) magnetic frill
coaxial current M,

—» ( @

annular
aperture

Figure 2.2: Representation of coaxial feed by a circular aperture with
magnetic frill current M.

where S, is the surface of an arbitrary subsection and E}*(z = k) is the z-
component of the total electric field which must vanish on the surface of the con-
ductors (z = h) since they are assumed to be perfectly conducting.

Reducing the remaining volume integrals in ( 2.1) to surface integrals results
in

/ L Bz =h)-Jds = / /S Hy(e=0)- H.ds (2.3)
where S,ip is- the surface of the conducting strip and Sy is the surface of the coaxial
aperture. Note that this gquation is not explicitly in the form of the operator
equation of (A.1). This is because in using the reciprocity theorem formulation we

have inherently placed it in the inner product form of (A.3).

Reciprocity Theorem for Gap Generator Excitation
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STRIP
CONDUCTOR

Figure 2.3: Total fields E**, H** inside cavity are produced by mag-
netic current source M, at aperture and electric current
distribution J, on the conducting strip.
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Figure 2.4: Test current J, on conducting strip and associated fields
E,, H, inside the cavity.
The formulation for the case of gap generator excitation can also be derived
from reciprocity theorem. In this case, it is assumed that E, is non-zero at one
point (z,;) on the strip, between two subsections. Setting M, = 0 in 2.1, and

reducing the resulting volume integrals to surface integrals yields

/ /s..,.-, E(z=h)-Jds= f /s' || E*(z = h)ds (2.4)

Since E, = 0 everywhere except z,, the right hand side of 2.4 vanishes every-
where except over the the subsectional surface containing z,. This surface integral

we arbitrarily set equal to unity. That is

1 forg=g

I
—_~

!\3

(5]
~—

/ /S ' [T (= = hds

0 else

where g is the index corresponding to the position of the gap generator.
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] ] |
X ,X ,X ,...X..., X ,X ,X

I 1 2 3 P Ns-2 Ns-1 Ns

Figure 2.5: Strip geometry for use in basis function expansion of cur-
rent for the case of an open-ended line.
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2.2.2 Expansion of Current with Sinusoidal Basis Functions

In order to solve the integral equation (2.3), the current distribution J, is ex-

panded into a series of orthogonal functions as follows. Consider the strip geometry
shown in Figure 2.5, let
N,
Jo=9(y) 3 Loy(z) & (2.6)
r=1
where I, are unknown current coefficients. The function 1 (y) describes the varia-

tion of the current in the transverse direction and is given by

L Y-W/2Ly< Yot W)2
Ay=Yp)
¥(y)= 1- [l (2.7)
0 else

This variation was chosen to agree with that derived by Maxwell for the charge
density distribution on an isolated conducting strip (20}, and it has been used
successfully by others to describe the transverse variation of microstrip currents
[5,21,22].

The basis functions a,(z) comprise an orthonormal set and are described by

sian!zng-z)l zp s z S Tp1

sin(Klz)
ap(z) = ﬂ%ﬁ?ﬁl Tpe1 Sz L3y (2.8)
0 | else
for p # 1, and
s_ir;_L_(_;f( 11\-1_.): I 0<z<lI;
o (z) = : (2.9)
0 else

for p = 1, where
K = w,/i.€1¢€0 is the real part of the wave number in the dielectric region

W is the width of the microstrip line



Yo is the y-coordinate of the center of the strip with respect to the origin in Fig-

ure 1.3
z, is the z-coordinate of the pth subsection (= (p — 1)I;)

[ is the subsection length (I; = zp41 — ;) .

2.2.3 Transformation of Integral Equation into a Matrix Equation

The integral equation (2.3) can now be transformed into a matrix equation by
substituting the expansion of (2.6) for the current J,. This results in the following:
[// E(z=h)¢(y)a, a:)a:ds] // H, - M,ds (2.10)
p=1
where S, is the surface area of the ph subsection, and N, is the number of sections
that the strip is divided into for computation.

We may now express (2.10) as

(Z][I] =[V] . (2.11)
In the above, [Z] is called the impedance matrix, and has the form
Zu le . ZIN.
VA Z Zyn,
z=| N (2.12)
i ZN,I ZN,? e ZNcNo )

[V] is called the excitation vector and may be expressed as

lV]=[v1 Vi .- Va, ]T. (2.13)

(1] is the current vector comprised of the unknown current coefficients as follows:

[1]=[Il I - Iy, ]T. (2.14)
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The individual elements of the impedance matrix are given by

Zop = //5, Ey(z = h) - (y) ap () 2ds . (2.15)

The elements of the excitation vector (coaxial excitation) are given by

v, ='//S’ A, Mds. (2.16)

We can now solve for the current vector by matrix inversion and multiplication

according to
m=(z1""[v] . (2.17)
For gap generator excitation, the impedance matrix elements are also given by

(2.15); however, the elements of the excitation vector are given by the right hand

side of (2.5).
2 3 Derivati f the G 's Functi

To compute the elements of the impedance matrix, we must derive the Green’s
function associated with the electric and magnetic fields E,, H,, We will first
define the problem geometry and outline the electromagnetic theory to be used.

Then, the boundary value problem will be solved for the Green'’s function.

2.3.1 Geometry and Electromagnetic Theory

The geometry used in the Green’s function derivation is shown in Figure 2.6.
The cavity is divided into two regions: Region 1 consists of the volume contained
within the substrate (z < h), while region 2 is the volume above the substrate
s;xrface (z > h). Notice, as discussed in Section 1.5, the conducting strips have

been replaced by an infinitesimal current source J.
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Figure 2.6: Geometry used in derivation of the Green’s function.
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The Green’s function will be defined as the electric field due to an infinitesimal
current source located on the substrate surface of Figure 2.6. After deriving the
Green’s function, the fields associated with the test source J, will be evaluated by
integrating over the surface of the ¢** subsection.
The test source J, and the associated fields within the cavity (E,,H,) are related

through Maxwell’s equations, which may be put in the following form:

v X E = —jouH (2.18)
v xH = juegE'+J (2.19)
G-J = —jup (2.20)

v (sE) = » (2.21)
T () = 0. (2.22)

In the above, ¢ = 1,2 indicates that these equations hold in each of the regions
respectively. Also, to simplify the notation of this subsection, the subscript ¢ is
suppressed with the understanding that all the field quantities discussed here are
associated with the test source J; (i.e. E* = Ej etc.). Further, since it is assumed

that both regions are non-magnetic and that region 2 is air, we have

K1 = H2=po (2.23)
€ ori=1

& = reo f (2.24)
€0 fO?‘ 1=2

where

€ =€ — j—— = €1 (1 — jtandy) . (2.25)

W€

In the above, tandq = ;%o is referred to as the dielectric loss tangent of the

dielectric region, 44 is called the dissipation angle.
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2.3.2 Solution to Boundary Value Problem for the Green’s Function

We now introduce the vector potentials A’ such that
o1 - -
H'=—gxA. (2.26)
Ho
In view of (2.26), the electric field may be written as (B.13)
. . 1 -2\ -.
E'=—-jw (1 + E;VV-) A (2.27)
where A’ satisfies the inhomogeneous wave equation
VA + kA = —pod . (2.28)

The integral form of the electric field is derived in Appendix B, and is given by
(B.21)

B = —jwpe / / L [(1 + kl?e@-) (E‘;‘)T]  Jdv' (2.29)
where k? = w?u¢;, and Gisa dyadic Green’s function (23] satisfying the following
equation

G+ kG =16 -7) . (2.30)
In (2.30), I is the unit dyadic given by % + §ij + 32.
Because of the air/dielectric interface, a two component vector potential is

necessary to satisfy the boundary conditions [24]. Accordingly, let
A=Az + Az, (2.31)

From (B.17) A‘ is related to & by the following volume integral:

A=y / / /V J G (2.32)

ed may be expressed in most general form as follows:

Gi,it + G.Lij + Gi,iz
=4 . ) .
G=|+G gz + G g + Giiz | - (2.33)

A A A A

+ Gl it + G + Giiz
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Assuming an infinitesimal z-directed current source given by

J

§(F-7)% (2.34)
in (2.32) allows for reducing & to
& =G 32 +Gi is. (2.35)

The dyadic components of (2.35) are found by applying appropriate boundary
conditions at the walls: £ =0,and a;y =0, and b; and z = 0, and ¢. As detailed

in Appendix C, these components may be expressed as

GO = Y 3 AN cosk,z sin kyy sink{Vz (2.36)
m=1n=0

GY = Y 3 B sink,z sinkyy cosk{Vz (2.37)
m=1n=0

G2 = 3 3 AD cosk,z sink,y sink{?(z - c) (238)
m:l n;O

G?® = Y 3 BY sink,z sinkyy coskP(z - c) (2.39)
m=1n=0

where

k; = nr/a (2.40)

k, = mnr/b (2.41)

K = -k (2.42)

kP = k3 -k2-k2 (2.43)

ky = wyhoe (2.44)

ko = W+/o€o . (245)

The coefficients A%),, A@ BQ) and B?) are found by applying boundary con-
ditions at the air/dielectric interface. The details of this analysis can be found in
Appendix D. The results are:

_ el i s ap! (A(h =
@n cos kzz' sink,y' tan kP (h - ¢) (2.46)

A =
mn abdynn cos kMR
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—pn o8 k' sin k,y’ tan k(Vh

Af:) = 2.47
" abdyp, cos g (h—c) (247)
BY = ~@n(1 =€)k, cos k,z' sink,y’ tan k(VA tan k(P (h - ¢) (2.48)

abdymadamn cos VR

B®) = —pn(l =€)k, cos ko2’ sin k,y’ :.:;n kMh tan kP (h - ¢) (2.49)
abdymndamn cos ks (h —c)

where
2 forn=0
Pn = (250)
4 forn#0
dima = k@ tankVh -k tan kP (h - ) (2.51)
dimn = k¢ tankP(h —c) — kM tan kMh (2.52)

Having derived the Green’s function, we are now ready to proceed to the for-

mulation for the elements of the impedance matrix and excitation vector.

2.4 Impedance Matrix Formulation

The elements of the impedance matrix are given by (2.15)
Zy= [ [ Bz = 1) ¥ () oy () 20 (2.53)
which reduces to
Zo= [ [, Bl = W0 () 2y (e)ds'. (2.54)

To evaluate the impedance matrix elements we need only E,-(z = h); that is, the
z-component of the electric field due to the test currents J, at the air/dielectric

interface.
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- 2.4.1 Evaluation of the Electric Field Due to the Test Currents

Since J, is a surface current distribution, the volume integral in (2.29) is reduced

to the following surface integral:
i 1 - - =i -
E'=-jw 1+ — ) GT]-sz’d’ 2.55
a J#o/_/;q[( gV ) (G)] - Jyda'dy (2.55)

where S, is the surface of the ¢** subsection.

For best accuracy in applying the method of moments, the test currents J, are
expressed in terms of functions which are identical to the basis functions (Galerkin’s
method)

Jg = P(y)ay(2')2 (2.56)
where ¥(y’) is given by (2.7) with y replaced by y', and a,(z’) is given by (2.8)
and (2.9) with p replaced by q and z replaced by z'.

We now substitute from (2.56) for J, in (2.55) to yield

8 = =joma [ [ |(1+599) @] vwratariassy 2o

Let us define a modified dyadic Green’s function P by

=4 . 1 - = =t
' = —jwpuo [(1 + FVV) (G )T] . (2.58)
Then, E? can be expressed as
o = . ’ NA Il Tyl
E, = //s. I' - ¥(y)aq(z)2dz'dy’ . (2.59)
The dyadic transpose of (2.35) yields
(G = Gi_ 33 +GL 35 . (2.60)

When this expression is substituted in (2.58) and the divergence and gradient

operations are performed we can express I as ( see Appendix E, (E.3) )

M =T 33+ 3+ ' 23 (2.61)

y



where
i — 1 _1___0_ aG':z aG.’n
Pzz - G::z+ k? am( az +"37) (2.62)
i _ 10 (8G:,  0GL,\
e = k,zay< 9z T oz ) (2.63)
i _ i 10 (3G, 0G,
Fe = G”+k§6z( 9 | oz ) ' (264)
Substituting this expression into (2.59) gives
E} = / / I _p(y)ay(z')dz'dy’
+ / / Ty (y)aq(z')dz'dy’ §
+//s., [ 9(y)ag(z")dz'dy' £ . (2.65)
Recall that we only need the z-component of this field which is given by
= / / (v )ag(2')dz'dy’ . (2.66)

Furthermore, at z = h, boundary conditions require that E{})(z = k) and E(?)(z =

h) be identical. From the above equation it is obvious that this implies
TA(z=h) =T (z =h) =T (z =h). (2.67)

This equality is verified in Appendix E, and the result of (E.7) may be put in the

form
F.z(z=h)=
jwpo E Y _fmn [cos kyz sin kyy cos k.2’ sink,y]  (2.68)
m=1n=0 abdlmnd2mn :
where

2
fon = @n tan kA tan kB(h - ¢) [k?’e: (1 - -:-;) tan k®(h - ¢)
i

2
-k (1 - :_g) tan kgl)h] : (2.69)
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If we place (2.68) into (2.66) we obtain

EQG=h) = E@(=h)=
—_— - = .fmn .
Ep(z=h) = jwp EMZ_% pTY R cos k,z sinkyy Tymn . (2.70)
where
-— ! o2 1] ! 4 / !
Tomn = //s-, cos k.2’ sin kyy'v(y")a,(z')dz'dy’ . (2.71)
This surface integration is evaluated in closed form in Appendix F; the result is
_ GKZcosksz, [ ] . [1
Tonn =~ 2 Sine o (ks + K)ls| Sine |5(k - K)z,]
sin k, Yo Jo(ky-éz) . (2.72)
where
) f gt fort#0
Sinc(t) = 1 : (2.73)
1 fort=0.
f 2 forg=1
(e = (2.74)
L 4 else
K = wy/hootn (2.75)
1
Rin = 5(7: + k)i, (2.76)
Ry = %(k — k)l . 2.77)

The position vector z, gives the z-coordinate of the g** strip subsection. As will
be outlined in Section 3.1.3, the functional dependence of this vector varies with
the type of structure being analyzed.

We are now ready to evaluate the impedance elements.

2.4.2 Evaluation of the Impedance Matrix Elements

From (2.70) and (2.54) we have

Zpp = jupo 3 3" —Lmndamn (2.78)

m=1n=0 abdimndamn
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where

Zomn = //.;, cos kzz sin kyy ¥(y)ay(z)dzdy . (2.79)

Since (2.79) is the same integral as (2.71), we can obtain the expression for Zpmn
by substituting p for ¢ in (2.72). From (2.78), the entire expression for Z,, may

be written as follows:

Zgp =
. 274 0 o0
JwpolC 17 Calp D D n cO8 kzTq o8 kza,| SincRin SincRoq)?

16absin® K1, "% &~ &,
[sin(k,Yo)Jo (£5%)]? tan k(DA tan kP(h - c)
(£ tan Kk — k(Y tan kP(h - )|
@ (1 - 5 @A(h =)= kW (1 -5 (1)
[k, € (1 #) tank*)(h —c) — k, (1 7%-) Vtan k} h]
[£Pe; tan kP (h — c) — k£ tan kL)

(2.80)

With the theory for the computation of the impedance matrix complete, we

turn to the theory for the excitation vector

2.5 Excitation Vector F lati

In this section, a surface integral will be set up that provides for evaluating
the elements of the excitation vector according to (2.16). This equation may be
re-written as

Vo= [ [, Bulz = 0)- Mododpds (2.81)
where p, and ¢ are cylindrical coordinates referenced to the center of the feeding
aperture, as shown in Figure 2.7.

An expression for M, will be presented first. Then, the magnetic field compo-
nents parallel to the plane of the aperture (i.e. the y — z plane) will be derived
based on the Green’s function of Section 2.3. The actual integration of (2.81) is

performed numerically, and this is described in Section 3.1.
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Figure 2.7: Geometry used to set up surface integral for excitation
vector.
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2.5.1 Coaxial Feed Modeling by an Equivalent Magnetic Current

If the radius of the coaxial feed’s inner conductor is assumed to be much smaller
than the wavelength (kr, < 1), and the coaxial feed line is designed to allow only
transverse magnetic (TEM) propagation, we can represent the aperture by an

equivalent magnetic frill current given by [25,18]

- 1A

M,=- 3 2.82
(2’ %

where
Vo is the complex voltage present in the coaxial line at the feeding point
rp is the radius of the coaxial feed’s outer conductor
r, is the radius of the coaxial feed’s inner conductor
p, ¢ are cylindrical coordinates referenced to the feed’s center

Substituting from (2.82) into (2.81) yields (with ds = pdpd¢)
Vo i
V, = ey / /s Hiy(z = 0)dpd (2.83)

where the cylindrical coordinates p and ¢ are defined in Figure 2.7, and H ;,, is the
¢ component of the magnetic field evaluated in the plane of the aperture (z = 0).

One factor that complicates the integration of (2.83) is that it must be per-
formed in two regions whose boundaries depend on the feed position as can be

seen in Figure 2.7. The integration can be broken up as follows:

= et

%
- _ET&)- [ / /s(;)Hx)dpqu+ / /5?) H}i’dpdgs] (2.84)

where
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S_(,l) is the portion of the feed surface lying below the substrate (2" = psin¢ < —t)

Sﬁz) is the portion of the feed surface lying above the substrate (z” = psin ¢ > —t)

The evaluation of the magnetic field components H, g) and Hﬁ) is described

next. Once these have been evaluated, the integration of (2.84) is carried out

numerically as discussed in Section 3.1.

2.5.2 Evaluation of the Magnetic Field at the Aperture

To evaluate the magnetic field component H,4, we will first determine the g

and Z components, and then perform a coordinate transformation to the cylindrical

coordinates p and ¢.

Determination of § and # components of H, .— The magnetic field H, any-

where inside the cavity is given by (2.26)

The § and 2 components are given by
o = 1 3A! BA'P
w 0z Oz
_I-Qés_
po Oy

H;,

where, from (2.32) and (2.56),

A, Ko / / (y")a (z)G:, ds'
A = o /s' Dy )ag()Glds’

Combining the last four equations, we have

i 3G;z aG::z ' Nt
H, = //;'( et z) Y(y)ag(z')ds

8G‘ ,

Hy, = (c')ds

Sq

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)
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These components are evaluated in Appendix G (for i = 1,2). Setting z = 0

in the resulting expressions yields:

cnqcﬁ,)m sink,y cosk{Vz (2.91)

I
=
o
s
gk

H,f;)(z = 0)

3
"
[
3
il
o

cngc) . cos kyy sin kM2 (2.92)

&
(8
Ms

H)(=0) =

3
I
-
3
i
(-}

£
Ms
gL

H;:’(l' =0) = c,.ch,),,, sin kyy cos kﬁz)(z -¢) (2.93)

3
[
[
3
1
(=}

CngCD), cos kyy sin k?(z ~ ) (2.94)

£
Ms
s

HP(z=0) =

m=1n=0
where
(K12
Hoo 4absin K,
cog = cosksz,Sinc [%(k,+1{)l,] Sine [%(-_k,—K)I,]
and
M = "‘z‘#{ku)k(z)gt kD (R - ¢)
cymn - kyd2mn z N3 € LADK; c
= [(R)? + B2(1 - €})] tan kVR} (2.95)
(k- w
W Ynky tan kP (h —c) |, k L |
Cimn dlmu cos kﬁl)h s yYo JO( y 2 (296)
. (2)
@D = Sama L)L (1)
n = i {KE® tankDh
— [(&@)2er — k(1 = )] tan kP (h - c)} (2.97)
Mp w
(2) _ (pnky ta.nk, . k
Camn = sink,Yy Jo(ky—) . 2.98
dimn cO8 kPD(h—c) " ° olkv (2.98)

Coordinate transformation and evaluation of H,4 .— Equations (2.91)-(2.94) give

the §y and Z components of the magnetic field anywhere inside the cavity. To find
the ¢ component we will perform the necessary coordinate transformation in two

steps:

1. move the origin from the corner of the cavity (Figure 1.3) to the center of

the coaxial feeding aperture.
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Table 2.1: COORDINATE TRANSFORMATION VARIABLES

VARIABLE RELATIONS | UNIT VECTOR RELATIONS

z” =1z éll

l
8

y”:y—Yc=pCOS¢ ﬁ"=3}=008¢ﬁ—8in¢$

2"=z—-h.=pcosod 2" = # = sin ¢p + cos 4

2. perform a cartesian to cylindrical coordinate transformation.

Referring to Figure 2.7, let us denote a new coordinate system by (z”, y”, z”) whose
origin is at the feed’s center (z,y,z) = (0,Y,k.). The relationship between the
new and old coordinates are outlined in Table 2.1.

Usmg these relations, we will make the following substitutions in (2.91)-(2.94)

to move the origin to the feed’s center, and transform to cylindrical coordinates:

y—=y'+Y. = pcosp+Y.

z2—=2"+h. = psing+Y.

Now, let A}, represent the projection of H onto the plane of the aperture such
that
HBi,=H j+H i=H/j}+H (2.99)

where H, i and H " are the 5 and ¢ components respectively.

Using the relations of Table 2.1, we readily obtain
iy = —sin @H}, + cos gH., . (2.100)

If we substitute from (2.91)-(2.94) into the above, and transform to cylindrical

coordinates we obtain

HY)z=0)=
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o0 o0
Hyo [— sing Y D cagclhnsin ky(pcos ¢ + Yz) cos kM (psin ¢ + h.)
m=1n=0

o o0
+c08d Y D cngclh), cosky(pcos ¢ + ¥2) sin kN (psin ¢ + hc)] (2.101)

m=1n=0

HP(z=0)=

Hyp [- sing Y > cngcld, sinky(pcos ¢ + Y,) cos kP (psin ¢ — c")

m=1n=0

+cosg 3 3 cngcl, cos ky(pcos ¢ + V) sin k(P (psin ¢ — c")] (2.102)

m=1n=0
where

"=c—h,. (2.103)

2.6 Current Computation for Two-Port Structures

In the preceeding sections, the theory has been advanced for computing the
jmpeda.nce matrix and excitation vector associated with a one-port discontinuity,
such as an open-ended transmission line. This section will present the modifications
necessary to extend the theory for treatment of two-port structures. Qur approach
for computing the network parameters (scattering parameters etc.) of two-ports,
requires simultaneous excitation of the strip conductors from both sides of the

cavity. We will refer to this as “dual excitation”.

2.6.1 Application of Reciprocity Theorem for Dual Excitation

In section 2.2.17 an integral equation (2.3) was derived by applying the reci-
procity theorem to the one-port network of Figure 2.5. In an analogous fashion,
we will now apply the reciprocity theorem to the two-port network of Figure 2.8.

In Figure 2.8, both magnetic current sources My and My, are coupled with

the electric current source J, on the conducting strips to produce the total fields



STRIP
CONDUCTOR

Figure 2.8: In the case of dual excitation, the total fields E'¢, At
inside the cavity are produced by magnetic currents My,
My,, and the electric current J,.
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E'°t, H** inside the cavity. As before, we consider an independent test source J,,
and associated fields E, and H, as shown in Figure 2.4.

Applying reciprocity theorem between these two sets of sources yields

[ ] ]G Bem By b= By b)) do = [ [ [ Ty B
0

= (2.104)

where the volume V is the interior of the cavity and
My = Mué (2.105)
M, = Myd. (2.106)

The right hand side of (2.104) vanishes as described by (2.2). Reducing the re-

maining volume integrals of '(2.104) to the appropriate surface integrals gives

-//S..,.-, E(z=h)-Jds = //Su Hy(z=0) M,ds

+ / /s (s =a) Mpds. (2107
In the above,
Siy = Surface of coaxial aperture on left hand side (z = 0 side) of cavity
Sry = Surface of coaxial aperture on right hand side (z = a side) of cavity.

By comparison with (2.3), (2.107) can be seen as a natural extension to the theory

for the case of single excitation.

2.8.2 Expansion of Current and Modified Matrix Equation

The current J, is again expanded according to (2.6)

N,
Ji= b)Y hay(a) 2

p=1
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The only difference is that we now must consider the basis function for the z-
dependence on the last subsection (i.e. closest to the right-most feed) as a special
case. This is necessary since at each end of the cavity only a half sinusoidal
basis function is required as illustrated in Figure 2.9. Hence, for the right-most

subsection we let

gnfKlz=a)l ., <gz<gq
ay, (z) = 0’"“’“” l""‘ == (2.108)
elise

where the quantities K and I, are as defined in Séction 2.2.2, and N, represents
the index for the right-most subsection. The rest of the basis function expansion
is the same as given by (2.7)-(2.9).

Substitution of (2.6) into (2.107) yields

g: [ / /S Ez=h)$() a,(z)a‘:ds] L = [ /S ‘-! Hy(z = 0)- Myds
+ / /s ’ H(z = a) - M,.d2.109)

which can be expressed as

[Z][L] = [Vi] + [Vi] =[V] (2.110)
where
[I4] is the vector containing the current coefficients for the case of dual excitation
[V1] is the excitation vector of the feed on the left (¥, x 1)
[V,] is the excitation vector of the feed on the right (N, x 1)
[V 4] is the combined excitation vector for dual excitation.

The elements of the excitation vectors [V/], and [V,] are given by

Z =0)-M 2.
Vi / /s” Hy(z = 0) - Mds (2.111)

= ] =a)- M 9.
V., / /s Az =a) Myds (2.112)
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Figure 2.9: Strip geometry for basis function expansion with dual
excitation. The case shown corresponds to a thru-line.
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We can solve for the current vector by matrix inversion and multiplication accord-
ing to

M =(2]"" (V4 (2.113)

2.6.3 Modifications to Impedance Matrix

The elements of the impedance matrix for the case of dual excitation are given
by the same integral equation as for the one port case, namely (2.15). The dif-
ference is in the integration over the last subsection (p = NV,) where a,(z) is now
given by (2.108). The integration for E,, given by (2.70) is also modified for the
last subsection (¢ = N,) in a similar way. It can readily be shown that the surface
integration over the last subsection (i.e. closest to the feed on the right) is équiva—
lent to the integration over the first subsection (i.e. closest to the feed on the left).
Hence, the elements of the impedance matrix are again given by (2.80) the only

change being that (, is as redefined below rather than by (2.74)

2 forg=lorg=N,
(o = ? ? (2.114)

4 else

and (, for the dual excitation case is given from (2.114) with ¢ replaced by p.

2.6.4 Modifications to Excitation Vector

We now consider the integrations of (2.111), and (2.112). By analogy with

(2.82) we may express the two magnetic currents as follows:

Vou

M, = -= (f:)p(ﬁ (2.115)
_— Voo -
M, = +1n($:)p¢ (2.116)
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where the positive sign in the second current source indicates that it is taken to be
in the opposite sense (Figure 2.8). In the above two equations, Vy is the complex
voltage in the coaxial line at the left-hand feed, and V4, is the complex voltage in
the coaxial line at the right-hand feed.
Substituting from (2.115) into (2.111) yields

= T -
Va = - (&) / /S Huplz = 0)dpdg (2.117)
Similarly, from (2.116) and (2.112),
Vor _
Vq,. = ]_n—(fl_)//sl H«g(l = a)dpdcb . (2118)

Now, the integration required for V,; is identical to that carried out in Section 2.5
for V, (single excitation ca.se). The computation of V,, is only slightly modified as
we need to-shift the origin to (z',y’, 2') = (a,Y., h.) instead of to (0, Y, h.). After
exa.miniﬁg the z-dependence of H, given in Appendix G, it becomes obvious that

we need only multiply the result for V,; by cosnw to get the result for V,,. That is

Vir = —Y-Oi cosnw Vy. (2.119)
Vor

Let V4 represent the elements of [ V] given by
‘/qd = ‘/ql + ‘/qr .

Then,

Via = (1 Y cos mr) Vi (2.120)
Vor

where V, represents the excitation vector of Section 2.5 with V; set equal to unity.
As discussed in Section 2.7, two-port scattering parameters are found by ap-
plying even and odd modé excitations to the circuit. The next step here is to find
the excitation vectors for these two cases.
For the even mode excitation, we let Vo = Vo = 1. In this case, from (2.120)

we have

Vee = V4(l —=cosnr)
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0 for n even

= (2.121)
2V, fornodd.
For the odd mode excitation, we let Voy = -V, = 1. Now, using (2.120)
Veo = Vi(1+ cosnr)
2V, forneven
= (2.122)

0 for n odd

where
Ve represents the elements of the even excitation vector (V]
Vio represents the elements of the odd excitation vector [V,] .

Using these two excitations, we can compute both the even and odd mode current

distributiors using the following matrix equations:

L] = (Z]7'[V] (2.123)
L] = (2]7'[V,] (2.124)

where
[I.] represents the current vector for even excitation

(I,] represents the current vector for odd excitation.

2.7 Determinati f Network P I

The preceeding sections presented the theoretical methods for computing the
current distributions for one- and two-port shielded microstrip discontinuities. The
next step is to use these currents to determine the associated network parameters

that can be used to represent them.
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The relevant network parameters include the parameters of uniform microstrip
line sections, and the parameters associated with discontinuity structures. The
parameters for the uniform line sections are the complex propagation constant
(74), and the characteristic impedance (Z;). For the discontinuity structures, the

relevant parameters are one or more of the following:
¢ input impedance

e reflection coefficient

scattering parameters

impedance parameters

admittance parameters

equivalent circuit parameters.

Since the aim of this thesis is to concentrate on discontinuity effects, the char-
acteristic impedance is not considered. For a microstrip line Zy cannot be strictly
defined, and there has been considerable controversy over the most appropriate
definition to use [27]-[31]. To avoid potential ambiguities caused by comparing re-
sults which may have been normalized to a different Z,, the author has chosen to
work with normalized network parameters where possible. In comparing scattering
parameters, the normalizing impedance is whatever impedance corresponds to the
microstrip line width in use (i.e. it does not need to be calculated to compare
scattering parameters). This is true for both the measurements and the numerical
results of the present research, although it may not be true for the results presented
from CAD packages.
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2.7.1 Network Parameters for One-Port Discontinuities

The simplest one-port discontinuity is an open-ended microstrip line. We will
use the open-end as an example to illustrate the methodology for determining one-
port network parameters. These include the propagation constant of the line, the

reflection coefficient, and the input impedance at various points on the line.

Calculation of the Propagation Constant

In general, the complex propagation constant v, is given by

Yo =0y +] 5, (2.125)

For the computation of the current distribution, the theory for which is described
in the preceeding sections,

In the development of the preceeding sections, which describes the theory for
computation of the current distribution, the dielectric material was assumed to be
lossy in general. However, for the discontinuity structures treated in this thesis,
only the lossless case is considered for the computation of network parameters.
The network parameter theory for the lossy case is a relatively straightforward
extension, hence the theory of this section can easily be generalized to handle the
lossy case.

In the lossless case v, = j3,, where the phase constant 3, is given by

B, = (2.126)

9
and ), is the microstrip wavelength. This can be determined by calculating the
distance between adjacent current maximums. Another parameter that is often

used to describe microstrip propagation characteristics is the effective dielectric
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- constant €.zs. This may be found from A, according to

A 2
€ofs = (/\—°) (2.127)
g

where )q is the free space wavelength.

Determination of the Input Reflection Coeflicient and Impedance

To determine the input reflection coefficient we first need to establish a reference
plane at some point on the line. Two convenient points are just to the right of the
coaxial input (z = 0) and at the point where the discontinuity begins. Choosing
the reference plane at z = 0, the voltage reflection coefficient (looking towards the

discontinuity) anywhere on the transmission line is given by [3]

_SWR-1

= e o—i%=i2Bg(zmas—7)
['(z) SWET1S 9 (2.128)

where Zmqz is the position of a current maximum. SWR denotes the standing wave
ratio, which is given by the ratio of the maximum current amplitude |I,,,o2| to the

minimum current amplitude |Im;n|. That is,

SWR = masl (2.129)

lIminl .
The e~ term in (2.128) arises since, on a lossless line, a current maximum corre-
sponds to a short circuit (i.e. ['(Zmaz) = €777).

From (2.128), the reflection coefficient at the end of the line(z = L;,) is given

by
= SWER =1 i i28ydmes 9
['(Lin) = SWRT le e’ (2.130)
where

dma: =[- Tmaz

is the distance from the end of the line to a maximum.
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The normalized input impedance at any point on the line may be found from

the reflection coeficient according to

_1+I(z)

2(z) = -1?-1_‘(—3:—) . (2.131)

Equivalent Circuit for an Open-End Discontinuity

An open-end discontinuity in microstrip can be represented as either an effective
length extension L.ss or by an equivalent capacitance c,, as shown in Figure 2.10.

