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1. THEORETICAL CHARACTERIZATION OF AN AIR-BRIDGE
Faculty Supervisor: Pisti B. Katehi

Graduate Student Participant: None at the present time.
( There is a new graduate student starting in Fall 1988 who will
continue the work in this problem).

Period: 1 January 1988 - 30 June 1988.
Work Performed:

The theoretical formulation for the air bridge has been
completed. The analytical method employed in these algorithms
efficiently takes into account shielding effects and conductor
losses (5) (Appendix E) .

Program for the Second Year:

Using the completed theoretical formulation of the problem,
computer programs will be written which will give frequency
dependent equivalent circuits or scattering parameters for the
Air-Bridge. The theoretical results will be compared to available
experimental data for verification.

Publications and Reports:
M.E. Coluzzi and P.B. Katehi, "Theoretical Characterization of an

Air-Bridge". Technical Report AR0-024562-1-T, EECS Department,
University of Michigan, Ann Arbor, June 1988.



2. HIGH FREQUENCY CONDUCTOR LOSSES IN SHIELDED MICROSTRIP

Faculty Supervisor: Pisti B. Katehi

Graduate Student Participant: T. E. van Deventer

Period: 1 January 1988 - 30 June 1988

Work Performed:

A new analytical method has been developed to evaluate
conductor losses in single or multiple shielded microstrip lines
(4) (Appendix D). Numerical results for the case of a single line
have been derived and we are in the process of comparing them to
available data at lower frequencies.

Program for the Second year:

Extensive numerical data will be derived for the case of
single or multiple shielded microstrip lines printed on multilayer
substrates. In addition, we will try to extend the method to
microstrip discontinuities.

Publications and Reports:
T.E. van Deventer and P.B. Katehi, "High Frequency Conductor

Losses in Shielded Microstrip”. Technical Report AR0-024562-2-T,
EECS Department, University of Michigan, Ann Arbor, June 1988.



3. SHIELDING EFFECTS ON THE PHASE VELOCITY OF MICROSTRIP
LINES

Faculty Supervisor: P.B. Katehi

Graduate Student Participant: L.P. Dunleavy

Period: 1 January 1988 - 30 June 1988

Work Performed:

An integral equation method has been developed for the
accurate evaluation of shielding effects on the propagation
properties of shielded microstrip lines. The integral equation has
been derived by applying reciprocity theorem and then is solved by
the method of moments (2), (3), (Appendices B,C). Numerical results
have been derived and compared to experimental ones for
verification of the theory.

Program for the second year:

For the second year we plan on extending the study of
shielding effects to single or multiple microstrip lines on
multilayer substrates.

Publications and Reports:

L.P. Dunleavy and P.B. Katehi, "A New Method for Discontinuity
Analysis in Shielded Microstrip," Digest of the 1988 IEEE MTT-S
International Symposium, New York, New York, May 1988, PP. 701-
704.

L.P. Dunleavy and P.B. Katehi, "Shielding Effects in Microstrip
Discontinuities- Part I: Theory". It has been submitted for
publication in the IEEE Trans. on Microwave Theory and Techniques.



L.P. Dunleavy and P.B. Katehi, "Shielding Effects in Microstrip
Discontinuities- Part II: Applications". It has been submitted for

publication in the IEEE Trans. on Microwave Theory and Techniques.



4 SIMULATION OF TRANSISTOR INPUT IMPEDANCE AT MILLIMETR-
WAVE FREQUENCIES.

Faculty Supervisors: D. Pavlidis
P.B. Katehi

Post Graduate Participant: M. Weiss
Graduate Student Participant: W.P. Harokopus
Work Performed:

As a first step to the analytical evaluation of a GaAs MESFET
at millimeter wave frequencies, a quasi-static modeling of the
transistor gate was caried out using a finite difference method.In
order to reduce computation time, we used Neumann's boundary
conditions in conjuction with a graded mesh. Results which were
derived from this approach compare very well with available data
for the case of a simple-shaped depletion region. In addition, we
have initiated a dynamic analysis of the problem which is based on
a finite element method. The formulation of the problem has been
completed and we are in the process of writing the computer
programs.

Program for the Second Year:

In addition to the gate capacitance modelling we are planning
to extend our theoretical studies towards a better understanding
of other transistor characteristics such as gate-drain and
drain-source capacitance, access resistance to the active channel,
and geometry and transition effects.



TASKS TO BE INITIATED DURING THE SECOND YEAR

Other tasks we plan to initiate during the coming period is a
study on the geometry optimization of the devices. Efficient
millimeter wave operation requires a good knowledge of the
electromagnetic field transformation at the transmission line to
gate or drain terminal transition. Propagation along the gate and
drain strips should also be considered because of the effects that
it can have on the transistor gain. The gate configuration, width
and paralleling for power applications will be examined and
understood by considering the distributed nature of the device.
Using our full-wave analysis we will address the above problems
and extract equivalent circuits permitting the optimization of
device geometry and material parameters.

For these tasks, Dr. D. Pavlidis and Dr. P.B. Katehi will
serve as faculty advisors. Other scientific personel who will

participate in these problems are:

T.E. van Deventer (Graduate Student)
M. Weiss ( Postdoctoral Fellow )
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A NEW METHOD FOR DISCONTINUITY ANALYSIS IN
SHIELDED MICROSTRIP

L.P. Dunleavy and P.B. Katehi

The Radiation Laboratory

University of Michigan, Ann Arbor, MI

Abstract-. A new integral equation method is described
for the accurate full-wave analysis of shielded microstrip
discontinuities. The integral equation is derived by an
application of reciprocity theorem, then solved by the
method of moments. Numerical and experimental re-
sults are presented for open-end and series gap disconti-
nuities, and a coupled line filter.

I. INTRODUCTION

The development of more accurate microstrip discon-
tinuity models, based on full-wave analyses, is key to
improving microwave and millimeter-wave circuit simu-
lations and reducing lengthy design cycle costs. In most
applications, radiation and electromagnetic interference
are avoided by enclosing microstrip circuitry in a shield-
ing cavity (or housing) as shown in Figure 1. The effect
of the shielding is significant, and requires accurate mod-
eling, at high frequencies. Shielding effects are not ad-
equately accounted for in the discontinuity models used
in most available microwave CAD software.

To address these inadequacies, a new method was de-
veloped for the full-wave analysis of discontinuities in
shielded microstrip {2). This method accurately takes
into account the effect of the shielding enclosure. The
theoretical contribution, as compared to previous work
3]-[5], is in the novel way that reciprocity theorem, the
method of moments, and transmission line theory are
combined to solve for discontinuity parasitics. As illus-
trated in Figure 2, the coaxial feed is modeled using an
equivalent magnetic “frill” current [6,7]. To the authors’
knowledge, this is the first time that the frill current ap-
proach has been applied to microstrip circuit problems.

To demonstrate the method, numerical results are
presented for open-end and series gap discontinuities,
and a four resonator coupled line filter. These results
are compared to other full-wave analyses, to data from

0149-645X/88/0000-0701$01.00 © 1988 IEEE

Super Compact and Touchstone !, and to measurements.

The measurements were performed using a variation of
the TSD de-embedding technique [8,9].

microstrip shielding
cavity (or housing)

N\

input output
Z=C_
N =

dielectric substrate

Figure 1: In most practical designs, microstrip circuitry is enclosed
in a shielding cavity whose effects must be accurately modeled at
high frequencies.

II. SUMMARY OF THEORETICAL METHOD

In the theoretical derivation [2}, an application of reci-
procity theorem results in an integral equation relating
the magnetic current source M, , and the electric cur-
rent on the conducting strips J,, to the electromagnetic
fields inside the cavity. A Galerkin’s implementation of
the method of moments is employed by first dividing the
strips into NV, subsections. The current is then expanded
according to [1]

J=9(y) Elp"p (2)z. (1)

!Super Compact and Touchstone are microwave CAD software packages
available from Compact Software and EESOF respectively.
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magnaetic frill
coaxlal current MO
feed
©
annular
aperture

Figure 2: The coaxial feed is represented by an equivalent mag-
netic frill current M, = My¢; this is used as the excitation mech-
anism for computing the microstrip current.

where 1(y) describes the variation of the longitudinal
current in the transverse (i.e. y) direction, and o,(z)
are sinusoidal subsectional basis functions.

The resulting equation may be expressed as

g [/ /;, Ey(z=h) % (1) oy (2) :ids] I, =

//SII'{,,-M.ds

where S, is the surface area of the p** subsection, Sy is

the surface of the coaxial aperture, and E,, H, are the

electric and magnetic fields respectively, associated with

a test current J, existing over the ¢** strip subsection.
We may express (2) by the matrix equation

(Z) (1} = [V] .

(2)

(3)

Here, {Z] is the impedance matrix, [V] is the excitation
vector and [I] is the unknown current vector comprised
of the complex coefficients I,.

Finally, after evaluating the elements of {Z] and [V],
the matrix equation is solved to compute the current
distribution. Based on the current, transmission line
theory is used to derive scattering parameters, and (if
desired) an equivalent circuit model, to characterize the
discontinuity [1,2).

III. RESULTS

An open-end can be represented by an effective length
extension L.ss, by a shunt capacitance c,,, or by the
associated reflection coefficient ', (= Sy;). The plot
of Figure 3 compares L./, results to those of Jansen et.
al. [3] and Itoh [4]. Also shown is the cut-off frequency
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fe, which is defined as the lowest frequency where non-
evanescent waveguide modes can exist within the cavity.
The new results are almost identical to those obtained
by Jansen et. al. for frequencies above 8 GHz, but show
a reduced value for lower frequencies.

0.45

040 1 fou17.9GHZ

e

0.18 T Y \ Y
0 4 8 12 16 20 24 28

FREQUENCY (GHZ)

0.35 1

& JANSEN
~  THIS RESEARCH
-« [TOH

0.30 1

Lah

0.20 4

Figure 3: Effective length extension of a microstrip open-end dis-
continuity, as compared to results from other full-wave analyses
(er = 9.6, W/h = 1.57, b = .305",¢c = .2, h = .025").

The results shown in Figure 4 illustrate that shielding
effects are significant at high frequencies. 'I'he normal-
ized open-end capacitance c,, is plotted ... three dif-
ferent cavity sizes. The results show thai r-ducing the
cavity size raises f. (as expected), and it lowrrs the value
of cop. For comparison, data obtained froi: uper Com-
pact and Touchstone are included.

35
301
251 {. = 20.1GHZ
E % SUPERCOMPACT
204 <3 TOUCHSTONE
5 v CAVITY CA
- CAVITY CC
o8 s w - CAVITYCF
f, = 43.5GHZ
197 f.a 37.5GHZ
05 —r—r—r— Y v

0 10 20 30 40 50 60 70
FREQUENCY (GHZ)

Figure 4: A comparison of the normalized open-end capacitance
for three different cavity sizes shows that shielding vfTects are sig-
nificant at high frequencies (¢, = 9.7, W = h = .025"; cavity CA:
b = ¢ = .25", cavity CC: b = ¢ =.01”, cavity CF: b = ¢ =.075").



In the remaining examples, numerical results from the
new method are compared to measurements. Figure 5
shows results for the angle of S;; of an open-end, and
Figure 6 contains results for the magnitude of the trans-
mission coefficient (/S2:/) for a series gap discontinuity.
In both cases, the agreement between the numerical and
experimental data is very good.

0
.54
L}
. 101
8
] < THISRESEARCH
< 159 r . = SUPERCOMPACT
®  MEASUREMENT
-20 1
-25 1
-0 r T v v '
0 4 12 18 20 24

/521 (DB)

FREQUENCY(GHZ)

Figure 5: Numerical and measured results show good agreement
for the angle of S11 of an open circuit (¢, = 9.7, W = h =.025",
b = ¢ =.25").
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Figure 6: Good agreement with measurements has also been ob-
tained for series gap discontinuities. Shown here is the magnitude
of Sy for a series gap with a 9 mil gap spacing (¢ = 9.7,W =h
=.025", b = ¢ =.25").

Finally, consider the four resonator filter of Figure 7.
Numerical results for the magnitude and phase of Sy,
shown in Figure 8, demonstrate excellent agreement with
measurements for frequencies below the cutoff frequency
fe. Above cutoff, the filter measurement is distorted due
to waveguide moding within the test fixture.

Waeitle
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Figure 7: Numerical and experimental results are compared below
for this 4 resonator filter (¢, = 9.7, h = .025", b = 4", ¢ = .25").
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Figure 8: Results for transmission coefficient S3; of 4 resonator
filter.



IV. CONCLUSIONS

A new analysis method has been described for shielded
microstrip discontinuities. Results from this method
have demonstrated good agreement with measurements
and other numerical results. This method is useful for
the evaluation of existing discontinuity models, for the
analysis of cases where existing solutions fail —such as
when shielding effects are significant—, and for the de-
velopment of new discontinuity models with improved
accuracy for high frequency applications.
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Shielding Effects in Microstrip
Discontinuities — Part I: Theory

Submitted to IEEE Trans. on Microwave Theory and Tech. — April 1988

L.P. Dunleavy* and P.B. Katehi
Radiation Laboratory
Dept. of Electrical Engineering and Computer Science
The University of Michigan
1301 Beal Avenue
Ann Arbor, MI 48109-2122

Abstract-. A new integral equation method is described for the accurate full-wave
analysis of shielded microstrip discontinuities. The integral equation is derived
by applying the reciprocity theorem, then solved by the method of moments. In
this derivation, a coaxial aperture is modeled with an equivalent magnetic current,
a.nd is used as the excitation mechanism for generating the microstrip currents.
Computational aspects of the method have been explored extensively. A summary

of some of the more interesting conclusions is included.

