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. .
MICROSTRIP INTERCONNECTS.

Faculty Supervisor: Pisti B. Katehi
Graduate Student Participant: T.E. van Deventer
Period: 1 January 1989 - 30 June 1989.

Work Performed:

An integral equation method has been developed to solve for tt
complex propagation constant in multi-layered planar structures wit
arbitrary number of strip conductors on different levels. The
Green's function included in the integral equation has been derive:
by using a generalized impedance boundary formulation. The
microstrip ohmic losses have been evaluated by using an equivalent
frequency-dependent impedance surface which is derived by solving
for the fields inside the conductors. This impedance surface
replaces the conducting strips and takes into account the thicknes
and skin effect of the strips at high frequencies.

Using the above described procedure, results have been
generated for single microstrip lines on one and two-level multip!
interconnects. Also, the effects of various parameters such as
frequency, thickness of the lines and substrate surface roughness
the complex propagation constant are investigatéd. Results derive«
from this analysis show very good agreement with available

literature data.
Program for Next Period:

During the next period, this method will be extended to
characterize three dimensional structures such as two-level
interconnects crossing at arbitrary angles. Also, using this

analysis, the effect of conductor losses on high frequency



directional couplers and lumped elements will be studied and design

curves will be generated.
Publications and Reports:

T.E. Van Deventer, P.B. Katehi and A.C. Cangellaris, "High Frequency
Conductor and Dielectric Losses in Shielded Microstrip", 1989 IEEE
MTT~S International Microwave Symposium Digest, Vol. III,

pp. 919-922 (Appendix A).

T.E. van Deventer, P.B. Katehi and A.C. Cangellaris, "An Integral
Equation Method for the Evaluation of Conductor and Dielectric
Losses in High Frequency Interconnects". Accepted for publication in

the IEEE Trans. on Microwave Theory and Techniques, December 1989

(Appendix D).



2. CHARACTERIZATION OF HIGH FREOUENCY SUPERCONDUCTING LINI

Faculty Supervisor: Pisti B. Katehi
Graduate Student Participant: T.E. van Deventer
Period: 1 June 1989 - 30 June 1989

Work Performed:

This project started recently in cooperation with the Hughes
Research Laboratories at Malibu, California. The purpose of this
work 1s the accurate high frequency theoretical and experimental
characterization of High Tc superconducting lines , filters,
resonators e.t.c. The analysis 1is based on an integral equation
approach similar to the one described in task 1. The theoretical
results will be verified by comparing to experimental data which a
to be obtained at Hughes Malibu.

At the present time, we derive theoretical data for single a

coupled superconducting lines.

Program for Next Period:

During the next period, a program will be developed to solve
three-dimensional structures such as filters and resonators. Also,
the same circuits will be measured and the experimental results wi.
be compared to theoretical ones for code validation.



3. RADIATION LOSSES IN ANTENNA FEEDING NETWORKS,

Faculty Supervisor: Pisti B. Katehi

Graduate Student Participant: W.P. Harokopus
Period: 1 January 1989 - 30 June 1989

Work Performed:

Antenna feeding networks consist of sections of lines
connected to each other through junctions or terminated to various
distributed resistive or reactive loads. All these discontinuities
and lumped elements radiate resulting in higher losses and stronger
coupling to neighboring radiating structures. The losses and the
coupling are the main contributors to antenna gain and efficiency
reduction. In order to be able to improve the array performance the
understanding of the power loss mechanisms in array's feeding
networks 1is very important especially at higher frequencies.

During the last six months, a full electromagnetic analysis of
open microstrip discontinuities on multilayered dielectric
substrates has been presented. The space domain method of moments
formulation accounts fully for all electromagnetic coupling, and
space and surface wave radiation. Results for various multilayer
discontinuities such as microstrip bends have been derived and the

radiation properties have been studied.
Program for Next Period:

The radiation properties of geometricaly more complicated
circuit elements will be studied extensively. Also, the surface wave
and space wave patterns for the above circuit elements will be
computed and measured. The measurements will be conducted at the

facilities of the radiation laboratory at the University of Michigan



Publications and Reports:

W.P. Harokopus and P.B. Katehi, "Analysis of Multilayer Irregular
Microstrip Discontinuities Including Radiation Losses". To appear i
the Proceedings of the 19th European Microwave Conference, London,
England, September 1989 (Appendix B)

W.P. Harokopus and P.B. Katehi, "Characterization of Microstrip
Discontinuities on Multilayer Dielectric Substrates Including
Radiation Losses". Accepted for publication in the IEEE Trans. on
Microwave Theory and Techniques, December 1989 (Appendix C)
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Faculty»Supervisor: Pisti B. Katehi

Graduate Student Participant: W.P. Harokopus
Period: 1 January 1989 - 30 June 1989

Work Performed:

Using the integral equation method which is presented in
[2] (Appendix B) preliminary results have been derived for the case
of a multilevel spiral inductor and a meander line. The derived data
are in the form of frequency dependent scattering parameters. At the
present time, we perform an extensive analysis of the high frequency

behavior of these elements and their radiation properties.
Program for Next Period:

During the next period, extensive numerical data will be
derived for the case of spiral inductors, meander lines and overlay
capacitors. In addition, the already developed codes will be
modified to take into account conductor and dielectric losses.



2. GATE CAPACITANCE MODELING OF GaAs MESFETS's IN MILLIMETE
WAVE FREOUENCIES.

Faculty Supervisor: D. Pavlidis
P.B. Katehi

Graduate Student Participant: I.S.Nikolaou
M. Weiss

Period: 1 January 1989 - 30 June 1989
Work Performed:

In the last semi-annual report (January 1989), a brief
description of the method applied for the high-frequency modeling «
the Gate in a MESFET was given. During the last six months, a
FORTRAN program based on that method has been developed. At the
present time, we try to verify its accuracy by comparing to
existing data for simple structures such as a single microstrip

line.
Program for Next Period:

During the next six months, we will derive data for more
complicated structures such as a Field-Effect-Transistor. The
derived results will be in the form of frequency-dependent gate-tc

drain and gate-to-source capacitances



HIGH FREQUENCY CONDUCTOR AND DIELECTRIC
LOSSES IN SHIELDED MICROSTRIP

T.E. van Deventer*, P.B. Katehi* and A.C. Cangellaris**

*Radiation Laboratory, University of Michigan, Ann Arbor, MI
**Electrical and Computer Engineering Department, University of Arizona,
' Tucson, AZ

Abstract-

An integral equation method is developed to calculate the dispersion of non-
perfectly conducting microstrip lines. Both dielectric losses in the substrate and
conductor losses in the strips and ground plane are considered. Multiple conductors
on several layers can be studied using an impedance boundary formulation for the
derivation of the Green’s function. The microstrip losses are evaluated by using
a frequency-dependent surface impedance which is derived by solving the fields in
the conductors. This surface impedance replaces the conducting strip and takes
into account the thickness and skin effect of the strip at high frequencies. Good
agreement with available literature data is shown.