Effective length extension for open-end discontinuity.— The effective length ex-

tension represents the length of ideal open circuited transmission line which, if as
a continuation of the strip, would present the same reflection coefficient at z = L,
as the open-end discontinuity (Figure 2.10). ‘This length is deduced from the fact.
that the current on an ideal open circuit would go to zero at a distance -’\f- from.

the last current maximum. Hence, the effective length extension is given by
dmas - (2.132)

This representation gives an intuitive feel for the magnitude of the end effect.
On the other hand, the equivalent capacitance representation is better for circuit
design purposes.

Equivalent capacitance for open-end discontinuity.— For an open-end in a loss-

less microstrip environment, the standing wave ratio is infinite (SWR — 0);

hence, from (2.130)
Lop =T, = el (2.133)

where

Bop = 2By0maz — 7 - (2.134)

The associated normalized equivalent capacitance (Figure 2.10) can be expressed
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o = sin 28,d maz _ sin2B,L.;¢
® 7 w(l = cos2Bydmaz)  w(l+c0s28,Ly) "

(2.135)

An algorithm for calculating one-port network parameters from the microstrip

current, computed numerically, is discussed in the following chapter.

2.7.2 Network Parameters for Two-Port Structures

The network parameters for two-port structures determined by analyzing the
currents from the even and odd mode excitations discussed in Section 2.6, and

illustrated in Section 3.2.4.

General Representation by Equivalent T-network

In general, a passive symmetric two-port structure can be represented by the
T-network equivalent circuit of Figure 2.11. The T-network parameters are given

in terms of the normalized impedance parameters according to

Vl _ 211 212 Il (2136)

Va Zn Zn I

Since we have assumed that the two-port structure is passive, reciprocal, and
symmetric zy; = 233 and 213 = z3;.

These impedance parameters are found from the input impedances of the even
and odd current distributions. The even mode excitation (Vy = V3 = V) cor-
responds to placing an electric wall in the center of the circuit as shown in Fig-
ure 2.12a. The odd mode excitation (V5 = =V,3 = V;) corresponds to placing a
magnetic wall in the center of the circuit as shown in Figure 2.12. The normalized
input impedances 2§y and z{y, for these two cases are found by analyzing the two

separate current distributions as described in Section 4.2 for one-port analysis.
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Figure 2.10: Representation for microstrip open end discontinuity.
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Once these impedances have been determined, the impedance parameters are

found according to

[ o
v+ 2N

o= e (2.137)
Iin = Zin
212 = ——2—— . (2.138)

Derivation of Scattering and Admittance Parameters

The scattering parameters may be derived from the normalized z-parameters

by using the following relations

2 _1_,2
Su = Sn= ﬁl—%—ig' (2.139)
S12 = Sn= 2%2' | (2.140)
where
D =23 + 2z, -z}, (2.141)

Furthermore, it may also be desirable to compute the normalized y-parameters
for the network. These may be derived from the scattering parameters using the

following relations:

— _ 1- 5121 - 5122
yu = yn = 5.7 =55 (2.142)
25151 (2.143)

Y2 = Ya = (1+5u) - 55

2.8 Summary of Theoretical Methodology

In this chapter, the theoretical approach used to compute network parameters
for shielded microstrip discontinuities has been described. A combination of reci-

procity theorem and the method of moments is used to derive a matrix equation
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DISCONTINUITY
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o

Figure 2.11: Equivalent network representation for generalized 2-port
discontinuity.
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b) Case for odd excitation.

Figure 2.12: The even and odd mode excitations correspond to placing
electric and magnetic walls in the center of the two-port

structure.
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that consists of an impedance matrix, an unknown current vector and an excitation
vector. Two types of circuit excitation mechanisms are considered: 1) a coaxial
excitation method, and 2) a gap generator method. The matrix equation is solved
to compute the current distribution on the conducting strips. Based on this cur-
rent distribution, the network parameters for one- and two-port discontinuities are

calculated.



CHAPTER III

COMPUTATIONAL CONSIDERATIONS

This chapter is divided into two main parts. The first part describes the soft-
ware design for implementing the theory developed in Chapter 2. First, the formu-
lation used to compute the current distribution is re-arranged to facilitate computer
solution. Next, the computer algorithm is discussed, and the computation of the
current distribution is described. Algorithms for computing one- and two-port
network parameters are also included.

The second part of the chapter focuses on numerical convergence considerations.
First, the convergence of the elements of the impedance matrix and excitation
vectors is considered. Then a series of numerical experiments are described which

are designed to test the stability and convergence of the final results.

3.1 Formulation for Computer Solution

To compute the current distribution given by (2.17) we must first compute the
elements of the impedance matrix Z,, and the elements of the excitation vector V.
The formulations for these elements, given in Chapter 2 are put in a form more

convenient for programming below.

3.1.1 Formulation to Compute Impedance Matrix [Z]

39
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The elements of the impedance matrix are given by (2.80). This equation may

be re-written in the following form

274 NSTOP
T
Colp E Pn cos kT, cos k,z,

n=0

JwpoK
16absin® K1,

[Sinc [%(k, + K)z,] Sinc [-;—(k, - 1()1,]]2 LN()  (3.1)

Zyp =

where the vector LN(n) is given by the series
MSTOP
LN(n)= 3 Lma (3.2)
m=1
with the series elements L,,, given by
ealsin(kyYo)Jo (£5%)]? tan kMh tan kP (h - c)
[+ tan kA - k(Y tan (R - c)]
[kPer (1 - 7’:’?) tan k(h — c) - kD (1 - &) tan k(]
' [6Per tan kP(h = c) = k7 tan kVA]

Lmn =

(3.3)

All of the other parameters are as defined.in Chapter 2.

3.1.2 Formulation to Compute Excitation Vector [V].

Excitation vector for coaxial (frill current) excitation

Formulation.— The elements of the excitation vector for the coaxial excitation
mechanism (2.84) may be written as

_ 2 NSTOP
= Volo K1l Y cosk.z,

! In (f}) dabsin Kl a=0
Sinc [%(k, + KOl Sine [-;-(k, - K)z,] (MN(n)] (3.4)

where the vector MN (n) is expressed in terms of the series given by

MSTOP
MN(n)= Y Mp,. (3.5)

m=1
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The series elements Mm, are given by the following integral
an = \/‘/Smen dpd¢
=/ /s<;> M, dpdg + [ /s(!,) M) dpdg (3.6)
In the above, S}l) is the portion of the coaxial aperture surface lying above the

substrate (region 2) and 5}2) is the portion of the coaxial aperture surface lying

‘within the substrate (region 1). The integrands M:,, of (3.6) are given by
MWD = cogpell) cosk,(pcosd+ Y,)sin kM (psin g + h,)
—singcll) sink,(pcos ¢ + Y.) cos k{!)(psin § + h.) (3.7)
for p and ¢ in region 1, and
M®P = cospc® cosk,(pcosd+ Y.)sin kP (psinp — ")
—singc  sin ky(p cos: ¢+Y)coskP(psing—c").  (3:8)

for p and ¢ in region 2. Note that the coefficients c(!)  c{) ¢ and c{?) , which

ymn?! “zmn)? ymn zmn?

are given by (2.95)-(2.98), are independent of the integration variables p and ¢.
Numerical Integration.— The elements M,,, of the series M N(n) needed to

compute the excitation vector for the coaxial (frill current) method are calculated
numerically using a 16 point Product Gauss formula approximation [33].
Let us define a pair of dummy variables s and u and a function F(s,u) such

that
Pmes=2x ag 2T . Smaz=1 az=1 i
/ / T ME dpd = / T Fs, u)ds (3.9)

Pmin=0 Pmin=Te smin==1 Jumin=-1

where the correspondence between (u,s) and (p, ¢) is given by the following rela-

tions
u = 2P - (pmcz + pmin) = 2P - (1‘(, - ra) (310)
Pmaz = Pmin Ty —Ta
p = slulr=ra) + (retr) (3.11)
o = Blnatlon) gy, (3.12)
o = m(s+1). (3.13)
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The numerical integration can be carried out by generating a set of 16 pairs of

points (u;,s;) and adding up their contributions according to

bmaz =27 fPmaz=Th . 16
/¢min=0 /p‘,m',.=r¢ andpd¢ = J;l BJf(uJ’ sJ) (3.14)

where
( uj,8; ) is the j** pair of integration points
B; is the weighting factor associated with the j** pair of integration points, and

F(8;,u;) is the transformed integrand found by performing a coordinate trans-

formation on M, .

Alternatively, once we have chosen the 16 points (s;,u;), we can find the corre-

sponding values of p and ¢ by (3.11) and (3.13) and obtain the same result. That

is

Pdmaz=2% [Pmaz=N . 16
‘/;min=0 /pm.',..-.'r‘ andpd¢ = ng BJMmﬂ(in ¢J) (3.15)
where
1
Pi = 3 [uj(ry = 7o) + (13 + 74)]
$; = m(s;+1)
and

[ MO(ps185)  for —ho<psing; < —t
Moa(pir8i) = § M@(pj¢;)  for —t < pjsing; < ¢’ =c—h{3.16)

error condition else.
\

Gap generator excitation
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For the excitation vector, all of the elements of the impedance matrix are set

to zero except one, which is given a value of unity. That is,
T
[V]=[00 1 s 000] . (3.17)

Hence, the elements of the excitation vector for this case are given by

1 forz,= z

0 else

Vo=164 = (3.18)

where z = z, is the position of the gap generator.

3.1.3 Defining the Strip Geometry

The formulations derived above for the computation of the current is general.
That is, the same formulation can be used for all of the discontinuities.considered
in this thesis. However, the strip geometry diﬂ"ers between the cases. The strip
geometry is specified by the position vector z, (or z,) and the number of sections
N,. The following discussion illustrates how these parameters are determined for
various structures.

For an open-ended line (Figure 2.5) and a thru-line (Figure 2.9) the position

vector is given by

zp=(p=1)l,. (3.19)

The only difference between the two cases is the number of subsections NN,.

The strip geometry for a series gap discontinuity is shown in Figure 3.1. Let
N, be the number of subsections required to compute the current on the left hand
strip, with IV, being the total number of subsections. The position vector may be
written as

—ll:: .<_Na.
z, = P-DL » (3.20)

pl:+G p>N,.



’
Na Na+l Ns

Figure 3.1: Determination of the computational parameters for a se-
ries gap is somewhat more complicated than for an open-

end or a thru-line.
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where G is the length of the gap space.
The strip geometry definition for coupled line structures is only slightly more

complicated, than those discussed above. Further details have been omitted.

3.2 Algorithm for Current Computation

The method of moments solution for the current distribution was implemented
in a Fortran program named SHDISC. The various computation steps are outlined

in the flow chart of Figure 3.2 and are summarized below.

3.2.1 Input Data File

A data file is set up first to input the analysis frequencies and the geometrical
parameters of the problem to be solved. Also, in this data file several flags may
be set or cleared to direct the program flow, and file names are assigned to output
files that will contain the results of the computé.tions.

One important flag indicates whether or not the LN(n) and M N(n) vectors
are to be calculated or read in from a storage file. These vectors are independent
of the subsection length I; and the strip geometry in the z-direction described
by z,. Hence, once they have been calculated they need not be re-calculated
unless the cavity geometry or the frequency has changed. For example, the same
LN(n), MN(n) vectors may be used to calculate the current distributions for an
open-end discontinuity, a thru-line, and series gap discontinuities with different gap
spacings. This is important because approximately 50% to 90% of the computation
time (depending on the size of the impedance matrix) is spent on evaluating the
vectors LN (n) and M N(n) vectors.

There is also a flag to choose between gap generator and coaxial excitation.
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SET UP EVALUATION PONTS
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Figure 3.3: Flow chart for subroutine that computes vectors LN(n),
and MN(n).
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3.2.2 Computation of LN(n) and M N(n) Vectors

After the input data file is read and the global parameters and arrays have
been calculated, the program flow is directed to the subroutine "COMPLNMN", if the
LN(n) and MN(n) vectors have not been previously computed. A flow chart for
this subroutine is given in Figure 3.3. The first step is to set up the integration
points p; and ¢; to be used in the numerical integration for computing M,,, as
discussed in Section 3.1.2. After this, the computation of LN(n) and M N(n) for
each n is carried out by adding'up the L.n’s and M,,,’s over the summation index
m.

The summations over m are terminated in one of two ways. The first is to
test error functions which describe the fractional change in LN(n) and M N(n)
with the addition of the last L, and My, respectively. The other way that
the summations over m are terminated is if the specified maximum index value
MSTOP is reached before the error goals have been satisfied. The truncation
of the computations over the n-index is determined in a similar way. This time,
however, the error functions describe the fractional change in the summation of
LN(n) and MN(n) over n. As in the summation over m, the computation is also
terminated if the maximum n-index NSTOP is reached before the error goal has
been reached. For the convergence experiments which are described shortly, the
error goals are set to very low values so that the computations on m and n are

carried out to MSTOP and NSTOP respectively.

3.2.3 Computation of the Impedance Matrix and Excitation Vectors

After the LN(n) and M N(n) vectors have either been calculated or read in

from a storage file, the strip geometry is defined. This is done based on the
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type of discontinuity to be analyzed and the geometry specified in the input file,
as discussed in Section 3.1.3. Next, the elements of the impedance matrix and
excitation vector are computed. To gain insight into the nature of these matrices,
we will examine plots of a typical impedance matrix and typical one- and two-port
excitation vectors.

Typical impedance matrix.— Figure 3.4 shows the amplitude distribution of a

typical impedance matrix. It is seen that the amplitude of the diagonal elements
is the greatest and the amplitude tapers off uniformly as one moves away from the
diagonal. Another observation is that the matrix is symmetric such that Z,, = Z,,
for any p and ¢, and the amplitude for any row or column displays the same
distribution with respect to the diagonal element.

Typical excitation vectors.— Figure 3.5 shows the amplitude distribution for

the excitation vector for a typical one-port (open-end) structure. It is seen that
the amplitude is highest over the ﬁrst subsection, which is closest to the feed. The
amplitude then tapers off rapidly over the subsequent subsections.

The even and odd excitation vectors for a typical two-port (thru-line) structure
is shown in Figure 3.6. The amplitude distribution is symmetric around the center
of the cavity for thg even case, and asymmetric for the odd case. Next to each feed
(i.e. near z = 0 and z = a) the amplitude distribution has the same shape as for

the one-port case, which is expected from (2.120).

3.2.4 Computation of the Current Distribution

In the matrix equation (2.17), which describes the solution for the current
distribution, matrix inversion and multiplication is implied. While this is correct
mathematically, it is not efficient numerically. There are several approaches for

solving systems of equations without matrix inversion. Most of these are readily



66
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Figure 3.4: A plot 3-dimensional plot of the impedance matrix for
a typical open-end shows that it is diagonally dominant
and well behaved.
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Figure 3.5: The amplitude distribution for the excitation vector is
highest for Q=1, which corresponds to the position of

the feed.
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Figure 3.6: Excitation vector for two port coaxial excitation.
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Figure 3.7: A comparison of computation times for two different
methods of matrix equation solution shows the advan-
tage of using alternatives to matrix inversion .

available as subroutines in standardized libraries (e.g. Numerical Analysis and
Applications Software ~-NAAS).

For this work, a subroutine was employed that uses UDU factorization and back
substitution. This method (also called LDL in some texts) takes advantage of the
symmetry of the impedance matrix to speed computations. Figure 3.7 shows a
comparison of computing times observed for a typical problem using matrix inver-
sion versus the UDU factorization method. These computations were performed
on an Apollo DN3000 work station. The speed advantage of the latter method
becomes increasingly significant after a matrix size of about 150 x 150. Matrix
sizes for problems studied in this thesis typically vary between about 507 x 30 and
250 x 250. |

Typical open-end current distribution.— When the impedance matrix of Fig-

ure 3.4 is inverted, the amplitude distribution is as shown in Figure 3.8. Mul-

tiplying by the excitation vector of Figure 3.5 yields the current distribution of



Figure 3.8: This 3-dimensional plot of the magnitude of the elements
of the inverted impedance matrix shows that each row
and column has a sinusoidal shape.
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.Figurev3.9: The imaginary part of current distribution for an open-
end discontinuity displays a sinusoidal behavior.

Figure 3.9. It can be seen that the sinusoidal shape of the current has the same
general shape exhibited by the first column of the impedance matrix. This is
not surprising given the shape of the excitation vector. The multiplication can be
thought of as a weighted summation of the first few rows of the inverted impéda.nce
‘matrix.

A typical current for gap generator excitation is shown in Figure 3.10. For
this computation the gap generator was located at a short distance ( ~ .3\ )from
the wall. The current is seen to be discontinuous around the region of the gap
generator, however, is otherwise well behaved. The effect of this discontinuity
can be minimized by locating the gap generator source at the beginning at the
beginning of the first subsection (¢ = 1).

Typical two-port current distributions.— The current computation for two-port

structures is similar. In this case, even and odd currents are computed using ex-

citation vectors shaped like those of Figure 3.6. The current distributions for a
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Figure 3.10: The current for gap generator excitation is discontinuous
around the position of the source, but is otherwise well
behaved.

series gap are shown in Figure 3.11. Due to the symmetry of the structure, the
even current is symmetric, and the odd current is asymmetric around the middle

of the cavity.
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Figure 3.11: Current distributions for a typical series gap discontinu-
ity
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3.3 Algorithms for Computing Network Parameters

3.3.1 Algorithm to Compute One-port Network Parameters

A Fortran program was written to compute one-port network parameters as
discussed above !. A flow chart for the program ONENET is shown in Figure 3.12.
The program first reads in the current distribution from a storage file created with
SHDISC.

The néxt step is to perform a cubic spline fit to the current. This is neces-
sary to accurately determine the positions of the minimum and maximum current
values. The subroutine used to perform this spline fit is a modification of a pro-
gram.a.ppea.ring in [34]. In a cubic spline fit, ea.éh interval between two points is

represented by a different cubic equation of the form
I(z) = ay(z — z,)° + by(z — 2,)% + cp(z — z,) + dp, (3.21)

Once the spline fit coefficients ay, bp, ¢,, and d, have been found, determining the
positioﬁs of the current minima and maxima is straightforward. First, the two
points surrounding an extremum are found by searching for a sign change in the
slope of the current ( I'(z,) = ¢, ) evaluated at successive points. Next, the actual
position of the extremum is found to within the accuracy of the curve fit. This is
done by finding the root of I’(z) = 0 which lies within the interval (z, < z < zp41).

The microstrip wavelength (A;) is then computed as the average distance be-
tween each pair of current minima and maxima. With the knowledge of the wave-
length, the effective dielectric constant ¢.ss, and the phase constant 3, can be

calculated according to (2.127) and (2.126).

1 In this thesis the only one-port structure considered is the open-end
discontinuity.
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Finally, the equivalent circuit parameters for the open-end are computed. To
do this, the reflection coefficient I',, and impedance z,, are calculated. Then, the
effective length extension and equivalent capacitance are computed from (2.132)

and (2.135) respectively.

3.3.2 Algorithm to Compute Two-port Network Parameters

The program for computing two-portr network parameters TWONET is very
similar to that for one-port parameters. A flow chart is given in Figure 3.13. The
first step is to read in the even and odd current distributions. These are analyzed
separately. The analysis is performed in the subroutine SPLIMP following the same
steps as in the one port case to compute A, ,6;, €ets, T(L1), and z(L,) for each
of the distributions. Next, the impedance, scattering, and admittance parameters
are calculated using the relations of Section 2.7. This whole process is repeated

for each of the analysis frequencies.

3.4 Convergence Considerations Z,, and V,

In this section, the convergence of the elements of the impedance matrix Z,,
and the excitation vector V, are discussed. The series involved in the computation
of these elements are functions of two summation indices m and n. In theory, the
summations are infinite; however, for computation we must truncate them at some

point where the error due to this truncation is negligible.

3.4.1 Convergence of Impedance Matrix Elements Z,,

We will now consider the convergence behavior of the matrix with respect to

the summation indices m and n.
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Figure 3.12: Flow chart for computation of one-port network param-
eters
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Convergence of Z,, with m.— As can be seen from (3.1), the convergence of

the impedance matrix with respect to m is described by the convergence of LN(n)
with m. Recall that LN(n) is given in terms of the series of (3.2)
MSTOP
LN(n)= > Lma. (3.22)
m=1

Figure 3.14 shows the typical variation of LN(n) with m and n. Most of the
contributions from LN(n) to the impedance matrix are concentrated in the first
several n values. The convergence over m is good. Further analysis, for this case

shows that the change in LN (n) appears to be negligible after about m = 500.

Convergence of Z,, with n.—

This computation of Z,, over n is illustrated for a typical impedance matrix in
Figure 3.15. This figure shows the convergence behavior for one row (the 32nd) of
the 64 x 64 element impedance matrix of Figure 3.4. This behavior is representative
of that for any row. After only a few terms the diagonal element (p = ¢ = 32)
rises above the others, and after adding 100 terms the amplitude distribution is

well formed.

3.4.2 Convergence of Excitation Vector Elements V,

We now turn our attention to the convergence of the excitation vector. In
the following discussion, we consider only the one-port excitation vector since the
two-port excitation vectors are derived from the one-port case (Section 2.6.4).

Convergence of V; with m.—

As can be seen from examining (3.4), the convergence of V, with respect to m
is described by the convergence of M N(n) with respect to m. MN (n) is given by

(3.5)
MSTOP

MN(m)= S Mn,. (3.23)

m=1



79

JLN(N)/
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Figure 3.14: 3-dimensional plot illustrating computation of LN(n)
over m and n.
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Figure 3.15: The formation of an impedance matrix for one row (Q =
32) versus the summation index n.
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Figure 3.16: 3-dimensional plot illustrating computation of MN(n)
over m and n.

A plot of M N(n) with m and n, shown in Figure 3.16, shows that the convergence
of MN(n) on m is not as good as that for LN (n). The series exhibits a damped
oscillation around the convergent value, which may take more than 1000 terms to
determine. However, good results for network parameters are obtained by stopping
at m = 500. This is discussed further in the section 3.5.

Convergence of V, with n.— Figure 3.17 illustrates the computation of the ele-

ments of V, as a function of the summation index n. As in the case of the impedance
matrix, the amplitude distribution for the excitation vector has been well defined

after adding the first 100 terms.

3.5 Convergence of Network Parameters
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Figure 3.17: The formation of an excitation vector versus the summa-
tion index n.
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The previous section described how the elements of the impedance matrix and
excitation vectors converge on the summation indices m and n. This convergence
is important to examine; yet the question remains: how are the final results affected
by various convergence related parameters?

To answer this question, a series of numerical experiments were carried out.
These experiments investigate the convergence behavior of the network parameters
for an open-end discontinuity with respect to the number of samples per wavelength
N; (= 1/1;), and the truncation points NSTOP, MSTOP for the summations
over n and m respectively. From an efficiency point of view, we would like to
" minimize both the sampling rate and the truncation points. To examine these
issues, of numerical experiments were performed at different frequencies and for
different geometries, and a summary is given here.

In this éumma.ry, the numerical experiments have been grouped into three sep-
arate ca.tegori,es' which are named Experiment A, Experiment B, and Experiment

C. Each of these explores a different aspect of the convergence behavior 2.

3.5.1 Numerical Experiment A: Effect of K-value

Objective

In the first experiment, the objective was to invéstiga.te how the value for K
(K-value) used in the basis functions (2.8) and (2.9) affects the convergence on N,

of the L.ss and ¢,5y computations.

Procedures and results

2 Unless otherwise noted, the parameters used for the plots shown
in this section are the following: ¢, = 9.7, W =k =.025",a =3.5",b=c=
258", f = 18GHaz.
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Figure 3.18: Convergence of L.y, versus sampling for several different
K-values.

Using the programs discussed previously, data was generated to plot L.;; and
€ty versus N, for several different K-values. F igure 3.18 shows the convergence
behavior of L, for a typical case. It is seen that a relatively flat convergence region
exists for all the K-values between about 40 and 100 samples per wavelength (A4).
Outside this region the solution behaves differently for different K-values.

At first glance, it appears that the best convergence is achieved for higher
K-values (e.g. K = 8r); however, quite the opposite conclusion results from exam-
ining the €,z computation. As can be seen from Figure 3.19, the best convergence
for €.y is obtained for low K-values.

Based on these observations, it was theorized that it may be possible to improve
the L.;; computation by choosing a larger K-value at the end of the line, while
keeping the K-value over the rest of the line at a low value. This was investigated

by modifying the program SHDISC to use K = 2x for all the subsections except
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Figure 3.19: Convergence of ¢.;; versus sampling for several different
K-values.

the last Ay/8 portion of the strip. Over the last A;/8 portion, the K-value was
varied to examine its effect on the L.s; and €5y computations. It was found that
a constant value of i = 27 over all the subsections yields the best convergence
behavior for L.ss. As expected, changing the K-value just at the end of the strip
had very little effect on the €.z result.

Some comments will now be made on the L,;; convergence behavior for low and
high sampling rates. Referring back to Figure 3.18, it was found that a minimum
sampling limit was observed that varies with the K-value. This limit may be

expressed by the following

Observation IIL.1 For the sinusoidal basis functions of (2.8) and (2.9), there

ezists a lower sampling limit which depends on K and l; as follows

Kl, < % (3.24)

or

N> (3.25)
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If the sampling rate is lower than this limit, obvious errors in the current distribu-

tion and the network parameters (e.g. negative L.ss) result.

This limit has a physical basis in that if it is violated, more than one quarter
of a sinusoid is represented by each half basis function. This means that the basis
function tries to peak before it reaches the end of the section.

Before examining the convergence behavior for high sampling rates, it will be
useful to define the matrix condition number. The matrix condition number gives
a measure of the relative sensitivity of the errors in the matrix solution to a change

in the matrix elements. It may be defined as [35]
Cond (2) = ||Z|| + ||Z7] . (3.26)

Matrices with low condition numbers are said to be well conditioned; matrices with
high condition numbers are said to be ill conditioned. In general the condition
number, and therefore the accuracy of the matrix solution, degrades as the matrix
size increases.

This degradation in the condition number is responsible for the non-convergent
behavior exhibited in Figure 3.18 for high sampling rates. Figure 3.20 shows how
the reciprocal condition number (RC = 1/Cond(Z)) is degraded as Nz increases.
As N: increases, the matrix order (/V,) also increases for a fixed physical length
of line. Hence, the gradual degradation in the condition number observed out to
about N; = 130 was expected.

Not expected was the large jump in RC which occurs at about 140 samples per
wavelength. This jump indicates that the matrix suddenly becomes ill conditioned
and, the associated current distribution is completely erratic. This erratic current
condition was found to be independent of I, however, as discussed in the next
section it is directly related to the length of the cavity a, and the number of terms

added in the summation over n (NSTOP).
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Figure 3.20: Reciprocal matrix condition number versus sampling.

3.5.2 Numerical Experiment B: L.y, ¢.;; Convergence on n and m

Objective

The objective of this next experiment was to determine the appropriate trun-
cation points NSTOP and MSTOP for the double summations involved with

computing the impedance matrix and excitation vector elements.

Procedures and Results

First, several program runs were executed for different values of NSTOP, with
MSTOP fixed at 1000. Data was generated to plot L.ss and e.z; versus n for
several [; values. Figure 3.21 shows that for all the I, values NSTOP = 500,

gives good convergence. The same can be said for the convergence of €.y with n
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Figure 3.21: The convergence of L.;;y on n was found. to depend on
I, but is satisfied in all cases after 500 terms have been
added.

(Figure 3.22).

To investigate the convergence behavior with respect to the summation index
m, NSTOP was fixed at 500, and the program was run for different values of
MSTOP. Figure 3.23 shows that L.;; converges well on m also after about 500
terms. Unlike the convergence on n behavior, the convergence on m does not
depend on /;. The convergence behavior of ¢.;; (not shown) on m, was found to
be similar to that for L.y;. |

The dependence of the n convergence on !, observed in Figures 3.21 and 3.22
warrants further consideration. It is seen that for large [, values the solution
converges faster on n. This variation of the convergence behavior with different I,
values is also reflected in the reciprocal condition number as seen in Figure 3.24.
It is also seen that the condition for erratic curfent, discussed in Section 3.5.1,
is a function of both N STOP and /.. Further experimentation with different

geometries and frequencies, lead to the formulation of the following observation:
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Observation II1.2 The condition for erratic current is given by a simple relation
between the cavity length a, the truncation point NS TOP, and the subsection length

I, which may be expressed as

NSTOP*l, <a (3.27)
or
NsTOP _, a2

This will be referred to as the erratic current condition. This condition
places an upper limit on N, and, correspondingly, a lower limit on the I, value

that can be used to generate useful current results.

The erratic current condition was tested against several cases where erratic

currents were observed, and it appears to give an exact prediction.
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3.5.3 Numerical Experiment C: Optimum Sampling Range

Objectives

The objective in this last experiment was to examine the effect of varying I, on
the reciprocal matrix condition number, while keeping the matrix size constant.

It was hoped that an optimum value, or range of values, for I, could be found for

which the matrix condition number is maximized.

To keep the matrix size constant, the number of sections NV, was fixed at 100,

and the length of the open-ended line (L' = L;,/A4) was allowed to vary such that
L'=100x*!,

for all cases. Data was then generated to plot RC versus I, as shown in Figure 3.25.
As suspected, an optimum sampling range was found, outside of which the matrix
is ill conditioned. The experiment was repeated at three different frequencies and
for several different shielding geometries. In all cases, an optimum sampling range
was found, but it was different for each of them.

To examine this sampling range further the following postulate was advanced,

based on the erratic current condition of Experiment B.

Postulate ITI.1 Postulate;.— Let N, and N, correspond to the minimum and
mazimum desired sampling rates. These rates are defined as those values between

which the reciprocal condition number is greater than 10~* for a fized matriz size
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of 100 x 100. 3

Let I, and l;; be the subsection lengths corresponding to Nz and N, respec-

tively. That is

lzl 1/N=1 (329)
la = 1/Nz. (3.30)

We now postulate the existence of two constants ry and rp such that

= —i2
la = SeroP (3.31)

= 22
la = T575F - (3.32)

The definition of the sampling range is illustrated in Figure 3.25. This postulate

3 Based on observation, a value of RC = 10~ appeared to be a good value
to use as a lower limit.
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Table 3.1: RESULTS FOR OPTIMUM SAMPLING RANGE EX-
PERIMENT

f (GHZ) a l z2 la.'l Izcvg T2 ™ raug

8 1.0 | .0029 | .0125 | .008 | 1.5|6.3] 3.9
18 3.5 | .0074 .033 020 1 1.1 14.7] 29
18 | 1.0 |.0023 | .0125 | .0074 | 1.2 | 6.3 | 3.7

was applied to the observations from several test runs and the results for the
sampling range parameters are summarized in Table 3.1. |

The data of Table 3.1 shows that, although Postulate 3.1 is only approximately
true, an optimum sampling range can be specified in terms of the multipliers r; and
r2. This range is formulated in the observation below. In selecting the multiplier r,,
the maximum observed value from Table 3.1 is used, and in selecting the multiplier
r, the minimum observed value is used. This is done to define a range for which

condition number for the cases of Table 3.1 is always greater than 10~4.

Observation ITI.3 An optimum sampling range (or criteria) may be defined by

the following choice of subsection length I,

1.5a <l < 4a

NSTOP = * = NSTOP’ (3.33)
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Figure 3.26: The optimum sampling.range is seen to correspond di-
rectly with the flat convergence region for the L.ss com-
putation.

A good average value to use is

3a

= = N5TOP

(3.34)

The above observation is very significant. Based on the knowledge of only two
parameters, a and NSTOP, an optimum sampling range (or range of subsection
lengths) can be determined. The erratic current condition is automatically avoided
by sampling within this range, and the best accuracy in the matrix solution should
be guaranteed.

To support this last claim, consider the plot of Figure 3.26. It is seen that
the optimum sampling region specified by 3.33 coincides directly with the flat
convergence region for the L.s; calculation! This consistency between the opti-
mum sampling region and the flat convergence region for the L., calculation was

observed in all the cases of Table 3.1.
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3.6 Summary of Computational Considerations

In this chapter, the software design for the computation of the current distri-
bution, a.hd the network parameters for discontinuities has been described. The
programming language used is Fortran. The convergence of the solution with re-
spect to the relevant parameters has been explored extensively by performing a
series of numerical convergence experiments. The results from these experiments
lead to some simple, but very useful relationships governing the convergence and

stability of the solution. A summary of the main findings is given in Chapter 6.