* L.P. Dunleavy is now with Hughes Aircraft Company.






I. INTRODUCTION

The need for more accurate microstrip circuit simulations has become increas-
ingly apparent with the advent of monolithic microwave integrated circuits (MMICs),
as well as the increased interest in millimeter-wave and near-millimeter-wave fre-
quencies. The develoﬁment of more accurate microstrip discontinuity models,
based on full-wave analyses, is key to improving high frequency circuit simula-
tions and reducing lengthy design cycle costs. Further, in most applications the
microstrip circuit is enclosed in a shielding cavity (or housing) as shéwn in Fig-
ure 1. There are two main conditions where shielding effects are signif{cant. The
first occurs when the frequency approaches or is above the cutoff frequency f. for
higher ordér modes. The second occurs when the metal enclosure is physically
close to the circuitry. A full-wave analysis is required to accurately model these
effects.

Although shielding effects have been studied to some extent in the past (e.g. [1]),
the treatment has been incomplete, particularly for more complicated structures
such as a coupled line filter. Further, shielding effects are not accurately accounted
for in the discontinuity models of most available microwave CAD software. To
address these inadequacies, Part I of this paper develops an accurate method for
the analysis of discontinuities in shielded microstrip. The method presented is
based on an integral equation approach. The integral equation is derived by an
application of reciprocity @heorem, then solved by the method of moments.

To derive a realistically based formulation, a coaxial excitation mechanism is

used. To date, all full-wave analyses of microstrip discontinuities use either a gap



generator excitation method [2,3,6], or a cavity resonance technique [4,5]. Both of
these techniques are purely mathematical tools. The former has no physical basis
relative to an actual circuit. The latter is also abstract, since in any practical circuit
some form of excitation is present. In fact, one of the most common excitations
in practice comes from a coaxial feed (Figure 1). A magnetic current model for
such a feed is used in the present treatment as the excitation, and this method is
compared to the gap generator method in Part II of the paper.

The emphasis in Part II is on the application of the present theoretical method
to study shielding effects in discontinuities. As part of this study, numerical and
measured results are presented for‘the structures of Figure 2, which include open-
end and series gap discontinuities, and a coupled line filter. The measured results
are seen to be in excellent agreement with the theoretical results from the present
research.

The objectives of this research may be summarized as follows: i) Develop a
new theoretical method for analysis of shielded microstrip discontinuities (Part
I), ii) Explore the use of a practical (i.e. coaxial) excitation mechanism (Part I
and II), iii) Investigate high frequency microstrip measurement techniques (Part
IT), v) Study the effect of shielding on discontinuity behavior (Part II), and iv)
Obtain experimental data for verification of the new theoretical method (Part II).

In addition, computational aspects of the method are explored extensively.



II. THEORETICAL FORMULATION

The details of the theoretical derivation for the present method are given in (7).
Hence, only a summary of the key steps is described below.

A. Integral Equation

In the theoretical formulation, a few simplifying assumptions are made to re-
duce unnecessary complexity and excessive computer time. Throughout the anal-
ysis, it is assumed that the width of the conducting strips is small compared to
the microstrip wavelength A, (the “thin-strip” approximation). In this case, the
transverse component of the current may be neglected. While substrate losses are
accounted for, it is assumed that the strip conductors and the walls of the shielding
box are lossless, and that the strip has infinitesimal thickness. These assumptions
are valid for the high frequency analysis of the microstrip structures of Figure 2,
provided good conductors are used in the metalized areas.

Consider the geometry of Figure 1. In most cases the coaxial feed, or “launcher”,
is designed to allow only transverse electromagnetic (TEM) propagation, and the
feed’s center conductor is small compared to a wavelength (kr, < 1). In these
cases, the radial electric field will be dominant on the aperture and we can replace
the feed by an equivalent magnetic surface current M, [8]. This current is some-
times called a “frill” current [9]. The source M, induces the current distribution
J, on the conducting strip and produces the total electric field £** and the total
magnetic field A** inside the cavity as indicated in Figure 1.

Now consider a cavity geometry similar to Figure 1, with the strip conductors

as well as the coaxial input and output removed. Assume a test current J, existing



on a small subsection of the area which was occupied by the strip. The fields inside
this new geometry are denoted by E,, and H,. Using the reciprocity theorem, the

two sets of sources (M,, J,; and J;) are related according to

[[ [ E-Bt)do=[ [ [, Eav (1)

where V represents the volume of the interior of the cavity.

Since J, - E** is zero everywhere inside the cavity, the right hand side of (1)
vanishes. Reducing the remaining volume integrals in ( 1) to surface integrals
results in

/ /S _ Eiz=h)Jids = / /S (e =0) M,ds @2)
where S,¢rip is the surface of the conducting strip and Sy is the surface of the coaxial
aperture(s). For one-port discontinuities, Sy represents the surface of thé feed on
the left hand side of Figure 1, while for two-port discontinuities, Sy represents both
feed surfaces. An integral equation similar to (2) can be derived for the case of

gap generator excitation by setting M, = 0 and assuming that E; is non-zero at
| one point on the strip [7].
In order to solve the integral equation (2), the current distribution J, is ex-

panded into a series of orthonormal functions as follows !:

N,
Jo = ¥ (y) z:llrar (z)2 (3)

where I, are unknown current coefficients and N, is the number of sections con-

sidered on the strip (Figure 3). The function 1 (y) describes the variation of the
1The assumed time dependence is ¢/*.




current in the transverse direction and is given by (2,10]

— % -W/2Sy<Yo+W)2 |
¥ (y)= 1- [ 2 (4)

0 otherwise
where W is the width of the microstrip line and Yj is the y-coordinate of the center
of the strip with respect to the origin in Figure 1.
The basis functions a,(z) are described by

( u__nj K!xug—zu

sn(Kls) Tp ST S Tph
ap (T) =< L“[ﬁ—(nﬁl)ﬂn T,-1<zL7, (5)
| 0 otherwise
forp #1, and
o (z) = ey =<k (6)
0 otherwise

for p = 1, where

K is a scaling factor, taken to be equal to the wave number in the dielectric
z, is the z-coordinate of the pth subsection (= (p - 1)i)

l; is the subsection length (I; = zp41 — z,) . |

For computation, all of the geometrical parameters are normalized with respect to
the dielectric wavelength (14); hence the normalized scaling factor is equal to 2.

The integral equation (2) can now be transformed into a matrix equation by
substituting the expansion of (3) for the current J,. The result may be put in the

form
(Z][h =[V] . (7)

5



In the above, [Z] is an N, x N, impedance matrix, [I] is a vector comprised of the
unknown current coefficients I,, and [V] is the excitation vector. The individual

elements of the impedance matrix are given by

Zpp = E(z=h)-% ap(z)ds. 8
BRI N CLRAOLTD ®)
where S, is the area of the two subsections on either side of the point z,. The

elements of the excitation vector are found according to

I/},://S!I?,-M,ds. 9)

Once the elements of the impedance matrix and excitation vector have been

computed, the current distribution is found by solving (7) as follows:

=27 [v] . (10)
B. Evaluation of impedance matriz elements
Before evaluating the elements of the impedance matrix, the Green’s function
associated with the electric current J, is derived. To do this the cavity is divided
into two regions: region 1 consists of the volume contained within the substrate
(z < k), while region 2 is the volume above the substrate surface (z > k).

The integral form of the electric field is given in terms of the Green’s function,
by

B =—jona [ [ ] [(7+ 599 (é")'-"] Jav (11)
where k? = w?pge;. The index ¢ indicates that the above holds in each region (i.e.
for i =1,2).
In (11), Gisa dyadic Green’s function [11] satisfying the following equation

76 +KG =-Ts(7-7) . (12)

6



where 1 is the unit dyadic (= £z + gy + 22), ¥ is the position vector of a field point
anywhere inside the cavity, and ' is the position vector of an infinitesimal current
source.

Because of the existence of an air/dielectric interface, and the assumption of a

unidirectional current, the dyadic Green’s function will have the form
= G.,2% + G,,i%. (13)
The dyadic components of (13) are found by applying appropriate boundary con-

ditions at the walls: ¢ = 0, and a ; y = 0, and b ; and z = 0, ¢ ; and at the

air-dielectric interface [7]. These components may be expressed as

GY = Y Y AW cosk.z sinkyy sink{Mz (14)
m=1n=0
G® = Y Y BY sink,z sink,y cosk{Vz (15)
m=1n=0
ml o0
G? = Y ¥ A® cosk.z sinkyy sin k) (z - c) (16)
m=1ln=0
o0 o0
G? = Y Y B® sink,z sinkyy cosk{P(z —c) (17)
m=1n=0

where

kz = nx/a (18)
ky, = m=/b (19)
kY = [k} - k3 - k3 (20)

KD = K-k-k (21)

k1 = w\/y_oé; (22)
ke = “’W» (23)
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and

- k' sin kyy’ tan k®(h — c)
A(l) = Pn COS Kz y ) 24
me abdymn cos kMDA (24)

A@) = ¥PnCOS k.’ sin k,y’ tan kDA 25
" abdypmy cos kﬁz)(h )

) —pn(l — € )kz cos k.2’ sin k,y’ tan k{VA tan kP (h — c)
B = m (26)
abdymndamn cos kz 'h
- —e i ! (1) @(p -
BO = Pn(l — €)k, cosk,z’ sin k,y :;:).n kVh tan kP (h — ¢) (27)
abdynndamn cos k3 (b — )

In (24)-(27), €} is the complex dielectric constant of the substrate and

2 for n=0
Pn = (28)

4 forn#0
dimn = kP tankMh — k) tan k@ (h - ¢) (29)
damn = ke tan kP (h —c) = k) tan kMh . (30)

In view of (11)-(30), the elements of the impedance matrix may be put in the

following form 2:

jwuqu: NSTOP

ZQP = m(,,(r "go Pn CO8 k,zq Cos k,z,,
{Sinc [-;-(k, + K)l] Sine B—(k, -KLPING) (3

with LN (n) given by the series
MSTOP
LN(n)= Y. Lma- (32)

m=1

The series elements L,,, are given by

3The expression given here for the impedance matrix elements, and that given shortly for the excitation vector
elements apply to the case of an open-end or series gap. Slight modifications are necessary for analysis of parallel
coupled line filters.



@alsin(k,Yo)Jo (4% )]? tan k{Vh tan kP (h — c)
[kﬁz) tan kA — & tan D (h - c)]
@ (1 - 5 A(h —c) - kM (1 -5 (1)
.[k, ¢ (1 - %) tankD(h - o) - kD (1 %) tan kU]

Lmn =

, (33
[k£2)6; tan kﬁz)(h —¢) — k) tan kﬁl)h] (33)
where Y; is the y-coordinate of of the center of the strip, and
st fort 0
Sinc(t) = (34)
1 fort=0
2 forg=1 ,
Cq = (35)
4 otherwise
Rin = %(k + k)L (36)
Ran = %(k — k), . (37)

C. Evaluation of the Ezcitation Vector Elements

The formulation for the excitation vector elements for the one-port case will now
be carried out. The case for two-port excitation is a straightforward extension (7].

To evaluate the excitation vector elements according to (9), we need to find the
magnetic field H, and the frill current M, = M¢$. An approximate expression for

the frill current is given by [8]

M, =- )Js (38)
where
Vo is the complex voltage applied by the coaxial line at the feeding point
ry is the radius of the coaxial feed’s outer conductor
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r, i8 the radius of the coaxial feed’s inner conductor
p, ¢ are cylindrical coordinates referenced to the feed’s center.
Substituting from (38) into (9) yields (with ds = pdpd¢)

V. =

ln( / / Hi (2 = 0)dpdg

- [ / /sm HY (= = 0)dpds + | /s(” H(z = 0)dpdg| (39)

where

S’}l) is the portion of the feed surface below the substrate/air interface (2" =
psing < —t)

S}” is the portion of the feed surface above the substrate (z” = psin ¢ > —t)

m(z =0) and H, (2)(2 = 0) are the ¢ components of the magnetic field, in regions
1 and 2 respectively, evaluated on the plane of the aperture.