INTRODUCTION

The effect of conductor losses in microstrip circuits and especially MMIC’s is
important to the circuit designer who is concerned with dissipation and power
loss. Several studies have been performed to calculate the dispersion in microstrip
structures at microwave frequencies considering dielectric and conductor losses.
Conductor losses have first been analyzed by Wheeler [1] and Pucel [2] where a
technique based on the incremental-inductance rule was used. Other approaches to
the problem of losses include quasi-TEM models and the conventional perturbation
technique as in [3] using a spectral-domain approach. However, these methods are
limited to the case where the thickness of the strip is much larger than the skin
depth. In the present study, a method is applied that represents conductor losses in
microstrip lines by using a frequency-dependent impedance boundary, thus taking
into account the skin-effect problem. The procedure applied for the solution of this
problem is very powerful and general. In fact it can be applied to any number of
problems including thin metallizations. The proposed method will be applied to



various interconnects and their propagation characteristics will be studied in the
presence of other lines or under the effect of the shielding cavity.

THEORETICAL DERIVATION

Shielded planar microstrip transmission lines inside an inhomogeneously filled
waveguide are considered as shown in Figure 1. Both dielectric losses in the sub-
strate and conductor losses in the strip and ground plane are accounted for. The
side walls are assumed perfect conductors. Because of the shielded structure, these
lines propagate hybrid modes which have non-zero cut-off frequencies with the ex-
ception of the dominant mode. The LSE and LSM modes propagating along the
z-direction can be obtained by solving the related boundary value problem.

The dyadic Green’s function for the problem is derived in the spectral domain
using the boundary conditions on the perfectly conducting walls and an equivalent
impedance boundary condition on the interfaces. The current has a transverse
component and a longitudinal component. Their variation in the y-direction is
chosen such that the edge conditions on the strips are satisfied. The electric field
is then given by Pocklington’s integral equation as

Ez=1)= / / T(c/s') . J(y') e dy d2, (1)

where kM5 is the unknown complex propagation constant of the microstrip. The
Fourier transform used is given by

_ % [ :i‘* e~k . (2)

Substituting (2) in (1) and using the sifting property of the Fourier transform, the
electric field becomes

Blz=2)= / T(z/z'). Jdy' |i,mpes. (3)

L 1]

One more condition needs to be applied, i.e. the boundary condition on the mi-
crostrip. For perfect conductors, the tangential electric field vanishes on the line.
In this study, we approximate the strip with an equivalent non-zero frequency-
dependent surface impedance boundary extending over the surface of the strip. It
is desirable that this surface impedance describes, in a physical equivalent sense,
the frequency-dependent field penetration in the lossy strips. In [5],[6] an integral
equation formulation was presented for the evaluation of the frequency-dependent
longitudinal current distribution in rectangular microstrip lines. This method al-
lows us to compute the per unit length resistance R(f) and the per unit length



internal inductance of the strip L;,(f) as function of frequency. An equivalent
longitudinal surface impedance can be defined then as

2(f) = % = (R(f) +] 2nf Lan)w, ()

where w is the width of the strip. As far as the transverse component of the current
is concerned, the standard surface impedance for an infinite resistive plane is used,

-3 = 20) = A+, (5)

where o is the conductivity of the strip and 6 the skin depth at the frequency of
interest. Despite the fact that the width of the strip is finite, use of (5) is justified
by the fact that the strip is assumed to be infinite in the direction perpendicular
to the flow of the transverse component of the current. In addition, for most
practical purposes, |J,| < |J;|, therefore the dominant part of the conductor loss
is due to the longitudinal component of the current, for which the more accurate
longitudinal surface impedance Z;( f) has been proposed. The boundary condition
for the magnetic field on the surface impedance boundary gives

Ax H=J. (6)
In view of (4-6), (3) becomes

/ (T(e/2"). Tdy' = Zy,J } |i,opms =0 (7)

which is the pertinent integral equation for the problem. The formulation of the
Green’s function results in a simple expression involving a single summation over
the modes in the y-direction. The resulting homogeneous equation is solved for the
microstrip propagation constant at the plane z = 0 with as many as a thousand
modes to insure convergence. The method of moments is applied using a variation
of Galerkin’s procedure. Entire domain functions are used to solve for the cur-
rent distribution. The above expression can be easily programmed on a personal
computer to evaluate the propagation constant of the dominant and higher order
microstrip modes.

RESULTS

The objective of this study is to determine the dispersion characteristics of single
and multiple microstrip lines on single and multilayered substrates. Based on the
theory derived in the previous section, a computer program has been developed
to calculate the complex zeros of an analytic complex function using the Muller’s
algorithm with deflation.



Results on attenuation due to lossy dielectrics compare very well with available
data. When considering conductor losses, the normalized phase constant of the
dominant mode is seen to be slightly larger when no substrate losses are considered
(see Figure 2). As the loss tangent of the substrate increases, the phase constant is
smaller than in the case of a perfect conductor. As frequency increases, the phase
constant tends toward the perfect conductor case. The attenuation constant of the
dominant mode increases as expected when including conductor losses (see Figure
3). Attenuation for the case of a single strip and coupled strips is shown in Figures
4 and 5 respectively. Results are compared to the perturbational approach used
in the spectral domain [3],[4] and in the finite-element method [7] . The method
presented in this paper will be implemented to evaluate high frequencies dielectric
and conductor losses for various interconnects and results will be presented.

CONCLUSIONS

An integral equation approach is applied to calculate the propagation constant
of multiple strips on multilayered substrates. An equivalent impedance boundary
is employed that takes into account the finite conductivity of the strips and extends
to the case where the thickness of the conductor is of the same order of magnitude
as the skin depth. Phase constant and attenuation for single and coupled strips
are presented.
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Figure 1: Shielded microstrip line configuration
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ANALYSIS OF MULTILAYER IRREGULAR MICROSTRIP DISCONTINUITIES

William P. Harokopus, Jr., Pisti B. Katehi®

ABSTRACT

A full-electromagnetic analysis of open microstrip discontinuities on layered dielectric
substrates is presented. The space domain method of moments formulation accounts
fully for all electromagnetic coupling, and space and surface wave radiation. This
versatile formulation has the potential to characterize an extensive variety of irregular,
multi-dielectric layer microstrip structures.

INTRODUCTION

The steadily increasing demand for monolithic microwave and millimeter wave tech-
nology in space, military, and civilian applications is fueling the need for accurate
microwave circuit computer-aided design. One particular area of importance is the
electromagnetic modeling of passive microstrip circuit elements and discontinuities.
When the microstrip circuits are not enclosed in waveguide housing or packaging, sur-
face wave excitation and space wave radiation become important effects at millimeter
wave frequencies. This is the case when microstrip elements are used in the feed net-
works of monolithic antenna arrays. In addition, multi-dielectric layers and dielectric
overlays offer flexibility in the design of MMIC circuits and array feed networks. Con-
sequently, the full electromagnetic characterization of multilayer microstrip is crucial.