CHAPTER IV

EXPERIMENTAL METHODOLOGY

As part of this research an experimental study of microstrip discontinuities was
performed. In conducting this study, the author spent fifteen months at Hughes
Aircraft Company®. Hence, parts of the study were performed at Hughes; the rest
was performed at the University of Michigan.

The chapter gives a description of the study and the procedures used to obtain
measured data. First, a general discussion of the experimental approach is given.
This consists of the use of Automatic Network Analyzer (ANA) techniques in con-
jﬁnction with a method for de-embedding (or removing) the effects of the test fix-
ture from the measurements. Next, a comparison of various de-embedding methods
is presented. It is concluded that the method most suitable for the measurements
of this thesis is the thru-short-delay (TSD) method. The implementation of this
method for use with the present research is then explained. Finally, the procedures
used to obtain measurements of effective dielectric constant, open-end and series
gap discontinuities, and coupled line filter structures are explained. A complete
error analysis for these measurements is beyond the scope of this thesis, however,
an attempt is made to give a reasonable estimate of measurement uncertainties. To
this end a perturbation analysis approach is developed and applied to approximate

the effect of connection repeatability errors on de-embedding accuracy.

! Hughes Aircraft Company, Microwave Products Division, Torrance, CA

96



97

4.1 Discussion of Experimental Approach

4.1.1 ANA Error Correction

A basic ANA provides for two-port, error corrected S-parameter measurements
in a coaxial or waveguide environment. Error correction is achieved by using a set
of standards whose electrical characteristics can be determined to a high degree of
certainty. For example, the standards used in a typical coaxial calibration are a
50 ohm load, a short circuit, an open circuit (whose fringing capacitance has been
determined apriori), and a thru connection. Measurements on these standards are
used to construct an error model for the ANA system which accounts for various
system imperfections such as finite coupler directivities, connector mismatches,

unflat frequency responses, and source and load impedance mismatches [36].

4.1.2 Difficulties with Microstrip Measurements

Measured data on microstrip discontinuities is very limited, particularly at
higher frequencies (above 10GHz). This is due to the many difficulties involved
with performing accurate microstrip measurements. The key difficulties associated
with these measurements are summarized in Table 4.1. These difficulties are not
unique to microstrip and apply to measurements in other planar transmission
media as well.

The main difficulty is that in order to measure a microstrip circuit, it is gen-
erally mounted in a test fixture with either coaxial-to-microstrip or waveguide-to-
microstrip transitions (also called launchers). Figure 4.1 shows the basic configura-

tion for test fixture measurements. The transitions invariably introduce unwanted
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Table 4.1: DIFFICULTIES WITH MICROSTRIP MEASURE-
MENTS

| ® Separation of microstrip test fixture parasitics from measurements
¢ Inadequate microstrip calibration standards

o Non-repeatability of microstrip connections

o Effect of variations in substrate material properties

o Effect of variations of metallization dimensions and substrate thickness

o Effect of substrate mounting techniques

parasitics and a reference plane shift to the measurements. These effects must
be ac;:urately accounted for and removed from the measurements, or incorporated
into the ANA system error model.

One alternative to the use of a test fixture is to employ coplanar wafer probing
[37). However, to measure microstrip structures with coplanar probes requires the
use of coplanar-to-microstrip transitions. Since the issues with removing the effect
of these transitions are the same as for the other transitions mentioned above, the
term “test fixture” as used below will be assumed to include the case of coplanar
probing.

Another main difficulty with the measurements is the inadequacy of microstrip
calibration standards. Conventional calibration standards are much more difficult
to realize in microstrip than in waveguide and coax. Perfect short circuits are com-
plicated by the non-uniform nature of the fringing fields in microstrip, thin-film
resistors do not provide the same quality of 50 ohm terminations as in conventional
media, and the open-end capacitance is not known to a high enough degree of ac-

curacy for it to be used directly as a calibration piece 2. Hence, conventional ANA

9

2 A rigorous numerical solution, such as that developed here may provide
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Figure 4.1: Microstrip test fixture approach for de-embedded mea-
surements.

calibration (Section 4.1.1) in microstrip is not easily performed. This difficulty is
overcome through the use of de-embedding techniques as discussed below.

The third factor complicating these measurements is the non-repeatability of
microstrip connectiops. Microstrip connections are much harder to make, and
much less repeatable than connections in coax and waveguide. This is a key lim-
iting factor to the accuracy of microstrip measurements at higher frequencies. To
address this issue, a microstrip connection repeatability study was carried out
(14,15]. Details of this study are included in Appendix H, and the results are
summarized in Section 4.3 below.

The remaining factors of Table 4.1 can also be important. These factors include
the effect of variations in substrate material properties, variations in metalization

and substrate thickness dimensions, and substrate mounting techniques. The ef-

the required accuracy to alleviate this problem.
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fects of these factors on measurements is considered further in Section 4.3, and
some consideration is also given in the repeatability study (Appendix H). Their
effect can be minimized by paying careful attention during material selection, and
during the fabrication and mounting of test circuits.
Before discussing de-embedding methods, a few comments will be made or res-

onator techniques, since they have been widely used for microstrip measurements.

4.1.3 Resonator Techniques

One way of minimizing transition effects is to incorporate the transition into
a resonant circuit which is lightly coupled to a source and detection system [1].
The majority of existing experimental microstrip data have been obtained using
such resonator techniques [38]-[41]. The main advantage of this approach is that
unwanted transition effects, such as poor VSWR or contact repeatability have min-
imal effect on measurement accuracy. Also, useful measured data can be obtained
without the use of an ANA.

However, the coupling necessary for adequate sensitivity is sufficient to pro-
vide some reactive loading of the resonant system which is not easily accounted
for. In addition, the measurement procedure is tedious and is not practical for

measurements over a broad range of frequencies.

4.1.4 The De-embedding Approach

The preferred approach to removing test fixture effects is called de-embedding.
De-embedding refers to the process by which test fixture effects are removed from
the measurements. With the exception of time-domain de-embedding, which will

be discussed in Section 4.2.2, the de-embedding process consists of two steps:
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1. Test fixture (or error) characterization

2. Error extraction.

A microstrip test fixture can be characterized either by an equivalent circuit
model (this is generally valid only at low frequencies) or by performing measure-
ments with a number of planar standards inserted within the fixture. The electrical
parameters of the fixture, for example the S-parameters for each fixture half, are
then used to mathematically move the effective calibration reference planes from

the coax or waveguide test ports to the desired microstrip test ports (Figure 4.1).

4.2 Comparison of De-embedding Methods

In this section, several de-embedding methods are compared in terms of their
applicability for our measurement requirements. Specifically, the method used

must:
¢ be usable at high frequencies (10GHZ and higher)
o allow the de-embedding of arbitrary transition effects

e allow the connection of any standards used to be similar to those made to

the discontinuity structures

o use standards whose electrical characteristics are “known” to a reasonable

degree of certainty.

Also, the electrical characteristics of any standards used must be They must

be well established theoretically, or determined from independent measurements.

4.2.1 Fixture Equivalent Circuit Modeling
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One method of fixture characterization is to propose an equivalent circuit model
for the fixture. The simplest model uses a section of ideal transmission line to
model each half of the test fixture. In this case, launcher parasitics are completely
neglected and de-embedding is performed by simple transmission line rotations
around the Smith chart.

Launcher parasitics can be at least partially taken into account by using more
complicated equivalent circuit for the fixture whose parameters are fitted to a set
of measurements on a reference circuit (e.g. a straight section of transmission line
[42]). This approach while an improvement over simple transmission line rotations,
lacks generality. It also tends to be unreliable for high frequency use, since fixture

parasitics become more difficult to model as frequency increases.

4.2.2 Time Domain De-embedding

Another method of de-embedding makes use of transformations back and forth
between the frequency and time domains. This method, which follows from Hines
and Stinehelfer [50], involves the use of a Fourier transform to obtain a time domain
response from frequency-domain data. In concept, fixture effects can be eliminated
by isolating (or gating) the time response of the desired circuit and then transform-
ing back to the frequency domain to obtain the de-embedded frequency response.
However, for adequate resolution, it is necessary to use long input and output lines
and collect data over a broad range of frequencies. Even then, although useful for
many applications ,such a.s fixture development, this technique is not as accurate

as full matrix de-embedding in the frequency domain [51).

4.2.3 Full Matrix De-embedding
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The remaining de-embedding methods to be discussed fall into the category of
full matrix de-embedding. In full matrix de-embedding, each half of the test fixture
is characterized by matrix parameters (e.g. scattering matrix {S], or transmission
matrix (T]) as a “black box”. This is done by measuring planar standards for
which the network parameters are known, or can be determined to a reasonable
degree of certainty. Examples of such standards are microstrip delay lines, offset
microstrip open-ends, and varactor diodes Once the fixture has been characterized,
inverse matrix operations can be used to deduce the electrical parameters of the
unknown device or circuit.

These matrix operations vary little between full matrix de-embedding methods;
conversely, the fixture characterization process differs considerably depending on
the type of standards used. Most methods use one of the following combinations

of standards:
1. Delay line and reflection standards [44]-[47]
2. 1-port offset reflection standards [52]

3. Varactor diode standards [53]-[55]

The relative merits of different fixture characterization approaches based on
the use of these standards are compared in Table 4.2. Based on this comparison,
the use of delay line and reflection standards, and in particular, a method based
on the thru-short-delay (TSD) approach was adopted for this thesis. A discussion

of this choice is given below.

In the TSD method (Figure 4.2), two-port measurements made on a thru (zero
length delay) line, a “short” circuit, and a delay line provide enough information
to characterize the fixture. As byproducts of the procedure, calculations of the
propagation constant v,, and the reflection coefficient I', are provided.

Since the original paper [44], it has been pointed out that the “short” implied
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Figure 4.2: Fixture characterization by the TSD technique (Note:
the “short” can be any highly reflecting standard).

in TSD, need not be perfect. In fact, any highly reflecting standard may be used
in its place [45,46]. The only requirement is that the same reflection coeflicient
T, must be presented to both microstrip test ports. This is important since, as
discussed above, a perféct short is difficult to achieve in microstrip. This variation
of the TSD method, that uses an arbitrary reflection standard, has been called
the thru-reflect-line (TRL) method. Another variation, called the line-reflect-line
method (LRL) [47], allows the use of a non-zero length thru line. Since both of
these variations are derived from TSD, the overall approach will be referred to as
TSD in this thesis. The understanding will be that the “short” is non-critical.
The main advantage of the TSD approach over the alternatives of Table 4.2 is
that the TSD standards are easiest to realize in microstrip. da Silva and McPhun,
suggest the use of 4 microstrip open circuits, and a short circuit. As far as this au-
thor can determine a perfect short is required to accurately establish the reference

plane. To use varactor diode standards a rather complicated modeling procedure
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must be carried out to characterize the diodes prior to use.

In addition, the fixture hardware may be designed so that the connections
made to the TSD standards are made in the same way as the connections to the
microstrip discontinuity test circuits. This is not the case with varactor diode
standards as the introduction of the diode mounting structure adds parasitics
during fixture characterization that, in general, are not present when measuring
discontinuity circuits.

One drawback to the TSD method is that good microstrip connection repeata-
bility, and microstrip circuit fabrication repeatability are important for accuracy.
This is also true (probably to a greater degree since more standards are required)
for da Silva and McPhun'’s approach. In this area, the varactor diode approach is
attractive since several different capacitances can be realized by varying the diode’s
reverse bias voltage. However, this advantage may be partially offset by the non-
repeatability of returning to the exact same bias voltage during calibration that
was used during the characterization of the diodes.

One-tier vs. Two-tier De-embedding.— As discussed by Lane [43], full matrix

de-embedding can be performed using either a one-tier or a two-tier approach. The
choice between these two options is controversial, and it depends on the application
and fixture hardware.

Referring to Figure 4.1, one-tier de-embedding involves making a direct calibra-
tion at the microstrip test ports. In this approach, fixture effects are included in
the error model used to represent the ANA system imperfections. This approach
has been used in coplanar waveguide [37], and also in microstrip (56]. One-tier
de-embedding is more straight forward and in some ways easier to implement than
two-tier de-embedding. Also, with the speed of current ANAs, the one-tier ap-
proach can display de-embedded measurements in essentially real time.

In contrast, two-tier de-embedding involves calibrating first at the coaxial or
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waveguide terminals. Measurements are then made on various microstrip standards
to determine the S-parameters of each half of the test fixture. These are stored
and later used to mathematically transform the measurements to the microstrip
test ports.

One advantage of two-tier de-embedding for the present application is that it
provides for better monitoring of the de-embedding process. Measurements can
be made with several different connections made to each of the standards used
for fixture characterization. These measurements can be stored in files and then
compared in order to screen out bad connections. The remaining connection trials
can then be averaged to reduce connection repeatability errors. For this reason

the TSD method was implemented as a two-tier procedure, as described next.

4.3 Implementation of TSD De-embedding

4.3.1 Software and Hardware Considerations

Computer programs for performing TSD fixture characterization and de-embedding
were provided by Hughes. As part of this work, modifications were made to these
programs to customize them for the present application. The mathematics used
are described in detail elsewhere [48,49].

A flow chart for the measurement procedure used is shown in Figure 4.3. The
programs used to carry out this measurement procedure are set up to process
several measurement frequencies simultaneously. First, ANA system calibration is
performed with coaxial standards. The S-parameters of each of the TSD standards
are then measured and stored in data files. To reduce connection repeatability

errors, repeated measurements are performed with two to five connections made
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to each of the standards. These measurements are then used to obtain an average
set of S-parameters for each fixture measurement.

The averaged S-parameters of the standards and the physical length of the delay
line are then input to the fixture characterization program. This program performs
calculations to provide measured values for €4y, I';(= I',p), and the S-parameters
[Sa), [Ss] for each half of the test fixture.

Finally, measurements are made with the D.U.T. (i.e. the desired disconti-
nuity circuit) connected within the fixture. Again, repeated measurements are
made to reduce connection errors. The averaged D.U.T. S-parameters are then
processed along with the fixture characterization data to obtain the de-embedded
measurement. If necessary, the reference planes established by the de-embedding
(in the middle of the thru line) are moved by performing simple transmission line
rotations. The phase constant used for these rotations is based on the measured
effective dielectric constant.

The instrumentation used for the measurements of this thesis was almost ex-
clusively HP8510 ANAs which were available to the author at both the University
and at Hughes. The only exception is that an HP8409 ANA with a high frequency
waveguide extension was used to perform connection repeatability measurements
in the 26.5-40GHz frequency range.

The test fixture that was used for the discontinuity measurements was also
provided by Hughes. A picture of the test fixture is shown in Figure 4.4. The
fixture employs a pair of 7mm coaxial “Eisenhart” launchers [57] and is usable
to 18GHz. The shielding is provided by placing U-shaped covers on top of the
microstrip carriers. This forms a cavity similar to Figure 1.3.

Another fixture, usable to 40GHz was also developed by the author for use
with this thesis. This fixture was used in the connection repeatability study (Ap-

pendix H), but not for discontinuity measurements. The reason for this was logis-



109

'PERFORM SYSTEM CALIBRATION
W/ COAXIAL STDS.

'

MEASURE S-PAR'S
OF FIXTURE W/STDS.

'

PERFORM FIXTURE CHARACTERIZATION
INPUTS : i OUTPUTS :
-S-PARS OF | - g4
TSD STDS |
P - 1'.'3
- PHYSICAL !
LENGTH OF 1 — FIXTURE S-PAR'S
1]
DELAY LINE : 15,.15]

'

MEASURE FIXTURE
W/D.U.T.

'

DE-EMBED FIXTURE EFFECTS

INPUTS : E OUTPUTS :
- S-PAR'S OF D.U.T. | — DE-EMBEDDED
| SPARS OF DUT.
- FIXTURE |
CHARACTERIZATION !
DATA :

Figure 4.3: Procedure used in this work for measurement and de-
embedding.



110

Figure 4.4: 7mm coaxial/microstrip test fixture (partially disassem-
bled).

tical and not technical. All of the discontinuity measurements were performed at
the University, and at the time these experiments were planned (substrates ordered
etc.), facilities were not available to make measurements above 18GHz. Hence, the

Tmm fixture was used for all the discontinuity measurements.

4.3.2 Connection Approaches For TSD De-embedding

There are three basic connection alternatives for TSD characterization of a

coaxial fixture. Each of these must rely on at least one of the following assumptions:

1. repeatability of connections made from the coaxial-to-microstrip transition

(launcher) to the microstrip line (i.e. coax/microstrip connection repeatabil-
ity)

2. repeatability of microstrip/microstrip interconnects
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Figure 4.5: The TSD Connection approach used for the present work,
relies on repeatable coax/microstrip connections.

3. uniformity of electrical characteristics between different transitions (launcher-

to-launcher uniformity).

In the first connection approach (Figure 4.5), continuous substrates are used to
realize the three standards, which are connected between the same pair of launch-
ers (Ls, Lj). In the second method (Figure 4.6), the TSD standards, and the
D.U.T., are connected between the same two launcher/microstrip assemblies using
microstrip-to-microstrip interconnects (e.g. ribbon bonds). In the third approach,
each of the standards would be constructed corhplete with their own intact launch-
ers. While this has practical advantages, such as improving the durability of the
standards, launcher-to-launcher uniformity is not generally a good assumption for

microwave de-embedding (Appendix H).

In all of the above approaches, it is important to have good uniformity between
various microstrip line sections as mounted in the fixture hardware. If the fixture

must be removed from the coaxial measurement ports to insert either the stan-
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Figure 4.6: TSD Connection approach relying on repeatable mi-
crostrip/microstrip connections.

dards or the D.U.T., de-embedding accuracy is also subject to uncertainties due
to repeated coax/coax connections. However, the study results suggest that these
uncertainties are negligible compared to other errors.

The results of the reﬁeatability study (Appendix H) clearly favor the connection
approach of Figuré 4.5 relying on repeatable coax/ microstrip connections, and this

was the approach adopted for the present work.

4.3.3 Measurement of Effective Dielectric Constant

As mentioned previously, one of the byproducts of the TSD method is the
calculation of the propagation constant v,(= @, +j4,). For the alumina substrates
used, the loss factor a was found to be too small to measure by this method, or
conversely the measurement sensitivity is not great enough. Using Super Compact

this loss (combined dielectric and conductor losses) is estimated to be .05dB/cm
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at 10GHz. For the delay length used here this translates to a total loss of .01dB
which is less than the error due to connection repeatability.
The phase constant 3 is measurable, and may be used to calculate the effective

dielectric constant €.;; by the following relation:

2
€esf = (_ﬁg) (4.1)

w
where c is the velocity of light and w is the radian frequency.

The value of €. calculated from the TSD procedure relies mainly on the delay
line length Al, and the difference in measured transmission phase between the thru
and delay line standards.

Figure 4.8 shows a typical ¢,;; measurement resulting from a single TSD fixture
characterization procedure. A sketch of the standards used is given in Figure 4.7.
The “raw” measurement shown is the actual measurement, and the “fitted” result
was obtained by performing a least squares polynomial curve fit to the measure-
ments. As supported by the theoretical results of Chapter 5, the actual €.z should
follow a smooth curve. Hence, deviations from the fitted curve indicate imperfec-
tions in the measurement. In this work, the fitted curve is generally used for any

post de-embedding transmission line rotations.

4.3.3 Measurement of Open-end Discontinuity

A measurement of the reflection coefficient and related capacitance of a mi-
crostrip open-end discontinuity was obtained based on using an open-ended mi-
crostrip line as the reflection standard in place of the “short” of Figure 4.2. A
measurement of the reflection coefficient I',(= /T',p/e?%*) results from the fixture
characterization procedure. Figure 4.9 shows a representative plot of the measured
(de-embedded) reflection coefficient of the open-end standard of Figure 4.7. The

phase angle shows an increasingly negative phase shift with frequency, as expected.
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Figure 4.9: Angle of open-end reflection coefficient resulting from a
typical fixture characterization procedure.
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The reflection coefficient angle 6,, is related to the normalized capacitance by

the relation given by (2.135)

o= sin 8,y
P 7 w(l + cosb,p) |

(4.2)

A calculation of ¢,, based on measurements is shown compared to numerical results

in Chapter 5.

4.3.4 Measurement of Series Gap Discontinuities

Measurements were performed on three series gap test circuits of different gap
widths 15mil, 9mil, and 5mil. A sketch of the test circuit layout is shown in Fig-
ure 4.10. The TSD standards of Figure 4.7 were used for fixture characterization.
Because the length of the input/output lines L, and L, to the left and right of
the series gap respectively, are shorter than half the thru line of Figure 4.7, the
reference planes established by the de-embedding are not at the desired positions
of a-a and b-b (Figure 4.10). A transmission line rotation is used, in each case, to
move the reference planes to the desired positions. The phase constant used for
this rotation is calculated from the fitted effective dielectric constant discussed in
Section 4.3.2. The length of rotation is given by the difference in physical length
between L, L, and half the thru line length. The measured results are discussed

in Chapter 5.

4.3.5 Measurement of Coupled Line Filters

The last measurements to be described were made on two different coupled line
band pass filters. The first filter is the two resonator coupled line filter depicted
in the sketch of Figure 4.11. The TSD standards used for this measurement are
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Figure 4.11: Sketch of two resonator coupled line filter. Note: all
dimensions in mils, » = 25,¢, = 9.7. (Shielding dimen-
sions: b = .4",c =.25").

shown in Figure 4.12. As in the case of the series gap measurement, a transmission

line rotation was required after de-embedding to adjust the reference planes to the

desired positions a-a and b-b of Figure 4.11.

The other filter measured is the four resonator filter of Figure 4.13. In this filter,
the line widths of the filter structure are 11.9 mils (.302mm) which corresponds to
about a 65 ohm impedance level. Since the ANA provides for measurements in a
50 ohm environment, a quarter wave transformer was designed to transform from
this 65 ohm impedance lev.el to approximately 50 ohms at the coax/microstrip
connection points. By including the same transformer on the input and output
portions of the TSD standards (Figure 4.14), its effects can be effectively removed
through the de-embedding process.

The result is that microstrip calibration reference planes are established at the
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Figure 4.12: Sketch of TSD standards for two resonator filter measure-
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Figure 4.13: Sketch of four resonator coupled line filter. Note: all
dimensions in mils, A = .025",¢, = 9.7. (Shielding
dimensions: b = .4",c =.25").

planes a-a and b-b of Figure 4.13. The de-embedded scattering parameters are
referenced to approximately 65 ohms. Note that no transmission line rotations are
required to adjust the reference planes for this measurement since the input and

output line sections L; and L are the same length as half the thru line.
The measured results for both of these filters is discussed in the next chapter.
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Figure 4.14: Sketch of TSD standards for four resonator filter mea-
surement. Note: all dimensions in mils, A = .025",¢, =
9.7.
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4.4 A Perturbation Analysis of Connection Errors in TSD De-embedding

As part of this thesis, an approach was developed to analyze the uncertainties
in TSD de-embedding results arising from connection repeatability errors. The
analysis consists of perturbing the S-parameters of the TSD standards and the
D.U.T. with a set of error vectors that are representative of the variations of each
S-parameter (Sy1, S12 etc. ) measurement with repeated connections. Software was
written to allow processing the perturbed S-parameter data in the same way as
the measurement data is processed (Figure 4.3). This perturbation analysis, allows
for an approximation of how connection errors —which are inevitable— propagate
through the TSD mathematics and limit the precision of the final results.

The precision of a measurement process is not the same as accuracy. Accuracy
refers to how close the result of an experiment comes to the true value. Since
the true value is usually unknown, as it is for the present measurements, true
measurement accuracy is often impossible to evaluate. Precision on the other
hand is a measure of how reproducible a result is. Measurement reproducibility
is something for which a reasonable estimate can usually be made, and this is the
purpose of the following discussion.

An examination of the measurement procedure (Figure 4.3) shows that any
variations in the final results are due to uncertainties in the fixture measurements
of the standards and the D.U.T.. The precision of these fixture measurements is
affected by two factors. First is the non-repeatability of the fixture connections,
which for the present measurements includes both coax/coax and coax/microstrip
connections. The second factor affecting the precision is random errors due to
ANA instrumentation or the non-repeatability of the system calibration procedure,
which is believed to be negligible compared to other error sources. For convenience,

the following definition is advanced:
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Definition IV.1 The combined effect of the random errors in the ANA instru-
mentation and the errors due to connection non-repeatability will be referred to as

connection errors.

The repeatability experiments presented in Appendix H explore the errors in
microstrip fixture measurements caused by non-repeatable microstrip connectibns.
In these measurements, the resulting spread of the data in each case includes both
random ANA errors, and those due to coax/coax connection non-repeatability in
addition to the repeatability issue being studied. Hence, the results presented
actually represent the total connection errors associated with each repeatability
issue.

These connection errors are present during the measurement of each of the
three TSD standards (Figure 4.2) and also during the measurement of the D.U.T.,

which in the present application is a discontinuity structure.

4.4.1 Basic Approach to Perturbation Analysis

The perturbation approach developed to analyze the effect of these connection
errors is outlined in Figure 4.15. First, an analysis frequency is chosen. The analy-
sis is performed at a single frequency to prevent the data processing from becoming
too cumbersome. In this work a frequency of 10GHz was chosen since it is about
in the middle of the frequency range used for the discontinuity measurements.

After the analysis frequency has been chosen, the next step is to derive a
representative set of error vectors for the type of connection used. Figure H.4
shows one way of looking at the coax/microstrip connection repeatability data.
There, the average set of S-parameters are used to normalize the S-parameters
from each of the connection trials by way of vector division. Another way to look

at this data is to perform a vector subtraction between the S-parameters from each
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Figure 4.15: Flow chart illustrating approach for perturbation analy-
sis of connection errors.
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of the connection trials and the average S-parameters. In this case the result is a set
of error vectors that represents the vector perturbation of each of the S-parameter
measurements from the average.
This idea is illustrated in Figure 4.16. This figure shows a typical set of Sy,
and S); measurements resulting from 10 connections on a thru line®. The error

vector AS;; shown is given by
AS1 = Sum — S1tavg (4.3)

where Sy1m is the measurement for a single connection trial and 11444 is the average
of 10 connections. The error vectors AS;;, ASy;, and AS;; are defined analogously.
Thus, for each connection trial we may define four error vectors.

Error vectors so derived, are used in the analysis to perturb the S-parameters
for each of the TSD standards and the D.U.T.. To do this, a nominal (or average)
set of S-parameters are obtained from measured data. The different error vectors
are then added to the nominal S-parameters in an order determined by setting up
a permutation table similar to that shown in Table 4.3.

To understand how this permutation table is used, consider the following ex-
ample. Assume that each fixture connection can be made in one of ten possible
ways and let these connections be numbered 1 through 10. Associated with each
connection is a set of four error vectors may be derived as discussed above. For this
example, assume that the same set of error vectors can be used for all fixture mea-
surements. The final de-embedded result will depend on ‘which of the 10 possible
connections was made to each of the standards during fixture characterization and

to the D.U.T. before measurement and de-embedding. For 4 fixture measurements,

and 10 possible connections for each, there are 10* permutations of different con-

3 Note: In Figure 4.16 and the other polar representations that fol-
low, the Smith chart lines drawn only have meaning when the scale is
1.0. When magnified scales are indicated (e.g. SCALE=0.1), only the
relative magnitudes and phases of the points plotted are important.
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Figure 4.16: Variation of Sy; and S;; for 10 connections made to a
typical thru (or delay line) standard. Error vectors may
be defined as the vector perturbation of each of the mea-
surements from the average.
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Table 4.3: CONNECTION PERMUTATION TABLE EXAMPLE

CONNECTION THRU “SHORT” DELAY D.U.T.
COMB. NO. (OPEN)
1 1 2 5 5
2 6 5 1 9
3 1 6 10 10
4 3 3 7 4
5 7 5 6 4

nection combinations. Table 4.3 only shows 5 of these permutations. Each of the
connection combinations is assigned a number, and each row of the table describes
the corresponding connections for each of the fixture measurements. The order of
the connections is chosen randomly by using a a pseudo-random number generator
to set up each column of the table. In this way a large number of repeated de-

embedding procedures can be synthesized with a relatively small set of measured
data.

Once the perturbed sets of S-parameter data on the standards and the D.U.T.
have been obtained, the fixture characterization and de-embedding operations are
the same as those of Figure 4.3. The only difference is that instead of processing
measured data for different frequencies, the software is used to process perturbed

S-parameters for different connection combinations.

4.4.2 Perturbation Analysis and Results
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The above gives a brief description of the basic approach used to analyze con-
nection errors. A critical step in the analysis is the selection of a representative
set of error vectors for the connection errors of a given microstrip fixture measure-
ment. To be statistically rigorous, a different set of error vectors is required for
each different fixture measurement that is made, since the error vectors may differ
with the device or circuit being measured. In addition, these error vectors should
be derived from a large number of connections in each case.

Obtaining this extensive of a data set would be a formidable task. One problem
is that the measurements themselves, and the associated data processing is very
time consuming. Second, there is a limit on the number of connections that can
be made between a particular set of connectors and a particular microstrip test
line. As the number of connections is increased, the wear on the fixture hardware:
(and the experimenter) gradually degrades the performance of the connection and
from a statistical point of view the population average u will not be a constant.

Because of these difficulties, some simplifying assumptions are made to allow
an approximate analysis to be carried out. In doing this, the author has attempted
to make the best use of the available connection repeatability data to derive error
vectors for each of the fixture measurements. These error vectors are described be-
low. The main assumption made is that the error vectors used represent a random
sample of the possible connection errors. Within the limits of this assumption, the
resulting analysis gives a reasonable approximation to the related uncertainties.

In the analysis which follows an analysis is carried out to estimate the precision
of the measurements made of €ess, and the open-end and series gap discontinuities.
An approximation of the precision of the coupled line filter structures is not in-

cluded because the repeatability data currently available is not sufficient to derive
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error vectors for these measurements.

Error Vectors used for Delay Lines, and Filters

Based on the repeatability measurements for a microstrip thru line presented
in Figure H.4, a set of error vectors were derived in the manner described above.
These are shown plotted in Figure 4.17.

The difference observed in this Figure between the S;; and S3; error vectors
(Figure 4.17b) may concern some readers, since for a passive two port structure
we would expect the Sy2 and S;; measurement to be identical. However, The
difference is very small and not considered significant. They are due to a residual
systematic error in the ANA that is not removed by the calibration. In the de-
embedding algorithm (Figure 4.3) the two measurements are averaged and set
equal. However, to avoid amiguities in the perturbation analysis to follow only the
S12 data is processed.

Also, in the perturbation analysis it will be assumed that the error vectors
of Figure 4.17 are representative of the connection errors in the measurement of
both the thru and the delay line standards of Figure 4.7. The only difference
between these standards and the thru line that was measured for the connection
repeatability study is the length of the line. Otherwise, the type of connection
used for each is the same. The vector subtraction performed in deriving the error
vectors essentially normalizes them to the average (though in a different way than
a vector division does). Because of this it is reasonable to assume that the error
vectors do not vary greatly between different fixture measurements, provided the

magnitudes of the average S-parameters are similar. This is true for both the thru
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a. Error vectors for S1; and S22 measurement.
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b. Error vectors for Sy3 and S9; measurement.

Figure 4.17: Error vectors for thru or delay line standards. These were
also used to perturb the S-parameters of the two and four
resonator filter structures.
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Figure 4.18: Error vectors for measurement of open-end reflection
standard.

and delay line standards. Error Vectors For Open-End Standard

In contrast, the reflection coefficient measurement for an open-end is not similar
to that for a thru line and a different set of error vectors is needed. Hence, a new
set of error vectors were derived from measurements of 11 repeated connections
made to the open-end standard and these are shown in Figure 4.18. Since the
magnitude of S;; and Sy; are about the same, it is assumed that the same error

vectors can be used to perturb both of these measurements.

Error Vectors For Series Gap Measurements.

For the series gap measurements, repeatability data was obtained for four con-
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nections on two of the gap circuits, and five connections on the third. Error vectors
were derived separately for each of the gaps and compared. It was seen that the
magnitude of the error vectors did not differ significantly between the three sets.
These error vector sets were then combined to form a larger set of error vectors

representing 13 possible connections. These are shown in Figure 4.19.