After solving for the magnetic fields H,(z = 0) and substituting the resulting
expressions into (39), the following formulation is produced for excitation vector

elements:

-V Cq K l: NSTOP

o = In (f‘:) 4absin K1, ,.Z=:o o8 k24
Sinc [%(k, + K)z,,] Sinc [%(k, - K)z,] [MN(n)] (40)

where M N(n) is expressed in terms of the series given by
MSTOP
MN(@n)= Y Mna. (41)

m=1

The series elements M,,, are given by the following integral

10



Mpn = / /s,Mfm. dpd¢
/ /S?)MS,EB. dpds + / /s(!,) M® dpds . (42)

The above integrations are performed numerically, with the integrands M: _ given

by
MO = cosdcP) cosk,(pcosd+ Y.)sin kM (psin g + h.)
—sin ¢ ), sink,(pcos ¢ + Y.) cos k{!)(psin ¢ + k) (43)
for p and ¢ in region 1, and
M = cospc® cosk,(pcosd +Y.)sin kP (psind — ¢ + h,)
—singci? sinky(pcosd + Y.)cos kP (psing —c + h.) . (44)

for p and ¢ in region 2. In (43), and (44) Y., and A, are the the y and z coordinates

of the coaxial feed, and

c(l) - ..igln)_n_. {k(l)k(z)e' tan k(z)(h — c)
ymn kydzmn z Yz “r £
~ [(k®)? + k31 - €)] tan kDh} (45)
(b - w
) _ ¢nkytankP(h—c) . w
Comn dlmu Cos kg)h e kv),() JO(ky 2 (46)
&2)
@) -  Smn fp(1)402) (1)
G = i {KVE® tan kM
= [ - k21 - )] tan kP (h - o)} (47)
M w
2 (Pnkv tan kz ink.Ya J
Comn = sin -). 48
dimn COS ksz)(h -¢) v¥o Jolky 2 ) (48)

The above outlines the theory for computing the current distribution on the con-

ducting strips of shielded microstrip discontinuities. The next step is to use the
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current distribution to derive the network parameters of the discontinuity under
consideration. As shown in Figure 4, an open-end discontinuity can be represented
by an effective length extension L.;s or by an equivalent capacitance C,p. For a
two-port network, a general scattering parameter representation is used. The effec-
tive dielectric constant e€.ss is calculated from the distance between two adjacent
maxima of the current distribution on a straight microstrip line. The theory for
deriving these network parameters is described for elsewhere [2,7,12], and a brief
summary is given in Appendix I.

The theoretical method developed above has been implemented in.a Fortran
program. The remainder of the paper addresses computational é.spects of the

solution for the current distribution and discontinuity network parameters.
IOI. COMPUTATION OF CURRENT DISTRIBUTION

To gain insight into the nature of the computations, we will now examine plots
of a typical impedance matrix, exéita.tion vector, and current distribution for an
open-ended microstrip line.

Figure 5 shows the amplitude distribution of a typical impedance matrix. It
is seen that the amplitude of the diagonal elements is the greatest and it tapers
off uniformly as one moves away from the diagonal. Another observation is that
the matrix is symmetric such that Z,, = Z,, for any p and ¢, which is expected
from (31). When the impedance matrix of Figure 5 is inverted, the amplitude
distribution is as shown in Figure 6. The inverted impedance matrix shows a

sinusoidal shape for any given row or column.

Figure 7 shows the amplitude distribution for the excitation vector. The ampli-
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tude is highest over the subsection closest to the feed then tapers off smoothly. In
contrast, the excitation vector for the gap generator method has only one non-zero
value, at the position of the source.

Multiplying the inverted impedance matrix by the excitation vector of Figure 7
yields the current distribution of Figure 8. It can be seen that the shape of the
current is similar to that exhibited by the first column of the impedance matrix.

This is not surprising given the shape of the excitation vector.
IV. CONVERGENCE OF Z,, AND V,

In the expressions of (31), and (40) for the impedance matrix and excitation
vector elements, the summations over m and n are theorefically infinite. The
number of elements included in these series depends on the convergence behavior
of Z,, and V, with the summation indices.

As seen from (31), the convergence of the impedance matrix is described mainly
by the convergence of LN (n) Figure 9 shows the typical variation of LN(n) with
m and n. Most of the contributions from LN(n) to the impedance matrix are
concentrated in the ﬁfst several n values. The convergence over m is good, and
it appears that perfofming the computations out to m = 200 may be sufficient.
Note, however, that the allowable truncation points for the summations over m
and n vary with the geometry. The values quoted here are for illustration purposes
only.

The computation of Z,, over n is illustrated for a typical impedance matrix in
Figure 10. Shown is the convergence behavior for one row (g = 32) of the 64 x 64

element impedance matrix of Figure 5. This behavior is representative of that for
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any row. After only a few terms the diagonal element (p = ¢ = 32) rises above the
others, and after adding 100 terms the amplitude distribution is well formed.
Similar conclusions can be drawn for the convergence of the excitation vector

elements with respect to the summation indices m and n.
V. CONVERGENCE OF NETWORK PARAMETERS

The convergence behavior of the elements of the impedance matrix and excita-
tion vector is important to examine, yet the more relevant question remains: how
are the final results affected by various convergence related parameters?

To answer this question, a series of numerical experiments were carried out,
and the main results are presented here. As illustrated in Figure 4, an open end
discontinuity can be represented by either an effective length extension L.s; or
an equivalent capacita.née Cop- The microstrip effective dielectric constant ¢y is
calculated from the distance between two adjacent maxima of the open-end current
distribution (Figure 8).

The experiments investigated the convergence behavior of L.;y and €. with
respect to the sampling rate N, (= 1/I;), and the truncation points NSTOP,
MSTOP for the summations over n and m respectively. These numerical experi-

ments have been grouped into three separate categories each exploring a different

aspect of the convergence behavior 3.

3The parameters used for the plots shown in this section are the following: ¢, = 9.7,W = h = .025",a =
35", b=c=.2%",f = 18GHs.
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A. Effect of K-value

Using the program mentioned above, data was generated to plot L.s; and €.y
versus N, for several different values of the normalized scaling factor K of (5) and
(6). Figure 11a shows the convergence behavior of L.ss for a typical case. It is
seen that a relatively flat convergence region exists for all the K-values between
about 40 and 100 samples per wavelength. Qutside this region the convergence
behavior depends on K.

At first glance, it appears that the best convergence is achieved for higher
K-values (e.g. K = 87); however, quite the opposite conclusion results from exam-
ining the €.s; computation. As can be seen from Figure 11b, the best convergence
for €.ss is obtained for low K-va.lues. |

Based on these and other observations [7], it was determined that a value of
K = 27 gives the best convergence behavior for the L.s; and €.5; computations.

B. L.44, €.4y Convergence on n and m

To investigate the convergence of the network parameter computations with
the summation index n, several program runs were executed for different values
of NSTOP, with MSTOP fixed at 1000. Data was generated to plot L.;; and
€css versus n for several I, values. Figure 12a shows that for all the I, values,
good convergence on n is achieved after 500 terms. The same can be said for the
convergence of €.y.

In examining the convergence behavior with n it was found that, for a given
subsection length [, cavity length a, and truncation point NSTOP, a maximum

sampling limit exists beyond which the computed current becomes completely
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erratic. This is called the erratic current condition and is given by the following

simple relationship:

NSTOPxl,<a or N;> -A—lﬁg—gg.

(49)

To investigate the convergence behavior with respect to the summation index
m, NSTOP was fixed at 500, and the program was run for different values of
MSTOP. Figure 12b shows that L.s; converges well on m after about 500 terms.
The convergence behavior of ¢.;; on m, was found to be similar to that for L.;;.

C. Optimum Sampling Range

In this last numerical experiment, the effect of varying I, on the numerical
accuracy of the matrix solution was examined. This was done by studying the
variation of the matrix condition number [13], with respect to I, for a fixed matrix

size . After studying several cases it was found that an optimum sampling range,

may be defined by the following choice of subsection length [,

1.5a 4a
NSTOP === NsT0P"

(50)
Sampling within this range automatically avoids the erratic current condition and
provides the best accur#cy in the matrix solution, and also in the solution for
network parameters.

To support this last claim, consider the plot of Figure 13. It is seen that the opti-
mum sampling region specified by (50) coincides directly with the flat convergence
region for the L.;s; calculation. This consistency between the optimum sampling

region and the flat convergence region for the L.;; calculation was observed in all

the cases examined [7].
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VI. SUMMARY AND CONCLUSIONS

In the theoretical part of the presented research, a method of moments formu-
lation for the shielded microstrip problem was derived based on a more realistic
excitation model than used with previous techniques. The formulation follows from
the reciprocity theorem, with the use of a frill current model for the coaxial feed.

Computational considerations for implementing the theoretical solution were
studied extensively. Several numerical experiments were presented that explored
the convergence and the stability of the solution. Most significantly, it was found
that an erratic current condition and an optimum sampling range exist; both of
these are given by very simple relationships.

Using the method presented here, Part II concentrates on the theoretical and
experimental characterization of the discontinuities of Figure 2, and studies the

effects of shielding on their behavior.
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APPENDIX I

A. One-Port Network Parameters (Open-End Discontinuity)
The effective length extension (Figure 4) for an open-end discontinuity is given
by
A
Lefj = 4 - dmaz . (51)

where dp.. is the distance from the end of the line to a current maximum.

The normalized equivalent capacitance (Figure 4) can be expressed as

o = sin2B,dmaz ~ _ Sin2B;Leys
P 7 Wl —co82Bydmaz) w(l+co82B,Less)

(52)

In the above, f, is the phase constant of microstrip transmission line.
B. Two-Port Network Parameters (Gap discontinuity, Coupled Line Filters)
For the computation of two-port network parameters, the strip geometry is
assumed to be physically symmetric with respect to the center of the cavity (in
both the z and y directions of Figure 1). The network parameters are determined
by analyzing the currents from the even and odd mode excitations as discussed in
(2,7,12].

The normalized impedance parameters are given by according to

Z5n + 29
g = IN2 IN | (53)

20, — 2¢
z3 = ﬂ_z_m (54)

where z§5 and z§y are the input impedances of the even and odd mode networks.

The scattering parameters for the network may be derived using the following

18



Appendix C
"Shielding Effects in Microstrip Discontinuities

Part II: Applications”
L.P. Dunleavy and P.B. Katehi

13






Shielding Effects in Microstrip
Discontinuities — Part II: Applications

Submitted to IEEE Trans. on Microwave Theory and Tech. — April 1988

L.P. Dunleavy* and P.B. Katehi
Radiation Laboratory
Dept. of Electrical Engineering and Computer Science
The University of Michigan
1301 Beal Avenue
Ann Arbor, MI 48109-2122

Abstract-.

As an application of the theoretical method described in a companion paper,
numerical and measured results are presented for open-end and series gap dis-
continuities, and a coupled line filter. Comparisons are also made to commer-
cially available CAD package predictions. The results verify the accuracy of the
new theoretical method and demonstrate the effects of shielding on discontinuity
behavior. The experimental techniques used, which involve the thru-short-delay

de-embedding approach, are also explained.

* L.P. Dunleavy is now with Hughes Aircraft Company.






relations:

Su = Sa= z?l -;— zﬁ (55)
Su = Sn=22 (56)
where
D = 2% + 22z, — 23, (57)
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microstrip shielding
cavity (or housing)

coaxial
input

coaxi_al
output

dielectric substrate

Figure 1: In most practical designs, microstrip circuitry is enclosed in a shielding cavity whose
effects must be accurately modeled.
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OPEN END SERIES GAP

ONONNANNN

PARALLEL-COUPLED LINE
FILTER

Figure 2: In the present research, the theoretical method is applied to the class of discontinuity
structures shown here.
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Hs-2 Ns-1

= (p-1)1

Figure 3: The current in the longitudinal direction is expanded using overlapping sinusoidal basis

functions.
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Figure 4: A shielded microstrip open-end can be represented by an effective length extension
Leyys, or by an equivalent capacitance Cop.
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1Zap !

Figure 5: The impedance matrix for an open-end is diagonally dominant.
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Figure 6: The inverted impedance matrix displays a sinusoidal shape along any row or column.
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Figure 7: The amplitude distribution of the excitation vector is highest at the position of the
feed (z = 0), then tapers off uniformly.
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Figure 8: The imaginary part of the current distribution for an open-ended line has a sinusoidal
shape, and goes to zero at the line’s end (z = 1.6)).
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Figure 9: LN(n) has convergent behavior over both m and n.
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Figure 11: Convergence of L,yy and €.s; versus sampling.
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a. The convergence of L¢ss on n depends on Iz, but is satisfied in all cases considered after 500 terms
have been added.
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b.The convergence of L¢sy on m is also satisfied after 500 terms.

Figure 12: Convergence of L.y on n and m.
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4 OPTIMUM SAMPLING REGION
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Figure 13: The optimum sampling range is seen to correspond directly with the flat convergence
region for the L.;; computation.
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I. INTRODUCTION

This is the second of two papers concerned with the study of shielding effects
in microstrip discontinuities. The companion paper develops a new theoretical
method for the full-wave analysis of shielded microstrip discontinuities. The effects
of shielding are important in two situations. The first is when the frequency
approaches or is above the cutoff frequency for higher order mode propagation.
The second occurs when the metal enclosure (Figure 1) is physically close to the
circuitry (proximity effects). These effects have not been adequately studied in
the past, and are not accounted for in the discontinuity models in most available
CAD packages.

In addition to improved theoretical methods, there is a great need for exper-
imental data. Published experimental data on microstrip discontinuites is very
limited, especially for high microwave (above X-band) and millimeter-wave fre-
quencies. Such measurements are not trivial, but are essential for verification of
the theoretical method. This need motivated the experimental study discussed
here.

This paper (Part II) uses the previously described method (Part I) to study the
effects of the shielding cavity on the behavior of one- and two-port discontinuities
including open-ends, series gaps and parallel coupled line filters. In addition,
comparisons are made to available data from other theoretical solutions inéluding

other full-wave analyses and commercially available CAD packages.



II. EXPERIMENTAL TECHNIQUES

Measured data on microstrip discontinuities is very limited, particularly at
higher frequencies (above 10GHz). This is due to the difficulties involved with
performing accurate microstrip measurements. In order to measure a microstrip
circuit, it is generally mounted in a test fixture with either coax-to-microstrip or
waveguide-to-microstrip transitions. The main difficulties associated with such
measurements are the separation of test fixture parasitics from measurements,
called de-embedding and the non-repeatability of microstrip connections.

This section explains the experimental techniques used for this study, and ad-
dresses the connection repeatability issues that pertain to the measurements.