In the past, full wave analysis has been applied primarily to electrically thin open
microstrip discontinuities such as open ends or gaps on a single dielectric layer (1], [2],
or with a dielectric overlay [3]. More recently, full-wave analysis has been performed on
irregular microstrip discontinuities printed on a single layer including microstrip step,
stub and corner discontinuities [4], [5]. Nonetheless, CAD packages for most microstrip
discontinuities and elements such a T-junctions are based on quasi-static [6], dispersive
(7], or semi-empirical techniques [8]. These methods fail to account for radiation and
coupling. Irregular multi-dielectric layer structures have not been treated with full
wave techniques. Therefore, much effort is needed in the development of microstrip
CAD in the millimeter range.

The technique employed in this paper is a space domain method of moments solution
of Pocklington’s Integral equation. The procedure has proven effective for microstrip
steps, stubs, and corners on a single dielectric layer [5]. Presented here is an extension
to microstrip having substrates with multiple layers or with dielectric overlays. This



versatility is obtained by the application of the general space domain Green’s func-
tion for an arbitrary multiple layer configuration. The proposed technique is directly
applicable to a extraordinary variety of multilayer configurations including broadside
couplers and filters, antenna elements fed by electromagnetically coupled transmis-
sion lines located on a different layer, and dielectric overlays. Numerical results for a
two-layer microstrip corner will be presented and radiation losses will be discussed.

THEORY

A corner discontinuity on a multilayer substrate with an overlay is shown in Figure 1.
The electric field from an irregular microstrip discontinuity on a general multi-dielectric
layer substrate is given by Pocklington’s integral equation

E(r, ,2) = / L G(r,r) - J(r')ds' (1)

where G is the dyadic green’s function for a Hertzian dipole located above or within a
grounded multi-dielectric substrate [9],{10]. A powerful advantage of this formulation
lies in its ability to model an arbitrary number of substrate layers or a configuration
having conducting strips on more than one interface, by using an iterative form for the
space domain Green'’s function.

Both current components on the plane of the microstrip conducting strips are in-
cluded. A two-dimensional application of Method of Moments [11] is used to discretize
the integral equation over the element. The two current components are expanded
into finite series of unknown current amplitudes and rooftop basis functions having
piecewise sinusoidal variation in the longitudinal direction.

N+1 M+1

Je= 3 2 Lnjam(@'¥) (2)

n=1 m=1

N+1 M+1
Jy = Zl 21 Bniim(z',y") (3)
j:.m(ziiy,) = [fn(z')gmwl)] (4)
J','(,m(f',y') = [gn(z')ffvt(y’)] (5)
with
sink(zn4,-2')

- n<z' <z,
f..(z')={ w2ty ) Tn=T S (6)

’
sinkly Tn-1 S I .<_ In



Table 1: Microstrip Corner Substrate Parameters

Case €r1 €2 hl(mzl) hg(mll) “
A [10.2 40 0
B 2.2 40 0
C 2.2 110.2 20 20
D (102 2.2 20 20 -
and
gm(yl) = { 1 ym-1 < yl < Ym+1 (7)

After substitution of the current expansions into the integral equation (1), the bound-
ary condition for the tangential electric field on the conducting strip is enforced by
Galerkin’s method. A system of simultaneous equations results

Zzz Zzy I:: _ Vz- (8)
Zyz Zyy L ||V
where Z;;(1 = z,y : j = z,y) represent blocks of the impedance matrix, I; is the
vector of unknown z and y current amplitudes, and V; is the excitation vector which is
identically zero everywhere except at the position of the source. After solution of the
matrix equation, the current amplitudes on the feeding lines of the discontinuity are
known. Figures 2 and 3 display the current on a corner discontinuity. Transmission

line analysis is applied to determine the scattering parameters for the corner from the
standing wave patterns on the feed lines.

NUMERICAL EXAMPLE

Shown in Figure 4, the scattering parameters for a microstrip corner discontinuity on a
single layer are compared with the microwave CAD package Touchstone. At the higher
frequency range, the effect of radiation losses can be seen in the discrepancy of S12 with
the Touchstone results. This is due to the radiation losses which are not accounted
for by Touchstone. A corner with the same physical dimensions was also characterized
on substrates having two layers. Shown in Figure 5 are the scattering parameters of
the two-layer problem as compared to a single layer of the higher permittivity material
(e, = 10.2). As illustrated, the reflection from the corner is strongly dependent on
the properties of the substrate. The radiation properties of the corners are shown in
Figure 6. In this frequency range it is believed that the losses come primarily from
the T M, surface wave. The weaker radiation of the two-layer configuration with the
higher permittivity material (Case D) on top, over the case of the lower permittivity



material (Case C) on top is believed to be related the suppression of surface wave modes
reported by Jackson [12] for microstrip antennas. The tayloring of multilayer substrates
for microstrip circuits in order to minimize surface wave losses will be explored further.

CONCLUSIONS

A full-wave Method of Moments formulation has been applied to a multilayer open mi-
crostrip corner. Utilizing an iterative form of the exact Green’s function for a multilayer
conductor backed medium, the procedure is applicable to a wide range of multilayer
microstrip problems such as feed networks of monolithic antenna arrays. The method
accounts fully for all electromagnetic coupling, dispersion, and radiation losses. Radi-
ation losses of the corner discontinuity on several substrates are presented. The results
demonstrate that multilayer substrates can be used to reduce surface wave losses.
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Abstract-A- two-dimensional space domain method of moments treatment of open
microstrip discontinuities on multi-dielectric layer substrates is presented. The full-
wave analysis accounts for electromagnetic coupling, radiation, and all substrate
effects. The technique has been utilized to characterize commonly used disconti-

nuities on one and two dielectric layers, and numerical results for step, corner, and



T-junction discontinuities are included..



1 Introduction

Monolithic circuit applications continue to extend farther into the millimeter-
wave range approaching terahertz frequencies. At these frequencies, planar trans-
mission line structures are required for passive component design. In particular,
microstrip components are frequently utilized in MMIC circuit applications. Un-
fortunately, available microstrip CAD discontinuity and circuit element models fail
to account for electromagnetic effects which become significant with increasing fre-
quency. Without reliable CAD, microwave design engineers will face unacceptably
lengthy development cycles.

The preponderanée of the available microstrip CAD is based on quasi-static
methods [1]-[6], equivalent waveguide models(7]-[10], and semi-empirical models
[11]. These models require little computational effort, but fail to adequately ac-
count for electromagnetic coupling, radiation, and surface wave excitation. Quasi-
static methods provide accurate characterization only at lower frequencies, while
planar waveguide models contain limited information on dispersion.

Consequently, an analysis accounting for electromagnetic coupling, space wave,
and surface wave radiation is required for the characterization of microstrip dis-
continuities, couplers, and matching elements at higher frequencies. Increasingly
powerful cbniputers and innovative techniques make full electromagnetic analysis
a realistic alternative in the design of high frequency microstrip circuits. Full-
wave analysis has already demonstrated accuracy in modeling simple microstrip
discontinuities on single dielectric layers.