4.4.3 Connection Errors in ¢.;y and Open-end Measurement

Using the method described above, a perturbation analysis was carried out to
analyze the effects of connection errors on the .y, I'sp, and c,, measurements
which are calculated as part of the TSD procedure as described previously.

To do this, nominal S-parameter measurements were taken from measurements
on the standards of Figure 4.7 at f = 10 GHz. The error vectors discussed above
were used to perturb these nominal parameters according to two different permu-
tation tables, one with 20 connection permutations and the other with 100 permu-
tations. These permutation tables are similar to Table 4.3, except that a different
set of error vectors are used for the open-end standard. Also, the connection com-
binations for the Sy; and S3; measurements were allowed to vary independently so
that the permutation tables had 5 columns instead of 4.

The statistical data are calculated for each parameter based on the observed
results for the different connection combinations. The average is calculated by
summing up the results for each of the different combination numbers and dividing
by the number of permutations. The estimated standard deviation s for the data

is given by

2 _ Oz
DL e (4.4)
N-1

s = Std.Deviation = \J
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a. Error vectors for S1; and S;;3 measurement.
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b. Error vectors for S13 and S72; measurement.

Figure 4.19: Combined error vectors for series gap measurements.
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where
N = number of trials
z; = observed result for the parameter of interest for connection combination i

The results of the perturbation analysis are summarized in Table 4.4. It is seen
that the results for 100 connection permutations are not significantly different
than those for 20 permutations. The range of observed values increase slightly
for each of the parameters. This is reasonable since more worst case connection
combinations are possible with a greater number of permutations. On the other
hand, the standard deviation values are seen to change by a much smaller amount.
It appears that 100 is a sufficient number of permutations from which to base the
statistical observations.

The results of the analysis indicate that the uncertainty in ¢.s; and the open-end
parameters due to connection errors can be appreciable. The standard deviations
for these parameters is about .5% (of the average) for €.ss, and about 8% for the
open-end parameters. These standard deviation values were used to derive error
bars for the measurements of ¢.;; and the open-end parameters presented in the

next chapter.
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Table 4.4: PERTURBATION ANALYSIS RESULTS FOR ¢,/ and
OPEN-END MEASUREMENTS

PARAMETER | PERMU- | MIN | MAX | AVG | RANGE | STD.
TATIONS | VALUE | VALUE | VALUE DEV.

€eft 20 6.851 | 6978 | 6.922 | .127 | .0302
100 6.850 | 6.998 | 6.922 | .147 | 0312

Bop 20 1.8 92 | -103 26 | .799
(DEG) 100 120 | -87 | -10.2 33 | .837
Cop 20 1.285 | 1.650 | 1.440 | 365 | .110
(pF-Ohm) 100 1.210 | 1.670 | 1420 | 465 | .115

4.4.5 Connection Errors in Measurement of Series Gap Discontinuities

Next, the perturbation analysis was carried through the de-embedding of the
three series gap discontinuity circuits measured for this thesis. For this part,
nominal S-parameters were taken from each of the series gap measurements at
f = 10GHz. The error vectors of Figure 4.19 were then used to perturb this data,
and both 20 and 100 connection permutations were synthesized.

Figure 4.20 illustrates the information that can be gained from this perturbation
analysis. Shown is the spread in final de-embedded S;; and S;; data for gap circuit
C (G = 5mil) caused by connection errors. The perturbation analysis results (100
permutations) for all three gap circuits are summarized in Table 4.5. From these
results it is seen that the S;; data shows relatively constant behavior with respect
to the statistical parameters, while the change in the S;; data is significant. This

is because in each case the amplitude of the S;; measurement is relatively large



136
compared to the corresponding error vectors (Figure 4.19).

One important observation is that for large gap widths the uncertainty in the
phase of S)2 can be appreciable. This is because the magnitude of the nominal
S12 value begins to approach the magnitude of the connection error. At first
glance it appears that the uncertainty in the magnitude of the S;; measurement
increases as the gap width is reduced. This is not the case since if the range and
standard deviation values are divided by the average to calculate these parameters
on a percentage basis, the opposite is true. Hence, the measurement uncertainty
caused by connection errors increases as the magnitude of the S-parameter being
measured decreases.

The standard deviation data from this analysis is used in constructing error

bars for the series gap measurements presented in Chapter 5.
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Figure 4.20: This plot of the final de-embedded result for a 5 mil se-
ries gap discontinuity illustrates the information obtained
through the perturbation analysis (f=10GHz, 20 connec-
tion permutations).
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Table 4.5: PERTURBATION ANALYSIS RESULTS FOR SERIES

GAP MEASUREMENTS

PARAMETER RANGE | STD. |

DEV.

1511 964 1.02 991 056 | .014

A L8y 82 | 25 | a1 | 57 |13
(G=15mil) [S12] .07 .088 .081 019 004
LS12 76.9 95.1 83.5 18.2 3.2

[S11] 963 1.00 .982 041 011

B LS -14.2. -1 -11.1 6.5 1.29
(G=9mil) |12l 117 141 132 .023 .005
L512 77.1 88.8 81.3 11.7 2.0

[S1l 940 983 .962 .043 011

C LSy 201 | -142 | -16.7 5.9 1.28
(G==5mil) |12l 220 254 240 034 .007
LS5z 72.7 78.9 75.2 6.2 1.1
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4.5 Summary of Experimental Methodology

The experimental methods used in this thesis are summarized below.

e The TSD method is used to de-embed the test fixture effects from the mea-
surements. An open-end is used in place of the “short” circuit as the reflection

standard

e The measurements of ¢.¢y and I',, are obtained as by products of the TSD

procedure

e A perturbation analysis approach is used to help approximate measurement

uncertainties



CHAPTER V

NUMERICAL AND EXPERIMENTAL RESULTS

In this chapter numerical and experimental results obtained through the present
research are presented for the network parameters of shielded microstrip discon-
tinuities. Included here are results for the effective dielectric constant , open-end
and series gap discontinuities, and coupled line filters. Where possible compar-
isons are made to available data from other theoretical solutions. One case for'an
open-end is compared to to other full-wave solutions. However, since the emphasis
in this study is to compare with measured data, extensive comparisons are made
to available CAD models since this data is easier to generate for an arbitrary test
case. Also, it is useful to include data from these CAD models in the study since
they are widely applied to design shielded microstrip circuits.

The CAD models of Super Compact and Touchstone are based on a combina-
tion of different theoretical techniques, most often embodied in simplified closed
form solutions, curve fit expressions or look-up tables !. These models do not pro-
vide a means to account for the effects of the shielding box of Figure 1.3. In the
case of Touchstone, no shielding effects are included, and for Super Compact only

a cover height is provided for, and this does not apply to the open-end or series

! In the manuals for these programs, references are listed for each discontinuity
model, the reader is referred to these manuals for further information about the
theoretical basis for the CAD models.

140
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gap discontinuities. It is generally believed that as long as the dimensions of the
shielding are large relative to the substrate thickness that the shielding will have
a negligible effect. To simulate a complicated circuit containing many discontinu-
ities, the discontinuities are assumed to be independent of one another and their
respective models are used to generate a matrix representation for each disconti-
nuity. The overall circuit performance is predicted by mathematically cascading
the matrices together.

In contrast, the full-wa.ve solution presented here accurately treats the entire
geometry of the shielded microstrip circuit as a boundary value problem. Any
interactions between, for example, the fririging fields on an open-ended line and an
adjacent condﬁcting strip are automatically included in the analysis. Because of
this, the method is expected to provide better accuracy than CAD model predic-
tions. Still, as will be seen shortly, the CAD models give quite reasonable results in
many cases. However, in other cases, particularly where shielding effects become
significant, the accuracy of the CAD models is questionable.

One case where shielding effects are noticeable is when the frequency approaches
the cutoff frequency for the onset of higher order modes. As will be discussed next,
as the size of the shielding box increases the cutoff frequency for the onset 6f higher

order modes decreases.

5.1 Cutoff Frequency for Higher Order Modes

Higher order modes occur in open microstrip in the form of surface waves and
radiation modes. Surface wave modes may be minimized by keeping the substrate
electrically thin at the operating frequency. However, the first surface wave mode
has a cutoff frequency of zero.

This is not the case for shielded microstrip, where the nature of higher order

modes are quite different. The shielding forms a waveguide structure that elimi-
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- nates radiation and surface waves. Instead, the higher order modes take the form
of waveguide modes. As a consequence, below the waveguide cutoff frequency, only
the dominant microstrip mode can exist.

For the present problem of Figure 1.3, the cutoff frequency for higher order
modes may be approximated by analyzing the infinite dielectric-loaded waveguide
of Figure 5.1. The closeness of the solution for the propagating modes of the
dielectric-loaded waveguide to the solution for shielded microstrip has been ob-
served in the past, both analytically [58], and numerically [59]. The solution for
the propagation characteristics of the dielectric-loaded waveguide takes the form of
trancendental equations [26,60] that must be solved either numerically or graphi-
cally. The analysis is carried out with LSE and LSM modes which are TE and TM
respectively relative to the normal to the air-dielectric interface (). The cutoff
frequency for the first propagating mode within the structure depends on the ge-
ometry. The following definition will help clarify what is meant by cutoff frequency

as used in this thesis.

Definition V.1 For the purposes of this thesis the cutoff frequency f. will be
defined as the first frequency where non-evanescent waveguide modes can ezist in-
side the cavity. It will correspond to either an LSM or an LSE mode depending on

which has the lowest cutoff frequency.

A numerical solution to the dielectric-loaded waveguide problem was formulated
by a student at the University [61]. This program has been used to analyze the
cutoff frequencies for several of the shielding geometries considered in this thesis.
The plot of Figure 5.2 shows the variation of the cutoff frequencies with shielding
sized for a square waveguide three different substrates enclosed. It is seen that for
the alumina (e, = 9.7) substrate, the highest é.chieva.ble cutoff frequency is limited
to about 50GHz , while for a given shielding size, much higher cutoff frequencies

are possible with the use of the thinner quartz (¢, = 3.8), or GaAs (¢, = 12.7)
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Figure 5.1: The cutoff frequency for higher order modes in shielded
microstrip may be approximated by analyzing an infinite
dielectric-loaded waveguide.

substrates.

These cutoff frequencies have been found to give a good prediction of the onset
of higher order effects observed in the current distributions computed with the new
method. As an example, Figure 5.3 shows the current distribution on an open-
ended line operating below the cutoff frequency. For the indicated geometry, f, is
about 17.9 GHz. As the frequency is raised above the cutoff frequency, the current

becomes more and more distorted as shown in Figure 5.4.

This distortion may be explained as follows. Above cutoff, the microstrip cur-
rent excites a waveguide mode which travels down the cavity until it reaches the
wall at z = g, it is then reflected back and forth inside the cavity and interacts with
the microstrip current. This waveguide behavior can take place, even though the
cavity is not at resonance, because the microstrip current has an external energy

source via the coaxial excitation.
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- Figure 5.2: Variation of cutoff frequencies with shielding for three
commonly used substrates enclosed in a square waveguide
(b = ¢). Also shown is empty guide case (¢, = 1,k = 0).

5.2 Effective Dielectric Constant Result

Effective dielectric constant results are presented in this section for 50 ohm lines
on three common substrates: alumina, quartz and gallium arsenide (GaAs). As
discussed in Section 2.7, the microstrip effective dielectric constant €.z, is computed
from the current distribution. The current can be associated either with a thru line
or an open-ended line. Although a calculation of the effective dielectric constant
was not among the primary objectives of this work, its determination is an integral
part of the solution for discontinuity effects, and the comparisons which follow also

lend insight into the relationship between substrate geometry and shielding effects.

Effective Diclectric C Results f \lumina Sul

Figure 5.5 shows €.s; for a 25 mil thick alumina substrate. The numerical re-



IM(IP)

145

0.874E-03 — /\
0.523E-03 — \\
0.173E-03 —
\
-0.178€-03 —
-0.523E-03 — /
J VY
-0.879€-03 T T T I\j T ] T T L
0.000 1.27% 2.550 3.825 5.100 6375
X(WAVELENGTHS)
Figure 5.3: Below the cutoff frequency f., the microstrip current on

an open-ended line forms a uniform standing wave pat-
tern (f = 16GHz,e, = 9.7,W/h = 1.57,h = .025",b =
c = .275").
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Figure 5.4: As the frequency is increased above f., more and more
distortion is observed in the open-end current distribu-
tion (f = 22GHz,e, = 9.7,W/h = 1.57,h = .025",b =
¢ =.275").
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sults are compared to measurements, and to CAD package results. Note that Super
Compact allows only the cover height;, to be varied while the calculation provided
by Touchstone neglects shielding effects. For the shielding geometry used here,
it is seen that the difference between the numerical and CAD package results are
within experimental error. However, interestingly enough, better agreement be-
tween the CAD results and the numerical results is observed at higher frequencies.
This may be due to the fact that the side walls, which are not included in the
Super Compact analysis, are electrically closer to the strip at low frequencies.

The measured data is obtained as a byproduct of the TSD fixture character-
ization procedure (Section 4.3). The data shown represents the average of ten
separate procedures. These procedures were conducted over a period of about
four years at both Hughes (not all by the author) and at the University. At least
three or four different sets of TSD standards were used over this period, however,
the mechanical dimensions and substrate parameters are designed to be identical.
The error bars shown in Figure 5.5 represent the standard deviation (£s) of the
different measurements.

This data is shown here in lieu of the result from a single measurement, since
it gives a more representative view of the involved measurement uncertainty. In
this case the error bars shown represent the combined effect of connection errors,
variations in ¢,, differences in substrate mounting, and errors in specifying the
physicé.l difference between the length of the thru and delay line standards. The
major error source is believed to be the variations in ¢, which can be significant

for alumina substrates [62,63].

To see how ¢4y varies with shielding, consider the plot of Figure 5.6. This
plot compares numerical and Super Compact results for three different shielding
geometries. The notation used to describe different shielding and substrate ge-

ometries is explained in Table 5.1. The case for cavity CA is the same as that of
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Figure 5.53: Effective dielectric constant comparison for an alumina
' substrate compared to measurements and CAD package
results (e, = 9.7,k = .025",b = ¢ = .25").

Figure 5.5. For the other two cases, where the shielding is closer to the microstrip,

the agreement is not as good.

Effective Dielectric Constant for a Quartz Substrate

The effect of shielding on ¢,ys for a quartz substrate is displayed in Figure 5.7.
In this case the Super Compact analysis is seen to give good results for both of
the two larger shielding geometries . However, the numerical results again show a
reduced value as the size of the shielding is reduced further.

The reduction of the effective dielectric constant, relative to Super Compact,
can be explained as follows. For a larger shielding geometry, the field distribution
on the microstrip more closely resembles the open microstrip case, with most of the
electric field concentrated in the substrate. In this case, most of the electric field

lines originate on the microstrip conductors and terminate on the ground plane



149

Table 5.1: CAVITY NOTATION USED TO DENOTE DIFFER-
ENT GEOMETRY AND SUBSTRATE PARAMETERS

CAVITY | ¢ | W (in) | A (in) | b (in) | ¢ (in) | f. (GHz)
CA 9.7 | .025 | .025 | .250 | .250 21.8
cC 9.7 | .025 | .025 | .100 | .100 375
CF 9.7 | .025 | .025 | .075 | .075 41.7
QCB | 3.82| .0157 | .010 | .122 | .080 45.8
QCE |3.82] .0157 | .010 | .100 | .100 73.0
QCG |3.82} .0157 | .010 | .050 | .05 102.5

CC: SUPER COMPACT

CF: SUPER COMPACT
CA: SUPER COMPACT
CC: THIS RESEARCH
CF: THIS RESEARCH
CA: THIS RESEARCH

1 A

5-5 v 1 ] ] v | ] v 1 v LI M v
0 8 16 24 32 40 48 56 64
FREQUENCY (GH2)

Figure 5.6: The effects of shielding on e.ss are apparent as the size
of the shielding cavity is reduced (see Table 5.1 for ge-
ometry.)
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Figure 5.7: Shielding effects are also significant for the quartz sub-
strate shown here (see Table 5.1 for geometry).

below. As the cavity size is reduced, the ground planes of the top and side-walls
are brought closer to the microstrip lines. The electric field distribution is now less
concentrated in the substrate, as more field lines can terminate on the top and side
.wa.lls. As a result, a proportionally larger percentage of the energy propagating

down the line does so in the air region, and the dielectric constant is reduced.

Figure 5.8 shows a comparison of the effective dielectric constant for a 4 mil
thick GaAs substrate. This is a typical substrate geometry used for MMIC pur-
poses. The agreement between the numerical and CAD model predictions this case
is excellent. The differences observed in the case of the other two substrates was
not seen for the GaAs substrate of Figure 5.8. because of how thin the substrate
is relative to the size of the cavity.

Hence, all of the effective dielectric constant results presented above demon-
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Figure 5.8: The numerical and CAD package results display excellent
agreement for the case of a thin GaAs substrate (¢, =
12.7,h = .004",b = ¢ = .07", f. = 81GHz).
strate that the CAD package predictions are valid when two conditions are met:
1) the shielding is large with respect to the substrate height, and 2) the frequency
is below the cutoff frequency. When the dimensions of the shielding becomes com-
parable to the substrate height, the CAD results are no longer accurate. This
suggests the need for an improved CAD formulation valid for small as well as large
shielding geometries. The present method could be used as the basis for deriving

such a formulation.

5.3 Results for Open-end Discontinuity

As discussed in Section 2.7, an open-end discontinuity can be represented by
an effective length extension L.;;, by a shunt capacitance c,p, or by the associated
reflection coefficient I, (= S11). Each of these three representations will be used

in this section.
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Figure 5.9: Effective length extension of a microstrip open-end dis-
' continuity, as compared to results from other full-wave
analyses (¢, = 9.6, W/h = 1.57, b = .305",c = .2",

h =.025").

The plot of Figure 5.9 compares L., results to those of Jansen et al. [64] and
Itoh [10]. The results from this research are almost identical to those obtained
by Jansen et al. for frequencies above 8 GHz, but show a reduced value for lower
frequencies. Jansen et al. speculate that the large difference in the results obtained

by Itoh are due to an inadequate choice of basis functions.

The case of Figure 5.9 was chosen to compare the coaxial and gap generator ex-
citation methods used in the method of moments solution 2. Table 5.2 shows that
the results computed for this case by the two methods are eciuivalent. This equiv-
alence is also observed for the computations of two-port scattering parameters for
the structures considered herein. Hence, as far as computing network parameters

is concerned either method gives good results. Since the coaxial method is more

2 The inner and outer radii of the coax feed was taken to be .007” and .016"”
respectively.
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Table 5.2: COMPARISON OF L.ss/h COMPUTATION FOR THE
TWO TYPES OF EXCITATION METHODS

f (GHz) 4 | 8 | 12|14 | 16| 18] 2
GAP
GENERATOR | .298 | .305 | .300 | .321 | .324 | .344 | .353
COAXIAL
EXCITATION | .299 | .304 | .309 | .322 | .327 | .344 | .352

realistically based, this conclusion lends validity to the use of the gap generator

method.

The results shown in Figure 5.10 illustrate the effect of the shielding on the
open-end discontinuity. The normalized open-end capacitance c,p is plotted for
three different cavity sizes. The results show that reducing the cavity size raises f,
(as expected), and it lowers the value of c,,. For comparison, data obtained from
Super Compact and Touchstone and measurements (see Section 4.3) are included.
The errors ba;s on the measurements represent the estimated standard deviation
(£s) of the connection errors for this measurement from Table 4.4.

Similar shielding effects are observed for an open-end on a a quartz substrate
as shown in Figure 5.11. In this case it is seen that the Super Compact result gives
a good value for low frequencies, and where the frequency is well below the cutoff
frequency for a given shielding size. Or stated another way, the shielding effects
are less severe for a smaller shielding cavity! This conclusion defies common sense,
but is strongly supported by the numerical results. Note that Jansen’s results
(Figure 5.9) show a similar rise in the open-end effect as the cutoff frequency is

approached.
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Figure 5.10: A comparison of the normalized open-end capacitance for
three different cavity sizes shows that shielding effects are
significant at high frequencies (see Table 5.1 for cavity
geometries).
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Figure 5.11: Nomalized open-end capacitance for three different cav-

ity sizes for a quartz substrate. This data also shows
an increase in the capacitance as the cutoff frequency is
approached (see Table 5.1 for cavity geometries).
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Figure 5.12: Numerical and measured results show good agreement
for the angle of S11 of an open circuit (¢, = 9.7, W ="h
=.025", b = ¢ =.25").

As a last example of the open-end effect, Figure 5.12 shows results for the
angle of Sy, of an open-end compared to measurements (see Chapter 4). The mea-
surement is seen to favor the numerical results, although the differences observed
are not overly significant for this shielding geometry. The error bars the approxi-

mate standard deviation of the connection errors associated with this measurement

(Table 4.4).

5.4 Results for Series Gap Discontinuities

Numerical and experimental results have been obtained for series gap discon-
tinuities with three different gap spacings (G) 15 mil (i.e. .015”), 9 mil, and 5 mil.
The test circuits and the shielding dimensions used for the measurements are those

of Figure 5.12.
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Numerical results for the magnitude of Sy, for these gaps are shown plotted

in Figures 5.13- 5.15. For comparison, results obtained using Super Compact, and
Touchstone are also shown plotted along with measured data. The error bars
associated with the standard deviation of connection errors (Table 4.5), are on the
order of +.5dB and are too small to show on the plots.

With one exception, the measured data best follows the results of this research.
In contrast, the Touchstone analysis had the least agreement with the measure-
ments. This may in part be due to the fact that Touchstone does not include any
shielding effects either the side walls or the shielding cover into account. However,
the Super Compact model for the series gap does not appear to include the effect
of the cover.

The one exception where the numerical result appears to be slightly off from
the measurement is in the plot of the magnitude of S3; of the 5 mil gap. Based
on numerical investigation it appears that by using a smaller subsection length in
the method of moments computations, the value for S;; can be improved (i.e. it
approaches the measurement). However, as discussed in section 3.3, the subsection
length cannot be decreased arbitrarily as other implications must be considered.
The best approach may be to minimize the size of the matrix by using a small
subsection length around the region of the gap and a larger subsection length over
the uniform line sections.

Results for the angle of S3; and S;; for the 15 mil series gap are shown in Fig-
ures 5.16 and 5.17. The error bars in these charts represent the estimated standard
deviation from the perturbation analysis (Table 4.4). Although the measurements
tend to favor the numerical results, the differences are not too significant. The

phase of the S-parameters for the other two series gaps behave in a similar way as
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Figure 5.13: Magnitude of Sy, for series gap circuit A (G = 15 mil).
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Figure 5.14: Magnitude of S, for series gap circuit B (G = 9 mil).
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Figure 5.15: Magnitude of Sj; for series gap circuit C (G = 5 mil).

that for the 15 mil gap and have been omitted from this treatment.

The measurements made on the series gap discontinuities are seen to further
verify that the theory developed here gives good results. For the large shielding
dimensions used for the measurements (b,c¢ 3> k) the CAD models are seen to
give reasonable results. The behavior of series gaps for small shielding dimensions
was not studied, instead emphasis was placed on obtaining results for coupled line

filters since their behavior is more complicated and therefore more interesting.

5.5 Results for Coupled Line Filters

The last results to be discussed were obtained for the two and four resonator
filters discussed in Section 4.3. For brevity only the amplitude and phase of the
transmission coefficient Sy; will be discussed. Note that for the shielding geometry

of both filters, the cutoff frequency f.. is approximately 13.9GHz. Above this, the
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Figure 5.17: Angle of Sy; for series gap circuit A (G = 15 mil).
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filter measurements are distorted due to waveguide moding within the test
fixture 3.

The measured and numerical results of this research are compared to CAD
model predictions. The CAD package analysis for coupled line filters is performed
by cascading two different types of discontinuity elements together: coupled mi-
crostrip lines, and open-end discontinuities. As mentioned previously, neither of
the packages studied here account for shielding in the open-end discontinuity, how-
ever, Super Compact does include the effect of the cover height in the model for

coupled lines.

Two Resonator Filter

Figure 5.18 shows a comparison of the measured and predicted response of the
two resonator filter. From this plot, it is seen that the analysis from both the
numerical and the CAD packages give a very good prediction of the response of
the filter in the pass band. OQutside the pass band the amplitude response is seen
to more closely follow the numerical results.

Close examination of the phase plot (Figure 5.18b) shows that the the numer-
ical results are shifted up in frequency by a small amount as compared to the
measurements. It is believed that this discrepancy, though small, is related to
the thin-strip approximation used for the current distribution. In the theoretical
solution, the current is assumed to be uni-directional and to have a symmetric

variation in the transverse direction as described by (2.7). In the coupling region

3 Because energy can propagate in a waveguide mode, significant coupling oc-
curs between the two coaxial feeds of the fixture, and the resulting measurement
uncertainty is large. Hence, for all the filter results presented, the measurements
are only good up to f. = 13.9 GHz.
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of the filter the close proximity of the adjacent strip conductors will cause the
current to become non-symmetric and may require a more general definition of the
current as the strip becomes wide.

However, note that the thin-strip approximation used here already gives a
very good result. If in the magnitude plot of Figure 5.18, the response for the
numerical results of this research are shifted down slightly, the agreement with the

measurement will practically be exact.

Four Resonator Filter

The results for the four resonator filter are shown in Fi_gure 5.19. In this case,
numerical results for S;;, demonstrate excellent agreement with measurements up
to the cutoff frequency. Note that for this filter the strip widths are about Half
as wide as those in the two resonator filter. Hence, the error due to the thin
strip approximation is reduced. As in the case of the two resonator filter, the
CAD models fail to predict the filter response in the rejection band, whereas the
numerical results follow the measurements closely. For the four resonator filter,
this is true for both the phase as well as the magnitude of S5,.

In the phase response, the CAD models display a large error compared to
measurements between about 6 and 8.5GHz, while the numerical results track
the measured phase very well. Belbw about 5.5GHz, the measured phase is seen
to be different from the predictions of both the CAD models and the numerical
results. This is most likely due to a phase error in the measurements. In the
TSD technique, the delay line for the measurements should ideally be %’- at the

measurement frequency. When the electrical length becomes either too short or
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too close to a multiple of 521 phase ambiguities can result. A good rule of thumb
is for the delay line to be between 58’- and %"- 4. At 5.5GHz the delay line used for
the measurements is slightly less than 4\8’-; hence, this is most likely the source of
the phase error.

We will now examine what happens as the top cover is brought closer to the
circuitry. The results of Figure 5.19 show that even for large shielding dimensions
the CAD models do not adequately predict the filter response in the rejection
band. Figure 5.20a shows Super Compact predictions for the four resonator filter
with two different cover heights. These predictions indicate that lowering the cover
height should significantly narrow the pass band, and reduce the amplitude in the
rejection band.

A significantly different prediction is observed in the numerical results for this
case presented in Figure 5.20b. A narrowing of the pé.ss band response is also
observed in the numerical predictions, but not by nearly as much as in the Super
Compact prediction. More importantly, the amplitude in the rejection band is seen
to increase instead of decrease!

To prove that the numerical prediction is indeed the correct one, an additional
measurement was made of the filter for the low cover height case. As can be
seen from Figure 5.20b the measured data falls practically on top of the numerical

predictions for both cover heights.

5.6 Summary of Numerical and Experimental Results

In this chapter results were presented for the effective dielectric constant of

uniform microstrip lines, and the network parameters for open-end and series gap

4 Multiple lines are needed for broadband measurements.
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Figure 5.18: Results for transmission coefficient S, of two resonator
filter (e, = 9.7, W = h = .025"; b = 4", c = .25").
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discontinuity and for two coupled line filters. The higher order modes in shielded
microstrip are described to be essentially waveguide modes. In fact, the cutoff
frequency f, for a partially filled rectangular waveguide gives a good prediction of
the onset of higher order mode behavior in the computed microstrip current dis-
tribution. A wealth of numerical and experimental data is presented for the above
mentioned structures, and comparisons are made to other full-wave analysis and
to commercially available CAD packages. Conclusions based on these comparisons

are summarized in the next chapter.



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The results from the research presented in this thesis lead to several conclusions
regarding different aspects of shielded microstrip discontinuity characterization.
These conclusions have been separated into appropriate categories as addressed

herein.

. onclusions fro oreti W

In the theoretical work (Chapter 2) a method of moments formulation for the
shielded microstrip problem is derived based on a more realistic excitation model
than used with previous techniques. This result follows directly from the reci-
procity theorem, with the use of a frill current model for the coaxial feed. The
reciprocity theorem is applied in a similar way for the case of gap generator exci-
tation. The impedance matrix formulation for gap generator excitation is seen to
be identical to that for the coaxial excitation method developed here. The differ-
ence between the two methods is therefore only in the excitation vector used on
the right hand side of the matrix equation. In solving for the impedance matrix
elements, all of the required integrations are solved in closed form. Conversely,
for the excitation vector of the coaxial excitation method, numerical integration is
required.

167
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6.2 Conclusions from Computational Work

Computational considerations for implementing the theoretical solution are ex-
plored extensively (Chapter 3). A graphical presentation is given that illustrates
the different steps in the computation of microstrip currents. The current for the
coaxial excitation method is shown to be uniform along the strip, while a discon-
tinuity in the current is evident in the current for the gap generator method. The
effect of this discontinuity is minimized by positioning the gap generator at the
beginning of the first strip subsection. The gap generator method is more compu-
tationally efficient than the coaxial excitation method since numerical integration
is not required.

Several numerical experiments are presented (Chapter 3) that explore the con-
vergence. and the stability of the solution. foe parameters explored are the sub-
section length [, the sampling rate N (= 1/l,), the value for K used in the basis
functions, the summation truncation points NSTOP and MSTOP, and the cavity
length a. A value of K = 27 appears to be the best choice. The main conclusions

drawn from these experiments may be summarized as follows:

o A value of K = 27 is a good value to use in the sinusoidal basis functions.

¢ A minimum sampling limit exists such that the condition Ki; <  must be
satisfied in order to obtain useful current results. For a value of K = 2,

I = .25 is the largest subsection length that can be used.

¢ Good convergence on‘ n and m is achieved after 500 terms have been added

on each.

¢ A maximum sampling limit exists in the form of an erratic current condition
which may be defined by the simple formula NSTOP=*l; < a. (NSTOP=*l, >

a must hold for useful results.)
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e An optimum sampling range may be specified that automatically avoids the
erratic current condition, and guarantees the best accuracy in the matrix

solution. This range is given approximately by N;ng 5 <l < 75%55-

e The optimum sampling range was found to correspond directly with the flat

convergence region for the L.s; and €.;; computations.

6.3 Conclusions from Experimental Study

From the experimental study (Chapter 4), a comparison of various measure-
ment techniques lead to the choice of the TSD de-embedding method for the mea-
surements of this thesis. Various microstrip connection repeatability issues are
explored experimentally (Appendix I). The results indicate that, for the hardware
tested, the best connection approach is to make the required fixture connections at
the coax/microstrip connection points, rather than relying on the repeatability.of
microstrip/microstrip interconnects. Still, connection errors remain an important
consideration for the measurements. To examine this, a perturbation analysis is
developed that allows for an approximation to be made of the effects of connection
errors on the precision of the final de-embedded results. It is seen that connection
errors affect the phase of the S-parameter measurements most, and the amount
of resulting measurement uncertainty increases as the magnitude of the parameter

being measured decreases.
6.4 Conclusions Based on the Results

Numerical and experimental results are presented for several microstrip struc-
tures (Chapter 5). Conclusions based on these results are described below.
The effect of higher order modes on the current distribution is demonstrated.

As the frequency is increased above the cutoff frequency, the current becomes
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increasingly distorted due to higher order modes. On the other hand, as long as
the cavity size is such that the frequency is below the cutoff frequency, the current
is uniform and undistorted regardless of how thick the substrate is. This is in
contrast to the case of open microstrip, where the first surface wave mode has a
zero cutoff frequency and the onset of higher order modes depends strongly on
the substrate thickness. The cavity resonance technique, mentioned in Chapter 1,
does not allow for the current distribution to be studied.