A. De-embedding Approach

The measurement approach of this study employs Automatic Network Analyzer
(ANA) techniques in conjunction with the thru-short-delay (TSD) method for de-
embedding the effects of the test fixture from the measurements. The test fixture
that was used is shown in Figure 2. The fixture employs a pair of 7Tmm “Eisenhart”
coax-to-microstrip transitions [1]. The shielding is provided by placing U-shaped
covers on top of the microstrip carriers. This forms a cavity similar to Figure 1.
The instrumentation used for the measurements was an HP8510 ANA.

The test fixture invariably introduces unwanted parasitics and a reference plane
shift to the measurements. These effects must be accurately accounted for and re-
moved from the measurements, or incorporated into the ANA system error model.
Conventional ANA calibration, which uses a short circuit, an open circuit, and a

matched load is not easily performed in microstrip since these calibration standards



are much more difficult to realize in microstrip.

The process for removing test fixture effects is called de-embedding and consists
of two steps: 1) fixture characterization, and 2) the extraction of fixture parasitics.
Through de-embedding, the effective calibration reference planes are moved from
the coaxial or waveguide ANA test ports to microstrip test ports within the fixture.

A comparison of various de-embedding techniques [2] lead to the choice of the
TSD technique for the experimental study. This approach was selected over the
alternatives considered because the standards used for fixture characterization are
the easiest to realize in microstrip, and because the connections to these standards
can be made in the same way as the connections made to discontinuity test circuits.
In the TSD technique, two-port measurements made on a thru (zero length delay)
line, a “short” circuit, and a delay line provide enough information to characterize
the fixture. Since the original paper [3], it has been pointed out that the “short”
implied in TSD, need not be perfect. In fact, any highly reflecting standard may be
used in its place [4,5]. The only requirement is that the same reflection coefficient
I', must be presented to both microstrip test ports.

This measurement approach provides for the measurement of the effective dielec-
tric constant, the reflection coefficient of open-end discontinuities, and the two-port
scattering parameters of series gaps and coupled line filters. In the present imple-
mentation of TSD de-embedding, an open-ended microstrip line is used in place of
the short as the reflection standard. Measurements of microstrip effective dielec-
tric constant ¢,ysy, and the reflection coefficient of the open-end I'y, are obtained

as byproducts of the fixture characterization procedure. Once the fixture is char-



acterized, the de-embedded S-parameter measurements of two-port discontinuities
are obtained by extracting the fixture parasitics mathematically.

B. Connection Repeatability Issues

One drawback to the TSD technique is that good microstrip connection re-
peatability is important for accuracy. Microstrip connections are much harder to
make, and less repeatable than connections in coax and waveguide. This is a key
limiting factor to the accuracy of microstrip measurements at higher frequencies.
To address this issue, a microstrip connection repeatability study was carried out
[6]. The results of this study were used to decide on the best connection approach
to use and to estimate the associated measurement uncertainties.

There are three basic connection alternatives for TSD characterization of a

coaxial fixture. Each of these must rely on at least one of the following assumptions:

1. repeatability of connections made from the coax-to-microstrip transition to

the microstrip line
2. repeatability of microstrip-to-microstrip interconnects

3. uniformity of electrical characteristics between different transitions (launcher-

to-launcher uniformity).

The results of the repeatability study favor a connection approach relying on re-
peatable coax/microstrip connections, and this was the approach adopted for the
present work.

As part of this work, a method was developed to approximate the uncertainties

in de-embedded results arising from connection repeatability errors [2]. The anal-



ysis consists of perturbing the S-parameters of the TSD standards and the D.U.T.
with a set of experimentally derived error vectors that are representative of the
variationé of each S-patameter (S11, S12 etc. ) measurement with repeated connec-
tions. Software was written to allow processing the perturbed S-parameter data in
the same way as the measurement data is processed during the TSD de-embedding
procedure discussed above. This perturbation analysis, shows approximately how
connection errors —which are inevitable— propagate through the TSD mathemat-

ics and limit the precision of the final results.
III. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, the numerica.l and experimental results of the present research
are presented for the network parameters of shielded microstrip discontinuities.
Included here are resuits for the effective dielectric constant, open-end and series
gap discontinuities, and coupled line filters. Where possible, comparisons are made
to results generated from the commercially available CAD packages Super Compact
and Touchstone’.

The CAD models used in these packages are based on a combination of different
theoretical techniques, most often embodied in simplified closed form solutions,
curve fit expressions, or look-up tables. These models do not adequately account
for the effects of the shielding box (Figure 1). Further, in simulating a circuit
containing many discontinuities, the analysis of these packages assume that the
discontinuities are independent of one another and the matrix representations for

each discontinuity are simply cascaded together mathematically.

1Super Compect and Touchstone are microwave CAD software packages available from Compact Software and
EESOF respectively.



In contrast, the full-wave solution presented in Part I accurately treats the entire
geometry of the shielded microstrip circuit as a boundary value problem. The
interactions between the discontinuity structure, adjacent microstrip conductors,
and the shielding cavity are automatically included in the analysis. Because of this,
the method is expected to provide better accuracy than CAD model predictions.

A. Cutoff Frequency and Higher Order Modes

One case where shielding effects are noticeable is when the frequency approaches
the cutoff frequency f. for the first higher order shielded microstrip mode. The
nature of higher order modes in shielded microstrip is quite different from that
in open microstriﬁ. In open microstrip, higher order modes occur in the form
of surface waves and radiation modes. The first surface wave mode has a cutoff
frequency of zero. In shielded microstrip, the higher order modes take the form
of waveguide modes [7]. As a consequence, below the waveguide cutoff frequency,
only the dominant microstrip mode can exist.

For the present work, the f, for the shielded microstrip geometry of Figure 1, is.
approximated by considering the dielectric-loaded waveguide formed by removing
the strip conductors and the walls at z = 0, and a. The cutoff frequencies so
derived have been found to give a good prediction of where higher order effects
are first observed in the computed current distributions. As an example, Figure 3
shows the current distribution on an open-ended line operating below the cutoff

frequency. For the indicated geometry, f. is about 17.9 GHz. As the frequency is
raised above the cutoff frequency, the current becomes more and more distorted as

shown in Figure 4. The distortion is due to the interactions between the dominant



mode and the first higher order waveguide-like mode inside the cavity.

B. Effective Dielectric Constant

Figure 5 shows ¢.s; for a 25 mil thick alumina substrate where the cross sec-
tional shielding dimensions, b and ¢, are ten times the substrate thickness ().
The numerical results are compared to measurements, and to CAD package pre-
dictions. Note that Super Compact allows only the cover height to be varied while
the calculation provided by Touchstone neglects shielding effects. For the shielding
geometry used here, it is seen that the difference between the numerical and CAD
package results are within experimental error. However, interestingly enough, bet-
ter agreement between the CAD results and the numerical results is observed at
higher frequencies. This may be due to the fact that the side walls, which are not
included in the CAD package analysis are electrically closer to the strip at low
frequencies.

The measured data is obtained as a byproduct of the TSD fixture characteriza-
tion procedure as discussed above. The data shown represents the average of ten
separate procedures conducted over a period of time with four different sets TSD
standards. The error bars shown in Figure 5 represent the standard deviation (+s)
of the different measurements. This data is shown here in lieu of the result from a
single measurement, since it gives a more representative view of the involved mea-
surement uncertainty. In this case the error bars shown represent the combined
effect of connection errors, variations in ¢,, and other factors. The major error

source in this case is believed to be the variations in ¢, which can be significant



Table 1: CAVITY NOTATION USED TO DENOTE DIFFERENT GEOMETRY AND SUB-
STRATE PARAMETERS

CAVITY | ¢ [ W (in) [ A (in) | b (in) | ¢ (in) | f. (GHz) ]|
CA 9.7 .025 025 | .250 | .250 21.8 ||

CC__ | 97| 025 | 025 | .100 | .100 | 375 |
CF_ | 97| 025 | 025 | 075 | 075 | 417 |
QCB_[3.82] 0157 | .010 | .122 | 080 | 458 |

QCE |[3.82 .0157 [ .010 | .100 | .100 73.0
QCG |[3.82| .0157 | .010 | .050 | .05 102.5

for alumina substrates [8]2.

To see how €.y varies with shielding, consider the plot of Figure 6. This plot
compares numerical and Super Compact results for three different shielding geome-
tries. The notation used to describe different shielding and substrate geometries
is explained in Table 1.

In all cases, as the shielding is brought closer to the microstrip a reduction in
€.ss is predicted. The case for cavity CA is the same as that of Figure 5. For the
other two cases, where the shielding is closer to the microstrip, the Super Compact
shows a smaller effect than the present integral equation method predicts.

The effect of shielding on ¢,y for a quartz substrate is displayed in Figure 7.
In this case the Super Compact analysis is seen to give good results for both of
the two larger shielding geometries . However, the numerical results again show a

larger reduction in ¢,y as the size of the shielding is decreased further.

The reduction of the effective dielectric constant, relative to Super Compact,

2This error reflects the uncertainty of not knowing the exact value of ¢, to use in the theoretical simulations.



can be explained_as follows. For a larger shielding geometry, the field distribution
on the microstrip more closely resembles the open microstrip case, with most of the
electric field concentrated in the substrate. In this case, most of the electric field
lines originate on the microstrip conductors and terminate on the ground plane
below. As the cavity size is reduced, the ground planes of the top and side-walls
are brought closer to the microstrip lines. The electric field distribution is now less
concentrated in the substrate, as more field lines can terminate on the top and side
walls. As a result, a proportionally larger percentage of the energy propagating
down the line does so in the air region, and the dielectric constant is reduced.

C. Open-end Discontinuity

As discussed in Part I of the paper, an open-end discontinuity can be represented
by an effective length extension L.y, or by a shunt capacitance c,,. Both of these
three representations will be used in this section.

The plot of Figure 8 compares L,; results to those of Jansen et al. [9] and
Itoh [10]. In this case, the dimensions of the shielding cavity are large with respect
to the substrate thickness. The results from this research are almost identical to
those obtained by Jansen et al. for frequencies above 8 GHz, but show a reduced
value for lower frequencies.

The case of Figure 8 was chosen to compare the coaxial and gap generator ex-
citation methods used in the method of moments solution Table 2 shows that the
results computed for this case by the two methods are equivalent. This equiva-
lence also holds for the two-port scattering parameters for the structures consid-

ered herein. Hence, as far as computing network parameters is concerned either



Table 2: COMPARISON OF L.;;/h COMPUTATION FOR THE TWO TYPES OF EXCITA-
TION METHODS

T 7 (GHz) 4 | 8 [12 ] 1416 ] 18] 20
GAP
“ GENERATOR | .298 | .305 | .309 | .321 | .324 | .344 | .353
COAXIAL
"EXCITATION 299 | .304 | .309 | .322 | .327 | .344 | .352 ||

method gives good results. Since the coaxial method is more realistically based,
this conclusion lends validity to the use of the gap generator method.

The results shown in Figure 9 illustrate the effect of shielding on the open-
end discontinuity. The normalized open-end capacitance c,, is plotted for three
different cavity sizes. The results show that reducing the cavity size raises f. (as
expected), and it lowers the value of c,,. For comparison, data obtained from
Super Compact and Touchstone and measurements (see Section 4.3) are included.
The errors bars on the measurements represent the estimated standard deviation
(£s) of the connection errors associated with this measurement?.

Similar shielding effects are observed for an open-end on a quartz substrate as
shown in Figure 10. In this case it is seen that the Super Compact result gives a
good value for low frequencies, and where the frequency is well below the cutoff
frequency for a given shielding size. These results show that shielding effects due to
wall proximity are less important than shielding effects due to the onset of higher

order modes.

3The other error sources indicated for the effective dielectric constant measurement are not considered to be
as significant for this measurement.
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D. Series Gap Discontinuities

Numerical and experimental results have been obtained for series gap disconti-
nuities of three different gap widths [2]. Results for one of these gaps are presented
here.

Numerical results for the magnitude of S, of a series gaps with a 15mil gap
width are shown plotted in Figure 11. For comparison, results obtained using Super
Compact, and Touchstone are also shown plotted along with measured data. The
numerical results are seen to be in very good agreement with the measurements.
The test substrate and shielding dimensions used for the measurements are those
for cavity CA (Table 1). The error bars associated with the connection errors, are
on the order of +.5dB and are too small to show on the plots.

Results for the angle of S;; and S;; for the 15 mil series gap are shown in
Figures 12 and 13. The error bars in these charts represent the estimated standard
deviation from the perturbation analysis®. Although the measurements tend to
favor the numerical results, the phase differences are not too significant since it
is suspected that the measurement may be in Ierror by more than that attributed
to connection errors alone. The phase of the S-parameters for the other two gaps
behave in a similar way as that for the 15 mil gap and have been omitted from
this treatment.

These results are seen to further verify that the theory developed in Part I.
For the large shielding dimensions used for the measurements (b,¢ 3> k) the CAD

models are also seen to give reasonable predictions. The behavior of series gaps

4The analysis was carried out at 10GHz, and it is assumed that the connection errors are approximately the
same at the other measurement frequencies.
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for different shielding dimensions was not studied, instead emphasis was placed on
obtaining results for coupled line filters since their behavior is more complicated
and therefore more interesting.

E. Four Resonator Coupled Line Filter

The last results to be presented are for the four resonator coupled line filter of
Figure 14. For brevity, only the amplitude and phase of S;; will be discussed.