Often, microstrip discontinuities and elements are enclosed in a package or a



cavity. Jansen has performed the analysis of irregular covered microstrip elements
with a spectral domain techniqge 12]. Shiglded microstrip discontinuities such as
open-ends, gaps, stubs [13]», and coupled line filters [14] have been studied by the
method of moments. |

-N onetheless, micrqstrip is often used in the design of feeding networks for mono-
lithic antenna arrays. Unlike shieldeci nﬁérostrip, open rniﬁrostrip discontinuities
are free to radiate. ’A_l.so, the rnicrostrip substrate supports surface wave modes.
High frequency microstrip desigp fequires é thorough understanding of these ef-
fects. Full,electromag#etic solutions have been performed on open microstrip el-
ements which are 'electrica.lly thin such as open ends, gaps, and coupled lines
[17],(18],(19]. These so.lutions are' based on the thin strip approximation, and uti-
lized one-dimensional mefhod of moments. Under this assumption, the transverse
current component gives a second order effect and may be neglected. In addition,
an analysis of open-end and gap discontinuities in a substrate-superstrate config-
uration has been performed [20]. More recently, a spectral domain solution was
applied to irregular step and stub elements on a single layer(21]. However, the
characterization of these microstrip elements is far from complete. The fact that
these elements are parts of antenna feeding networks necessitates a serious con-
sideration of the coupling and radiation losses and their effect on the performance
of the antenna. In addition, in monolithic arrays, multiple dielectric layers offer
many advantages in design of feeding networks: they allow alternative solutions
to circuit layouts or can provide protection in the form of superstrates. Further-

more, the appropriate combination of dielectric and semi-conducting materials can



create circuits with desirable properties such as slow-wave structures. This paper
addresses, for the first time, the problem of accurate characterization of microstrip
discontinuities on multilayer substrates and carefully studies these effect of this
dielectric structures on circuit performance.

The presented full wave analysis is based on the application of two-dimensional
method of moments in the space domain. The dyadic Green’s function for a
grounded multi-dielectric layer configuration is employed to develop an algorithm
capable of analyzing structures with an arbitrary number of layers. Included in
the solution are both transverse and longitudinal current components, allowing the
treatment of a wide class of irregular microstrip elements including steps of width,
corners, and T junctions. On the microstrip conductors, both current components
are expanded by rooftop basis functions. Once the current distribution is evalu-
ated, transmission line theory is employed to determine the network parameters.

Numerical results from this technique have demonstrated excellent agreement
with measurement and the spectral domain technique in the case of single dielectric
layers. Scattering parameters will be presented for corner, and T-junction discon-
tinuities on one and on more complicated dielectric structures. In addition on a
single layer, the more complex geometry of a meander line containing four coupled
bends will_ be presented. The implemented method fully accounts for coupling,

space and surface wave radiation, and all dispersive effects.



2 Analysis

Much of the publiéhed work on full wave analysis of open microstrip disconti-
nuities has been limited to structures with strip widths much smaller than the mi-
crostrip wavelength (w << A;). Under this approximation, the transverse current
component can be considered a second order effect and neglected [16]. Therefore,
analysis was restricted to thin-strip discontinuities such as open ends, gaps, and
coupled line filters. Obviously, the transverse current component is critical for the
analysis of irregular structures such as steps in width, corners, and T-junctions,
and is therefore included in this analysis.

The general multilayer open microstrip geometry is shown in Figure 1. The
dielectric layers are considered lossless, but the development is not limited by this
assumption. The conductors have infinite conductivity with the strip conductor
being of finite thickness (¢ << A;). Maxwell’s equations and the application of

Green's identities yield Pocklington’s integral equation for the electric field:

-

B = [ [ &7 T y)da'dy (1)

-

where E(r) is the total electric field at the point 7 = (z,y,2), J(z,y’) is the
unknown current on the microstrip conducting strip, and C——}'(F, ) is the dyadic
Green's fu.nction for x and y-directed Hertzian dipoles above a grounded multilayer
slab.

To provide for the most general solution possible, strip conductors may be lo-
cated on any interface. A general, numerically efficient Green’s function for an

arbitrary number of layers may be derived by decomposing the fields into LSE



and LSM modes with respect to 2 {23]. Cylindrical symmetry may also be ex-
ploited by using a Hankel Transform in the transverse direction. This results in
the one-dimensional boundary value problem, which may be simplified to a two-
layer structure by using equivalent impedance boundaries as illustrated in Figure
2a. In Figure 2b, the equivalent transmission line model for this structure is shown,
from which the impedance boundaries can be determined.

After application of the inverse Hankel Transform, the solution to the result-
ing boundary value problem is a compact, computationally efficient space domain
Green'’s function. For a multilayer geometry with the strip conductor located on
the top layer (at the dielectric-air interface) the components of the Green'’s function

are given by:

—— — -—Jugs
G::z: - ny - 22?. f;o AJo(/\P) f](/\,Er,e.hl \erg Rz )dA
_ 1 d? oo J, - 1
“2rdz2 Jo Me J“OZ[%SL FaOnery R rerg hrr)
—fx(z\,tr,.l%ﬁrz.hz ..... )]dA (2)
= = - 1
Gey =Gyz = —5 dxdy ke Me Tuos '%j,(,\,g,l,h,.e,,,h, ..... )
U
R Yoy v vl L (3)

with p = \/G —z')2 4+ (y — ¥')%. In equations (2),and (3) the semi-infinite integra-

tion is over the spectrum of spatial frequencies A (A? = k2+k2), and the parameters

un,(n =0,1,...) . . . are given in terms of A by the following relation

Up = m (4)

where k, is the wavenumber in the n'* layer. In addition, in equations (2)-(3) the



functions fi(A, ery,hl,....)) and fa(A, ery, hl,..)) are the characteristic equations

for the TE and TM surface wave modes respectively, and have the form

fl(A,grl,-hl,....)) = ug +u1%i-%§l (5)
fZ(A’ €Ty, hlv )) = w + erluo%t—rl{_z; (6)

where T ;2 and T 2 are the vreﬂéc'tion coefﬁciéﬁts looking into the substrate as shown
| m F igaufe 2b. The surface wa'\/»e‘characteristic equations contain all of the informa-
‘t;ion‘ for the dieleétric layers nbt‘adja.cent to the current source within the parame-
fers T, f; Fkorvthe case of é single layer the solution simplifies to the space domain

Sommerfeld Green’s function [24],(25].

— — wug [0 ——giM0r 1 oo 42 —jugzJo(p)
Gzz; = ny = "o fo ’\JO(’\p)h()‘,c,‘ A1) 27 Jo 2 € by

[ e~ Foem) (7)
Goy = Gyo = 1 /°° & giuoz Jo(Ap) uous 1 T S P
. 2r Jo dzdy A Cwe fa(A €y ) fi(A €, hy)
where
fi(A, €1, hy) = ugp + u; coth uy by (9)
f2(A €1, hy) = €,up + uy tanh uy by (10)

where in the above, ¢, is the relative dielectric constant, and h; is the thickness
of the substrate.