A comparison of effective dielectric constant results shows good agreement be-
tween the CAD package results, the numerical results from this research, and
measurements for large shielding dimensions (b,c 3> k). The effects of shielding
on the effective dielectric constant are examined. Only one of the packages studied
takes shielding into account for the effective dielectric constant calculation, and
t'hen only cover effects are considered. A comparison of the CAD package results
with numerical results show that good agreement is obtained when the shielding di-
mensions are large with respect to the subst»rate thickness, while for small shielding
dimensions, the difference between the CAD package results and numerical results
becomes significant.

For the open-end discontinuity, good agreement with other full-wave solutions
and with measurements is demonstrated. A comparison of open-end capacitance
for different cavity sizes shows that, as the cutoff frequency is approached, the
capacitance increases in each case. Choosing a small cavity with a high cut-off fre-
quency extends the region where the capacitance is relatively constant. The open-
end models used in the two CAD packages studied here do not include shielding
and cannot show this effect.

A comparison of numerical and measured results for series gap discontinuities
portrays good agreement for all three gap widths studied. The agreement with

measurements is very good for the two larger gap widths, but for the smallest gap
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width it is seen that one of the CAD models give a slightly better prediction of
the behavior of the magnitude of S3; than the numerical results. The effecté of
shielding on the behavior of series gaps is not explored extensively.

Good agreement is also demonstrated for the two and four resonator coupled
line filters. For both filters, the numerical results of this research give a better
prediction of the overall filter response than provided by the CAD models. This
is especially true in the rejection bands of the filters. For the two resonator filter,
a slight frequency shift is observed in the nﬁmerica.l results compared to the mea-
surements. This is most likely due to the thin-strip approximation used for the
current distribution, and is not a limitation of the method itself.

In contrast, for the four resonator filter, which has thinner strip widths, the
present method gave an excellent prediction of the filter performance in every way,
whereas discrepancies are observed in the CAD model predictions. Reducing the
cover height is seen to narrow the pass band response and raise the amplitude of
the filter’s rejection band response. The numerical results of this research give an

excellent prediction of this effect, and this is proven by measured data.
6.5 Recommendations

The data comparisons performed here have demonstrated the validity of the
theoretical methods. However, there are a few areas where improvements can be
made to the theory.

Further numerical investigation for series gap discontinuities indicates that as
the gap width becomes small, a smaller subsection length is required for accurate
computation of the scattering parameters. However, the improvement in the re-
sult is limited because a smaller subsection length increases the matrix size and
degrades the condition number (Section 3.5). One way to extend this limit would

be to use a variable subsection length in the computations. That is, use a small
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subsection length close to the discontinuity where the current is disturbed, and use
a larger subsection length over the uniform sections of strip. In this way the size
of the matrix would be maximized for a given problem.

The thin strip approximation as used here provides an accurate solution for the
discontinuity structures studied. In one case, that of the two resonator filter, it
appears that a more general current distribution may improve the solution. The
thin strip approximation uses a unidirectional current. The method presented here
may be generalized in a straight forward way to allow for two component current
distributions. This will also allow for more complicated structures to be consid-
ered, yet it will be more computation intensive. It may be possible to improve
the filter analysis by changing the formulation to allow the transverse variation of
the longitudinal component of the current to be non-symmetrical without actually
adding a transverse current component. To be able to discern which approxima-
tions are most appropriate for a given problem detailed comparisons should‘be
made between results obtained with a more general current distribution and those
obtained with the present method.

The experimental work has shown that good measured data on microstrip dis-
continuities can be obtained with the TSD technique. On the other hand it is
shown that the measurement uncertainties due to connection errors, and other re-
peatability issues can be appreciable. In applying the technique for millimeter-wave
measurements close attention is required to minimize the associated uncertainties:

The following suggests some guidelines for doing so:

1. Connection repeatability errors can be reduced by first selecting the best
available fixture and connection technique, and then by averaging measure-

ments from repeated connections made for each fixture measurement.

2. Variations in ¢, can be minimized by fabricating the standards. and the

discontinuity circuits from the same substrate, or by using substrates from
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the same “lot”, or manufacturing run.

3. Variations in substrate and line width geometry, though not a major error
source, should be monitored carefully during all steps of fabrication. This can
be done by performing careful measurements of the fabrication masks, the

substrates to be used, and the surface metalization geometry after etching.

4. In the area of substrate mounting, care must be taken to use the exact same

technique in bonding the substrates onto carriers.

5. Finally, if the physical delay line length is used in the fixture characterization
procedure, it should be carefully measured and input to the program for each

set of standards that are used.

Because of its susceptibility to connection repeatability errors, the TSD tech-
nique is not necessarily the best technique for high frequency measurements, and
research into improved de-embedding methods should continue. In considering
the trade-offs between alternative approaches that already exist, the sensitivity of
each technique to the unavoidable measurement repeatability issues discussed here
should be analyzed and compared. Ultimately, the best de-embedding method for
a particular application depends on the required accuracy, the type of test fixture,

and the nature of the device or circuit being tested.
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APPENDIX A

REVIEW OF METHOD OF MOMENTS

The general steps involved for in the computation of surface currents using the

method of moments can be summarized as follows:

1. Formulate an integral equation for the electric or magnetic field in terms of
the surface current density J, on the conductors. It is generally possible to

put this equation in the form

=\ E
Lop(J) =3 (A1)

H

where L,, is an integral operator, and § is a vector function of either the

electric field £ or magnetic field A associated with J,.

2. Expand J, into a series of basis functions .7,, so that
- N’ -
Js = ZIPJP (A.2)
p=1
where the I,'s are complex coefficients and N, is the number of sections the

conductor is divided into.

3. Determine a suitable inner product and define a set of test (or weighting)

functions W, . The result may be expressed as

% L <Wq’ Lep (jp)> = <"Vq,§ (A.3)

p=1
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where the inner product is defined as

<&,5>=/3/&-5d3.

In Galerkin’s method, the weighting functions are taken to be test currents

J, which are identical in form to the basis functions Jj,.

. Solve the inner product equation (A.3) and form a matrix equation of the
form

(2] {1} = [V] (A4)
where [Z] is termed the impedance matrix, and [V] is called the excitation

vector.

. Solve for the current coefficient vector by matrix inversion and multiplication

according to

T = (27 [V]. (A.5)
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APPENDIX B

DERIVATION OF INTEGRAL EQUATION FOR
ELECTRIC FIELD

Starting with Maxwell’s equations

vV XE = —jwuH (B.1)
6 x H = jweE'-i-j (BQ)
v-J = —jwp (B.3)
V- (E) = » (B4)
v-(sH) = 0, (B.5)
We define A such that

f= %@ < A. (B.6)

Substituting (B.6) into (B.1) yields
v % (E +jwd) =0. (B.7)

E+jwA=-y¢. (B.8)
Making use of (B.6) and (B.8) in (B.2) yields

T x A= —jwe(jwl +76) +J (B.9)

-

T X
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or

- VA+ (V- A) = wPued — juuegd + uld . (B.10)
We use the Lorentz condition
(V- A) = —jwpevé (B.11)

in (B.10) to obtain
V:A+ kA= -pd (B.12)

where k? = w?ue. From (B.9) and (B.11) the electric field may be expressed as

- - 1 - - -
E = —jwA+ jwev(v-A)
. 1-- .
= —ju(l+5ZVV)A. (B.13)

We now define a dyadic Green’s function & to be a solution of
2 G + kG = -I6(F - 7). (B.14)

To relate G to A, we will derive a vector-dyadic extension of Green'’s theorem. The

vector Green’s theorem is given by [23,19]

][ @ GxTxP-P (7 xTx}dv=
[+ Px@xD-Ax@xPls (813

For the shielded microstrip cavity problem of Figure 2.4, the volume V is the
interior of the cavity, and S, and S, are the surface of the cavity walls, and the
surface of a small volume enclosing the source region (J) respectively. The unit
normal vector 7 is directed outward from V,'and we will denote #t’ = —7i to be the
inward directed normal vector. P and Q are arbitrary vector fields.

After applying a few vector identities, (B.15) may be re-written as follows:
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With the equation in this form, we can replace Q by a dyadic function T. The

result is the vector-dyadic Green’s theorem given by
,///V{P‘[V_?Xﬁx’f']—[@x&xP]-:l’"}@:
f/“S [ x B) (7 x )+ 4/ x (7 x B)-Fds.  (BAT)

We may now replace P with A and T with G and make use of vector-dyadic

identities to yield

///(VZA-E?-A- v?G)dv =
// {nxA IxG+ (R x7xA)-G
Sw+Ss
+i' [A(7 - @) —~'- [(7- A)G]} ds. (B.18)
If we require that the components of A and G satisfy the same bouﬁda.fy
conditions on S, and S,, it can be shown that the entire surface integral on the

right hand side of (B.18) vanishes. Substitution from (B.11) and (B.14) for 77?A

[] [ A -wa8

~A-[-I6(F—7) - k*- G|} dv

= —,u///vf‘édv+z§(1=)

and 772G we obtain

///V(VZA-C:}—A'v’C_?’)dv

(B.19)

A=p///vj-c";dv. (B.20)

Finally, substituting from (B.20) into (B.13) produces the following integral equa-

Hence,

tion for the electric field

E

—]wul-’r VV ///J Gdv
- —jwp///;,[(l+ﬁvv~ (&) ]-Jdv (B.21)

where (C=1”)T represents the transpose of G.
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APPENDIX C

EIGENFUNCTION SOLUTION FOR GREEN'’S
FUNCTION

The boundary conditions on the cavity walls are applied here in order to de-
rive the functional form of the Green’s function. First, the general solution to the
homogeneous differential equations for the components of the Green’s function is
presented. Then, the boundary conditions on the walls are used to arrive at an
eigenfunction expansion for each of the Green’s function components. The partic-
ular solution for the Green'’s function is found by integrating the inhomogeneous

differential equation across the source region.

GENERAL SOLUTION TO HOMOGENEOUS D.E.’s FOR GREEN’S
FUNCTION

Consider the homogeneous forms of equations (2.28) and (2.30)

VA + KA = 0 (C.1)
v+ k26 = 0 (C.2)

where i = 1,2 denotes that these equations hold in each region respectively.

The relationship between A’ and G is given by (B.20) which reduces to

iz (C.3)
Ho
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since we consider an infinitesimal current source J for the Green’s function deriva-

tion. The components of A* and G are related as follows:
A; = ”OG:::: (0-4)
A, = poGi, . (C.5)

With G’ given by (2.35), it can readily be shown that (C.2) implies

VG, + kG, = 0 (C.6)
V2GL, + KIGL, = 0. (C.7)
We apply the method of separation of variables with
G = Xi2)Y3(y)Z:(2) (C.8)
G = X:2)Y;(¥)Z:(2) . (C.9)

The well known general solution of each of the above differential equations may

be put in the form

¥ = Ajcoskit + Aysin kit (C.10)

where ¢t = z,y, or z;9% = X! Y} orZ! (where s = z or z) and ki is complex in

general. The eigenvalues are related by

S R S (C.11)

APPLICATION OF BOUNDARY CONDITIONS ON THE CAVITY
WALLS

In applying the vector-dyadic Green’s theorem of (B.18), it was imposed that
A and &' satisfy the same boundary conditions. Hence, A% and G:_ must satisfy

the same boundary conditions on the waveguide walls and on the substrate/air
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interface and, must have the same functional form in terms of spatial variation.
The same holds true for A% and G:,.
In order to establish what conditions A* (and correspondingly 5") must satisfy
at the walls, we need first to establish more explicit relations between A' and E.
From (B.13)
B = —jwli +

(G A (C.12)

The vector potential A* may be expressed as (2.31)
A=Az + Az, (C.13)

The use of (C.13) in (C.12) yields the following expressions for the electric field

components:
. [, 10 ,
B = oA+ (A
.10 ,0AL 8Al
= —jw [A +k26 . Z+ B )] (C.14)
. _ —jw 0 BAL aA;
E'yr = TulTt D (C.15)
i o [u., 10 aA' QA
E, = —jw [A, ¥ 5s (az + 3 )] . (C.16)

We now will consider the boundary conditions at each of the cavity walls.

Boundary Conditions at z =0, a

Since the cavity walls are assumed to be perfectly conducting, the tangential

components of the electric field must vanish at the walls. We have

Ez=0,a) = 0 (C.17)
E(z=0,a) = 0. (C.18)
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In view of these two equations, (C.14) and (C.16) lead to

i _ [o, 04 BA; _
E(z=0,a) = [03/( 7 T P )] o =0. (C.19)
i _ . ;1 9 08A% 8A‘, _
E(z=0,a) = —jw [A, + = P (== 52+ )] o =0. (C.20)
(C.19) is satisfied if the following condition is imposed:
AL 0A.
( 52 P ) . =0 (C.21)
in which case (C.20) leads to
A(z=0,a)=0. (C.22)
If (C.22) is placed into (C.21) it is seen that
DAL
%2 | . =0. (C.23)

The boundary conditions of (C.22) and (C.23) can be satisfied by choosing the

following eigenfunction solutions for the z-dependence:

X: = coskiz (C.24)

X: sinkiz. (C.25)

for : = 1,2, where

kY =k@ =k, =28 for n=0,1,2,... - (C.26)

Boundary Conditions at y =0, b

The tangential component of the electric field must vanish on the walls y = 0

and b; hence,

E(y = 0,b)

I
o

(C.27)
Ei(y=0,0) = 0. (C.28)
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From (C.14) and (C.15)

; [ 18 ,0A, 0A}
E(y=00) = —jw [Az + L,_?'é;( . E')] ly=06 =0 (C.29)
Ez(y = 09 b) = - [Az + k? 9z Oz + 9z )] ly=0.b =0. (030)

It follows from the above two equations that the eigenfunction solution for the

y-dependence is given by

Y = sin k;y (C.31)
Y = sin k;y (C.32)

(for 1 = 1,2), where
kO = k@ =k, =2L  form=1,2,3,... . (C.33)

Note that it is easily shown that m = 0 leads to a trivial solution for the y-

dependence of both components.

Boundary Conditions at z =0, ¢

Similarly at the walls z = 0 and ¢ we have
Ei(z=0,c) = 0 (C.34)
E;(z =0,c) = 0. (C.35)

Making use of (C.14) and (C.15) yields

Ei(z=0,¢) = —jw [A; + li(aai" + %/-:i

k? 0z
["]‘-‘" 4 ] |z=0.c =0. (037)

)] lz=0. =0 (C.36)

9 (BAi aAi)
k} 8y Oz 0z

Ej(z=0,c) =

It can readily be shown that the eigenfunction solution for the z-dependence can

be written as

ZY = sink(Mz (C.38)
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ZM = coskVz (C.39)
Z® = sink(z-c¢) (C.40)
Z® = coskP(z~c) (C.41)

where, from (C.11), (C.26), and (C.33), &£{!) and k{?) are given explicitly by

kY = \/kz_ ﬂz_(ﬂ)z (C.42)

KD = \/k,, —-)2 —")2. (C.43)

k, and kg are the wave numbers in region 1 and 2 respectively, and are given by

ke = wue. (C.45)

REPRESENTATION OF GREEN'’S FUNCTION BY
EIGENFUNCTION SERIES

We now combine the results obtained above, so that the Green’s function may
be written in series expansion form. Substituting from (C.24), (C.31),(C.38), and
(C.40) into (C.8) and taking the summation over all the possible modes, results in

the following for Gt _:

o o0

GO = Y 3 AW cosk,z sink,y sin k{2 (C.46)
m=1n=0
“1 Q

G = Y AD cosk,z sink,y sink{®(z —c). (C4T)
m=1ln=0

Similarly, if we substitute from (C.25),(C.32),(C.39), and (C.41) into (C.9) we
obtain the following for G%,

GY = Y Y B sink,z sink,y cosk{Vz (C.48)
m=1n=0

G = Y % B sink.z sink,y coskP(z —c) . (C.49)
m=1 n=0

The complex coefficients A%, and B, (i = 1,2) are determined in Appendix D

by the application of boundary conditions at the substrate/air interface (z = 4).
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APPENDIX D

BOUNDARY CONDITIONS AT SUBSTRATE/AIR
INTERFACE

The complex coefficients A:,,, and B, (for i = 1,2) for the Green’s function
components given by (2.36)-(2.39) are found here by applying boundary conditions
at the substrate/air interface (z = h).

Figure D.1 shows a cross section of the cavity in the z—z plane. The application
of boundary conditions at the interface is made difficult by the presence of the
infinitesimal current source on the substrate surface. We will avoid this difficulty
by first solving a similar problem with the current source raised a distance Ah
above the substrate. After solving for the boundary conditions at z = h and
z = h 4+ Ah, the equations required to determine the coefficients A:,,, and Bi,,

are obtained by letting Ah go to zero.
FORMULATION

From the consideration of the boundary conditions on the waveguide walls the

components of the Green’s function are given as

GL = Y Y Al cosk.z sink,y sink{)z (D.1)
m=1n=0
N o0

Gl = Y ¥ B sink,z sinkyy cos k{Vz (D.2)
m=1n=0
[o <. <]

GR = D A® cos k.z sin kyy sin k®(z - ¢) (D.3)

3
]
oA
3
1
(=}
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x=a
a) Actual position of current source
z
A

Z=C —

(2) -

J
=h' — -——-—--—--#- - e a» e e

(3

z=h — ) Ah

b) Current source raised above interface

Figure D.1: The current source is raised above the substrate/air in-
terface to apply boundary conditions.
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G® = S 3 B@ sink.z sink,y coskP(z—-¢). (D.4)

m=1n=0
For region 3, the Green’s function must satisfy the same differential equation (2.30)

as in the other two regions. We will use the form of the general solution given by

GO = Z 2 cos k,z sin k,y [As,?z,ei"‘r°’=+3,<3),e-ik‘=°"] (D.5)
¥ = Z Z sin k. sin kyy [C,(,?,);e"k(‘s)zi-Df,?,)‘e'ﬂ‘('s)'] (D.6)
whei'e

k; = nr/a (D.7)

ky, = mn/b (D.8)

Y = (k2 - k2 - k2 (D:9)

kD = k2 — k2 k2 (D.10)

KD = k@ (D.11)

k= w6 (D.12)

ko = wy/Hoco . (D.13)

Recall, the electric field solution in terms of the vector potential components

(C.14)-(C.16)

i i, 19 04; aA’,

E, = —jw [A + = 7 e 6:: )] (D.14)
i _ —jw 0 0A; aA', :
E, = 2 0y( 63: ) (D.15)

i ol 10 3A‘, 0AL
E, = —jw [A,+ 7 Bz(—az + e )] . (D.16)

These equations hold in each region respectively (i.e. for i = 1,2,3).
The solution for the magnetic field can be written using (2.26) and (2.31) as
follows:

A = [V x (ALz + AL2)] . (D.17)

F |-
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Separating this into z,y, and z components gives

; 1 9A:
H, = ——/ D.18
po Oy ( )
; 1 (0AL OAL
B, = ;;( 9z Bz) (D.19)
; 1 9A!
H, = ———=. D.20
Ko Oy ( )
APPLICATION OF BOUNDARY CONDITIONS
Boundary Conditions at z = A
At z = h, the following boundary conditions apply:
EM = E® (D.21)
E®M = E® (D.22)
HY = HO (D.23)
HY = H{ (D.24)
poHY = poH® = HYM = HP (D.25)
aEM = E®. (D.26)

We will make use of (D.22)-(D.25) to formulate four of the eight equations needed
to solve for the complex coefficients in (D.1)-(D.6). We start with (D.25), then

substitute from (D.20), and recall the correspondences of (C.3) to obtain

o, _o6Y
ay '3=h= ay lz=h- (D27)

When (D.1)and (D.5) are used the above, and orthogonality is applied, the follow-
ing is obtained

AD sin kMh = AR) KB 4 BO) =ik (D.28)
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where £{?) has been substituted for k() in accordance with (D.11).

Next, from (D.23),(D.18), and (C.3)
96% _ 06

5 = 5 (D.29)
From (D.2),(D.6) and the above
BY coskMp = CP ek 4 D@ o=ikPh (D.30)
The combination of (D.24), (D.19) and (C.3) yields
(20 () om

Making substitutions from (D.1),(D.2),(D.5) and (D.6) into this expression and
using (D.30) leads to

AGLED cos k{Dh = D [ADe™ — B4 (D.32)
Now consider (D.22). From (D.15) and (C.3)

18 8GQ

8GN 8,069 aG®
<oy oz +

5e == 5y T e

+ (D.33)

After appropriate substitutions and some algebra, the following equation is ob-

tained

AW (1 — ek, sin kMh + BOED sin kMh =

—jkPer |CR) MDD _ D@ g=ikPh] D.34)
2z r mn mn

Equations (D.28), (D.30), (D.32), and (D.34) represent 4 of the 8 equations we
need.

Boundary Conditions at z = &’
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We now proceed to the boundary conditions at z = A’ (see Figure D.1) we have

E® = EV (D.35)
E® = EP (D.36)
ED-E® = o, (D.37)
H® = H® (D.38)
(x (AP -A®) = Ji=>
H?® = H® (D.39)
—~(HP -HP) = J,. (D.40)

Of the above, we will use (D.35), (D.38), and (D.39) to derive three more equations
for the complex coefficients.

We start with (D.39) and use (D.18) and (C.3) to obtain

968, _ 968
ay z=h = 6y .lz=h’ (D41)

which yields after substituting from (D.4) and (D.6)
B®, cos k(W — ¢) = Cei®" ¥ 4 D) e=i8"W (D.42)

Next, consider the boundary condition of (D.38). This leads to

60, _ 008
le=h’ = | 2=h (D.43)

Substitution from (D.3) and (D.5) yields
AD sin k(R - ¢) = AR KW | B o=k (D.44)
This equation, when combined with (D.3) and (D.5) , shows that
G z=h)=GI(z=1). (D.45)

With the above equality, we can substitute from (D.14) into the boundary condition
of (D.35), and make use of (C.3) to produce

3 ,0G® 9GY 9 8G® 4GV
a—z( 3z_+ 0z )—5;( Bz—+ 0z )

(D.46)
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Suffering through the details again we obtain
BO sin kP(h' = ¢) = —j [C(a) KON _ D,(Sz‘e""’(‘z)h'] . (D.4T)

At this point we have 7 independent equations —(D.28), (D.30),(D.32), (D.34),-
(D.42),(D.44), and (D.47)— and we have 8 unknown complex coefficients. The
other required equation is obtained by integrating the differential equation of (2.30)

across the boundary at z = A’.

Integration Across the Source Region at z = &’

From (2.30) we have
VG + kG = -T6(F-7) . (D.48)
Substitution from (2.35) for el yields
(02 + k?) (Giodt + Gi,33) = =6(F — 7)it . (D.49)
Hence,
(V2 + k)G, = =6(F = 7) = =b6(z — 2")6(y — ¥)é(z — 2') . (D.50)

We now integrate both sides of this equation over a line passing through the source
point 7/, and then take the limit as the length of this line vanishes

A +a

lim (V2 + k)G dz = =6(z - 2)é(y - ¥) . (D.51)

a=0Jp'-q

This may be written as

o3 32 2 N+a ; Nea §3 _ , ,
a—% [(a 2 a 2 +k; ) /h’—a Gu‘dz + Wea Oz gG;zdz] = _6(3 -z )5(3/ -y )
(D.52)
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If we make use of (D.3) and (D.5), we can show that the first integral vanishes as

follows:
Néa . K A +a
. . —_1 3) (2)
, ‘1’1_% e G dz = hn% [/N_a Gyldz +/’; Gudz]
= hm [Zl Zo ( (2)> cos k,z sin kyy (A,(,fz,ejk('z)‘ - B,(,f,"e""‘('z)‘)] =
m=] n=
+ lim [Z z%( ) A® cosk.z sink,y cos k¥(z — c)] smhta
=1n=
=0 (D.53)

(since each of the limits on the right hand side of the second equality vanishes
individually.)
Therefore, (D.52) can be reduced to

K+a H2 ;
1@0 e Oz QG::: z= —5(2 -z )5(3/ y) (D54)

From which we obtain

aG::: ‘o ’ !
2= it = 8z - )6y - v), (D.55)

lim
a—0

or

—6(z - z')b(y - v). (D.56)

0GR 9GS
( 0z 0z )

Substitution in the above from (D.3) and (D.5), and simplifying yields

z=h'

gz- {A(z) kP cosk®(h —¢) - k3N Agz‘ejk(.z)z - B® e-jk(,”z)}
n

= - cosk.z' sink,y’ (D.57)

where

2 forn=0
Pn = (D.58)
4 forn#0

The above represents the final equation needed to evaluate the complex coeffi-

cients.
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EVALUATION OF THE COMPLEX COEFFICIENTS OF THE
GREEN’S FUNCTION

To evaluate the complex coefficients, we will make use of the equations derived

above involving A% ., B:, . (i = 1,3), and C®) and D). Since we are only inter-

ested in AQ), BQ)  AQ) "and B() these will be evaluated by eliminating the other

mn?’
complex coeficients.

Now, recall that A’ = A + Ah. If Ah — 0 then A’ — h in equations (D.42),
(D.44), (D.47), and (D.57).
Starting with (D.42) with A’ — h we can substitute from (D.30) to obtain

BW cos kWA = BB cos kI (h - c) . (D.59)
Similarly, (D.28) and (D.44) yield
A® sink®(h - ¢) = AD sink(Mh . (D.60)

From (D.34) and (D.47) we get

(1) (1)
B sink®P(h-¢) = o [A(l) (el ) ke sink(Dh 4+ =A% Brunks sin k{VA| .
r

er
(D.61)
From (D.32) and (D.57)

ab

[A(z)km cos k(A = ¢) = AL k) cos k(l)h] = — cosk;z’' sinkyy’' . (D.62)
Pn

The combination of (D.60) and (D.62) yields

(1) gin k(1)
ab [ A, Sin k; 7k E® cos kD(h = ¢) = AL KM cos kﬁl)h] = — cosk,z’ sink,y’ .

¥n | sin kﬁ”(h—c)
(D.63)
Solving for A1)
- s 2! sin by’ )(p -
AW = ©n cos k.2’ sin kyy' tan kP (h - c) (D.64)

abdimn cos kMR
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. where

dimn = k? tan kMh — kY tan kB (h - ¢) (D.65)

and @, is given by (D.58). A!?), is found by substitution from (D.64) into (D.60)

—n cos kzz’ si ! Q)

S,f2.= @n COS kzz smfc;;y tan kYA (D.66)
abdimn cos ks’ (h —¢)
Next, we combine (D.59) and (D.61) to get
(1) Wp sin k(R =
B})) coskih sink®(h —c) _ L AD _1__1 k. sin KOk
cos EP(h - c) g e
(1) (1)

+§—"-'§;k-'— sinkﬁ”h] . (D.67)

By substituting for AQ) from (D.64), the above can be rearranged to find B{) as

—pn(1 = )k, cos k.’ sin k,y’ tan kDA tan kP (h - c)

B = D.68
' abdymadzmn cos kR (D-68)
where
damn = kPe; tan KD (h - c) — k) tankMh (D.69)
Finally, if we place (D.68) in (D;59), B can be expressed as:
B _ ~pn(l — €2k, cos k.2’ sin k,y’ tan kM tan k2 (h - c) (D.70)

abdymndoamn cOS kﬁz)(h -c)
We now have derived explicit relations for the desired complex coefficients AQ),

AQ) BQ)

mn? mn?

B®). It can be shown that the same relations can be obtained by moving
the current source of Figure D.1 into the dielectric region and then bringing it back

to the substrate surface.
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APPENDIX E

EVALUATION OF MODIFIED DYADIC GREENS
FUNCTION

For the purposes of evaluating the electric field (2.66), only the zz component
of the modified dyadic Green’s function f“ is needed. In this appendix, expressions
for T{Y), and T'(®) are derived. Then, each of these are evaluated at the air/dielectric
interface (z = h) and shown to be equal.

The modified dyadic Greens function was defined in (2.58) as
= o |1+ 5599 ©7] (®1)
From (2.35)
G =Gi it +GL iz,
The dyadic transpose is
(G = G35 + G 33 (E.2)

Using (E.2) into (E.1) yields

8 _ i [l L L0 (9Gh 9G],
= TR |P=T 1252 \ oz oz )| *°
19 (G, 9G.\]..
g (o |
. . 10 (3G, 08GL,\]..
+[G“+k—?5;( Bz +—az )] za:} . (E.3)

Hence, the zz component of the modified Green’s function is given by

i : t _l_i BG‘zz aG;:z
Fzz = —JWho [Gu+ k? oz ( Oz + 9z )] . (E4)
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Substitution from (2.36) and (2.37) into (E.4) results in

o) 3 in by sin k0 | 40 (1 K2} _ k=KD o
Y = —jwpu, Z Y coskz sinkyy sinkMz |AD) (1 - 2| - ==2-BQ)

2 72
m=1n=0 kl k

If we use the expressions for A{l) and B{}), from (2.46) and (2.48) we may write

F(l) = jw { Pn
= #omz—:xnz_% abdimadamn cos kDR

- | cos ko sin kyy sin k1 z cos k,z’ sin kyy’ tan kD(h - ¢
Yy k'l z

2
: [k?)e,'.' (1 - %) tan kD(h - ¢)

1

-k (1 ekk ) tank(l)hJ} (E.5)
1

where the expression for dyms from (D.69) is used to combine terms. Evaluation

of (E.5) at z = h gives

TW(z=h) = jwpo Z Z {(M)

m=1 n=0
. [cos k.z sin kyy cos k.2’ sin k,y’ tan kVh tan kP (h - c)]
2
: [kﬁz)e: (1 - %) tan kP(h - ¢)

1

_1;(1) (1 - f_:.’i) tan k(l)hJ} | (E.6)
2 k% 2 . .

Proceeding in a similar fashion for region 2, it can be shown that

Q00
T® = —jwpe Y Y cosk,z sinkyy sin kP (z - ¢)

m=1n=0

.{[—‘Pn cos k.z’ sin k,y’ tan kﬁ‘)h] (1 N k_g) _ ko)
abdymn cos ki (h=c) k3 k3
[—(p,,(l — €2)k; cosk.z' sink,y’ tan kDA tankP(h — c)] }
' abd mndzmn 08 K (h — ¢ '

Evaluation of this expression at z=h and rearranging the result produces

PA(z=h) = jupo 3 Z{ (m)

m=1n=0
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{cos k. sin kyy cos k.2’ sin k,y’ tan kMR tan kﬁz)(h - ¢)]

2
: [kﬁ%; (1 - %) tan k®(h —¢)
1

—kV (1 - e—ﬁ) tan k(‘)h]} (E.7)
{ v { . :

1

Upon comparison of (E.7) with (E.6) we can readily see that

Tz=h) =T (z=h)=T.(2=h). (E.8)
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APPENDIX F

INTEGRATION OVER SUBSECTIONAL SURFACES

Consider the surface integral given by (2.71)
- ’ ’ ! ' ! ' .0
Tomn = _//;q cos k-z' sin k,y' ¥(y')a,(z") dz'dy’ . (F.1)

where from (2.7)

Yo-Z<y<Yh+¥%

b= [ (F.2)

0 else .
From (2.8), for q # 1
a, (z") = ﬁ%‘_g—)—‘.ﬂ 2,1 <2 < 2 (F.3)
0 else,

and from (2.9), for ¢ =1
sinfK(l; ~2')) Kl 0<z' <,
o (a)={ *KT (F.4)
0 else .
In the above,

le = Zg41 = 2y = 29 — Tg1

and, for our purposes here! , we let

zo=(g-1),.

1 Note that for strip geometries other than an open-end and a thru line, the
position function z, will be more complicated in general (see Section 3.1.4).
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Figure F.1 illustrates the strip geometry used to determine the integration

limits in equation (F.1). The boundaries of the ¢** subsection depend on ¢ as

follows:

rOS:C’SI,

Yo—%Sy’st% for ¢q=1

/
Tg-1 ST < Tgpr

Yo-%<y<Yo+ ¥ else .

\

With these subsection boundaries, Z,,, may be expressed as
Tymn = IVIZ
where

Yo+W/2
= ") sin kyy' dy’
voowys W) sin sy’ dy
ox cos k' aq(z')dz) for g=1

oy cO8 kzT'ag(z')dz’  for g #1.

INTEGRATION OVER ¥’

From (F.7) and (F.2) we have

2 hH+W/2 sin kyy’ ,
= — dy' .
W Jy,-wy2 1 2Ay-Yo)]3
- w

Now, let

sing = ﬁ%’d = cos@dp = #Edy

y = -p;-'-sian-Yo = dy' = %-coscﬁdd)

with these substitutions

z
2

TV = % ' sin [ky(%{-sin¢+ Yo)] do .