Numerical and measured results of this research are compared along with CAD
model predictions in Figure 15. The CAD package analysis for coupled line filters
is performed by cascading two different types of discontinuity elements together:
coupled microstrip lines, and open-end discontinuities. Neither of the packages
studied here account for shielding in the open-end discontinuity model, however,
Super Compact does include the effect of the cover height in the model for coupled
lines.

The numerical results shown in Figure 15 demonstrate excellent agreement with
measurements up to the cutoff frequency. The cutoff frequency f. for the shield-
ing geometry of the filter is approximately 13.9GHz. Above this frequency, the
measurements are distorted due to waveguide moding within the test fixture.

The results of Figure 15 show that even for large shielding dimensions the
discrepancies are apparent in the CAD model predictions, whereas the numerical
results follow the measurements closely, both in amplitude and phase. As can
be seen from the amplitude response (Figure 15a), the CAD models give a good
prediction in the pass band, but fail to predict the filter response in the rejection

band. This is also seen from the phase response (Figure 15b), where the CAD
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models display & large error compared to measurements. between about 6 and
8.5GHz, while the numerical results track the measured amplitude and phase very
well.

Below about 5.5GHz, the measured phase is seen to be different from the pre-
dictions of both the CAD models and the numerical results. This is most likely
due to a phase error in the measurements. In the TSD technique, the delay line
for the measurements should ideally be ’-\41 at the measurement frequency °. When
the electrical length becomes either too short or too close to a multiple of 52’- phase
ambiguities can result. A good rule of thumb is for the delay line to be between 381
and 3—;‘. At 5.5GHz the delay line used for the measurements is slightly less than
: i\s-‘; hence, this is most likely the source of the phase error in the measurements
below this frequency.

We will now examine what happens as the top cover is brought closer to the
circuitry. Figure 16a shows Super Compact predictions for the four resonator filter
with two different cover heights. These predictions indicate that lowering the cover
height should significantly narrow the pass band, and reduce the amplitude in the
rejection band.

A significantly different prediction is observed in the numerical results for this
case presented in Figure 16b. A narrowing of the pass band response is also
observed in the numerical predictions, but not by nearly as much as in the Super
Compact predicts. More importantly, the amplitude in the rejection band is seen

to increase instead of decrease.
SMultiple lines are needed for broadband measurements.
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To prove that-the numerical prediction is indeed the correct one, an additional
measurement was made of the filter for the low cover height case. As can be
seen from Figure 16b the agreement between measured data and the numerical

predictions from this research is excellent.
IV. SUMMARY AND CONCLUSIONS

In this paper theoretical and experimental results were presented for the network
parameters of one- and two-port discontinuities. For the measurements, the TSD
de-embedding approach was used. Connection repeatability errors were considered
in detail and a perturbation analysis was developed to approximate their effect on
the precision of the final de-embedded results.

The effects of shielding on microstrip behavior was studied. It has been demon-
strated that the computed current distribution becomes distorted above the cutoff
frequency f.for the first higher order shielded microstrip mode. On the other
hand, as long as the cavity size is such that the frequency is below f,, the current
is uniform and undistorted regardless of how thick the substrate is.

Only one of the CAD packages studied takes shielding into account for the
effective dielectric constant (e.ss) calculation, and then only cover effects are con-
sidered. A comparison of the CAD package predictions with the numerical results
of this research for €. sy showed that good agreement is obtained when the shielding
dimensions are large with respect to the substrate thickness, while for small shield-
ing dimensions, the difference between the different results becomes significant.

For the open-end discontinuity, good agreement with other full-wave solutions

and with measurements has been demonstrated. A comparison of open-end capac-

14



itance for different cavity sizes showed that, as the cutoff frequency is approached,
the capacitance increases in each case. Choosing a small cavity with a high cut-off
frequency extends the region where the capacitance is relatively constant.

Good agreement between numerical and measured results was also demon-
* strated for series gap discontinuities and a four resonator coupled line filter. For
the filter, reducing the cover height was seen to narrow the pass band response and
raise the amplitude of the filter’s rejection band response. The numerical results
of this research give an excellent prediction of this effect, whereas discrepancies are

apparent in the CAD model predictions.
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Figure 1: Basic geometry for the shielded microstrip cavity problem.
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Figure 3: Below the cutoff frequency f., the microstrip cuirent on an open-ended line forms a
uniform standing wave pattern (f = 16GHz,e, = 9.7, W/h = 1.57, A = .025”,b = ¢ = .275").
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.025”,b = ¢ = .275").
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Figure 7: Shielding effects are also significant for the quartz substrate shown here (see Table 5.1
for geometry).
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Figure 9: A comparison of the normalized open-end capacitance for three different cavity sizes
shows that shielding effects are dominated by the onset of higher order modes rather than by
proximity effects (see Table 5.1 for cavity geometries).
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Figure 14: Sketch of four resonator coupled line filter studied here ( ¢, = 9.7, h-=-025", b-= 4",

25").
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1 Introduction

The effect of conductor losses in microstrip circuits and especially MMIC’s is
important to the circuit designer who has to account for dissipation and power
loss. Several studies have been performed to calculate the dispersion in microstrip
structures at microwave frequencies accounting for dielectric and conductor losses.
Conductor losses have first been analyzed by Pucel [1] and Wheeler [2] where a
technique based on the incremental inductance rule was used. Other approaches to
the problem include quasi-TEM models [3], [4] and the conventional perturbation
technique as in [5] using a spectral-domain approach.

In the present study, a shielded planar microstrip transmission line is consid-
ered where both dielectric losses in the substrate and conductor losses in the strip
are accounted for. A spectral approach is adopted to solve an equivalent prob-
lem where the dielectric layer (or layers) is replaced by an impedance boundary
condition. Using Fourier transfo;‘mation, the Green’s function of the problem is
derived. Assuming a thin-strip approximation and a Maxwellian distribution for
the current, a method is applied that represents conductor losses in microstrip
lines in terms of a frequency-dependent impedance. The propagation constant of

the lossy line is then computed for different frequencies and loss tangents.



2 Derivation of the Green’s function

2.1 Geometry

Consider an infinitely long inhomogeneously-filled waveguide, with a microstrip
centered on the substrate as shown in Figure 1. The dielectric substrate is consid-
ered lossy with relative permittivity €, and permeability p,. Conductor losses are
accounted for in the microstrip whereas the walls are assumed perfect conductors.

Striplines which are within a shielding structure that is completely filled with
dielectric material can propagate TEM waves. Shielded microstrip lines, however,
cannot support these modes because the bounda;‘y conditions at the interface be-
tween air and dielectric cannot be rigourously fulfilled. These lines propagate hy-
brid modes which have non-zero cut-off frequencies with the exception of the dom-
inant mode. Each microstrip mode propagates rectilinearly along the z-direction.
Therefore the 2-dependence in an infinite line will be of the form e~ where v, is
the complex propagation constant for the given mode.

The solution for the microstrip modes can be obtained through an A,, F, or A,
F' formulation which has to be applied to each of n dielectric regions separately
[6]. This approach leads to a linear set of 4(n+1) equations which has to be solved
analytically in order to find the unknown potentials. In the present formulation
we eliminated this limitation by considering an equivalent boundary condition on
the air-dielectric interface. In this manner, we are able to decrease the complexity
of the solution and solve for the electromagnetic fields in the air region only. The
impedance boundary condition is applied separately for LSE and LSM modes. The

current source is raised above the substrate interface to study the slightly more
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general type of configuration as shown in Figure 2. Note that the height of the

waveguide is now a’, where a’ = a — h.

2.2 Derivation

The Maxwell’s equations are applied as

VxE = —jwuH (1)
VxH = J+jweE (2)
V.(E) = p (3)
V-(uD) = 0. (4)

Defining the electric and magnetic potentials in the usual way using the Lorentz

condition, we get for LSE modes

F = F,3 (5)
E = % « F (6)
_ . 1 _
H = ij-—jwwVV~F, (7)
and for LSM modes,
A = A (8)
7= tvxi (9)
7
E = —jwA+ L ov.4 (10)
jwep

The problem is Fourier transformed using a spectral domain approach to reduce

the problem to a two-dimensional one by eliminating the 2-dependence.



The transformations used are given by

= — z L - 1
4 = = /_ Ao dk (11)
A, = /oo Ay e %% 4z, (12)
This gives for LSE modes
E, = 0 (13)
~ k, ~
y = ]—C—Fz (14)
~ 10 ~
- -9 15
Ez € ayF!L‘ ( )
A = ———® - K. (16)
Jwep
_ 1 9% -
_ 17
H, jwep 0zdy (17)
_~ k. 0 ~
- 22 1
H. WEp 3:1:F (18)
and for LSM modes,
H, =0 (19)
~ k, -
y = ];Az (20)
_ 19 -
H, = ———A; 21
3y (21)
=1, g
. = jwep(k k;)A, (22)
- 1 8% -
= 2
Ey jweu Oxdy (23)
~ k. 0 ~
E, = —=——A 24
wep Oz (24)

The general solution to the wave equation in each region can be obtained by the



method of separation of variables as

AD = S apncos(kan(e — a)) sin(Z7Y) (25)
AID =3 b co8(kszg) + cnsin(ksa)] sin( L) (26)
F = i dmn sin(kzo(z — a)) cos( m;ry) (27)
FOD = 3" [fun con(kegt) + g sin(ksz)] cos( L) (28)

where k;; and k;, represent the wave numbers in the dielectric layer and in the air
region respectively and (I), (II) correspond to the air region above and below the
point source respectively. The boundary conditions on the perfectly conducting
walls have been used to derive these expressions. The problem then consists of
solving for the six unknown coefficients amn, bmn; Cmny dmny frmn and gm, using the

following boundary conditions on the z = z¢ interface in the Fourier domain.

B -HD = 8y—y)e (29)
n (11
ED = E{ (30)
E®D = EUD (31)
HD = HUD, (32)

Also impedance boundary conditions are used on the interface as

~ LSE
EUD
(ﬁ]ﬁ) = e ‘ (33)
~ LSM
EUD
, (‘I_.fyg—[)) = NMm (34)

These impedances 7, and 7,, can be found using the sending end impedance for-

mulas for transmission lines. For a single layer these are, for LSE and LSM modes

6



respectively

Ne = —jczﬂl tan(kz1h) (35)
kz1
I = 2 tan(bah) (3)

After solving for the six coéfﬁcients, one obtains for the electric field due to a dipole

above a substrate

Ez” = % mz_lj Gl Sln 1:2(370 ))kz tmw) Sln( b y ) Sln(_—y)e_"kzz,

mm ., we kzosin(kgih) cos(kpat) + kyy cos(kgrh) sin(kpoz)

(( ) kyg cos(kga(zo — a')) (ke sin(kzyh) cos(kyao) + kiy cos(kyrh) sin(kzazo)

1

+ sin(kz2(zo — @'))(kyg sin(kz k) sin(kz2zo) — kg cos(kgyh) cos(kz2zo))
k2ko €rky2 sin(kz2z) cos(kg1h) + ki1 cos(kgez) sin(kz1h)

B wp — cos(kz2(zo — a'))(erkzz cos(ke1h) sin(kz2zo) + bz sin(ke1h) cos(kz2zo

1

. (3
+ sin(kz2(zo — a’))(keo€r cos(kz1h) cos(kzazo) — kza sin(kzh) sin(kzgmo))) (

When restoring the point source on the interface ¢ = ¢, the electric field in (37)

therefore becomes

E' = —le‘i Y sin zza)sm(—-y)sm(-n%z )ik
m=1
1 ( (BZ)?sin(ks1h)
k2 4+ (BE)? “kyysin(kg h) cos(kzaa’) + kgy cos(kzah) sin(koa')
2y, .
kz z2k:c1 sm(k,,lh) ). (38)

k¥ kyisin(kph) cos(kga’) + kage, cos(kzyh) sin(kgoa’)
The denominator of each of the two terms inside the brackets is seen to correspond

to the transcendental equations for LSE and LSM modes. Therefore we can write

the E’ fields as

E':SII)I:D=:L‘0 = EzlLSE + EzILSM (39)



The equation (38) corresponds to the Fourier transform of the Green’s function of
the problem, namely G,,. Its inverse Fourier transform as defined in (11) is then

given by

&, = / G, e dk,. (40)

1 o
27 oo
2.3 Electric field on the strip

Assuming that the strip is thin enough in the y-direction, we can propose a

Maxwellian distribution [8] for the current density on the microstrip as
Ty, 7) = 7-(% §(a" — o) W e (41)

1- [%(y’ - yo)]

where w is the width of the line and k™5 is the unknown microstrip propagation
constant. The function f(y) allows for single or multiple strips on the air-dielectric
interface. Chebyshev and Legendre polynomials have been used recently for the
current distribution [7]. This study will first focus on a single microstrip centered
in the y-direction. In that particular case f(y) reduces to unity. The electric
field due to this current distribution has a variation in z’, y’ and 2z’ where the

corresponding integrals are

U

I, = /oa 8(z' — zo)dz’ (42)

—_ w+¥ 92 1

I, = / : p— Sm(fn_l;f_ ") — dy’' (43)
w \/1 - [2(v' - wo)]

I, = /+°° eiks'77 giksle=71 g, (44)

The goal of this study is to find the dispersion characteristics of a centered, narrow

microstrip line. To this end, the electric field on the interface £ = z, is calculated



as follows
(T = o) = // G,z = o) J,(y', 2') dy' d2'. (45)
Substituting (38) into (45), we get

mw

w+¥ rtoo ptoo 2 mm
E.(z=1z¢) = o /_ / / —]wpz s1n(k,2a)31n(7y)sm(7)