The method of moments [26] is applied to transform Pocklington’s integral
equation to a system of linear equations. The microstrip discontinuity is subdivided

into overlapping squares. The transverse and longitudinal current components on



the microstrip are expanded over these squares by finite series

N+1 M+1
Zl Z e iim(TY) (11)
N+1 M+1 ’
Z_:l 21 Ydim(2Y) (12)
where
Jnm(Z'¥) = [fa(2)gm(y")] (13)
J'fi,m(l",y') = [gn(x')fm(y')] (14)

In equations (11) and (12), I is the unknown current amplitude at the (n,m)™
position of the subdivided element. The functions f, and g,, are sub-domain shap-
ing or basis functions and are consistent with the current boundary conditions. The
sub-domain basis functions have piecewise sinusoidal variation in the longitudinal

direction and constant variation in the transverse direction according to

sink(zny) =)
f sin k(z T I, _<. z' S Tnt1

sin ki
fn(x’) = { &k%%}l Tn-1 S z' S Tn (15)
0 Else

and

, 1 Ym-1 SV S Ymar
Im(y) = (16)
0 Else

In the above, I; = z,41 — Z,, and k is a scaling parameter chosen to vary between
ko (free space wavenumber) and k (wavenumber in the dielectric). The numerical
solution has shown that best stability occurs when the scaling constant is chosen

close to the guide wavelength. Substitution of the above into Pocklington’s integral



equation (1) yields a system of linear equations in the form
N+1M+1

E.+8E.=3 3 Zrmpem g Zem g (17)
n=1 m=1
N+1 M+1

E,+AE,=Y. Y ZIM[I™ 4+ Z0m [ (18)
~n=1 m=1

where Z[" (3,5 = z,y) constltutes the contribution of the j** component of current
to the i component of the electric field from the current element on the (nm)th
sub-division. The terms AE; and AE, represent the errors in the electric field due
to the approximations made in the current.

Dﬁring the derivation of the Green’s function, all applicable boundary condi-
tions for the grounded multi-dielectric geometry were applied with the exception
of the condition on the microstrip conductors. This condition, which states that
the tangential electric field has to go to zero on the surface of the conducting
strips, will be enforced through the method of moments procedure. In addition,
it has been shown that Galerkin’s procedure represents a strong condition on the
minimization of the errors AE; and AE,. For this procedure, the following inner

products are defined

VE = (o7, Ex) [T B+ BB f@)gy)dzdy  (19)

Yym-1

l/ﬂ -:-1 E +AEy)fV(y)gu(I)dl‘dy (20)

=/
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where f,,(:t) and g¢,(y) are testing functions identical to the basis functions and
(v=1,..N+1Lu=1,.,M+1). In view of (19),(20) equations (17),(18) result
in the following matrix equation.

ZXXe ZXYe || Imm vz

v

ZXXw o zyye || o vy

v



where ZI1J!4(I,J = X,Y) represent blocks of the impedance matrix, I; is the
vector of unknown x and y current amplitudes, and V; is the excitation vector
which is identically zero everywhere except at the position of the source. Once
the matrix inversion is performed, the current amplitudes on the feeding lines are
known.

In order to extract the scattering parameters, the discontinuity, is excited sys-
tematically at all ports by delta gap generators. Assuming a unimodal field excited
on the microstrip feedihg line, beyond a reference plane the current forms TEM-like
standing waves. Transmission line theory can then be used to extract the scatter-
ing parameters for a network from the standing wave patterns on the feeding lines.

The presence of the gap is reflected in the excitation vector where

1 if z,=1x4

Vo= (21)
0 Else
and
1 if yu=y
Vo = ? (22)
0 Else

In the above, z, and y, are positions of an x-oriented and y-oriented gap generators
respectively.

In Figure 3, the three-dimensional plot depicts the current on a T-junction ex-
cited at all three of its ports by gap generators. As illustrated, the current assumes
a uniform standing wave pattern along the feeding lines of the discontinuity. With

a longer length of feed line then shown, the current SWR and positions of minima



+ can be determined. The considered minima are away from the discontinuity, far
enough for higher order modes to have vanished. The reflection coefficient at a

reference plane X = L, looking in any port is

SWR-1 J'_____mml“””';x
e —— P)

M) =swr+1°®

(23)

where SWR is the current standing wave ratio, and X,y is the position of a current
minimum. The microstrip guide wavelength A, has been previously determined
from a long open ended line.

From the reflection coefficient, the normalized input impedance may be deter-

mined according to
_1+T(L)

4n = TTT(D)

(24)

To evaluate the network parameters an N-port discontinuity must be excited by
N independent excitations. In the case of a symmetrical 2-port, even and odd
excitations may be employed. For the even case the gap generators are of equal
magnitude and phase, and for the odd case they have equal magnitude and are
out of phase by 180 degrees. The even and odd input impedances, obtained from
equations (23),and (24), may be combined to give the elements for the Z-matrix

which for the case of a symmetric network take the form

ZE+ 2%
Zy = =2 (25)
Zzz = Zn (26)
Z;o - Z}e
le — n 2 in (27)
sz = Z’ll (28)



In the above, Z;l,f(o) refers to port 1 under an even(odd) excitation. For non-
symmetric networks, and multiport networks similar expressions may be obtained.
The scattering parameters are obtained from the Z-matrix by a simple transfor-
mation.

Finally, the total radiation losses may be determined from the known relation:

Prad
P,

=1—|Su* = | (29)
3 Evaluation of Impedance Matrix Elements

The numerical evaluation of the Sommerfeld integrations involved in the Green’s
function is quite involved. A detailed discussion of the evaluation of the Sommer-
feld integrations has been included in the author’s previous work [29] and will not
be discussed further here.

In the matrix equation of section 2 the terms ZX X% and ZY'Y* represent the
interactions between the x or y components located in the (n,m)*) and (v, u)*")
cells. The terms ZXY % and ZY X % represent the interaction between the x
and y components located in the (n.m)*) and (v.u)*) cells. The computation
of all of the 2(NM)? interactions would be extremely time-consuming. Yet, the
number of computations can be greatly reduced noting the following points. For
the direct-coupled blocks, due to the symmetry and the even valueness of the
Green'’s function with respect to the x and y separations, all interactions between
subsections depend only on the magnitudes |z — 2’| and |y ~— y|. For the cross-
coupled blocks, the symmetry and the odd valueness of the Green’s functions may

lead to similar conclusions. Thus, vectors of impedance matrix elements may be
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precomputed and catalogued according to separations for various substrates and
subsection sizes. These "libraries” can then be used repeatedly for discontinuity
analysis..

A typical impedance matrix is plotted in Figure 4. As illustrated, the matrix
~ is toplitz with the diagonal elements being the largest by an order of magnitude.
Although not done in the following results, it appears evident from the figure that
interactions of subsections electrically distant may be ignored. This could result

in further savings in computer time.