2

(F.5)

(F.6)

(F.9)

(F.10)

(F.11)
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Y + w/2

7

Figure F.1: Strip geometry used in evaluation of surface integrals



(3]
o
[N]

The above may be rewritten as

I
v = %[/2 sin(k, stn¢)cosk Yodo

+ / cos(k sxn ¢)sink,Yodo

_ /<w+ /w | (F.12)

Consider the first term of (F.12):
() 1 T W
/ = 7—r-cosk Yofzsm(k ?smqﬁ) do
1
= ;cosk Y, [/_2 sin(k, —sm @) do +/ sm(k sin ¢) d¢
If, in the second integral above, we let
¢'=—¢; d¢f = —d¢

then

/(1):/ = %coskng [/;0 sin(k, sm¢)d¢+/ sin(— Ic-—-sm«b)( —d¢)
= 0.

Hence, (F.12) becomes

v

@y 1 . 1 w .
/‘ = —sin lc,,Yo/2 cos(ky—2- sin ¢) d¢
= %sinkyYo [[% cos(ky Vsm¢) d¢o
+/ cos(ky = sm¢) d¢] (F.13)
If, in the first integral of (F.13), we let

¢'=-0¢; d¢' = —-do
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we obtain

, 2 5 W
TV = Zsink,Yo /O * cos(ky— sin ¢) do . (F.14)

By comparison of the Bessel function of the 27 order given by [65]
Z

Jan(2) = %/02 cos 210 cos(z sin §) d

with (F.14) we may readily see that

TV = sink,Ys Jo (ky%,—) (F.15)

This completes the y’-portion of the integration.

INTEGRATION OVER 7/

From (F.8),

Iq" =/r'“ cos krz'a,(z')dz’ (F.16)
Tq=1

First we consider the case for ¢ # 1. Substitution from (F.3) in the above yields

1 Zq
¥ = : —— _z' dz’
7 KL [/zq-x sin K(z' — z,—,) cos k' dz
+ :“ sin (2’ + z4-1) cos k2’ da:']
1
= SnkKl, [Iél)# +I§2)"J] (g#1). (F.17)

For the first integral we have

I;l)" = / ! sin (2’ — z,-1) cos k.z'dz’
Z,

q-1

= % :::. {sin (K + k;)z' = Kz¢oy] +sin[(K = kz)z’' — Kz,_,]} dz’
1 1 .

= -3 {K v [cos(Kly + kez,) — cos kezq-1]

+ lcos(K s — koz,) — cos k,z,-,]} . (F.18)

1
K-k,
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We can solve for Ig”" in a similar fashion to yield
07 = /:'“ sin (K (2441 — 2')] cos k,z'dz’
Tq
1 1
= -2- {m [COS k,xq+1 - COS(I(I: + k:zq)]
+

1
XTF [cos kzzg4q — cos(Kl, — k,a:q)]} . (F.19)

Substitution from (F.18) and (F.19) back into (F.17) yields

] 1 1
T = &L (K+k, + K—k,)

y [% (cos kzzq41 + co8 kzzq—1) — cos K, cos k,zq] . (F.20)

After some manipulation, this expression may be put in the following form
7 —4K cos k;z,sin [-%(k,, +K )l,] sin [%(k,, -K )I,F
¢ - sinKl, (K +kz) (K - k)

KBcosk;z, .. [l : o
T S [§(k, + K)z,] Sinc [-2-(1:,,. - K)z,] (F.21)

where

it t£Q
Sinc(t) ={ ° 7 (F.22)
1 t=0.

Recall now the integral for the case ¢ = 1 from (F.8)
ls
I7 = /o cos kzz'ay(z')dz’ .
Substitution from (F.4) for a;(z)
1 ls e ’
7 = KL /; cos k.z'sin(l; — z)dz’ . (F.23)

Comparison of this expression to the integral of (F.19) shows that if we let z; — 0

and z,4; — I; in (F.19) we can obtain the solution for the integral in (F.23). The

result is
e o= 1 { L [cos k.l — cos K1,] + ———— [cos kol — cos K I,]}
1 2sin Kl \ K =k, K+k,
1 1 1
Erovea (K—k, + A’+k,) (cos kyly — cos K1) .
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The above can be rearranged to give

2 _—KE [1(1: +I’)I]S‘ [-l-k K)z] forg=1). (F.24
! = SmKL mc2 z + K); §nc 2(;,,.— - (forg=1). (F.24)

Combination of this with (F.21) yields

o CoKcoskyzy . 1, i ol
I; =- T KL, Sinc [§(k, + I&)l,,.] Sinc [i(k, - K)I,_.] (for any q)
(F.25)
where
2 for g=1
Co= (F.26)
4 for g#1.

Finally, substitution from (F.15) and (F.25) back into (F.6) yields

Tomn = / / cos kzz' sin k,y"Y(y')ay(z)dz'dy’
Sq

2
_GIS I-z co,s krz, Sinc
sin K1,

[%(k,+ K)z,] Sinc {%{k, - K)z,]
%
-sin ky Yo Jo(ky?) . (F.27)
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APPENDIX G

EVALUATION OF MAGNETIC FIELD
COMPONENTS

The magnetic field components anywhere inside the cavity are given by the

surface integrals of (2.89) and (2.90)

. aGt aG; , , _
o i
i, A 30' y)ay(2')ds’ . (G.2)

We will evaluate H;, first.

EVALUATION OF THE y— COMPONENT OF THE MAGNETIC
FIELD

From (2.36) and (2.37)

aGY aa(l) ® &
= X

5 kM AL cosk.z sin kyy cos k{Vz

m=1n=0
0 o0
- z ) kB cos koz sin kyy cos k{z .
m=1n=0

After appropriate substitutions and some manipulation we may write

oGW BG“) @n tan k@ (h = ¢)
9z 0z -1y bdynd kDh
m=1n=0 A0 &1mnGomn COS
{EPEPe; tan kD (h = ¢) = [(kM)? + k(1 ~ ;)] tan KR}

- cos k,z sin kyy cos k{2 cos k.2’ sinkyy’ . (G.3)
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Similarly, substitution from (2.38) and (2.39) leads to

3%2 _ G & i @n tan kMh

9z oz m=1n=0 @0 d1mndamn cOS Q) (h=c¢)
(KO tan kDb — [(kP)%e; = k31 - €7)] tan kP (h - o)}

cos k,z sin kyy cos k(P (z — c) cos k.z' sin kyy’ . (G.4)

We are now ready to evaluate the y—component of the magnetic field. Substitution

from (G.3) into (G.1) yields

2 2, tank®(h -c)
O 5>

=t 50 ab dimndamn cos kMR
{KDRDe tan kD (h = ) = [(kM)? + KA1 - €7)] tan k{Vh}

- cos kzz sin kyy cos kVz [Tymn) (G.5)

Replacement of T, with the expression from Appendix F, yields

¢ K13 i i @n tank@(h = ¢)

H) = 2z

W T dabsin Kl 52 5 dynadama cos kDR
{EDEDe; tan kO (h = ¢) - [(kD)? + k(1 — €7)] tan k{Vh}
- cos k., Sinc [%(k, +K)L] Sinc [é(k, - K)z,] sin kYo Jo(kyv—;’é
- cos kyz sin kyy cos k{(Mz . (G.6)

Similarly, substitution from (G.4) into (G.1) and again making use of (F.27) yields

—( KB & &2 @n tan k(Mh
4ab sin Kl, mz=:l nz=:0 dimndamn COS kﬁz)(h -c)
{RDED tan kO — (kD)€ - k(1 - €)] tan kD (h - o)}

W
- cos k., Sinc [-;-(k, + K)l,] Sinc [%(k, - 1{)1,] sin k,Yo Jo(ky )

2)
Hgv) -

- cos kzz sin k,y coskP(z —¢). (G.7)

We now proceed to the evaluation of H ;,.

EVALUATION OF THE z— COMPONENT OF THE MAGNETIC
FIELD



With the use of (2.36), we can write

oGy o =1 A1) -
e = 33" kAL cos k,z coskyy sin k{Vz
m=1n=0

_ f: > @nk, tan k@ (h —c)

m=1n=0 abdlmn cos k l)h

- cos kyz cos kyy sin k{Mz cos k,z' sink,y’ .

Similarly, from (2.38)

8G (2 o ™

—_ = mn COS KT COS K,y sin z—c

e = 2 2 kAR coskuz cos kyy sink{(z - ¢)
m=1n=0

_ Z E @nky tan k(DR

=m0 abdymn cos kD (h = c)

- cos kzx cos kyy sin kP (z — c) cos k2’ sink,y’ .

Substitution from (G.8) into (G.2) and using (F.27) yields

O - _SKE & & pnky tan kP (h - ¢)
Hex 4ab sin K1, 2 Z

Z m=1n=0 dlﬂm Cos kﬁl)h

. cos k,z, Sinc [%(k, + K)z,] Sinc [%(k, - K)z,]

-sin k, Yg Jo(k, V) cos k. cos k,y sin k{Vz

Likewise, substitution from (G.9) in (G.2) yields

H® = (q Ki? i - pnk, tan kgl)h
” 4ab sin K1, m=1n=0 d1mn COS kﬁz’(h -c)

-cosk,z,smc[ (ks + K)I ]Smc[ (k,-K)I,]

-sin k, Yo Jo(k ) cos k,z cos k,y sin L(”(z -c)

(G.8)

(G.9)

(G.10)

(G.11)

In summary, the § and Z components of the magnetic field anywhere in the cavity

may be expressed as follows:

0 0
HY = Hp Y 3 cagell), cos k,z sin kyy cos kM2

m=1n=0

(G.12)
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1 L1
CrgClt), cos koz cos kyy sin k{Vz

s
s

Hyo

3
I
~
3
1}
)

CngCihn COS k2T sin kyy cos k3 (z - ¢)

s
M8

3
|

=1ln=

o0 o
Hpo 30 3 cagcl®, cos ko cos kyy sin k(2 — c)

m=1n=0

(K12
4ab sin Kl,

cos kzz, Sinc [-;—(k, + K )l,] Sinc [l

(ke = EO)L]

o)
P "1""‘ {k(l)k(z)e tan k)(h - ¢)
2mn

— [(6)? + K21 - €})] tan kMh}

Onky tankP(h —c) . 114
= smk Yo Jo(ky—
dl,,m cos kMR vo olky 2
—_ zmn (1) 7.(2) (1)
= kdm{k E® tan kMh
— (B - K1 = )] tan kP (h - o)}
onky tankMh w
= sin k, Yo Jo(ky—
dymn COS kﬁz)(h -c) v¥o Jo(ky 2

(G.13)
(G.14)

(G.15)

(G.16)

(G.17)

(G.18)
(G.19)



210
APPENDIX H

MICROSTRIP CONNECTION REPEATABILITY
STUDY

This appendix includes a description of the microstrip connection repeatabil-
ity study carried out by the author while at Hughes Aircraft Company. In this
study, key repeatability issues related to the measurement of microstrip discon-
tinuities with the TSD (thru-short-delay) technique [44,49], are explored exper-
imenta.lly. These include the repeatability of coax/microstrip connections, mi-
crostrip/microstrip interconnects, microstrip line fabrication and substrate mount-
ing, and the electrical characteristics of coax-to-microstrip transitions (launchers).
Ea.ch of these issues has been explored experimentally and the results are presented
for two types of coaxial-to-microstrip test fixtures: one usable to 18GHz, and the
other to 40GHz.

The objectives met by this study are two-fold. First, trade-offs were explored for
choosing between different connection alternatives for de-embedding in microstrip
with the (TSD) technique Secondly, data was obtained to assess the uncertainties in
microstrip fixture measurements due to the non-repeatability of various microstrip
connections.

Finite measurement uncertainties, due to the repeatability issues described
above, are inherent in each fixture measurement made on the TSD standards
(during fixture characterization), and the D.U.T.. The measurements described

next illustrate how experimentation can be used to determine the magnitudes of



Figure H.1: K-connector (2.9mm) coaxial/microstrip test fixture.

these uncertainties.
DESCRIPTION OF CONNECTION REPEATABILITY EXPERIMENTS

Two types of coaxial test fixtures were used in the experiments. The first,
usable to 18 GHz, consists of a pair of 7Tmm “Eisenhart” launchers [57]. The test
circuit used here consists of a 1” section of 50 ohm microstrip line on an alumina
(h = .025") substrate (Figure 4.4). The other fixture , operable to 40 GHz, uses
a pair of Wiltron K-connector (2.9mm) launchers and a .40” section of 50 ohm

microstrip line on a quartz (b = .01” ) substrate (Figure H.1).

The repeatability experiments performed are summarized in Table 1. For our
purposes, “cycling” a connection refers to disconnecting and reconnecting both
the input and output connections simultaneously and repeating the measurement.

For the coax/coax repeatability experiment, each fixture was connected to and



(8]
—
o

Table H.1: SUMMARY OF REPEATABILITY EXPERIMENTS

NUMBER OF FREQUENCY
EXPERIMENT TRIALS RANGE DESCRIPTION
1. COAX/COAX
A) 7 mm FIXTURE 2 0.045-18 GHz CYCLED CONNECTIONS AT 7 mm COAXIAL
MEASUREMENT PORTS
8) K-CONN. FIXTURE 20 0.045-26.9 GHz "CYCLED CONNECTIONS AT K-CONN. COAXIAL
MEASUREMENT PORTS
2 COAX/MICROSTRIP
A) 7 mm FIXTURE 10 0.045-18 GHz CYCLED PRESSURE CONTACT MADE FROM
LAUNCHER TO MICROSTRIP LINE
8) K-CONN. FIXTURE 10 0.048-40 GHz CYCLED GAP WELD CONNECTION MADE FROM
TAS ON K-CONNM. SLIDING CONTACT TO
MICROSTRIP
3. MICROSTRIP/MICROSTRIP
K-CONN. FIXTURE L] 0.048-40 GH2 CYCLED TWO GAP WELDED RIBBONS USED TO
CONNECT THREE MICROSTRIP LINES
TOGETHER
4 MICROSTRIP FABRICATION/
MOUNTING
K-CONN. FIXTURE L] 0.045-40 GHz MEASURED FIVE SEPARATE MICROSTRIP
LINES WITH SAME LAUNCHERS
S, LAUNCHER-TO-LAUNCHER
UNIFORMITY
A) 7 mm FIXTURS 4 0.048-18 GHz MEASURED SAME LINE WITH DIFFERENT PAIRS
OF 7 mem LAUNCHERS
8) K-CONN. FIXTUME 3 0.045-20.5 Gz MEASURED SAME LINE WITH OIFFERENT PAIRS

OF K-CONM. LAUNCHERS
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GAP WELDED
SLIDING CONTACT ‘N

Figure H.2; Coax/microstrip connection technique used with K-
connector (2.9mm) launchers.

removed from the coaxial measurement terminals several times, taking care not
to disturb the coax/microstrip connection. The Tmm coax/microstrip connection
test was performed by cycling pressure contacts made between the wedge shaped
center conductors on the Eisenhart launchers, and the microstrip line. For the
K-conn. fixture, gap welds used to connect the .018” tab on the K-conn. “sliding
contact” (a small gold plated tab with a sleeve that fits over the launcher’s center
conductor) to the microstrip line (Figure H.2) were cycled. In order to preserve the
microstrip metalization, the minimum amount of weld voltage and pressure needed
to secure the tab was used. This made it possible to use the same microstrip line
and sliding contacts for all 10 trials.

A similar connection approach was used for the microstrip /microstrip intercon-
nects. Two .020” x.025” Gold ribbon straps were gap welded across the connection

interfaces between three microstrip lines (Figure H.3). To cycle this connection,



Figure H.3;: K-connector multi-line test fixture used for testing mi-
crostrip/microstrip interconnects.

the straps were removed and then replaced with new ones. A minimum amount of

weld voltage and pressure were used.

Note that none of the repeatability cycling could be performed without remov-
ing the fixture from the coaxial measurement ports; hence, coax/coax connection
uncertainties are included in all the results. In the microstrip fabrication/mounting
experiment, three uncertainty factors are present simultaneously: coax/coax con-
nections, coax/microstrip coﬁnections, and the variations in the carrier mounted
microstrip lines.

Two automatic network analyzers were employed for the testing; an HP8510
ANA for .045 to 26.5 GHz measurements, and an HP8409 ANA with an in-house
frequency extension system for Ka-Band (26.5 to 40GHz) measurements. The
HP.8510 ANA was operated in step mode with 201 calibration points, and the

Ka-Band ANA was operated in phase-locked mode with 51 calibration points.
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Calibration was achieved using either 7Tmm or K-conn. coaxial standards, depend-
ing on the fixture. After testing, the S-parameters for each of the measurement
trials were stored in separate files so that data processing could be carried out

later.
DISCUSSION OF RESULTS

Due to the large volume of data generated, only a sample of the results can be
presented. Therefore, we will limit the discussion to the uncertainties in Sz; (the
forward transmission coefficient) due to the repeatability issues discussed above.

Figure H.4a shows the coax/microstrip repeatability measurements made with
the 7Tmm test fixture. At a glance this connection looks very repeatable, yet with
some data processing we can get a closer look. A program was written that allows
for statistical computations to bé made using the data stored on file. With this
program, an average set of S-parameters was computed for each experiment. Fig-
ure H.4b shows the results of normalizing the S3; data to the average S-parameters
for the coax/microstrip test. This was achieved by performing a complex division
between the S-parameters from each trial and the average S-parameters. After nor-
malization, it is easy to see the variations in phase and magnitude resulting from
the repeated connections. For the 7mm coax/microstrip connection, the repeata-
bility in Sz, is quite good and can be held to within a range of .1dB(+/-.05dB) in
amplitude and 1 degree (+/-.5deg.) in phase.

Standard deviation data for each experiment was also computed as a function
of frequency. This was done separately for the magnitude and phase angles of the

S-parameters using the following formula:

(Y =)
Zzg_%_
N-1

Std.Deviation = s = \J

where



216

AMPLITUOE OF S21

S21-08
-4 -2 00 B2

-1.8 -9 -6
T 2 -2 -8 8
s11-08

2123 45870889 1!1112131413181713’
FREQUENCY GHn)

a) Amplitude measurements

2
df i
2 NORMAL IZED AMPLITUDE OF S2i +
[
2a
5
"]
Id
!
i ~;
n
=t I
] P
2 j=
* NORMALIZED PMASE OF S21 ‘-
o
d =
a
N
"2 ]
o
)

.

01 23 4S8 7 0 9 189111213 14151817187
FREQUENCY (GHw)

b) Sy results normalized to average S-parameters.

Figure H.4: Tmm Coax/microstrip connection repeatability measure-
ments.
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Figure H.5: Standard deviation data for experiments with 7mm fix-
ture

N = number of trials

z; = magnitude or phase of a particular S-parameter (at a given frequency) for
trial i
The standard deviation data on S,, for the three experiments performed with
the 7mm fixture(Figure H.5), shows clearly that electrical variations between Eisen-
hart launchers can be significant. This is not surprising, since the center pin on
ea.ch is individually tuned to achieve good performance. On the other hand, the
standard deviation resulting from the coax/microstrip test was almost as good as
that from the coax/coax test; thus, the uncertainty contribution to S;; caused by
the Tmm coax/microstrip connection errors is finite but minimal.

The normalized S, data for the k-connector coax/microstrip experiment (Fig-
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ure H.6) displays similar repeatability performance to the 7Tmm coax/microstrip
connection to 18 GHz. The approximate range in amplitude is .1dB to 26.5 GHz
and .2dB to 40 GHz, and the range in phase is 2 degrees to 26.5 GHz, and 8 degrees
to 40GHz. For the microstrip fabrication/mounting experiment (Figure H.7) the
a.fnplitude a.ﬁd phase deviation were about the same if one ,apparently erroneous,
measurement in the .045 to 26.5GHz band is neglected. The connection repeatabil-
ity of the microstrip/microstrip interconnects (Figure H.8) was considerably worse
than the coax/microstrip connections, with ranges in amplitude of .5dB to 26.5
GHz and .6dB to 40 GHz, and in phase of 10 degrees to 26.5 GHz and as much as
15 degrees to 40 GHz.

A good summary of the K-conn. fixture repeatability experiments is provided
by the standard deviation plots of Figure H.9. Admittedly, some of the results
(e.g. launcher-to-launcher uniformity) are not entirely conclusive due to the limited
number of trials performed, however, some definite trends are apparent.

The erroneous measurement in the fabrication/mounting experiment (Figure H.7)
caused the standard deviation in phase below 26.5 GHz to appear much worse
than it should. This is supported by the comparatively good standard deviation
observed in the 26.5 to 40 GHz band, which follows the coax/microstrip repeata-
bility curve closely. Hence, the measurement uncertainties due to microstrip fabri-
cation/mounting variations are not believed to be a major concern. On the other
hand, although the K-conn. launchers are not individually tuned, Figure H.9 in-
dicates significant deviations in S3; between the three sets of launchers tested.
Consequently, for accurate de-embedding work, launcher-to-launcher uniformity
should not be assumed. The standard deviation data for the coax/microstrip and
microstrip/microstrip experiments reinforces the Sy data of Figures H.6 and H.8.
In terms of the TSD connection alternatives discussed in Section 5.3 these results

clearly favor an approach relying on repeatable coax/microstrip connections rather
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than microstrip/microstrip interconnects for the hardware tested.
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A NEW METHOD FOR DISCONTINUITY ANALYSIS IN
SHIELDED MICROSTRIP

L.P. Dunleavy and P.B. Katehi

The Radiation Laboratory

University of Michigan, Ann Arbor, MI

Abstract-. A new integral equation method is described
for the accurate full-wave analysis of shielded microstrip
discontinuities. The integral equation is derived by an
application of reciprocity theorem, then solved by the
method of moments. Numerical and experimental re-
sults are presented for open-end and series gap disconti-
nuities, and a coupled line filter.

I. INTRODUCTION

The development of more accurate microstrip discon-
tinuity models, based on full-wave analyses, is key to
improving microwave and millimeter-wave circuit simu-
lations and reducing lengthy design cycle costs. In most
applications, radiation and electromagnetic interference
are avoided by enclosing microstrip circuitry in a shield-
ing cavity (or housing) as shown in Figure 1. The effect
of the shielding is significant, and requires accurate mod-
eling, at high frequencies. Shielding effects are not ad-
equately accounted for in the discontinuity models used
in most available microwave CAD software.

To address these inadequacies, a new method was de-
veloped for the full-wave analysis of discontinuities in
shielded microstrip [2]. This method accurately takes
into account the effect of the shielding enclosure. The
theoretical contribution, as compared to previous work
[3])-[5), is in the novel way that reciprocity theorem, the
‘method of moments, and transmission line theory are
combined to solve for discontinuity parasitics. As illus-
trated in Figure 2, the coaxial feed is modeled using an
equivalent magnetic “frill” current [6,7]. To the authors’
knowledge, this is the first time that the frill current ap-
proach has been applied to microstrip circuit problems.

To demonstrate the method, numerical results are
presented for open-end and series gap discontinuities,
and a four resonator coupled line filter. These results
are compared to other full-wave analyses, to data from

0149-645X/88/0000-0701$01.00 © 1988 IEEE

Super Compact and Touchstone !, and to measurements.
The measurements were performed using a variation of
the TSD de-embedding technique [8,9].

microstrip shielding
cavity (or housing)

coaxial coaxial
input ' output
z:c.
% y=b
z=h__ |

dielectric substrate

Figure 1: In most practical designs, microstrip circuitry is enclosed
in a shielding cavity whose effects must be accurately modeled at
high frequencies.

II. SUMMARY OF THEORETICAL METHOD

In the theoretical derivation [2], an application of reci-
procity theorem results in an integral equation relating
the magnetic current source A;_!, , and the electric cur-
rent on the conducting strips J,, to the electromagnetic
fields inside the cavity. A Galerkin’s implementation of
the method of moments is employed by first dividing the
strips into NV, subsections. The current is then expanded
according to {1]

N,
j.:d)(g)Z[,a,(z)i:. )

p=1

!Super Compact and Touchstone are microwave CAD software packages
ilable from C t Soft and EESOF respectively.
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magnetic frill
current M .

coaxial

annular
aperture

Figure 2: The coaxial feed is represented by an equivalent mag-
netic frill current M, = M44; this is used as the excitation mech-
anism for computing the microstrip current.

where 1(y) describes the variation of the longitudinal
current in the transverse (i.e. y) direction, and ay(z)
are sinusoidal subsectional basis functions.

The resulting equation may be expressed as

S [/[ Bt =t brey@13a5] 1, =

/LIH,-M.da

where S, is the surface area of the p** subsection, S; is

the surface of the coaxial aperture, and E,, A, are the

electric and magnetic fields respectively, associated with

a test current J, existing over the ¢** strip subsection.
We may express (2) by the matrix equation

(21T =[V] . 3)

Here, [Z] is the impedance matrix, [V] is the excitation
vector and (1] is the unknown current vector comprised
of the complex coefficients I,. .

Finally, after evaluating the elements of [Z] and [V],
the matrix equation is solved to compute the current
distribution.
theory is used to derive scattering parameters, and (if
desired) an equivalent circuit model, to characterize the
discontinuity [1,2].

@

III. RESULTS

An open-end can be represented by an effective length
extension L,s, by a shunt capacitance c,p, or by the
associated reflection coefficient I',, (= S);). The plot
of Figure 3 compares L.y, results to those of Jansen et.
al. (3] and Itoh {4]. Also shown is the cut-off frequency

Based on the current, transmission line
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fe, which is defined as the lowest frequency where non.
evanescent waveguide modes can exist within the cavity
The new results are almost identical to those obtainec
by Jansen et. al. for frequencies above 8 GHz, but shov
a reduced value for lower frequencies.

0.45

0.40 1 f,=17.9GHZ

0.35 4
€ - UANSEN
t B “ THISRESEARCH
- - TOH

0.25 4 .‘.-.—.//‘

0.20

0.18 v r v v r v

0 4 s 12 18 20 24 28
PREQUENCY (GHZ)

Figure 3: Effective length extension of a microstrip open-end dis-
continuity, as compared to results from other full-wave analyses
(s = 9.6, W/h = 1.57, b = .305",c = .2, h = .025").

The results shown in Figure 4 illustrate that shielding
effects are significant at high frequencies. The normal-
ized open-end capacitance c,, is plotted for three dif-
ferent cavity sizes. The results show that reducing the
cavity size raises f, (as expected), and it lowers the value
of cop. For comparison,.data obtained from Super Com-
pact and Touchstone are included.

Y
3.0
259
g’ = SUPERCOMPACT
] o TOUCHSTONE
3z < CAVITY CA
$ - CAVITY CC
o’ 18 - CAVITYCF
f, = 43.5GHZ
101 f,a 57.5GH2
05 v e v v v
0 10 20 3 40 50 60 70
PREQUENCY (GHZ)

Figure 4: A comparison of the normalized open-end capacitance
for three different cavity sises shows that shielding effects are sig-
nificant at high frequencies (¢, = 9.7, W = h = .025"; cavity CA:
b = ¢ = .25", cavity CC: b = ¢ =.01", cavity CF: b = ¢ =.075").



In the remaining examples, numerical results from the
new method are compared to measurements. Figure 5
shows results for the angle of Sy, of an open-end, and
Figure 6 contains results for the magnitude of the trans-
mission coefficient (/S /) for a series gap discontinuity.
In both cases, the agreement between the numerical and
experimental data is very good.

0

.54

-10 1
g .
¥ ~ THISFESEARCH
e s -« SUPERCOMPACT

.25 4

-30 T T 2 T

) 4 s 12 18 20 24

%2v (OB)

Figure 5: Numericaleand measured results show good agreement
for the angle of S11 of an open circuit (¢, = 9.7, W = h =.025",
b = ¢ =.25").
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Figure 6: Good agreement with measurements has also been ob-
tained for series gap discontinuities. Shown here is the magnitude
of S3y for a series gap with a 9 mil gap spacing (¢, =9.7,W =h
= 025", b = ¢ =.25").

Finally, consider the four resonator filter of Figure 7.
Numerical results for the magnitude and phase of S,
shown in Figure 8, demonstrate excellent agreement with
measurements for frequencies below the cutoff frequency
f.. Above cutoff, the filter measurement is distorted due
to waveguide moding within the test fixture.
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Figure 7: Numerical and experimental results are compared below
for this 4 resonator filter-( ¢, = 9.7, h = .025", b = 4", ¢ = .25").
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Figure 8: Results for transmission coefficient S3, of 4 resonator
filter.



IV. CONCLUSIONS

A new analysis method has been described for shielded
microstrip discontinuities. Results from this method
have demonstrated good agreement with measurements
and other numerical results. This method is useful for
the evaluation of existing discontinuity models, for the
analysis of cases where existing solutions fail —such as
when shielding effects are significant-, and for the de-
velopment of new discontinuity models with improved
accuracy for high frequency applications.
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Abstract-.

As an application of the theoretical method described in a companion paper,
numerical and measured results are presented for open-end and series gap dis-
continuities, and a coupled line filter. Comparisons are also made to commer-
cially available CAD package predictions. The results verify the accuracy of the
new theoretical method and demonstrate the effects of shielding on discontinuity
behavior. The experimental techniques used, which involve the thru-short-delay

de-embedding approach, are also explained.
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I. INTRODUCTION

This is the second of two papers concerned with the study of shielding effects
in microstrip discontinuities. The companion paper [1] develops a new theoretical
method for the full-wave analysis of shielded microstrip discontinuities. The effects
of shielding are important in two situations. The first is when the frequency
abproaches or is above the cutoff frequency for higher order mode propagation.
The sepond occurs when the metal enclosure (Figure 1) is physically close to the
circuitry (proximity effects). These effects have not been adequately studied in
the past, and are not accounted for in the discontinuity models in most available
CAD packages.

In addition to improved theoretical methods, there is a great need for exper-
imental data. Published experimental data on microstrip discontinuites is very
limited, especially for high microwave (above X-band) and millimeter-wave fre-
quencies. Such measurements are not trivial, but are essential for verification of
the theoretical method. This need motivated the experimental study discussed
here.

This paper uses the previously described method [1] to study the effects of
the shielding cavity on the behavior of one- and two-port discontinuities including
open-ends, series gaps and parallel coupled line ﬁlters. Comparisons are made to
measurements, to available data from other full-wave analyses, and to commercially

available CAD packages.



II. EXPERIMENTAL TECHNIQUES

Measured data on microstrip discontinuities is very limited, particularly at
higher frequencies (above 10GHz). This is due to the difficulties involved with
performing accurate microstrip measurements. In order to measure a microstrip
circuit, it is generally mounted in a test fixture with either coax-to-microstrip or
waveguide-to-microstrip transitions. The main difficulties associated with such
measurements are the separation of test fixture parasitics from measurements,
called de-embedding and the non-repeatability of microstrip connections.

This section explains the experimental techniques used for this study, and ad-
dresses the connection repeatability issues that pertain to the measurements.

A. De-embedding Approach

The measurement approach of this study employs Automatic Network Analyzer
(ANA) techniques in conjunction with the thru-short-delay (TSD) method for de-
embedding the effects of the test fixture from the measurements. The test fixture
that was used is shown in Figure 2. The fixture employs a pair of Tmm “Eisenhart”
coax-to-microstrip transitions [2]. The shielding is provided by placing U-shaped
covers on top of the microstrip carriers. This forms a cavity similar to Figure 1.
The instrumentation used for the measurements was an HP8510 ANA.

The test fixture invariably introduces unwanted parasitics and a reference plane
shift to the measurements. These effects must be accurately accounted for and re-
moved from the measuremenfs, or incorporated into the ANA system error model.
Conventional ANA calibration, which uses a short circuit, an open circuit, and a

matched load is not easily performed in microstrip since these calibration standards



are much more difficult to realize in microstrip.

The process for removing test fixture effects is called de-embedding and consists
of two steps: 1) fixture characterization, and 2) the extraction of fixture parasitics.
Through de-embedding, the effective calibration reference planes are moved from
the coaxial or waveguide ANA test ports to microstrip test ports within the fixture.