( ) sin(kz1h)
(kg2a’) + kz1 cos(kz1h) sin(ky2a’)

=|II

k2 + (T)2 (kzg sin(kz1h) cos

+k3k,,.2kx1 sin(kz1h) )
k¥ kgpisin(kgih) cos(kyz2a’) + kegé€, cos(kgih) sin(kga’)
2 . ek g=iked' gyt 4! dk,. (46)

w \/1 - [;2;(3/'—3/0)]2

or more simply

1 & w+¥%¥ oo ptoo
Ez(x = wO) = g E / / yvm kzlvkx%k )sm(—y)

m=1

= F[%(y' - yo)]2

Evaluating the integration in y’ (see Appendix F, [9]), one gets

e=ilks=k"%)" qut 40! .. (47)

+o00 mr
Ez(iv = 150) = 27!' Z / / yam kzl7kx2ak )Sln(TyO)
m=1
mnTw

Jo(—b'i) eI k=k") ot d, (48)

. +oo
= 27(‘ Z/ y,m,kxlykw%k)mn( b y)

m=1
mmTw

Jo(5-5)8(k: — k1S) d, (49)

1
= 27(’ Z ¢ y,m kzl) kz2)k )SIn(—yO)
mr w

Jo(5=5 ) k,=rses (50)



or

1 & . 2, .
E.(z=20) = 5 —jwpy sin(kg2a’) sm(Tblr-y)
m=1
1 ( (BE)?sin(ks1h)
k2 + (BE)? “kqgsin(kz1h) cos(kzza’) + kg cos(kzh) sin(kzoa’)
kgkzgkzl sin(kxlh) )
k¥ kpisin(kzih) cos(kzaa’) + kyzer cos(kpih) sin(kg2a’)
. mmw mr w
sin(—=yo) Jo( =) lk,=hpes (52)

It can be noted that only the odd modes in m will add up when the strip is centered
in the y-direction. One more condition needs to be applied, i.e. the boundary
condition on the microstrip. For perfect conductors, the tangential electric field
vanishes on the strip. In this study, we assume the strip to have a finite non-zero
surface impedance. This impedance varies both with frequency and space in the
y-direction. The width is assumed large compared to the thickness of the strip but
the latter need not be large compared to the skin depth. A definition was proposed

in [10],[11] for the surface impedance as
Z(f,y) = (BR+jwLin)w (53)

where R and L;, are the per unit length resistance and internal inductance of the

microstrip. By definition, the surface impedance is also given by

E,

7o —Z(f,y) (54)
which implies that

H,=J, (55)

10



since

Ax Hg=J (56)
Thus
E.+Z(f,y)J,=0 (57)
The integral equation for the electric field in the z-direction is given by
E.=— /+°°/”°+%(k27+ﬁ7) G.Jdy'd (58)
=T Jwel J-co Jy -4 0 v

where J is a z-directed current with amplitude given by (41). To minimize the
error function, we integrate over the strip after multiplying by a test function. A
pulse function has been used in this study. The problem then amounts to solving

the following equation for the microstrip propagation constant at the plane z = 0.

[ F B+ 279) 0 dy = 0 (59)

-3
or

—jw,% 2::1% sin(kuaa') sin(kuih) sin(T 2 sin(3oyo)?
WL (5
b 27k24 (BE)? “kygsin(kzih) cos(kzza’) + kg cos(kz1h) sin(ksoa’)
K2k ogker 1

k8 karsin(knh)cos(ks2a’) + kszer cos(kaih) sin(kxza’)) Jke=s
+Z(f)=0 (60)

where 7 (f) represents now an average impedance integrated over the width of the
strip. This expression can be easily programed in a personal computer to evaluate

the propagation constant of various microstrip modes.

11



3 Discussion

Based on the theory derived in the previous section, a computer program has
been developed to calculate the propagation constant of a lossy microstrip line.
The equation (60) is solved for kM5 with as many as a hundred modes to insure
convergence. The Muller’s algorithm is used to calculate the complex roots of this
function. Preliminary data were calculated for the case of a lossy substrate with
a perfectly conducting microstrip structure. The results have been found to give
good agreement with [12], within the readability of the quoted results. Also it is
seen that as one decreases the size of the structure while keeping the different ratios
the same, the effect of conductor losses on the propagation constant of the quasi-
TEM microstrip mode becomes significant. This is due in part to the dominant
effect of dielectric losses for thicker substrates. The effect of frequency with no
dielectric loss is shown in Figs. 3,4,5,6 and also Figure 7. More research needs to

be performed in this area, for example on the effect of conductor losses on higher

order modes, and the validity of different current distributions on the strip.

12
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Abstract-The theoretical analysis of an enclosed air-bridge is presented. This
includes a derivation of the Green’s function in the x and z directions which is used
to find the current distribution on the conducting strips of the air-bridge. Boundary
conditions at the interfaces are applied and the numericalv technique Method of
Moments is used to solve the integral equation for the unknown curfent. Upon
derivation of the current distribution on the conductors, an ideal transmission line

model is applied to obtain the scattering parameters of the structure.
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1 Introduction

Millimeter wave technology concerns itself with that portion of the electromag-
netic spectrum between 0.3 Ghz and 300 Ghz, corresponding to wavelengths of
1000 mm to lmm. Effective quasi-static techniques have been developed for the
lower frequencies (0.3 Ghz to 3 Ghz) but for the higher frequency part of the
spectrum, a full-wave analysis must be employed.

Millimeter and microwave systems may be overshadowed by infarred and optical
systems but limitations to the latter, in particular their disadvantages in fog, dust,
rain, and nighttime viewing support further development of the former. As with
many technologies, the number of applications will increase with the passage of
time.

The typical millimeter microwave integrated circuit contains associated active
and passive elements interconnected by transmission lines. In integrating these
components together, various discontinuities arise where evanescent fields and sur-
face waves play an important role in their operation. Work has been done to model
these discontinuities with lumped elements but the numerical techniques used to
derive equivalent circuits are either frequency bound or dependent.

Here we present a full-wave analysis, which in not frequency bound or depen-

dent, to analyze an air-bridge structure. The resultant expressions and methods

used are general enough to be applied to an array of three dimensional problems.



b. Two dimensional view highlighting dimensions

N
h——g—q.

|

4
¢. Three dimensional view highlighting relative geometry

Figure 1: Air-bridge in enclosed microstrip.

2 Evaluation of the unknown current

In our problem the current distribution on the structure of interest must be
determined accurately. Then by the use of an ideal transmission line model, the
scattering parameters can be evaluated. In obtaining the current distribution,
Pocktnigton’s integral equation is solved numerically.

The formulation of the Pocktnigton’s integral equation and the solution for the
given structure are presented in the‘following work. Our structure under study is

shown in Fig.1.



2.1 Formulation of the Integral Equation

Through the manipulation of Maxwell’s equations !

VxE':-jpr (1)
V xH=jwuE +7 - (2)
V.eE=p (3)
V-uH=0 (4)

along with the representation of the magnetic vector potential A

Vx4
H= p, (5)

one arrives at an expression relating current and the magnetic vector potential
VA +k*A=-ul. (6)

When the current J is represented by a dirac delta function in equation (6), the

Green'’s function becomes a solution as shown by the equation
VG +k*C = —pl6(F - 7). )

To obtain a unique solution that applies to the specific geometry as shown in
Fig.1, one must apply the characteristic boundary conditions of the structure. Note
that we have introduced the dyadic form as we need to be able to describe fields

which are produced by a current of arbitrary orientation.

!throughout this report an ¢’“* time convention is assumed and suppressed



For the case of a single x-directed current, the unit dyadic T takes on the form;
1=3s. (8)

The vector representation of this current is
J=6§(F -7)i. (9)

Equation (9) represents a dipole directed in the x-direction and parallel to the
interface between regions II and III. It has been shown by Sommerfeld that the
magnetic vector potential of this structure needs to have two components so that
the appropriate boundary conditions are satisfied. This dictates that A must have

one component parallel to the current source and another parallel to the interface;
A =Alt+ A3, (10)

The integral equation which relates the magnetic vector potential to the current

of interest is written as

71“=u///‘,2!"-7dv (11)

where the dyadic Green'’s function U is uniquely defined by the structure under
investigation and takes on the general form
Gi.i: Gi3j Giii)

E = G;:y.i' G‘vvgy. G;zy‘i

| Glit Giij Giit

3j denotes for which region (I, II, or III) the equation applies as defined in Fig.2



In the case of a single directional current in the x-direction, the dyadic equation

has only two components,
G =G i1 +G :i. (12)

From equations ( 1)-(5) our electric field is related to the magnetic vector po-

tential by
E-YXH_ 1 o wxT)=—(Wa+vv.7) (13)
]we ]wa Jwen
therefore
: 1 6§ [8A, 6A,
E;=-jw [A,,. + (k‘)z‘G; ( i + 52 )] (14)
1 § (A,  6A,
£, =i gy (554 5| 19
1 6§ [§A, 6A,
E, = -jw [A + (k,)36_z 5 + 32 )] (16)
and through Maxwell’s equations,
184
Hy==-— 17
™ (17)
_1[6A, A,
i, = M ( 6z 6z ) (18)
1 (6A
H,=-—- —5) . 19
B ( by (19)

2.2 Derivation of Green’s function

For our structure pictured in Fig.1 (an air bridge on an enclosed thin microstrip),
we require only the derivation of the Green's function for an x- and z-directed cur-
rent. For the variation of current in the y-direction, we have assumed a Maxwellian
distribution. Our first step will be to derive the Green’s function considering the

x and z components of the current separately.

5
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Figure 2: x-directed current above dielectric in enclosed microstrip structure.
2.2.1 Derivation of the Green’s function for a x-directed current
With equations (14)-(19) the Green’s function can be related to the electric and
magnetic fields which have conceivably defined values dictated by the structures

electrical characteristics. We begin by stating that the tangential electric fields are

zero everywhere on the surface of the walls of the structure;

E,,=0atz=0,a (20)
E,,=0aty=0,b (21)
El,=0atz=0 (22)
EL’J =0atz=c (23)

Employing separation of variables to the expressions and the established bound-

ary conditions (20)-(23), the following general forms of the green’s functions can

be derived for each region of interest



GL, i i Alcos (?) sin (m;ry) sin(k!z) (24)

2l
L3
I
Ms
M8
W
“N
5.
VN
E
SN’
@
b~ |
N
Q-

wy) cos(k!z) (25)

GII = Z Y cos (E;-E) sin (mTw) (A sin(kITz) + CMcos(k!72)) (26)
n=0m=1

G = 33 cos (?) sin (m—;’l) (BYsin(k%z) + D"cos(E!2)) (27)
n=0 m=1

I o~ S AT, (PREN o (MRY) o

Gl = Y. 3 Acos (-—a-) sin (—I;—f) sin(k;'"(z = ¢)) (28)
n=0m=1

GIl = Y ¥ B'"sin (P-?) sin (zz%rz) sin(k!'!(z - ¢)). (29)
n=1 m=l

In equations (24)-(29) the eigenvalues k., k,, and k, satisfy the following rela-
tions:
(k') = (k) + (k})? + (K;)?
mx

where ky = (77)

mnr
sad b, = ()
k? = wiye. (30)
To determine the unknown coefficients A/l and Bl ope should apply

boundary conditions at the two interfaces between Regions I, II, and III. Since at

[



the boundary between Regions [ and II there exists no magnetic charge, the normal

magnetic field must be continuous across the boundary. Therefore Hf = H!!, so
Alsin(k!2') = A%sin(k'2') + CPsin(k!'2) (31)

Since there is no electric current in the y direction, the tangential magnetic
field is continuous. By substituting this relation into (18), one obtains Hf = HT,

therefore
Blcos(kfz') = BMsin(k¥2) + D cos(k!12) (32)

Also, since there is no magnetic current in the x direction, the tangential electric

field is continuous. Therefore E’ El;
Alsin(k!z') - Blsin(klZ') =
BMcos(kI'z') = DMsin(k'z') + AMlsin(kfT2) + CMsin(kH ') (33)

By applying similar boundary conditions on the interface between Region II

and III, the following equations result;
Alsin(k}' H) + CMcos(kiTH) = A sin(k]''(H - ¢)) (34)

B''sin(k!"H) + D" cos(k!' H) = B cos(k!!!(H - c)) (35)

k(AT cos(kIH) — Csin(kTH)) = A"k cos(kI"(H - ¢)) (36)

A sin(kITH) + Ccos(k!' H) (37)
1
+_lz__) (B"COS(k”H) D”.sm(k”H))
V(i Mt
= — [ A sin(kI(H - ¢)) + —Z—sin(k; " (H - ¢)) ] .
€ (%)

8



Since there does exist an electric current between Regions I and II, the mag-
netic field between these two boundaries is discontinuous. This discontinunity
can be considered by integrating the inhomogenous helmholtz expression over the

boundary and using orthogonality. This results in

ab (k,’A’cos(k,’z') — k[T AT cos(kIT2") + kf’C"sin(kfIz'))
p

= —cos ("’:") sin (-’%) (38)