4 N umerical Results

4.1 Single Layer Discontinuities

The presented technique has been applied to characterize the discontinuity
shown in figure 5a. This matching section is printed on a 10 mil substrate of
relative permittivity 9.9. Over the frequency range of interest, the microstrip sec-
tion and substrate thickness are electrically small (< 55 A;). As expected, our
moment method algorithm has found radiation losses insignificant for this exam-
ple. Figures 5a and 5b show the magnitude and phase of the scattering parameters
as compared to measurement. As illustrated, the agreement with measurements
for magnitude and phase is excellent. In particular, the agreement of the phase is
within 2.5 _degrees across this frequency range. The measurements were performed

by TI using a cascade prober and an 8510 automatic network analyzer.
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4.1.1 Radiation Losses

Radiation losses for opexi microstrip elements can be significant at millimeter-
wave frequencies. To illustrate the ability of the presented analysis to account
for space and surface wave losses, a microstrip stub on a single microstrip layer
was compared to previously published data obtained with the spectral domain
technique[21]. The microstrip stub, contains a T-junction discontinuity and an
open end, and is printed on a 1.27 mm substrate of dielectric constant 10.65. As
illustrated in figure 6, the agreement between our space domain technique and the
spectral domain technique is very good. The quantity denoted G in the graph -
corresponds to |Sy;|? + |S:12|%, which may be subtracted from 1 to determine the
total radiated power. The quarter wave resonance occurs just beyond 10 GHz.

Also included in the plot are measurements obtained by Jackson[21].

4.1.2 Single Loop Meander Line

Multi-loop meander lines are frequently used in MMICS, such as traveling wave
amplifiers, for their slow-wave properties. The formulation presented in this paper
has been applied to simulate a single loop meander line in order to illustrate the
versatility of the method in modeling irregular microstrip discontinuities. Further-
more, the consideration of a single loop instead of a multi-loop line speeds up the
computati;)n and reveals very explicitly the effect of distributed discontinuities and
electromagnetic coupling on the slow-wave properties of the structure.

The line is printed on a 10 mil alumina substrate (¢, = 9.9). The magnitude of

S,1 is shown in Figure 7 as a function of frequency for three values of the width

13



to spacing ratio (¥). In addition, Figure 8 shows the normalized phase velocity
around the loop (v'/v) as a function of frequency where v is the phase velocity
on a microstrip line of length equal to the mean path length of the loop. These
results indicate, in this frequency range, that the parasitics in the loop increase
the phase velocity v’ which in turn tends to reduce the overall slow-wave effect of

the meander line.
4.2 Multilayer Microstrip Discontinuities

A powerful advantage of the presented formulation is the ability to model mult-
layer substrates by replacing the single layer Green’s function with the multi-layer
function. The fullwave procedure was applied to a microstrip corner discontinuity
on a substrate having two dielectric layers. The magnitude of the scattering pa-
rameters is shown in Figure 9. The multilayer corner has been analyzed on four
different substrates: A) a 40 mil layer of alumina (e, = 10.2), B) a 40 mil layer of
duroid (e, = 2.2), C) a 20 mil layer duroid on a 20 mil layer of alumina, and D) A
20 mil layer of alumina on a 20 mil layer of duroid.

There is significant difference in radiation between the two multilayer cases.
The radiation from the structure having duroid over alumina is considerably more
than the structure having alumina over duroid, as illustrated in Figure 10. It is
believed that for this structure, the loss is primarily due to surface wave radia-
tion. Therefore, case D couples less power into surface waves than case C. This
phenomenon is believed to be relé.t.ed to the suppression of surface wave excitation
reported by D. Jackson [27] in his study of antenna elements.

A two-layer microstrip stub was also analyzed. Shown in Figure 11 is the

14



magnitude of the scattering parameters for a stub on substrate having a layer of
GaAs (¢, = 12.2) on Quartz (¢, = 4.0). Both layers are .2 mm thick. Also included
are the scattering parameters for a stub having the same dimensions on a single
layer of quartz. The single layer example has a resonant frequency at 41 GHz.
The higher effective dielectric constant for the 2-layer case creates a stub having
a smaller resonant length, and results in a downward shift in frequency for the
null of |S12|. The radiation losses for both stubs are included in Figure 12. As
illustrated, the multilayer stub shows a tendency to radiate less. This indicates

that multilayer substrates may be utilized to reduce radiation losses.
5 Conclusion

A versatile analysis of microstrip discontinuities has been presented. The two-
dimensional method of moments technique has demonstrated excellent agreement
with measurements and other theoretical data derived for a single layer. A powerful
extension of the method allows the treatment of discontinuities on more compli-
cated dielectric structures. This is accomplished by employing the Green’s function
for a conductor backed multi-dielectric layer, resulting in the ability to model with
full electromagnetic analysis an abundant variety of nonuniform microstrip config-
urations. ‘_

Numerical results for corner, and T-junction discontinuities have been presented
on two dielectric layers. Additionally, the formulations ability to model larger

elements composed of these building blocks has been demonstrated by the inclusion

of a design curve for a meander line.
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The fullwave technique accurately accounts for coupling, space wave, and sur-

face wave radiation. Curves of radiation losses are presented for the corner and

stub elements.
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Abstract-

An integral equation method is developed to solve for the complex propaga-
tion constant in multi-layered planar structures with arbitrary number of strip
conductors on different levels. Both dielectric losses in the substrate layers and
conductor losses in the strips and ground plane are considered. The Green’s func-
tion included in the integral equation is derived by using a generalized impedance
boundary formulation. The microstrip ohmic losses are evaluated by using an
equivalent frequency-dependent impedance surface which is derived by solving for
the fields inside the conductors. This impedance surface replaces the conducting
strips and takes into account the thickness and skin effect of the strips at high
frequencies. The effect of various parameters such as frequency, thickness of the
lines and substrate surface roughness on the complex propagation constant are
investigated. Results are presented for single strips, coupled lines and two-level

interconnects. Good agreement with available literature data is shown.
1 Introduction

Shielded microstrip lines are widely used in microwave integrated circuits where
they perform a great variety of functions. It is therefore very important to have
an accurate knowledge of their characteristics, i.e. phase velocity, characteristic
impedance and losses as a function of geometry and frequency. Because dissipative
losses impose a major limitation on the performance of microstrip interconnects,
passive circuits and radiating elements, it is of interest to improve loss analysis,

whereby effects of substrate and non-perfectly conducting strips can be treated in-



dividually. Ohmic losses due to the finite conductivity of the strips is the prevalent
loss effect at microwave and millimeter wave frequencies, and have been studied
by several authors during the past fifty years but have been limited to lower fre-
quencies and electrically thick strips.

The incremental-inductance rule derived by Wheeler [1] is the foundation for
calculating the surface resistivity of conductive strips. From the knowledge of the
resistivity, attenuation due to conductor losses has been evaluated by analytic [2],
[3] and numerical [4] differentiation. The perturbation method is also frequently
used in quasi-static techniques such as the boundary-element method [5], the finite-
element method [6] as well as in spectral domain fullwave analyses [7], [8].