A comparison of various de-embedding techniques [3] lead to the choice of the
TSD technique for the experimental study. This approach was selected over the
alternatives considered because the standards used for fixture characterization are
the easiest to realize in microstrip, and because the connections to these standards
can be made in the same way as the connections made to discontinuity test circuits.
In the TSD technique, two-port measurements made on a thru (zero length delay)
line, a “short” éircuit, and a delay line provide enough information to characterize
the fixture. Since the original paper [4], it has been pointed out tlha.t the “short”
implied in TSD, need not be perfect. In fact, any highly reflecting standard may be
used in its place [5,6]. The only requirement is that the same reflection coefficient
I'y, must be presented to both microstrip test ports. |

This measurement approach provides for the measurement of the effective dielec-
tric constant, the reflection coefficient of open-end discontinuities, and the two-port
scattering parameters of series gaps and coupled line filters. In the present imple-
mentation of TSD de-embedding, an open-ended microstrip line is used in place of
the short as the reflection standard. Measurements of microstrip effective dielec-
tric constant ¢.ss, and the reflection coefficient of the open-end I',, are obtained

as byproducts of the fixture characterization procedure. Once the fixture is char-



acterized, the de-embedded S-parameter measurements of two-port discontinuities
are obtained by extracting the fixture parasitics mathematically.

B. Connection Repeatability Issues

One drawback to the TSD technique is that good microstrip connection re-
peatability is important for accuracy. Microstrip connections are much harder to
make, and less repeatable than connections in coax and waveguide. This is a key
limiting factor to the accuracy of microstrip measurements at higher frequencies.
To address this issue, a microstrip connection repeatability study was carried out
[7]. The results of this study were used to decide on the best connection approach
to use and to estimate the associated measurement uncertainties.

There are three basic connection alternatives for TSD characterization of a

coaxial fixture. Each of these must rely on at least one of the following assumptions:

1. repeatability of connections made from the coax-to-microstrip transition to

the microstrip line
2. repeatability of microstrip-to-microstrip interconnects

3. uniformity of electrical characteristics between different transitions (launcher-

to-launcher uniformity).

The results of the repeatability study favor a connection approach relying on re-
peatable coax/microstrip connections, and this was the approach adopted for the
present work.

As part of this work, a method was developed to approximate the uncertainties

in de-embedded results arising from connection repeatability errors [3]. The anal-



ysis consists of perturbing the S-parameters of the TSD standards and the D.U.T.
with a set of experimentally derived error vectors that are repre;enta.tive of the
variations of.each S-parameter (S11, S12 etc. ) measurement with repeated connec-
tions. Software was written to é.How processing the perturbed S-parameter data in
the same way as the measurement data is processed during the TSD de-embedding
procedure discussed above. This perturbationra.na.lysis, shows approximately how
connection errors —which are inevitable— propagate through the TSD mathemat-

ics and limit the precision of the final results.
III. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, the numerical and experiménta.l results of the present research
are presented for the network p'ara.meters of shielded microstrip discontinuities.
Included here are results for the effective dielectric constant, open-end and series
gap discontinuities, and céupled line filters. Where possible, comparisons are made
to results generated from the commercially available CAD packages Super Compact
and Touchstone!.

The CAD models used in these packages are based on a combination of different
theoretical techniques, most often embodied in simplified closed form solutions,
curve fit expressions, or look-up tables. These models do not adequately account
for the effects of the shielding box (Figure 1). Further, in simulating a circuit
containing many discontinuities, the analysis of these packages assume that the
discontinuities are independent of one another and the matrix representations for

each discontinuity are simply cascaded together mathematically.

! Super Compact and Touchstone are microwave CAD software packages available from Compact Software and
EESOF respectively.



In contrast, the full-wave solution presented in Part I accurately treats the entire
geometry of the shielded microstrip circuit as a boundary value problem. The
interactions between the discontinuity structure, adjacent microstrip conductors,
and the shielding cavity are automatically included in the analysis. Because of this,
the method is expected to provide better accuracy than CAD model predictions.

A. Cutoff Frequency and Higher Order Modes

One case where shielding effects are noticeable is when the frequency approaches
the cutoff frequency f. for the first higher order shielded microstrip mode. The
nature of higher order modes in shielded microstrip is quite different from that
in open microstrip. In open microstrip, higher order modes occur in the form
of surface waves and radiation modes. The first surface wave mode has a cutoff
frequency of zero. In shielded microstrip, the higher order modes take the form
of waveguide modes [8]. As a consequence, ‘below the waveguide cutoff frequency,
only the dominant microstrip mode can exist.

For the present work, the f, for the shielded microstrip geometry of Figure 1, is
approximated by considering the dielectric-loaded waveguide formed by removing
the strip conductors and the walls at z = 0, and a. The cutoff frequencies so
derived have been found to give a good prediction of where higher order effects
are first observed in the computed current distributions. As an example, Figure 3
shows the current distribution on an open-ended line operating below the cutoff
frequency. For the indicated geometry, f. is about 17.9 GHz. As the frequency is
raised above the cutoff frequency, the current becomes more and more distorted as

shown in Figure 4. The distortion is due to the interactions between the dominant



mode and the first higher order waveguide-like mode inside the cavity.

B. Effective Dielectric Constant

Figure 5 shows €;4s for a 25 mil thick alumina substrate where the cross sec-
tional shielding dimensions, b and c, are ten times the substrate thickness (h).
The numerical results are compared to measurements, and to CAD package pre-
dictions. Note that Super Compact allowsvonly the cover height to be varied while
the calculation provided by Touchstone neglects shielding effects. For the shielding
geometry used here, it is seen that the difference between the numerical and CAD
pa,ckagé results are within experimental error. However, interestingly enough, bet-
ter agreement between the CAD results and the numerical results is observed at
higher frequencies. This may be due to the fact that the side walls, which are not
included in the CAD package analysis are electrica.lly closer to the strip at low
frequencies.

The measured data is obtained as a byproduct of the TSD fixture characteriza-
tion procedure as discussed above. The data shown represents the average of ten
separate procedures conducted over a period of time with four different sets TSD
standards. The error bars shown in Figure 5 represent the standard deviation (+s)
of the different measurements. This data is shown here in lieu of the result from a
single measurement, since it gives a more representative view of the involved mea-
surement uncertainty. In this case the error bars shown represent the combined
effect of connection errors, variations in ¢,, and other factors. The major error

source in this case is believed to be the variations in €, which can be significant



Table 1: CAVITY NOTATION USED TO DENOTE DIFFERENT GEOMETRY AND SUB-
STRATE PARAMETERS

CAVITY [ ¢, [W (in) [~ (in) [ b (in) [ c (in) | /. (GHz)
CA 9.7 | 025 | .025 | .250 | 250 | 21.8
CC 9.7 [ 025 | .025 [ .100 | .100 | 37.5

| CF 9.7 | 025 | .025 | .075 | 075 | 417

———————

[ QCB__[3.82] .0157 | .010 | .122 | 080 | 4538
QCE__[3.82] .0157 | .010 | .100 | .100 | 73.0
QCG_[3.82] .0157 | .010 | .050 | .05 | 102.5

for alumina substrates [9]2.

To see how €.y varies with shielding, consider the plot of Figure 6. This plot
compares numerical and Super Compact results for three different shielding geome-
tries. The notation used to describe different shielding and substrate geometries
is explained in Table 1.

In all cases, as the shielding is brought closer to the microstrip a reduction in
€ess is predicted. The case for cavity CA is the same as that of Figure 5. For the
other two cases, where the shielding is closer to the microstrip, the Super Compact
shows a smaller effect than the present integral equation method predicts.

The effect of shielding on €.z for a quartz substrate is displayed in Figure ??.
In this case the Super Compact analysis is seen to give good results for both of
the two larger shielding geometries . However, the numerical results again show a

larger reduction in ¢.ss as the size of the shielding is decreased further.

The reduction of the effective dielectric constant, relative to Super Compact,

2This error reflects the uncertainty of not knowing the exact value of ¢, to use in the theoretical simulations.



can be explained as follows. For a larger shielding geometry, the field distribution
on the microstrip more closely resembles the open microstrip case, with most of the
electric field concentrated in the substrate. In this case, most of the electric field
lines originate on the microstrip conductors and terminate on the ground plane
below. As the cavity size is reduced, the ground planes of the top and side-walls
are brought closer to the microstrip lines. The electric field distribution is now less
concentrated in the substrate, as more field lines can terminate on the top and side
walls. As a resﬁlt, a proportionally larger percentage of the energy propagating
down the line does so in the air region, and the dielectric constant is reduced.

C. Open-end Discontinuity

As discussed in [1], an open-end discontinuity can be represented by an effective
length extension L.y, or by a shunt capacitance c,,. Both of these representations
will be used in this section.

The plot of Figure 8 compares L.s; results to those of Jansen et al. [10] and
Itoh {11]. In this case, the dimensions of the shielding cavity are large with respect
to the substrate thickness. The results from this research are almost identical to
those obtained by Jansen et al. for frequencies above 8 GHz, but show a reduced
value for lower frequencies.

The case of Figure 8 was chosen to compare the coaxial and gap generator ex-
citation methods used in the method of moments solution. Table 2 shows that the
results computed for this case by the two methods are equivalent. This equiva-
lence also holds for the two-port scattering parameters for the structures consid-

ered herein. Hence, as far as computing network parameters is concerned either



Table 2: COMPARISON OF L.;;/h COMPUTATION FOR THE TWO TYPES OF EXCITA-
TION METHODS

7 (GHz) 4 | 8 |12 | 14 [ 16 | 18 | 20
GAP
GENERATOR | .298 | .305 | .309 | .321 | .324 | .344 | .353
COAXIAL
EXCITATION | .299 | .304 | .309 | .322 | .327 | .344 | .352

method gives good results. Since the coaxial method is more realistically based,
this conclusion lends validity to the use of the gap generator method.

The results shown in Figure 9 illustrate the effect of shielding on the open-
end discontinuity. The normalized open-end capacitance c,, is plotted for three
different cavity sizes. The results show that reducing the cavity size raises f. (as
expected), and it lowers the value of ¢,,. For comparison, data obtained from
Super Compact and Touchstone and measurements (see Section 4.3) are included.
The errors bars on the measurements represent the estimated standard deviation
(£s) of the connection errors associated with this measurement?.

Similar shielding effects are observed for an open-end on a quartz substrate as
shown in Figure 10. In this case it is seen that the Super Compact result gives a
good value for low frequencies, and where the frequency is well below the cutoff
frequency for a given shielding size. These results show that shielding effects due to
wall proximity are less important than shielding effects due to the onset of higher

order modes.

3The other error sources indicated for the effective dielectric constant measurement are not considered to be
as significant for this measurement.
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D. Series Gap Discontinuities

Numerical and experimental results have been obtained for series gap disconti-
nuities of three different gap widths [3]. Results for one of these gaps are presented
here.

Numerical results for the magnitude of Sy of a series gaps with a 15mil gap
width are shown plotted in Figure 11. For comparison, results obtained using Super
Compact, and Touchstone are also shown plotted along with measured data. The
numerical results are seen to be in very good agreement with the measurements.
The test substrate and shielding dimensions used for the measurements are those
for cavity CA (Table 1). The error bars associated with the connection errors, are
on the order of +.5dB and are too small to show on the plots.

Results for the angle of S;; and Sy, for the 15 mil series gap are shown in
Figures 12 and 13. The error bars in these charts represent the estimated standard

4. Although the measurements tend to

deviation from the perturbation analysis
favor the numerical results; the phase differences are not too significant since it
is suspected that the measurement may be in error by more than that attributed
to connection errors alone. The phase of the S-parameters for the other two gaps
behave in a similar way as that for the 15 mil gap and have been omitted from
this treatment.

These results are seen to further verify the theory developed in Part I. For

the large shielding dimensions used for the measurements (b,c > h) the CAD

models are also seen to give reasonable predictions. The behavior of series gaps

$The analysis was carried out at 10GHz, and it is assumed that the connection errors are approximately the
same at the other measurement frequencies.
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for different shielding dimensions was not studied, instead emphasis was placed on
obtaining results for coupled line filters since their behavior is more complicated
and therefore more interesting.

E. Four Resonator Coupled Line Filter

The last results to be presented are for the four resonator coupled line filter of
Figure 14. For brevity, only the amplitude and phase of S3; will be discussed.

Numerical and measured results of this research are compared along with CAD
model predictions in Figure 15. The CAD package analysis for coupled line filters
is performed by cascading two different types of discontinuity elements together:
coupled microstrip lines, and open-end discontinuities. Neither of the packages
studied here account for shielding in the open-end discontinuity model, however,
Super Compact does include the effect of the cover height in the model for coupled
lines.

The numerical results shown in Figure 15 demonstrate excellent agreement with
measurements up to the cutoff frequency. The cutoff frequency f, for the shielding
geometry of the filter is approximately 13.9GHz. Above this frequency, the mea-
surements are distorted because of the enhanced electromagnetic coupling between
the feed apertures. This coupling is due to the excited waveguide modes within
the test fixture.

The results of Figure 15 show that even for large shielding dimensions discrep-
ancies are apparent in the CAD model predictions, whereas the numerical results
follow the measurements closely, both in amplitude and phase. As can be seen

from the amplitude response (Figure 15a), the CAD models give a good prediction
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in the pass band, but fail to predict the filter response in the rejection band. This
is also seen from the phase response (Figure 15b), where the CAD models display
a large error compared to measurements between about 6 and 8.5GHz, while the
numerical results track the measured amplitude and phase very well.

Below about 5.5GHz, the measured phase is seen to be different from the pre-
dictions of both the CAD models and the numerical results. This is most likely
due to a phase error in the measurements. In the TSD technique, the delay line for
the measurements should ideally be 54’- at the measurement frequéncy 5, When the
electrical length becomes either too short or too close to a multiple of 4\2‘, phase
ambiguities can result. A good rule of thumb is for the delay line to be between %’-
and 3—;\4. At 5.5GHz the delay line used for the measurements is slightly less than
589-; hence, this is most likely the source of the phase error in the measurements
below this frequency.

We will now examine what happens as the top cover is brought closer to the
circuitry. Figure 16a shows Super Compact predictions for the four resonator filter
with two different cover heights. These predictions indicate that lowering the cover
height should significantly narrow the pass band, and reduce the amplitude in the
rejection band.

A significantly different prediction is observed in the numerical results for this
case presented in Figure 16b. A narrowing of the pass band response is also
observed in the numerical predictions, but not by nearly as much as Super Compact

predicts. More importantly, the amplitude in the rejection band is seen to increase

SMultiple lines are needed for broadband measurements.
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instead of decrease.

To prove that the numerical prediction is indeed the correct one, an additional
measurement was made of the filter for the low cover height case. As can be
seen from Figure 16b the agreement between measured data and the numerical

predictions from this research is excellent.
IV. SUMMARY

In this paper theoretical and experimental results were presented for the network
parameters of one- and two-port discontinuities. For the measurements, the TSD
de-embedding approach was used. Connection repeatability errors were considered
in detail and a perturbation analysis was developed to approximafe their effect on
the precision of the final de-embedded results.

The effects of shielding on microstrip behavior were studied. It was demon-
strated that the computed current distribution becomes distorted above the cutoff
frequency f. for the first higher order shielded microstrip mode. On the other
hand, as long as the cavity size is such that the frequency is below f,, the current
is uniform and undistorted regardless of how thick the substrate is.

Only one of the CAD packages studied takes shielding into account for the
effective dielectric constant (e.ss) calculation, and then only cover effects are con-
sidered. A comparison of the CAD package predictions with the numerical results
of this research for ¢,ss showed that good agreement is obtained when the shielding
dimensions are large with respect to the substrate thickness, while for small shield-
ing dimensions, the difference between the different results becomes significant.

For the open-end discontinuity, good agreement with other full-wave solutions
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and with measurements has been demonstrated. A comparison of open-end capac-
itance for different cavity sizes showed that, as the cutoff frequency is approached,
the capacitance increases in each case. Choosing a small cavity with a high cut-off
frequency extends the region where the capacitance is relatively constant.

Good agreement between numerical and measured results was also demon-
strated for series gap discontinuities and a four resonator coupled line filter. For
the filter, reducing the cover height was seen to narrow the pass band response and
raise the amplitude of the filter’s rejection band response. The numerical results
of this research give an excellent prediction of this effect, whereas discrepancies are

apparent in the CAD model predictions.
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Figure 1: Basic geometry for the shielded microstrip cavity problem.

18



Figure 2: 7mm coaxial/microstrip test fixture (partially disassembled) used for measurements.
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Figure 3: Imaginary part of current on open-ended line below the cutoff frequency f. (f =
16GHz,e, = 9.7, W/h = 1.57,h = .025”,b = ¢ = .275").
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Figure 5: Numerical results for ¢,7, compared with measurements and CAD package predictions
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Figure 6: Shielding effects on €.y, for an alumina substrate (see Table 5.1 for geometry).
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Figure 7: Shielding effects on €.;; for a quartz substrate (see Table 5.1 for geometry).
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Figure 8: Numerical results compared to those from other full-wave analyses (¢, = 9.6, W/h =
1.57, b = .305",¢ = .2, h = .025").
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Figure 9: Comparison of the normalized open-end capacitance for three different cavity sizes.
This shows that shielding effects are dominated by the onset of higher order modes rather than
by proximity effects (see Table 5.1 for cavity geometries).

25



08
4 fc- 73.0GHZ

t = 102.5GHZ
7 - ¢

0. fc¢45.BGHZ
E -
§ 987 \ —a@—  SUPER COMPACT
e 1 ——ye— QCE: THIS RESEARCH
S 0.5 4 g QCG: THIS RESEARCH
. & . ——g— QCB: THIS RESEARCH
(3)

0.4 +

0.3 ety Tt T~

0 20 40 60 80 100 120

FREQUENCY (GHZ)

Figure 10: Normalized open-end capacitance for three different cavity sizes for a quartz substrate.
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9.7, h =.025", b = 4",

Figure 14: Sketch of four resonator coupled line filter studied here ( ¢,

c =.25").
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1 Introduction

A method which accurately characterizes open microstrip discontinuities and microstrip an-
tennas has been developed by using a full dynamic analysis [2]. The method accounts for substrate
effects, electromagnetic coupling, radiation losses, ahd surface wave excitation. The method con-
siders a two-dimensional current distribution in the plaﬁe of the microstrip, and can therefore
accurately characterize microstrip bends, T-junctions, and steps. Also, because the formulation is
for an open microstrip geometry, this analysis is also valid for radiating elements such as patches,
or travelling wave antennas. The method will also be used to compute the power radiated, and
launched into surface waves for discontinuities, and the ratio of radiated power to surface wave
power in antenna.

In the formulation of the problem, an integral equation is used which relates the electric field
to the current on the microstrip conductor. This integral equation contains the Green'’s function
for the dielectric coated conductor geometry. Method of Moments is used to generate a system
of linear equations from the integral equation. This system can then be solved to determine the
current on the microstrip conductor, and subsequently the scattering parameters and radiated

fields.

2 Pocklington’s Integral Equation

This section provides a summary of the formulation for the full-wave analysis of a microstrip
element in the spatial domain. For a more detailed summary refer to ”Computer Modeling of
Microstrip Elements and Discontinuities,” [1].

The electric field from the current on a microstrip structure as shown in figure 1 is given by

Pocklington’s Integral Equation [4]

E’":-—//(k’l+ﬁ V)&, 7)) (1)

Where [ is the unit dyad
)

~
)]
(1)
N
+
<
<
+
[
~N>



Figure 1: Croes Section of Microstrip Geometry

Also, J is the unknown current, and G is the dyadic Green’s function for the dielectric coated

conductor and satisfies the wave equation for an infinitesimal point source
(VV + k)G(F,7) = —plb(F - 7) (3)

The derivation of the Green’s function for an x-directed hertzian dipole above a grounded
dielectric slab was done by Sommerfeld [3]. He demonstrated that in the presence of a dielectric-
air interface, the Green’s function requires both an x and z component making it a dyadic. When
both x and y directed currents are considered, as in the case of a bend, the Green’s function has

four components.

G(F/7) = Guzdt + Gyait + Gyy i + Gayi (4)
Where

—_M = —uols~d| __ ,—uols+d] M —ug|s+d| i
Gee = 4”‘_3‘/0 Jo(Ap)(e e +2u°f1(A,h)e )uodA (3)

—uols+d| 8inh uh cosh uh

_ _qdwho sinh uh cosh uh
Gus = 2081 - ) cond / 70p)e SR AG A (6)
Gyy = G:zs (7)
G;y = tan¢G;. (8)



With

fi(A,h) = ug sinh uh + u cosh uh (9)
f2(A, k) = € ug cosh uh + usinh uh (10)
p=V(E-2)2+(y-y)? (11)

uo = /A2 — k3 (12)
=2 —=k2 (13)

z—-z

cosd =

(14)
3 Method of Moments

Pocklington’s Integral Equation (equation 1) cannot be solved analytically. To solve for
the unknown current, the integral equation can be used to generate a system of simultaneous
linear equations. One method of doing this is entitled Method of Moments [5]. The unknown
current is expanded into a finite series of basis functions and unknown coefficients. These series
are substituted into 1. To create the system of linear equations, the boundary condition on
the electric field at the microstrip conductor is enforted, and Galerkin’s method is applied for
minimization of the error. The resulting system of linear equations can be solved for the unknown
current coefficients.

Assume we wish to find the unknown current on the microstrip bend shown in figure 2. The
bend is partitioned into overlapping squares as shown in figure 3. The two directions of current

are then expanded into series of the form

N4+1M+1

J: = Z Z I:mj:m(z’7y) (15)

n=1 n=1}

N+l M+1

Jy=D_ Y Bnitm(,¥) (16)

n=1 n=1

The current is considered separable with respect to z’ and y’. The choice of basis functions are

overlapping sub-domain. Each term in the series is non-zero only over a small portion of the bend.
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Figure 3: Sub-divided Microstrip Bend



For instance, the (n,m) element is centered at z,, and y,, and is zero out of the square shown in
figure 3. The functions overlap so that the sum of the series, once the unknown coefficients are
determined, can give an accurate representation of the true current. The basis functions chosen

are rooftop, and can be represented mathematically as

Jam(@ YY) = [fa(z)am(y)] (17
Fam(@¥) = lgn(z') fm ()] (18)
With
oy | B oo
ﬂ'ﬁ%:.:.‘.’;l.-.ﬂ Zn-1 <2 <20
And

m(y) = { 1 yma1 <Y S Ym41
where l; = z,41—2,. Functions f,(y’) and gn(z’) are given by the above with ¥/, yn—1, Yn+1,ly
substituting for 2/, zn—1, Zn41, lz.
Substitution of this into Pocklington’s Integral equation and expansion of the dyadics results

in an expression for the electric field

N+1M+1

Eet OBy = =3280 3 3 Iin [ [ 40y LosBOO () (19)

n=1l n=1

N+i1M+1

112‘322 > D f f dz'dy Loy (Jo(Ap))inm(z', V') (20)

n=l n=1

And
N+1M+1

By +AE, =3280 > [ [ 45 L0nIopinm(a’ ) (21)
n=1 n=1

N+iM+1

-3 Y Y e [ [ day Ly To3oiom( ) (22)

n=1 n=1

With AE; and AE, being the errors introduced by the truncation of the series in 15 and' 16.

The integro-differential operators, L;z, Lyy, Ley, and L,z are

o] 62 az
Cos= / MR + 5=7) = Fa(X) 57} (23)



o0 2 2
L= [ DROE + 522 - FW) 3} (29

o0 32
Lo = [ DA - ROz (25)
Lzy =Ly (26)

The functions F1()) and F3()) are singular functions of A given by

sinh uh
fl(’\1 h)
—uols+dj Sinh uh cosh uh

fi(A, h)fa(A, h)

F(\) =- ‘;I‘O 2e —uols=d| _ ,-uols+d| 2uq e-"oll+dl);"§_ 1)

F()) = 2""’;;’(1 ¢,) cos 6 / To(p)e 2 (28)

3.1 Galerkin’s Method

The previous section outlined the method of moments procedure. The above equations could
be used to arrive at a simultaneous system of linear equations by applying the boundary condition
on the strip conductor at (N + 1)(M + 1) different points, or.in other words, by setting AE, and

AEy to zero. A stronger condition for the minimization of the error is the definition of the inner

product
V2, = (oD, AE:) =0 (29)
Vi = (vu(7), AEy) =0 (30)
With ;
G, 88 = [ [drayinmac, (31)

When the testing functions, j,,(7), are chosen to be the same as the basis functions fum() the
method is called Galerkin’s method. Equations for v = 1, ... N+1 and 4 = 1, .... M+1 generate

a system of linear equations of the form

N+1M41 N4+1M+1
=3 Y BnZesmnm)+ 3 3 1Y, 20y (v, 50, m) (32)
n=1 n=1 n=1 n=1
N+1M+1 N+1M+1
Va?n = Z z LimZys(v, p;n,m) + Z Z BimZyy(v, pin,m) (33)
n=1 n=1 n=1l n=1
Where
Zij(v, pin,m) = 258 27 20, L 1Jo(30)}, (7)) (39)



3.2 Impedance Matrix Evaluation

The impedance matrix above contains elements which are very difficult to evaluate. Much care
was taken to reduce the impedance matrix elements to a form which would be computationally

efficient. The system of equations can be written in matrix form as

ZXXxu zxXyes || om vyu

ZXxy zyvys || om v

We now split the integro-differential operators L;; defined in the previous section into two parts
Lii{} = C5{} + L3} (35)

In the operator E;}, the A-integration extends from zero to A, and in L{y extends from A to

infinity. A is chosen to be a large number such that
tanhvVA2-k2=1 (36)

Beyond A an asymptotic expansion can be used for the Green’s function.

Substitution of 36 into L{} {Jo(Ap)}, results in the following expression.

£330} =af,-7ﬁ—czwo(xp>} (37)
With
L= [ [Ms08+ -0 55) (38
L= [ [asE+ 2 -smZ (39)
Lo = [ [ MS0)K + 520 - 5100 3252) (40)

And in view of the above, equation 35 will take the form
1
Lij{Jo(Ap)} = LE{Jo(A jj—— 41
ii{Jo(Ap)} aJ{ o(A9)} + ai; m (41)
With a;; and b;; being constants which depend on A. Also, L;‘j is given by 23-25 with F;(A)-S;())
and F3(A) — Sz(A) substituting for Fy()) and Fy()) respectively.



The resulting integration from 0-A (L;Aj{Jo(/\p)}) can be partially transformed to reduce
computer effort. Refer to "Computer Modeling of Microstrip Elements and Discontinuities,”
pp. 21-24 [1] for the details. The integration over this range also includes a finite number of
singularities which are handled by a singularity extraction technique discussed on pp. 24-25 and
28-30.

The term a;j known as the ”tail contribution”, is computed by a combination of

H
p3+b2;

numerical and analytic techniques as discussed in the same report on page 27.
3.3 Excitation Vector

The excitation vector in the matrix equations depends on the type of excitation used. A useful
excitation is the delta gap generator. In this case, the electric field on the strip conductor is zero
everywhere except at the delta gap. When the testing cell contains the gap the excitation vector
will have a value for that element. If the testing cell does not contain the gap, the excitation
vector element will be zero. If the gap is assumed to have unit strength and the fields are

x-directed in the gap and located at position z,,y, ,then

ve = 1 ifv=a=z

v
0 elsewhere

4 Scattering Parameters

For microstrip discontinuities, the aim of this work is to develop equivalent circuits by using
the calculated scattering parameters. Once the current is determined as discussed in section 3.2,
the scattering parameters must be determined. One method to do this is the even-odd mode

excitation scheme.
4.1 Even-Odd Mode Excitation Method

Any two port, as shown in figure 4, can be represented by 2-port impedance parameters



4‘
v > Microstrip V
1 Discontinuity 2

Iy 2107512 %907 %2 |

o
1

Figure 4: 2-Port Discontinuity

Va Zn 23 I,

With Z3; = Zy3 due to reciprocity.

To determine these impedance parameters, the even-odd mode excitation method may be
used. On each side of the discontinuity, a delta gap generator is placed (V,l and V,’) as shown
in figure 5. The input impedances Z}#, 2%, Z}?, and Z?* can be determined at both ports (1,2
superscripts) by the resulting current on the element which is determined as.explained in section
3.2 by exciting the discontinuity for the even case Vy =V, and the odd case v, = =Vy. Once

these are known, one can construct the Z-matrix from the equations

Zn= %(Z.'l-: +2 (42)
Zyy = %(zz,:arz,?; (43)
Zia = 5(2 - 789) (49

Z1a=2y (45)
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where the added superscripts refer to the port the input impedances are calculated.
The scattering parameters can then be determined by well known relations between scattering

and impedance matrices.
L= (Z11 = 1)(Z2a +1) - 23,

51 1 (46)
1\ 72
Spp = (211 + 1)(Zj: 1) - 273 (47)
2
Sia = 1 (48)
A=21+1) (2 +1)-23 (49)

4.2 Alternate Method To Calculate Scattering Parameters

Another method of determining the scattering parameters for a microstrip discontinuity is to
assume that away from the discontinuity the microstrip propagates the fundamental microstrip
mode with propagation constant k., which is determined previously for an infinite line [7). The
element can then be divided into 3 regions as shown in figure 6. For the 3 regions assume
i) In region 1, an incident wave of unit magnitude, and a reflected wave with unknown reflection

coefficient R is assumed.

12



ii) Region 2 contains the discontinuity and both x, and y directions of current are expanded by

piecewise sinusoidal basis functions as discussed in section 3.2.

iii) In region 3,-a transmitted traveling wave with unknown transmission coefficient T is assumed.
By exciting the discontinuity from both directions, one can extract the scattering parameters

directly from the solution of the matrix equations (R = Sy; etc).

5 Surface Waves and Power Radiated

A contribution of this work will be the evaluation of the power radiated and the power
launched into surface waves from microstrip discontinuities. These effects are critical at higher

frequencies, and must be accounted for in the design of microwave circuits.
5.1 Radiated Power

To calculate the radiation pattern of a microstrip element, the far zone fields above the
dielectric-air interface are needed. Once the current is determined as detailed in section 3.2, a
numerical integration can be performed with equation 1 to computé the fields, but this is not
computationally efficient at large distances from the element. Since only the far fields are needed,
the stationary phase method [6] may be used to compute the radiation pattern [2)].

The far zone from a printed microstrip element is

Ep = k2[cos 0 cos ¢x, — sin fx,] (50)
Ey = kj[-sin ¢x,] (51)

where
%, = -i“’:;’ / / do'dy (') / HP(2p)e=vos ;"El; "h"),\dx (52)

_ _Jwme,, INETIN, (2) —uos Sinhuh coshuh |,
T = 4“3(1 tr)008¢//.dzdyl(zyy)/-w1{, (Ap)e~te f;(,\,h)fg(k,h)'\ dx (53)

These integrals can be evaluated by the stationary phase method to arrive at the far-field of

the microstrip element. From the far field, the pattern or the power lost to radiation can be

evaluated.

13



5.2 Surface Waves

As mentioned, the denominator of the Green’s function contains a finite number of singu-
larities along the path of integration. These singularities correspond to TE and TM surface
waves which are excited in the dielectric. The characteristic equation for TE surface waves is the

function f1(A,A) in the denominator of the Green’s function
f1(A, h) = ug sinh uh + u cosh uh (54)

and for TM
f2(A, h) = € ug cosh uh + usinh uh (55)

with

uo = /A3 — k2 (56)
SR

TERVOLEY & (57)

To evaluate the contribution to the pattern from the surface waves the integrals for the electric
field can be evaluated by the saddle point method [6], and the residues corresponding to the TE
and TM poles can be evaluated after the contour is deformed. Once the far zone fields in the
dielectric are determined, the power launched into surface waves can be found by an integration

over a cylindrical region in the dielectric which is in the far-field of the discontinuity.
6 Example-Microstrip Step to Open Circuit Stub

This method has been used to solve for the current on a microstrip step discontinuity to an
open circuit stub as shown in figure 7. The computed current on the feeding line is shown in
figure 8. As can be seen the current forms a standing wave pattern from which the reflection
coefficient can be easily computed as discussed. It should be noted that the standing wave ratio is
not infinity because of the losses due to radiation and surface wave excitaion. A two-dimensional

plot of the X and Y current on the end of the stub is shown in figures 9 and 10.

14
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7 Conclusion

A full-wave analysis for open microstrip discontinuities has been developed. The method
accounts for dispersion, electromagnetic coupling, radiation losses, and surface wave excitation.
At the present time, the method is béing used to analyze microstrip circuit discontinuities such
as the bend, step and T-junction. The scattering parameters of these discontinuities will be
determined, as well as, radiation losses and surface wave excitation. A saddle point method will
be used to evaluate the radiation pattern and surface wave losses.