4 whenn#0

where p =
2 whenn=0

Using these eight relations derived from the boundary conditions, the eight
unknown constants, A/, B!, A{ BI cHI DIl Al BII e found. The
resulting Green’s functions for a x-directed current above the dielectric upon sim-

plification are

""- gtan( ’."ﬂl-c!' an(ky H
GI - i i p [:l u:;k.lf:-k.tcn(k: @-c)' - COt(le)]
= abk,[cot(k,z')cos(k,z2') — sin(k,2")]

n=0 m=1
cos (ﬁf_) sin (rmry ) cos (E-E) sin (m) sin(k!z) (39)
a b a b

© o p(1 = tan?(k, H)) (22) (7 - L)tan(k]!(H - ¢))
B ,gngl ab(kitan(k, H) = kstan(kIII(H - c))][cot(k.z")cos(ksz') — sin(k.2')]

N -
™
|

nrz\ . [mnry 1
\72 )"\ "B ) EMTtan(kITI(H = ¢)) - elllk,tan(k. H)

9



sin (%E) sin (TT"!) cos(k!z) (40)

% % p [T = k.tan(kH!(H — c))tan(k,H)|
2 2 abk,[cot(k,2")cos(ksz') — sin(ks2')|[kIUtan(k,H) — k,tan(kIII(H - c))]

n=0m=1

cos (m) sin (ﬂ) sin(k!’z)cos LLLZS PNy gl A +
a b a b

P nrz\ . (mmy .
abk, [cot(k. 2 Yeos(kaz) — sin(kaz)] cos ( - ) sin ( 5 ) cos(k;," z)
mrz' ) mry' |
cos( . )sm( A ) (41)

2 2 p (1 - tan3(k,H)) (2£) (¢/'" - 1)tan(kI(H ~ c))
2 2 ablkiMtan(k,H) — kytan(kIH(H — c))][cot(ksz')cos(ksz') — sin(k2'))

n=0 mal

1 in (212 gin (XY 1
T T = oy = e (a) #n (T3 cni's)
cos (m;z ) sin (m:y ) (42)

2 X p (1 = tan?(kyH))cos(k. H)
22 ablcot(k,z')cos(ksz') — sin(k,z2")|cos(kI(H — c))

n=0m=1
1
(kltan(k,H) — k,tan(k!!I(H - c)))
cos (r%a_:) sin (Ln%) sin(kM(z - ¢))cos <%) sin (m:y ) (43)

2 = p(1 = tan?(k.H)) (%) (¢f!" = 1)tan(k{!(H - ¢))
= L) ablkiTtan(k, H) - k,tan(kII(H — c))][cot(k,2")cos(k;z2') — sin(k.2)]

n=0 m=1
sec(kIII(H - ¢))
[k!tan(k,(H — c)) — elTtan(kiTH))
sin (2?) sin (ﬁbﬂ) cos(kI!(z = c))cos (m;z ) sin (m:y ) (44)

10



Region 1
y (X'.y',z')

Region 3

N

Figure 3: Structure when conducting strip is lowered on to the dielectric.

If the conducting strip is lowered on to the dielectric, we will have only two regions;
air representing Region I and dielectric representing Region III.
To formulate the following Green's fuctions for the strip on the dielectric , one

simply lets z' = H in the previous expressions.

- Y p tan(k"'(H - ¢))
Ger = ug,,z,:, ab(cos(k. H)) [k tan(k, H) - kytan(k!'/(H - c)))

cos [ 22 ) sin [ 22X ) cos (m) sin (m) sin(kfz)  (45)
a b a b

= ptan(kH)(22) (! - 1)tan(kI"(H - )
Gie = Z 2 ab{cos(k, H)) [k tan(k, H) — k.tan(kITI(H - c))]

n=0m=1

11



1 cos nrx . [mTy
I Ttan(RT(H = ) — el tan( D]\ a ) "\ ™5

sin (2?) sin (m;ry) cos(k!z) (46)
o0 [~ -}
nr _ p tan(k,H)
Gez = ,§,,§l abcos(kI(H - c))[kifTtan(k, H) — ki tan(kII(H — c)))

cos (%‘?—) sin (m_;rg_) sin(kX1(z = ¢))cos (n ) ( ) (47)

p(e!T — 1)tan(kX(H - c)tan(k, H) (“f)
Ge' = L% abeos(k;(H — c))[k{!tan(k;H) - ktan(k{"(H - c))]

n=0 mml
1 . (n®z\ . (mmy
kT tan(EH1(H — o)) — ik tan(EH)] () sin () costhi(z = <)

cos (m;z ) sin (mzy ) (48)

2.2.2 Derivation of the Green’s function for a s-directed current.

The structure used to consider the z-directed current is pictured in Fig.4. We
will simplify our problem separating it into two parts; a primary field problem
and a secondary field problem as shown in Fig.5. For a z-directed current only
one component of the magnetic vector potential is needed to satisfy the boundary
conditions;

A=Az (49)

12
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Figure 5: The problem is divided into two parts, a primary and secondary problem.



where
Al = AL + Al
ALl = AL+ AL
AT = A

From our definition of Magnetic vector potentials,

¥ x
;M

=N

H=

and from Maxwell’s equations,

-7 _ 1 o (vxA) = (¥ +T9.7)
jwe Jwep Jjwep

therefore, for the z-directed current,

(50)
(51)

(52)

(33)

(54)

(35)

(56)

(57)
(58)

(59)

(60)

Now we must apply the boundary conditions of the structure to obtain the

general (primary) solution. The first readily known boundary conditions are those

on the walls where the tangential electric fields become zero. Therefore

El=0atz=0y=0,b

14
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Ell=0aty=0,b (62)

E;:Oatz=0;z=0,a (63)

E:I =0atz=0,a (64)
El=0atz=0,ay=0,b (65)
Ef=0atz=0,ay=0,b (66)

In the primary field problem, the inhomogenous differential equation takes on

the form
V3A, + K2A, = —ul. (67)

The solution to the above equation when the listed boundary conditions are satis-

fied is of the form

o
; ~y
I
Ms
™M
.3
@
1
N
|=.
S’

Z) sin (m_;rg_) cos(k!z) (68)

0 oo m
T =33 Al —n") ' ( Wy') -ikfl(a=1) 69
A, “lm.oA sm( — )sin{—— )¢ (69)

In the secondary field problem, we will derive a solution that satisfies the ho-
mogenous differential equation. This is due to the fact that we do not have a
current source in the secondary field problem. In both field problems, the electric
fields must satisfy the same boundary conditions on the conducting walls. As a
result, the secondary fields are of the same dependence with respect to the x and

y coordinates, therefore

15



- £5 () () ()

n=lm=1
sin (1?.-) sin (_r%rg) cos(k,z) (70)

Al = 3 S5 (fsin(kez) + f”cos(k,z))( en..,)

n=1 m=1

sin (m;z ) sin (mwy > cos(k,z')

b
sin (2-?) sin (E;;—y) (71)

For Region III we have the same standing wave solution as in Region 1 except for

the fact that the conducting wall has been moved by (H+h) along the z-axis as
reflected in our z dependence below

. [nxz’\ . (mmy
Al - Z Z i bk‘;"e""‘ fMsin (_a )szn (_by )

n=1lm=l

sin (2%2) sin (m;ry) cos(kM(z — (H + h)). (72)

In the case of a delta function source, A,, will give a G,,, component in the
dyadic Green'’s function and similarly, a A,, will give a G,.,. These two components

are related to G,; by the relation
Gu = Gup + G:u (73)
Since we have a current source between Regions I and II, our magnetic field is
discontinuous so we must integrate the inhomogenous helmholtz equation over the

16



interface which results in

. + o 2 . ' +a ' ’ '
tim [ (V4 KD Adz = —plim [ 8z = )6y - v)8(z = )dz, (14)

and upon simplification, one obtains

. 5 z'+c - ! !

lim (EzA' l""“) = ~ullz ==l -y) {7
Al §A! ' '
BLe |, =208 | bz = 2 )6y - ¥) (76)

from (25), one obtains

14-6 (kfsin(kfz')Aﬁ -jkf'Af’) = sin (n:z ) sin (m:y ) . (77

One more equation is needed to solve for the two unknowns A!, and Al’. Utiliz-

ing the fact that the E field in the z- direction must be continuous at the boundary

between regions I and II; one obtains
Alcos(k,z') = AL, (78)

These equations are solved for the unknown coefficients resulting in

!

4y . nrz mx
I =19 L jkaz g4 1 y 7
A Jabk,e sm( - )sm( A ) (79)

4p 0 . [nxz’\ . [mny ,
I’ —1 —— h" —— —— k' R 80
A Jabk,e] sin ( - ) sin ( 5 ) cos(kyz) (80)

By substituting these expressions into our general forms (68) and (69), the zz-

component of the Green’s function takes the form,;

o 2 4y . [nxz'\ . [(mny
I — —F L ik;2 ——
Gep = ,.2:1,..2.“]05*:61 sin ( - ) sin ( 5 )

sin (nf:r) sin (-"-'-;—’!) cos(k,z) (81)

17



Glt, = 5 3% e

mr:t' . m1ry' \ '
n=lm=l a ) an ( b ) co"(klz )

nrx . MEY\ kil (g-s
sin (—a-) sin (—b—) g~ ike (s-1) (82)

In order to determine the four unknowns of the secondary field problem, bound-
ary conditions on the air-dielectric must be applied to the structure of Fig.5¢c.

First, the z-component of the electric field is continuous across the boundary
between regions I and II; Ef = E!I, Therefore

fTcos(k,z') = fisin(k,z') = f7cos(k,2') =0 (83)

Integrating the homogenous helmholtz equation (there is no electric source in
the secondary problem) across the boundary and using orthogonality, one obtains
Heos(kyz') — fHsin(k,2') + flsin(k,2) = (84)

From (83) and (84), we conclude that

ff=0 (85)
and
fr=fH, (86)

From the boundary conditions at the dielectric interface, EIf = E!! one obtains

—-f”’.sin(k”’h)

el 1T (87)

je*eHeog(kyz') + fsin(k,H) =

and from H!I = HII,

e"J"- coa(ktzl)-f-fc"COS(k,H) _ 1 fI”COS(kfuh)

k, = Wl kIIT (88)

18



The resultant Green’s function for this problem will have a 2z component only,
which is given by

o= o= ks s eve 48 . (nxZ’ . [(mwy
Z do(e* +f )J_abk,sm sin | —

n=1m=l a

sin (m) sin (_n;z_;;r_y) cos(k,z) (89)

a

I
sz

0 00 . ’ .
Gl = 3 j;%:-‘-e-”“‘ (e7*s*cos(kyz) + fHlsin(k.2) + f!cos(k,z))

sin (ﬁ) sin (M) (90)

X & 4 . (nxz'\ . [(mmy'\
It 111
G = Z Z J_abkfuf sin (—a )sm( ; )

::’Ez:—z) sin (251) cos(k!(z - (H + h))). (91)

After applying all the necessary boundary conditions, the Green’s function takes

on the following form

ol = f: i !k, cos(k,(z' — H))cos(ki'Th) + kilsin(k,(z' — H))sin(k!!Th)
wT k3elllsin(k, H)cos(kITh) + kil k,sin(k!Th)cos(k, H)

n=l m=sl

4 . (nxz'\ . [(mxy
ab’m( ~ )am( ; )

sin (?%f) sin (T-blg) cos(kyz) (92)
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Gl = i S el cos(ks(z = H))cos(k!''h) + k! sin(k,(z — H))sin(k}!TR)
* U amam kieMsin(k,H)cos(k[!"h) + kITk.sin(k}Th)cos(k, H)

ﬂz_ . [nrz'\ . »m1ry' '
absm( " )sm( y )cos(k,z)

sin (f{f) sin (_"11.::!) (93)

Gl = ¥ % ef!k;pl! cos(k;2')
= k2e! 1 sin(k, H)cos(kITh) + ki sin(kilTh)cos(k,H)

n=lm=1l "2z

ap . [nxz’\ . (mny ,
ab"m( - )sm( ; )co.s(k,z)

sin (“2) sin (ﬁl’;'l) cos(k™(z = (h + H))) (94)

2.2.3 Summary of Green'’s function determination

In this chapter we have determined the unique Green’s function for the air-
bridge structure (Fig. 1). This was accomplished by working with Maxwell’s
equations to establish a tractable equation and by representation of our source
as dirac delta functions. We then applied boundary conditions to solve for the
unknown coefficients and formulated a solution. We now have expressions that
will give the resulting field produced by a point source directed in the x or z

direction as required to analyze the air-bridge structure.

2.3 Application of Method of Moments

The method of moments is a numerical technique used for solving functional
equations which cannot be solved in closed form. By reducing the functional

relation to a matrix equation, known techniques can be used to solve the resulting

20



matrix equation. This method is computationally intensive but with the advent
of faster computers, the method has become feasible.
To apply the method of moments in the specific case of an air-bridge, one should

follow the steps outlined below:
1. Use the integral equation (11) derived in section 1 along with the relations

(13) and (5) so one obtains an integral equation that relates the current to the

electric and magnetic fields respectively. A general form of this is

- E
LO,(J,) =7 (95)
H

where L,, is an integral operator operating along with the derived Green'’s function
and § is a vector function of either the electric field £ or magnetic field H.
2. Represent the current on the conducting strip as a sum of coefficients mul-

tiplied by a pre-determined basis function,

T, = IE 1J, (96)

q=1
In equation (96) where I, represents the complex coefficients, Nia represents the
number of sections the strip is to be divided into and J, represents the chosen
basis functions which represent the current distribution.

3. Discretize the integral equation by minimizing the resuting error function
§E on the surface of the conducting strips.