These techniques are strictly limited to electrically thick conducting strips, i.e.
they assume that the conductors have a thickness much greater than the skin
depth at the frequency of interest. The thickness is usually taken into account
by a modification of the strip width [4], [9]. However in monolithic microwave
and millimeter wave integrated circuits, where the metallization thickness is of
the order of a few um, the skin effect becomes an important issue. In the past
few years, several researchers have studied the above problem using variational
formulations [10], [11].

This paper represents an approach which evaluates losses in interconnects printed
on multilayer substrates and surrounded by a shielding cavity. The electromagnetic
fields are expressed by an integral equation which is solved independently inside the
conducting strips and in the surrounding region. The solution for the fields inside

the conductors provide the surrounding region with a relation between tangential



electric and magnetic fields on the surface of the strips which serves as an addi-
tional boundary condition. This boundary condition is satisfied by an equivalent
infinitesimally thin impedance surface which then replaces the lossy conducting
strips. The fields in the dielectric region, which consists of an arbitrary number of
layers, are computed by a method of moments solution of Pocklington’s integral
equation subject to the new introduced boundary condition. The present technique

is applied to several structures and a number of parameters are investigated.

2 Theory

Consider an infinitely long inhomogeneously-filled waveguide, with several mi-
crostrip lines on different levels within a multilayered configuration as shown in
Figure 1. The conductor strips are assumed to have finite conductivity ¢ and
thickness ¢t. The conductor thickness is usually small compared to the strip di-
mensions, however this need not be the case, especially in monolithic microwave
and millimeter wave integrated circuits on GaAs. Also, in practical circuits the
strips are usually at least two widths away from the side walls of the waveguide
to avoid coupling, therefore losses due to finite conductivity of these walls are ne-
glected in this derivation. However, the effect of a lossy ground plane is analyzed.
Both conducting and dielectric regions are assumed to be nonmagnetic with free-
space permeability uo. Dielectric losses are accounted for by assuming a complex
permittivity for each layer which in turn implies that the propagation constant
v: = jk, is a complex quantity. In the two-dimensional problem, each microstrip

mode propagates rectilinearly along the z-direction with a dependence of the form
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The integral equation formulation presented in this section is twofold. First,
in the dielectric region, the problem is solved by a rigorous hybrid mode solution
where an integral eigenvalue equation is set up. The Green’s function is derived by
using an equivalent transmission line for the representation of the fields along the
direction normal to the dielectric interfaces. This formulation allows for multiple
conductors on different pla.né.r levels.

Next, the field behavior inside the conductor is described by a quasi-TEM anal-
ysis where the magnetic vector potential is related to the unknown current distri-
bution by a static Green’s function. This method allows for the computation of
the per unit length resistance R(f) and the per unit length internal inductance of
the strip Lin(f) as function of frequency. An equivalent surface impedance is then
defined which describes, in a physical equivalent sense, the frequency-dependent
field penetration in the lossy strips.

The novelty of this method resides in the application of the boundary condi-
tion on the strip where the tangential electric field is related to the finite current
on the strip by the surface impedance described above. The resulting general in-
tegral equation that accounts for both dielectric and conductor losses is solved

numerically by the method of moments.



2.1 Integral Equation Formulation in the Dielectric Region

The electric field excited by an electric current source depends upon the surface

current density J as follows

ER) = [ [ &) J)ds (1)
where G represents the dyadic Green’s function in the dielectric regions. The
Green’s function is derived by evaluating the electric field due to a two-dimensional
infinitesimal current source J(#') = (§ + 2) §(F — #'), where ' is the position vector
of the source. Because of the existence of air and dielectric interfaces, shielded
microstrip lines propagate hybrid modes. Determination of these hybrid fields is
facilitated by the use of magnetic and electric vector potentials having components
in the direction perpendicular to the interfaces, i.e. the z-direction [12], [13].

For the case of two-dimensional interconnects, the problem is uniform in the
z-direction and the Green'’s function can therefore be solved in the transformed k,-
space. The spectral dyadic Green'’s function é is obtained by solving the boundary-
value problem of the structure under study [14].

In the present derivation, for sake of clarity, the simple geometry illustrated in
Figure 2 is studied. However, the Green’s function is formulated in a generalized
way, which can be applied to more complicated problems. The equivalent structure
containing impedance boundaries is shown in Figure 2(b) , where the current is
displaced from the interface to generalize the problem and to ease the application
of the boundary conditions. The impedance boundaries on the upper and lower

interfaces are determined by the use of a single transmission line problem. This



formalism has been applied extensively in the past to open structures [15]. The
boundary conditions at the upper (i = 1) and lower (i = 2) interfaces can be solved
separately for LSE (subscript @) and LSM (subscript f) modes. The impedance
ni'f is equivalent to the impedance of a transmission line terminated by a load
impedance Z§; with characteristic impedance Z%/. The load impedance Z:
may be a lumped impedance, such as the surface resistance of the ground plane,
as suggested in Figure 2(b), or it may be the impedance presented by another
substrate layer. The characteristic impedance Z%/ is given by the appropriate TM
and TE wave impedances.

Inside the equivalent structure, the homogeneous scalar wave equations for A,
and F, have to be solved in regions (1) (z > z’) and (2) (z < z’). Applying the
method of separation of variables, the following boundary conditions need to be
satisfied: (i) vanishing electric fields on the side walls, (ii) impedance boundaries

on the upper and lower walls as

Ev ‘ i ‘ "
=) = 2
( H,),,, m )
(iii) continuity of the electric fields at z = z’, and (iv) discontinuity of the magnetic

field components due to the infinitesimal two-dimensional current source at z = z'

N =(1) =(2) ” N N ikss'
Ax(H —H )=(+2)6y-y)e* =z (3)

Because the current sources are assumed to have both longitudinal and trans-
verse components, four out of six components of the dyadic Green'’s function are

needed.



A more general current distribution J may be written in the form
J(7) = 8(z = ) j(y) e (4)

where kM5 is the unknown propagation constant of the microstrip. In view of (4),

the integral equation for the electric field (1) can be expressed as
BR) = [ [ a@uyie ) e ) e T aydd )

where S is the surface of the strip conductors. In the above, the z-dependence of
both the Green’s function and the current is shown explicitly.

Introducing the spectral form of the Green’s function 7, and using the sift-
ing property of the Fourier transform, the electric field can be evaluated at any

transverse cross-section as

E = [ §@y/ey) J0)dy s (6)

where C,, is a path along the width of the conductor [14].