In the future, this method will be used to characterize radiating elements such as the travelling

wave antenna.
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"High-Frequency Characterization of Interconnects on

Multilayer Substrates : The Green's Function"

. INTRODUCTION

Planar transmission line structures such as microstrip line, coplanar line, and
finline have been fundamental components of microwave integrated circuits for many
years, [1]. More recently, there has been considerable effort devoted to the design and
realization of monolithic microwave integrated circuits (MMIC's) for use in the f > 20
GHz region, [2]. In a given MMIC, any number of discontinuities occur such as: i)
steps, ii) bends, iii) open ends, and iv) many others. Once fabricated, monolithic
circuits are very difficult to tune for optimum performance and this is a major drawback,
(2], [3]- Accurate theoretical models of these various discontinuities are required so
that their circuit characteristics may be considered in the initial design, thus avoiding a
time-consuming and costly production cycle. Research in this direction is ongoing, [4],
[5], v[6] and much has yet to be done. This paper discusses the theoretical background
necessary for the derivation of Green's functions for use in the study of planar

discontinuities.

. ELECTROMAGNETIC VECTOR POTENTIALS

The electromagnetic fields in any region can be derived from appropriate
choices of A and F, the magnetic and electric vector potentials, respectively, [7]. For the

horizontal electric dipole above a dielectric half-space, Sommerfeld [8], has
demonstrated that two components of a magnetic vector potential are necessary to

completely represent the electromagnetic fields of this problem. The argument
presented in [8] is based on the fact that if only one component of Ais used to generate



the fields in each region, then continuity of tangential electromagnetic field
components at the air-dielectric interface requires that the wavenumbers in each

region be equal. This contradiction is resolved by considering a second component of
A. Instead of choosing two components of A to solve the above mentioned problem, one

may use any two components of Aand/or F. And thus, although the fields which satisfy a

particular boundary value problem are unique, the field generating potentials are not,
[9].
In orthogonal coordinate systems it is conventional to denote fields as transverse

electric (TE) or transverse magnetic (TM) with respect to coordinate axes. For

— A
example, fields derived from F = x Fx are TE to x, or TEX and so on.

When a rectangular waveguide is loaded with a dielectric layer, modes which
are TE or TM with réspect to the direction of propagation cannqt exist. Instead, modes
are designated as LSE and LSM. An LSE mode is said to be TE with respect to the
direction that is normal to the air-dielectric interface in the guide. If this is normal is the

A
y unit vector, then all waveguide modes can be generated from Ay and Fy. LSEy and

LSMy modes are orthogonal, [10], and may be solved for separately. Thus, it is

suggested that fields in layered cartesian regions be constructed using the
components of A and Fthat are normal to the layer interfaces. This approach will give

electromagnaetic fields which decouple and substantially reduce the number of
algebraic steps involved. The electromagnetic fields are generated from A and F as

shown in equations (1).

E=1—€xl?-'~ju)_A-+:—1——€€ox (1a)
€ joye

= 1 - .= 1 o= =

H=—VxA+joF-——V VeF (1b)
H JOUE



lll. THE PRINCIPLE OF SCATTERING SUPERPOSITION
This method was first discussed by Tai, [11], and is conceptually simple. Figure
(1a) shows a dipole source within a boundary ,S1. A Green's function, a due to this

source is maintained. G may be analogous to either an electromagnetic field or a vector

potential, as long as it satisfies the proper boundary conditions. If another boundary,
82, is introduced, as shown in Figure (1b), then G will not satisfy the boundary conditions

of this new problem. However, if a composite Green's function, G ¢ given by

c=G+Gs @

is assumed, then the "scattered" field, Es' may be determined in such as way that C=is

oll

would satisfy all boundary conditions. For most cases, scattering superposition

requires solution in the spectral domain because usually only certain eigenvalues of
the original G are allowed after 82 is introduced. Initially assuming that the eigenvalues of

G are a continuous spectrum (i.e. by representing Ec as a fourier integral) allows them to
take on their proper values in the spatial domain.
When constructing the scattered Green's function, Es’ for a layered cartesian

structure, fewest algebraic steps are required when the components of A and F which are

normal to the boundary, So, are used. Consequently, this is the suggested approach.

IV. DERIVATION OF THE TWO-DIMENSIONAL SPATIAL DOMAIN
GREEN'S FUNCTION FOR A LAYERED RECTANGULAR WAVEGUIDE
Consider the rectangular waveguide inhomogeneously filled with three

dielectrics shown in Figure 2. The dyadic Green's function for an arbitrary current,
J(r", in this waveguide has the form:



G (i) = Gy (1/7) ;; +G,, (v/r') ;; +G,, () ;;
+ G, (1r) yx + Gy (1) yy + G, (') yz (3)

AA AA AA

+ Gy (IF) 2+ Gy (') 2y + Gy () 22

where the electric field is obtained from

E(= H J' = Gy () 0 3 ) oV’ (4)
.

To obtain all nine terms of (3) is an extremely tedious process.
When analyzing planar discontinuities in such a structure, not all terms of the
Green's DYAD are required for a rigorous solution. In fact, only four components of (3)

are needed. We are interested in the tangential (with respect to the layer interfaces)
electric field components (Ey, Ez) due to planar current densities (Jy, Jz). Clearly then,

we can write a modified Green's function, appropriate for this analysis, as:
AA AA AA

Gy, (1iT) = G,, (1ir) yA; + Gy, (1) yz + Gy (UF) 2y + Gy (1/7) 22 (5)

From this point on, when referring to the Green's function, we mean that given in (5).
In this section, the derivation of G,, (/) is outlined and the remaining components of (5)

A
will be given. Note that G,, (") is merely the z-component of the electric field dueto a

A

z-directed dipole located at (x', y', Z'). We begin by considering the total field generated

by the dipole as a superposition of primary and scattered compdnents. The primary
fields are generated directly by the source and the scattered fields result when the
dielectric boundary layers are introduced. Consequently, the waveguide problem may
be considered as a parallel-plate waveguide shorted at x = a which contains a primary
field and a scattered field, combined with another parallel-plate waveguide shorted at
x = 0, with three dielectric layers stacked on the shorted end, and which contains only

scattered fields. These situations are illustrated in Figures (3a) and (3b). Clearly,



other structure geometries such as rectangular cavities, may be analyzed by simply
modifying the primary and scattered potentials appropriately.

The eigenfunction expansions for the primary fields are obtained from the
magnetic vector potential A, which satisfies the equation:

- 2 -
VA+K A= () (6)
__ A
We are looking for E, (r') due to an infinitesimal z-directed dipole. Therefore, the

appropriate primary field generating function is a solution of

VA+K A= ; 1, 3(x-x) 8(y-y) 8(z-z) (7)

subject to the boundary conditions of the parallel plate structure in Figure (3a). It
should be pointed out that the primary field will have different x-dependence above

and below the source. Above the source is designated as region (0) and below,
region (0'). The boundary conditions on Kp are obtained from those on the electric field.

The necessary relationships are given in equation (1). The expression for Az(:,) for this

problem is:

O, e 0 ke (a-x)
= |d sin a-x')e
ol K" b b

. [sin (m;l') sin (any)] e-l e @2) (8)

where (K )’ + (1“5’5)2 sko=aPpe

The primary electromagnetic fields are obtained from equations (1) with F =0. Scattered

fields are generated from magnetic and electric vector potentials A and F, respectively.

A A
The proper choices are A =x A, and F =x F, for reasons discussed earlier. The

scattered electromagnetic fields are obtained from equations (1).
By considering the boundary conditions on Es in the parallel-plate structures of

Figure 3 we obtain the eigenfunction expansions for the vector potentials Ag and ng as:



k2

Ae =) ok Em', Dy cos Ky (a-x) sin (mg—y) e (9a)
aT et
‘”{d&%[F sinkx + G c0s kP'x | sin (T M (90)
Aii’{dsZH;Df’ cos ¥ sn (T) (99)
Fe = j:d& ;Af:) sink, (a-x) cos (m_;rv_) e.jkzz (10a)
F =Ia<Z Em: [B,‘;’ sink\x +C\ cos k. x] e e (10b)
£ :[ &, [B sink” x + C? cos k' x ]cos( may, e (10¢)
Fo {dkz 2 A, sink, xcos () o (10d)
where (Ig() —";—) k,2 (11)

The scattered fields in regions (0) and (0') are identical.

The electromagnetic fields obtained from (1), (8), (9), and (10) satisfy all

boundary conditions in the inhomogeneously filled waveguide except continuity of Ey.

Ez, Hy, and Hz at x = xg1. Imposing these boundary conditions allows us to find exact

expressions for the scattered fields. G, (/') is then obtained. Since only scattered fields

exist in the dielectric Iayers they must be continuous at each of the interfaces.

(1 1
Consequently, Fm and G ) can both be expressed in terms of D( X Also, B, ® and Cf,,) can

be expressed in terms of Am . The boundary conditions at x = x,, are:



(0) © (1) (1

el el

0 0 0 1 1
E;)+EiA)+EiF)=EiA)+E;:) (12)

(09 o 0 ) (1)
yp +HyA+ HyF= HyA+ HyF

(@) o ,0 1O .0
HZp + HZA+ HZF= HZA+ HZF

H

Equations (12) yield two sets of 2x2 equations:
A (0) A
My My ||(D S,

m

(13)
Al @ A
My My (1D | |S2

F F (0)
N11 N12 Am

F (3) F
| N21 N22 Am SZ

sy

(14)

Solution of (13) and (14) provides the unknown amplitude coefficients for, respectively,
A and BV

To analyze microstrip circuitry enclosed in the structure of Figure 2, the Green's
function must be known at the air-dielectric interface because this is where the current
carrying strip lies, [5]. From (12) we know that the tangential fields must be continuous

at this boundary and, therefore, so is the Green's dyad. Consequently, we can obtain
G, (W) |x—x from E, in either region (0") or region (1). In the first dielectric region,
=Xo01 \

A A
region (1), the z-component of the electric field due to a z-directed current source, from

(1a), (9) and (10), is given by:

) (1
F_i )=E§,Z+EZ(1F) where
2 (1)

M 1 OJAg

EZA = X
on":] 0Zox

(15)

1
o

M 1 xS
%F_-e ay (16

1



Substituting (9b) and (10b) into (15) and (16), with the respective amplitude

coefficients derived from (13) and (14), yields:

' -ik_(z-2'
D m T 2k e sn () gn (2 o7
SR ) .
- b [(—b—) +sz
kflg(:» lS((1) K 1ooslg(‘1)X-K2sin k,(:)x
. e ] (17)
K, Allg, ;)
- 2k e sin (M) g (MY o162 )
(1) Jon 2sink, ' (a-x) sin (—b-) sin (T_) e
gF =#J‘d& Z mrg.2 2
- m b[(_t;-) +kz]
5 [R sink x+R 5 cosk,’ "] (18)
T, k)

Specific terms in (17) and (18) will be discussed later. Notice that ESA) is associated with

1
a total electromagnetic field which is LSM, and F_‘(F) is associated with a total

electromagnetic field which is LSEy.

The spectral domain form of the Green's function may be used to find dispersion
characteristics for the shielded microstrip line shown in figure 4. By convolving a
microstrip current distribution which satisfies the edge condition and has axial

ey

dependence e'j‘z (kzms unknown) with the Fourier domain Green's function, we obtain a

quantity which must be zero on the conducting microstrip. Applying the Galerkin's

procedure to this integral equation yields an expression having klms as the only unknown.

The kzms values which are roots to the equation may be obtained efficiently on a P.C. by

using the Mueller method with deflation. Preliminary results compare very well with



the literature, [12]. Figure 5 shows this comparison where x4 = X253 = 0; Xg1 = 0.5mm;

w=0.5mm; a=b=20cm; €, =10. Notice that lossy substrate lines may be analyzed

with this technique.
The remaining task is to complete the inverse fourier transforms of (17) and
(18). This will provide us with the desired spatial domain component of the Green's

dyad. Both integrals may be evaluated via the calculus of residues since no branch

points exist in their respective integrands. For both LSMy and LSEy modes, the
inversion contour in the kz-plane is closed in the lower half for z > Z', and in the upper

half for z < z'. Of course, the distribution of poles in the kp-plane is symmetric about the

origin. Completing the inverse transform yields the electric field as

20 U Voo | 22
V.Y Y "’“sin("‘;‘y)sin(""“f)e*’""

nm A (K b
20p V gk |27
£ Y o P g (MY gy (MY o (19)
b b
pom I (kypy

where U, is
2 (0) (1) )] .. (1)
km‘n'Smkxn (K1COS|&nX~K25Ink“nX) . ,.(0) ,
Upm = P sink,, (a-x) (20)
ko b [(—b—) + Kmm:l
and me is
(—"t‘)—")z' (Ry sin k3 x + R, cos KLy X) o
V= sin k,; (a-x) (21)

pm
b[(%"-)2 + kfp,,,]

Explicit expressions for K1 and K> are given in Appendix A and explicit expressions



for R{ and R2 in Appendix B. From the residue calculus we know that kynm is a root of

A(Ig(:), k,) and corresponds to an allowed LSM, eigenvalue in the guide. Similarly, we

know that k, is a root of I‘(k,(:), k,) and is an allowed LSE, eigenvalue of this structure.

These eigenvalues may also be determined by the transverse resonance technique,
[10]. In our assumed model it required that x' > xg1 and this restriction applies to the
field given in equation (18). However, it is not a problem because we are interested in
the fields generated in the waveguide due to a source at x' = xg1. The functions

A' (K, @nd I"(kzpm) result from the Taylor series expansions of the denominators of (17)

and (18), respectively, and are defined as:

@
dA (k. k)
A'(‘&nm)=_;§kz—"kilkl=krm (22)

ar k", k)

P e i -

d Ak, k) o rk” k)
dk, dk,

Equations (17) and (18) also show poles that appear when k, =t j (Tb—n).

Expressions for are given in Appendix A and B respectively.

These are non-physical spurious modes which are not orthogonal to the LSMy and

LSEx modes. Consequently, they need not be discussed any further. The final
expression for G, (X,4, ¥, Z| X4, ¥'s Z') is given in equation (24).



Zop Uy, (X, X' = Xgq) ik, | 22
G, (X, X' =Xqq) = Zz A (o) o In(mny)Sl (mny)

(24)

Zopt Vo (%, X' =Xg1) mmy
22 sin
m T (Kzpm) b

The remaining three components of the Green's function may be obtained in a

) sin )

., mny' 'jkzpm|z'z'|
e

completely analogous manner as that used to find G,,. For the sake of completeness,

all four terms of Em (x, X' = X,) are given in Appendix C.

V. CONCLUSION

This report has discussed an alternative method for deriving Green's function in
layered regions. It has been shown that the usual tedious algebra encountered when
working with many layer structures can be reduced to having to solve two 2x2 sets of
equations for unknown vector potential amplitude coefficients. To demonstrate the
usefulness of this technique, a component of the electric field Green's function was

derived for a rectangular waveguide loaded with three isotropic, lossy dielectric slabs.






REFERENCES

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

[11]

(12]

T. ltoh, Ed., Planar Transmission Line Structures.
New York: |IEEE Press, 1987.

R.A. Pucel, "Design Considerations for Monolithic Microwave
Circuits,” IEEE Trans. on Microwave Theory and Techniques,
MTT-29, no. 6, June 1981, pp. 513-534.

R.S. Pengelly, "Hybrid vs. Monolithic Microwave Circuits - A
Matter of Cost,” Microwave System News, January 1983,
pp. 77-114,

R.H. Jansen, "Hybrid Mode Analysis of End Effects of Planar
Microwave and Millimetre-Wave Transmission Lines,” IEE
Proceedings, vol. 128, Pt. H, no. 2, pp. 77-86, April 1981.

P.B. Katehi and N.G. Alexopoulos, "Frequency-Dependent
Characteristics of Microstrip Discontinuities in
Millimeter-Wave Integrated Circuits,” IEEE Trans. on
Microwave Theory and Techniques, MTT-33, no. 10, October
1985, pp. 1029-1035.

R.W. Jackson and D.M. Pozar, "Full-Wave Analysis of
Microstrip Open-End and Gap Discontinuities,” IEEE Trans. on
Microwave Theory and Techniques, MTT-33, no. 10, October
1985, pp. 1036-1042.

R.F. Harrington, Time Harmonic Electromagnetic Fields.
New York: McGraw-Hill, 1961.

A. Sommerfeld, Partial Differential Equations.
New York: Academic Press, 1949.

O. Kellog, Foundations of Potential Theory.
New York: Dover, 1953.

R.E. Collin, Field Theory of Guided Waves.
New York: McGraw-Hill, 1960.

C.T. Tai, Dyadic Green's Function in Electromagnetic Theory.
Scranton: Intext, 1971.

D. Mirshekar-Syahkal, "An Accurate Determination of Dielectric Loss Effect in
MMIC's Including Microstrip and Coupled Microstrip Lines," IEEE Trans. on
Microwave Theory and Techniques, MTT-31, no. 11, November 1983,

pp. 950-954.






APPENDIX A

dA K k)

Expression for K,, K, and ——— ok,

In Appendix A, primed notation represents the total derivative with respect to k,.

It is convenient to designate the following functions:

Aot = 82 k,(:) kf) sin (Ig((a) Xo5) COS (Igﬁz) Xo3)

Moy =€ 58 3'3(( kx2 cos (k,( 23) SIN (k,((Z) X23)
)"03 =€ €, (kfz))2 cos (K((Z) X4p) COS (k,(:) X12)
S K sin g xig) sin (g Xy

=6,k ke 008 (k' Xq) 08 (kX
—e2k,(( ki sin (‘43) Xp5) SIN (k,fz) X3)
Ay =88 % . 'S((Z) cos (k)((z) X12) sin ('41)"12)

xo =€ € (Igfz))2 sin (lg((z) X;p) COS (k,(:) X10)
hog =,k K S (kg Xy ) 008 (. xp)
xw=e, e, Uo)’ 008 (& xy2) sin (. i)

A =€ e () sin (K x;p) sin (kg X;p)

Ay =6, € 3k:1)ki2)cos ('& X12) cos(k:”

© . (0 o (1)
A, =en ke sink, (aXg) sin (k. Xo)

(1) (0) (1M

Xl4=lg( cos k, (a-Xm) cos (K, Xqq)
© . (0 (1)

}‘15 =g, K, sink ~ (a-Xy) cos (k,  Xo)

M (0) . (1
A=k cosk ' (axq) sin (k" xo)



Expressions for K,, K, and A’ are:

K= 0-01 + 3.02) 0»03 + 7&04) + (7»05 - k“) (107 - ;‘0 )

Kp = 0‘01 + loz) 0‘09 - 7”10) + o‘os - )’06) 0‘11 + )‘12)

8

A=(Ng-Nyy) Ky+ M5+ N Ky
+ (A 5 }‘1 4) [ (}Jo] + X'oz) (2,03 + 2,04) + 0‘01 + )"02) (xos + X'04)
N B l'og)]
+ (xls + 116) [ (X'OI + x'oz) (XOQ - xlo) + ()\'01 + )‘02) (Xnog _ X'lo)

* (NOS - )"'06) 0‘11 + ;‘12) * o'os - )'06) 0"11 * k’lz)]



APPENDIX B

0
. dT (k. k)
Expressions for R,, R, and —————
dk,
In Appendix B primed notation represents the total derivative with respect to k,. Itis

convenient to designate the following functions:

N (2 ]

3, =k ks sin (i
5=k K, 005 (K, Xp5) COS (K, Xz
3=l Ko sin (6 xi2) sin (4" x,p)
) cos (¢ x,5) cos (K x,y)

8 Igi)lg‘f) sin (lg Xp3) COS (kx x23)
5,,=K,

1)k,((3) cos ('43) X) SiN (k’f?) Xp3)
3,2k K cos (& xpp) sin (K, x,,)
8,,= (k) sin (. x;) €os (K Xy
3=k K €08 (K, xip) sin (k. x;)

8,,=06)" 008 (& x;z) sin ()
3, =K K 008 (" xi) 008 (ke i)
5, =(k) sin (K, Xy sin (ke Xy
=»4°’ cos k. (aky) in (K, ¥oy)
ki sink!” (@) cos (k. Xy)

() (0) M

Xps) SiN (K Xpq)

3
04

-

]



M . () . (1)
816=k" sink, " (a-xqy) sin (k" x¢)

Expressions for R,, R, and I” are:
Ry= 8y, +8y) By +8,)+ @y =80 8, -8
Ro=(8), +8y) (Bpg=3,)+ @s- S By +3,)

F=@,+8 )Ry+@ -8 IR,
+(3,+38) [(as'01 +8) @ +8 )+ +8 ) ¢ +8)
+ (8'05 B 8'06) (807 B 808) + (805 B 806) (8'07 - 8'os) ]
+ (815 + 816) [(6'01 + 8'02) (809 + 810) + (801 + 802) (8’09 + 6'10)

+ (8'05 - 8"06) (811 - 812) + (805 - 806) (5'11 B 8'12)]



APPENDIX C

= AA AA
Gu (%, X' =Xg1) = Gyy (X, X' =Xgq) Y Y + G (X, X' = Xq9) Y Z
AA AA

+ Gy (6, X' =Xg9) 2y + Gy (X, X' = X¢9) 22

It is convenient to reproduce the following functions

0, ()
kmk,((n k, (Kqco sk, Xo1 - Kzsmk,('1 Xo1) smkx (a-x01

D

Upm (X X' =Xqq) =

mx,2 . (1) () . ,.(0
(—b—) (R, sin k,‘p X991 + Ry cos K, Xo1)_ sin lg('p (a-Xgq)

me (X, X' = Xg) =

b [(%"—)2+kfpm]

ommp' (—)zunm(x X' =Xq4) 1y 22

C‘M(x, X' = Xgy) = zz 01 cos (mny) (_) Konml 22|

Korm A' () o
22 Eom®H,, ka (%, X' = Xg4) mry mry’ Hopenl 22
cos (=) cos (e
pom (——) I (kypm)
leomw (_—)Unm(x X' = X°1) Izz.l
Cyax, "'="o1)"22 o Ao cos (T ysin(LY o ™
) leomwokzm me(x, X' = xo1)cos(m:y)s|n( my p 'kzpml -z |

N L) (O

jzou (—--)Um,(x X'=Xqy4) vk |2
Gy (X, X' = Xgq) = 22 Ak i c.in(mt’;y)cos(mgy )ejkm

myl .lkm“ |Z'Z'I

szzwu kzpmvpm(x X' =Xg9)
P () Tl

su( b )cos(



| 22|

ZO Unm(x X'=Xqq) m
Gy (X, X' = Xgq) = zz - 01 sm(mﬂy\sm(m:y)elkm

Zzzmp. s VpmX, X' =Xg1) sm(mny)sn( mry )elkmlnl
m T (Kyprn) b




(a) (b)

Figure 1. (a) Dipole maintaining G within boundary S,.

(b) Dipole maintaining Ec and boundary S, within boundary S,.
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Figure 2.  Rectangular waveguide inhomogeneously filled with

three dielectrics, excited by current source
J(x', y', 2).
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Figure 3. Decomposition of dielectric-loaded waveguide of
Figure 2 into equivalent superposition of

parallel-plate structures.
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Figure 4.

Shielded, layered, microstrip transmission line.
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I. INTRODUCTION

The need for more accurate microstrip circuit simulations
has become apparent with the recent interest in millimeter-wave
and near millimeter-wave frequencies. The development of more
accurate microstrip discontinuity models is very important in
improving high frequency circuit simulations. In most
applications, the circuits are enclosed in a shielding cavity as
shown in Figure 1. This cavity may be considered as a section of
a waveguide terminated at both ends. The presence of the
shielding cavity affects the performance of the circuit (shielding

effects) and has to be taken into consideration.

It has been éhown [1] - [2] that one condition where
shielding effects are significant is when the frequency approaches
the cut-off frequency of the waveguide's dominant mode. 1In most
cases, microstrip circuits including active devices are printed on
multilayer structures which consist of a combination of dielectric
and semi-conducting materials. The existance of these conducting
layers can affect the characteristicts of the loaded cavity and,
therefore, of the printed circuits. As it has been pointed out by
many authors ([3] - ([5], the propagation characteristics of
higher-order shielded-microstrip modes are very similar to those
of the shielding cavity.. Consequently, a good understanding of
how microstrip modes propagate may be gained by just studying the
dielectric-slab ioaded waveguide.

In this report we consider the case of a single

semi-conducting layer with a dopping density Np which varies from



1014 to 1016 and we study the effect of this variation on the
cutoff frequencies of the waveguide modes. Conclusions drawn from
this study show a very interesting behavior in the propagation
characteristics of the modes and may be extended to the case of

the shielded microstrip.

II. THEORETICAL FORMULATION

Figure 1 in Appendix I shows a basic description of the
loaded waveguide. The modes excited in this structure are LSE and
LSM and their characteristic equations which may be derived by

applying the transverse resonance condition [6] are shown below:

k

= tan (k B == 2 tan [kxz (a-h)] LSM (1)

51 x 82

K k.,

— cot (k,, h) = - cot k_., (a-h) LSE (2)
x1 x2

) H,

The eigenvalues k,; and kyp; are given by

kil + k; + k: = cozezl;,t1 (3)

k., + k; + ko= aep (4)
with

k, = -’i’i

g, =¢"' (1 - jtan&l) (5)

€, =¢€,' (1 - jtand,) (6)



and

tan82 =

eN,
tan81 = . (7)

L
w&:1

In equation (7), e is the charge of an electron and Np is the

doping density of the material. For the case a perfect dielectric

layer, cut-off is defined by k,=0. However, when tand is different

than zero, the cut-off condition is modified to the following

Re (k,) = 0 (8)

This condition imposed on equations (3), (4) can give:

2 2 2 2

k, = 0¢ 'R (1 - jtand) - a - k, (9)
and

2 2 2 2

k, =0OEN -a - ky (10)

By substracting equation (9) from (10) we can derive a relation

between ky; and kxz which does not include the eigenvalue k, and

the attenuation constant at cut-off a,:
kil _ kiz - o [ellul (1 - jtanal) - ez”’z] (11)

The solution of the sets ((1),(11)) or ((2),(11l)) can be performed

only numerically and results in infinite many but descrete



eigenvalue pairs (kxis kx2)m which vary with ® and n. The

frequency which satisfies (8) for a given pair (kyys kyx2)m and ky =

nnt/b is the cut-off frequency of the mn mode. This procedure is

rather complicated and requires extensive computation. To avoid

this shortcoming the cut-off condition is modified to

k. =0 (12)
Equation (12) together with (3) and (4) transforms the

characteristic equation into a complex equation for ® resulting in
complex cut-off frequencies. The real part of this cut-off
frequency will be exactly equal to the one that condition (8)
would give. However, the imaginary part which, in general, is
about an order of magnitude smaller than the real, compensates for
the neglected attenuation at cut-off and is disregarded. The
results derived during this study are based on the second

condition.

III. NUMERICAL SOLUTION

Numerical solution of the characteristic equation was
achieved with Muller's Method [7] which is iterative in nature and
requires a good initial guess for fast convergence. Furthermore,
when solving for cut-off frequencies there may be a number of
solutions to the characteristic equation in a relatively narrow
frequency space. To overcome this problem, a method was developed

to track a given mode through increasting doping densities. That

4



is, the solution for the cut-off for a given mode is determined

first for no losses where zeros are spread further apart and this

solution is used as the initial guess as the tand is slightly
increased. The numerical solution for the lossless case proved to
be much more simple than the lossy one. The characteristic

equation was solved with the bistatic method (7].

IV. RESULTS AND CONCLUSION

The results derived using the technique described above are
plotted in figures (1) - (34) and are for the waveguide geometries
of Table 1 in Appendix II. From these results it can be concluded
that the effect of the conductivity in the dielectric layer can be
tremendous. In some cases, as the doping density increases from
1014 to 1016 there seems to be a switching of dominant modes. That

is, higher order modes tend to exhibit a lower cut-off than the

mode which was dominant at lower Np resulting in much lower cut-off

frequencies. In addition, for other geometries, increasing
conductivity seems to have an opposite effect.

Preéently, we are trying to investigate the effect of the
presence of semi-conducting materials on the modes of a shielded

microstrip printed on single, as well as multi-layer substrates.






APPENDIX I

Computation of the cut-off frequencies for the case of a

non-conducting layer:

Region II

2 2 2 2
kxz + ky + kz 'mezuz

For LSM, LSE k, is set to zero to determine the cut-off frequency.

The dominant LSM mode corresponds to TEg; .. ky = ®/b

The dominant LSE mode corresponds to TE , .. k, A 0.0



Determining the next higher order mode:

LSM: Interation begins assuming a lower bound which was the
cut-off frequency for the dominant mode.

Two possibilities are tested:

(i.e., ky = 21t/b)

(ii) M=1, N=1
(i.e.’ ky = E/b)

whichever case yields the lowest £, is taken as the next
higher mode.

LSE: Similar to the above, using instead the following two cases:

(1) M=2, N=0
(i.e., ky = 0.0)

(ii) M=1, N =1

(i.e., ky = %/b)

Iteration for dominant mode solution:
(Lossless dielectric)

LSM: A lower bound is determined by the following:

F = c/Zb é TE01 cut-off for air-filled WG.
01

with ¢ the velocity of light in free space.

F, = —= A TE,, cut-off for completely filled WG.

rl

Fd is used as the lower bound.
01

LSE: Similar to the above, using

F = c/2a A TE, cut-off for air-filled WG.



APPENDIX II

Group A Plots
Symbol definition: Symbol Mode
LSM1
* LSM2
A LSE1l
+ LSE2
IABLE 1
Waveguid_e Parameters: Substrate Parameters
Plot # a_(in) b _(in) ; h _(in) €
1 . 305 .305 .15 3.0
2 .305 .305 .08 3.0
3 .305 .305 .025 3.0
4 .305 .305 - .025 12.0
5 .305 .305 .025 16.0
6 .25 .305 .08 3.0
7 .25 . 305 .08 12.0
8 .25 .305 .08 16.0
9 .305 .25 .08 3.0
10 . 305 .25 .08 12.0
11 .305 .25 .08 16.0




GROUR A

"Cut-off frequencies vs. tand for LSE and LSM modes"
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Comments

In this group there are two plots which served as a motivation for
generating the plots of groups C-F.

These plots demonstrate the interchange of the mode order (Figure

B.1) and the sensitivity of Muller's method to initial guesses
(X3, Xj-1r Xj-2) (Figure B.2).
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Type of Mode = LSM

ky = ®/b

h = (0.025"
a= (0,305"
b = 0,305"

€. = 16.0

Qbservations:
e It is obvious that there are two LSM modes very close together.

e As tand increases, one can see that the original 2nd order mode
has moved to become the dominant.
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Equation for tand = 0.5




Equation for Epsr=0.5




Equation for Epsr=1.0
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Equation for Epsr=1.5




Equation for Epsr=2.0




Equation for Epsr=<Z.5




Type of Mode = LSE

ky = 0.0

a = 0.305"
b = 0.305"

e, = 16.0
h = 0.025"

Qbservations:

e At first glance, one might sense a problem with these plots.
The specs are nearly the same with those of Group A, #5 which
shows no mode crossover. Yet it is clear from these plots that
the dominant LSE mode is replaced as tand is increased.

e The difference between this curve and the corresponding one in
Group A is in ky.
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Equation for tand=0.3 (LS
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FEquation for tand=1.5




FEquation for tand=2.0




Type of Mode = LSE

ky = n/b
a = 0.305"
b=0.305"

e, = 16.0
h = 0.025"

Qbservations:

e Following the progression of these plots, it is c¢lear that there
is a mode which remains nearly fixed for increasing tand. This
would be the LSE, mode which appears in #5 from Group A. It

also appears that another higher order mode is cutting across.
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Equation for tand=0.5 (LSE
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Equation for tand=1.5 (LSE

e ‘I\'ﬂ!ﬂ”ﬂi!!!.’{lmu,» -




Equation for tand=2.0 (L




Type of mode = LSM

ky = n/b

a = 0.305"
b = 0.305"
h = 0.025"

€, = 12.0

Qbservations:

e By changing &_ from 16.0 to 12.0. we can observe much greater

stability in the relationship between LSM; and LSM;. Note,

however, that a higher order mode is still seen to be moving to
the dominant position.
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