In applying the above steps to the problem of an air-bridge we have set up the

integral equation for the electric field of the form

'-_,w,,/// (7+—vv) @ .Jav. (97)
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a. One dimensional view highlighting current directions

Figure 6: Currents are assigned variables by direction.

In proceeding to the second step, we seperate the problem into five different
sections as pictured below (this figure is taken in part from fig.1).

For Ji; and Ji3, we will model the current as a sum of an incident current A,
a reflected current B, and the sum of incremental currents I,. For J;;, Ji,, and

Ja; only a sum of incremental currents is required. Implementing this convention

results in

Niz

Jl: = Al:cﬂu + Blze-jh’ + 2 Iqlzjltq (98)
=1
Niz
Jg. = Z qugjgz, (99)
q=l
) ) N3z
Jaz = Ay & 4 Bie ™ 43 [0 Ta (100)
q=1
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Nis

le = Zlqlz‘-ilzq (101)
g=1
Nis -

J2s = ZIquth- (102)
9=1

The basis functions the x-directed currents in this case are the same and are defined

as being
n'n‘ Ic! z'-:,-l n ’
( sin(klg) 152 S 7
sin(k(z -:’ '
') . <
Jisa(2' ) = in(ils T ST STn (103)

(B)——g -4sysy
(-())

T ()

where for the y-direction we have used a maxwellian distribution function.

The first step in discretizing the integral equation (97) is to evaluate the error
that our mathematical representation of the electric field will produce. This is done
by evaluating the electric field produced by one section of current on the conductor
on another section of the conductor. Since the electric field on any part of the strip
must be zero, the value of our integral evaluates the error. Then, by the concept
of least square estimation, when one takes the inner product of the basis function
along with the error and sets the result to zero, the error is minimized.

Proceeding to do this for our problem here we first account for the different

components of the fields produced by a current of given orientation.
E; = Eyeg + Eoze + Eszs + Eyzs + Ejs,s (104)
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and

Ey = Ersz + Egee + Eape + Ers + Es. (105)

First, we shall consider the x-directed field produced by a x-directed current on

the dielectric
= o (250 [} (2) () o
1

[ p tan(k"(H — c))

ab(cos(k;H))[kiHtan(k,H) — kytan(kHI(H - c)))

(lc:2 - (25) 2) cos (E?) sin (m:z) sin(k,z) +

p tan(k, H) (22) (/17 — 1)tan(k!T(H - c))
abcos(k, H)[k! tan(k, H) = k,tan(ki(H - c))]

1 nrz\ . [mnz
(KMtan(kITI(H — c)) — ik tan(k, H)] (T) s (T) °°s('°")] *

e (5) 2 [ ) e 5

p tan(kI1(H - c)) _
[ab(eos(k,H))[kf"tan(k,H) — ktan(k!I(H - ¢))|

- (5 (22 i (252 s+
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p tan(k, H) (28) (7 = 1)tan(kIT(H - ¢))
abeos(k, H)[ki"tan(k,H) — k,tan(kITI(H — c))]

1 (nm: . [m®zT k
[kTtan(KITT(H = ¢)) — ellk,tan(k, H)] >\ a )“"‘( b )“”( 2)| +

Nia sin(k(z - z,-1)) nt N,
2 Lue (/.o; sin(kl) (T '+

g=1

[ e () o)

(L L sin [ 22y’ dy
/--g (ww) [1__(%)2]§ ( b )

(kz (21)’) p tan(k{'I(H - ¢))
“\a/ ) ab(cos(k,H))[kItan(k,H) — k tan(kITI(H = ¢))]

cos (n+:z) sin (-n-lF) sin(k,z) +

p tan(k, H) (%) (/" — 1)tan(kI"!(H - c))
abeos(k, H)[kI!Ttan(k, H) — k tan(kII(H — c))]

1
(kilitan(kiI(H - c)) — elllk,tan(k, H)]

(r;_r) k,cos (?) sin (_rr%) cos(k,z)] (106)
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|  the-electric-Geld . b
For a x-directed current, a z-directed field is also produced. Proceeding with

the same procedure as above one obtains

; nwT . -jkz' ] * 2 1 . mnv . '
E... = Al,,_./_%coa(-:z)c dz [--g(;r—t;) ) -Lzésm<by)dy

p tan(k;"!(H - c))
[ab(cos(k,H))[k{”tan(k,H) - kstan(k{"'(H - ¢))]

(——:I) sin (E-;f-) sn (Egl) kscos(kz) +

p tan(k.H) (32) (/17 — 1)tan(kI"(H - c))
abeos(k, H)[k!Itan(k,H) = kstan(kiI(H - ¢)))

1
[cTtan (kI (H — c)) — ellTk, tan(k, H)|

(k® = k3)sin (2%?-) sin (m_;ry_) sin(k,z)] +

B [0 (25 4 [ () o (3 )

p tan(k;'I(H - )
[ab(cos(k,H))[k{"tan(k,H) — kytan(kII(H - ¢)))

=Y sin (272 sin (7Y k,cos(k,z) +
(55 sin (222) sin (52)
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p tan(k, H) (22) (T - 1)tan(kI"(H - ¢))
abeos(k, H) (k! tan(k, H) — kjtan(kiH(H - ¢)))

1
(kitan(kI(H - ¢)) = elllk,tan(k,H))

(8 = ysin (222) sin (T5L) sin(k2)] +

N sin(k(z' — z,-1)) nr )\,
2 o (/_0, sin(kly) ('a" ) dz'+

9=1

[ et~ (2

*r2 1
/--g (ww) [1 _ (3_5)

p tan(kI'I(H - ¢))
[ab(co.s(lc,H )kittan(k, H) — kstan(kI(H - c)))]

5o ()
]

(-—Ez) sin (P-?-) sin (ﬂ:—y) kycos(k,z) +

p tan(k, H) (22) (/17 - 1)tan(k!"!(H - c))
abeos(k, H)[k! ! tan(k, H) — kstan(kII(H - c))]

1
(kilTtan(kI'I(H - c)) - elllk,tan(k, H)]
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(K = k?)sin (%—’5) sin (-'%2) sin(k,z)] (107)

For a z-directed current, one must consider the fields above and below the

source seprately as they have different forms in those two respective regions. Also,
as before, both x- and z-components of the electric field are produced.

First we consider the x-directed field produced by a z-directed current above

the source where

. Nig in(k ' _ _ ’
Buaes = 3. L (e =) ko~ Hcos(L )+

k! sin(ky(z — H))sin(k!'h)dz') +

/o K ""(’ZEZ?;‘IJ 2 D) (dttk, cos(ks(s — H))cos(kEFPR) +

ki sin(ky(z' = H))sin(k"h)dz"))

$ 72 1 . (Mm%, X
./:.‘t (xw) [1 _ (35)2]§3m( b )d

b 1 n (%)
ab 1Tk sin(k, H)coa(KITTR) + KTk cos(k, H)sin(KITR) " \ @

(?) cos (2?) sin (2?-) (~k,)sin(k,2) (108)

For the x-directed field below the source produced by a z-directed current, one
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obtains

N sin(k(z' = z,-1)) Nyt -4 sin(k(zq41 — 2)) "o
Eiper = Z'_;I,,l, (/: sin(hlL) cos(kyz )dz +L Sin(kLL) cos(k,z )dz)

/:: (}%) [l _ (;)zra‘n (ﬂb’:y) ay

4p el k,sin(k,(z — H))cos(k;"'h) + k; ' cos(ks(z — H))sin(k;!"h) " (n_fi )
ab K.ellTsin(k,H)cos(KITTR) + kllTsin(kI hycos(k, H) T

a

(%) cos (=) sim (=) (109)

For the z-directed field above the source produced by a z-directed current, one

obtains

N, : ' ,
B = 3 ls ( /: ”"('jﬁf,(,‘,f)"‘”(4”k.cos(k,(z — H))cos(K"h)+

K sin(ky(2' = H))sin(kMTh)dz') +

/o - 3‘“(’:&'(*:‘3 2)) (1T, cos(k (2"~ H))cos(kL'Th) +

K sin(ky(s' = H))sin(k!Th)dz'))

[LG)

mrx

]i"in( b y') dy

- ()
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4;; 1 nw ,
ab llTkZsin(k, H)cos(KITTR) + kITTk,cos(k, H)sin(kITTR) " ( ’)

(k* = k3)sin (2?) sin (m;ry) cos(k,z) (110)

For the z-directed field below the source produced by a z-directed current, one

obtains
Nis ] kz'-z- ’ ' -$ sin(k(z, —Z, ’ '
Eyes = Z;’«h (/" m(sgn(k, )' 1))cos(lc,z )dz +/° : (sg.n"(",':l) ))cos(lczz )dz)
q= b §

[y E) L (5

- ()]

5 i (22)
ab

!k, sin(k,(z = H))cos(k!Th) + killcog(k,(z — H))sin(kIITh)
kresin(F, H)cos(KITh) + Fsin(kTh)cos(k, H)

2 nwz) . (_nﬂ) 1
(k% -k )am( — ) sin (=% (
For a x-directed field in the region above a x-directed current which is above

the dielectric, one obtains

Nag sin(k(z' = z,-1)) nr o\
Flas = 2 lee ([s ) (5)de'+

§ sin(k(zq1 — 2')) nr )\,
/o sinm,) €08 (T" ) dz )

30



/.i (?25) - Q]T’"‘( ) dy
[(kz (mr) ) p [MrrisenpirClgisniutll — cot(k, H)|

a abk,[cot(k,2')cos(k,2') — sin(k,z")]

cos (ﬁsj) sin (m;rz) sin(k,z) +

p(1 — tan®(k, H)) (22) (/' = 1)tan(kII(H - c))
ablkitan(k,H) — k,tan(kHI(H - c))][cot(k.z')cos(k,z') — sin(k,2")]

ki tan(k]!T(H - c;) — ek, tan(k, H)
(nar) k. cos (":') sin (?) (—k,sin(k,z)] (112)

For the x-directed field located below the x-directed current source which is

above the dielectric, we obtain

_ N sin(k(z' - z,.,)) nr o\,
Eene = 3 I (/.O, sin(kly) l “”(T‘)d‘*

A ! am(t(z:'(;ll,; z ))co.s ( - ') dz')

+/72 1 . (mx N\,
) e )

[(k’ - (ﬂ)’) [k"’ k tan(k’"(H - ¢))tan(k, H)]

abk,[cot(k,z')cos(k,2') — sin(k,2')] (ki tan(k, H) = k.tan(kI'/(H
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cos (ﬁ) sin (m;ry) sin(kfz) +

il d nrz\ . (mwy I
abk,[cot(k,z')cos(k,z') — sin(k,z')] cos ( a ) sn ( b ) cos(k,'z) +

p(1 = tan (k. H)) (3) (' ~ Ltan(k{"(H — )
ab{kitan(k, H) — kjtan(kiI(H - c)))[cot(k,2')cos(k,2z") — sin(k,z')]

1
kitan(kI(H - c)) — elllk,tan(k,H)

nx nxz\ . [mwny )
( ~ ) k,coa( - )am ( 7 ) (—k,)am(k,z)]
For a z-directed field above the current produced from a x-directed current

above the dielectric, one obtains the expression

Eies = % Ine ( /“; sin(k(z' - z,-1)) cos (_’}_"_‘ z') dz'+

e sin(kl;)

[ o0 (25 )

mr . N
—-y)dy

172 1 .
/_1 (m) [1 _ (351)213 "m( b
(-22) i (22 IR - coth)

) a ) abk,fcot(k,z )cos(k,z") = sin(k,z’)]
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sin (%) (k,)cos(k,z) +

p(1 - tan?(k, H)) (2) (¢f" — D)tan(kI!(H - )
abk!Ttan(k,H) — k tan(kII(H = c))][cot(k,z')cos(ksz') — sin(k,2')]

1
kitan(kIH(H - c)) — ik, tan(k, H)

(k? = k¥)sin (%) sin (_rr_z_?) cos(k,z)] (114)

For a z-directed field below the current produced from a x-directed current

above the dielectric, one obtains the expression

Nag . '
B = 31 ([ 22 s (22 ) s

q=1

[ h (22)4)

[: (xzw) [1 _ (:é)z]f'i" ('Ty‘) dy

p [KIH = k,tan(kI!(H - c))tan(k,H)|
abk,[cot(k,2')cos(k,2') = sin(k,z")|[kI! tan(k,H) — k,tan(k}/I(H - c))]

(-P;’i) sin (1?) sin (Tbﬂ) kycos(ki'z) +

prowpeT k'z.)m-(:‘z,) ey g (--’:—") sin (?) sin (T%) (—k,)sin(k2)
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p(1 — tan’ (k. H)) (22) (¢! - 1)tan(kI'(H - c))
abk!tan(k, H) — kitan(kI(H — c))|[cot(k.z )cos(ksz ) — sin(kz )]

1
kitan(kI(H = c)) — elllk,tan(k, H)

(k? = k3)sin (m) sin (—w) cos(k,z)]
a b
2.4 Matrix Equation

The resulting matrix equation is formed and upon inversion the unknowns can

be obtained for a given exciation.
3 Scattering Parameters

Using the derived current distribution on the conductors, one can apply an ideal

transmission line model to determine the scattering parameters.

4 Summary

From this general analysis of the Green's function and the ultimate determina-
tion of the scattering parameters of an air-bridge, the formulation used here could
be applied to a variety of structures whose geometry requires a three-dimentional
analysis.

Other planned work includes the application of this work to other structures
and the use of air-bridges as a curcuit element in the construction of other passive

microwave circuits.
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