The above expression satisfies all boundary conditions except the ones on the
surface of the strip conductors. For perfectly conducting strips we enforce the
Dirichlet condition of vanishing tangential electric field on the surface of the line.
This boundary condition is applied to (6) which will be satisfied for discrete values
of kM5 corresponding to the dominant and possibly higher-order modes propagat-
ing in the structure. For the general casé of strips with finite thickness and finite
conductivity this condition is not applicable anymore. Indeed, due to the finite
conductivity, the fields penetrate inside the strips. An exact analysis of this case

requires Maxwell’s equations to be solved throughout the entire domain, i.e., in the



dielectric regions and inside the lossy strips. Such an analysis is very involved and
will not be undertaken here. Instead, we shall follow an alternative, approximate
method based on an equivalent representation of the lossy strips by impedance sur-
faces. These equivalent surfaces are characterized by frequency-dependent surface
impedances which are derived from a quasi-TEM analysis of the field penetration
and the resulting current distributions inside the lossy strips. The derivation of

these impedances is discussed next.

2.2 Derivation of the Equivalent Surface Impedance

Under the assumption that the transverse c;)mponent of the current is negligible
compared to the longitudinal component, this method is valid through the millime-
ter wave frequency range. In this study the current density in the lossy strips of
Figure 1 has the longitudinal component only. An integral equation formulation
for the frequency-dependent current distributions in the lossy strips is then pos-
sible. The derivation of the pertinent integral equation along with its numerical
solution have been presented in [16], [17] and will not be repeated here. Figure 3
illustrates the results of this formulation by showing the magnitude of the current
density along the width of the strip, plotted for four different distances s;, 33, s3
and s, from the bottom side of the strip.

Once the current distribﬁtions have been computed, the per unit length re-
sistance R(f) and inductance L(f) of the lossy strips can be found from energy

considerations as described in {17]. The per unit length internal inductance of the

strip is then computed as

Lin(f) = L(f) = Leo, (7)



where Lo, is the per unit length inductance of the strip in the limit ¢ — oo, in which
case the current flows on the surface of the strip and there is no field penetration.
Knowledge of the per unit length strip resistance and internal inductance allows

us to express the per unit length voltage drop AV along the lossy strip as
— AV = [R(f) +j2rfLia(I T  (V/m) (8)

where I is the total current flowing in the strip.

In order to derive the desirable surface impedance we start with the standard
definition for the surface impedance of an imperfect conductor as the ratio of the
tangential component of the electric field to the surface current density at the
conductor surface

E (1) = Z(1)Ju(1) = Z(1)H,(7), (9)
where 7 is the transverse coordinate along the surface of the conductor. Integrating

(9) along the side of the strip we have

w w
/o E.(r)dr = /o Z(r)H,(r)dr, (10)

where W is the width of the strip. From (10) using the mean value theorem for

Riemann integration [18] we can write
w w
[ Burydr = 2(r0) [ Hy(r)ar, (11)

where 7o € [0, W]. Dividing both sides of (11) by W and recognizing the integral

on the right-hand side as the total current flowing on the surface we can write

(12)

~ I
E, = Z(To) "u-,',



where E, is the average value of the longitudinal component of the electric field on
the strip. Obviously, this value can be thought of as the negative of the per unit
length average voltage drop along the strip, in which case (8) and (12) lead to the
relation
Z(r,) = W [R(f) + jwLin(f)). (13)
This is the desirable expression for the surface impedance of the equivalent
impedance surface to be used in place of the lossy strip. In what follows, we shall
denote this surface impedance as Z;(f) where the subscript ! suggests its relation
to the longitudinal current on the strip. A transverse component of the current
also exists, and a transverse surface impedance Z; can be defined as discussed in

the following section.

2.3 Application of Boundary Condition

The electric and magnetic fields tangential to the surface of the strips are related

through the surface impedance derived in the previous section as

7 = 7). (14
For most practical purposes, the dominant part of the conductor loss is due to
the longitudinal component of the current, for which the accurate longitudinal
surface impedance Z;(f) has been proposed. However, as the frequency of interest
becomes higher and/or the width of the strip increases, the transverse component

of the current becomes more significant and needs to be accounted for. This is

being done using the standard surface impedance for an infinite resistive plane as

Ey . 1
—_— = - — 15
0 = Zy (1+])05, (15)

10



where ¢ is the conductivity of the strip and § the skin depth at the frequency of
interest. Even if the width of the strip is finite, use of (15) is justified by the fact
that the strip is assumed to be infinite in the direction perpendicular to the flow
of the transverse component of the current.

In view of (14) and (15), equation (6) takes the form

E = [ §@u/ey) 0y +Z (Bx) haes  (16)
where Z is a dyadic quantity that we call the dyadic surface impedance and is given
by

Z = Zgij + Zi3. (17)

Recognizing the boundary condition for the magnetic field as

AaxH=J (18)

equation (16) becomes

L. 3eu/ey) - 560y =2 () lomites = 0 (19)

The method of moments is adopted here to solve for the current distribution.

The two-dimensional surface current may be written as

1) =5 ) + 5s(v)2 (20)
where j,(y') and j,(y') are unknown functions of y'. Entire domain basis functions
are chosen to approximate the behavior of the current distribution. The longitudi-

nal current is represented by Chebychev polynomials of the first kind T;, and the

transverse current is approximated by Chebychev polynomials of the second kind

11



Ui. These basis functions are multiplied by their respective weighting functions in

order to satisfy the edge conditions

W) = \;11 0 (2 -w) 1~ (p-sr) @D
() = 1( yo))
7:(¥") ;0 m) (22)

In the above expressions W is the width of the strip and y, the distance from
the origin to the center of the strip. Introducing these expressions for the basis
functions, equation (19) results in closed-form integrals that simplify to Bessel
functions of integer order.

The testing functions are chosen as Chebychev polynomials of the form

U, (%(y - yo)) ' (23)
T, (s - w). 2)

w(y)

w;(y)

This method is a variation of Galerkin’s procedure. The integrals resulting from
the weighted averages are expressed in terms of spherical Bessel functions. This
technique results in a homogeneous system of simultaneous algebraic equations
which can be solved by setting the determinant of the impedance matrix [Z] equal
to zero. Expressions for the elements of [Z] are given in the Appendix. The roots

of the determinant correspond to the propagation constants of the excited modes.
3 Numerical Results

Based on the theory presented in the previous section, the complex propaga-

tion constant in high frequency interconnects is evaluated as a function of various

12



parameters by using Muller’s algorithm with deflation. Each element of this ma-
trix involves a summation over the modes of the inhomogeneously filled waveguide
along the y-direction. The number of modes considered is enough to insure con-
vergence.

As it has been discussed by many authors, isolated microstrip interconnects can
propagate a dominant mode with zero cut-off frequency and higher order modes
which are in one-to-one correspondence with the modes of the inhomogeneously
filled waveguide surrounding them. All these modes are hybrid in nature and
exhibit strong dependence on the electrical and geometrical characteristics of the
microstrip interconnects and the shielding structure. From the parameters which
affect the characteristics of the propagating modes, the strip width W to substrate
thickness ratio (aspect ratio) and the operating frequency are the most important
ones. This paper gives an extensive parametric study of the attenuation of the
dominant mode and the derived results are compared with available data whenever
possible.

In Figure 4, conductor and dielectric losses calculated with the present technique
are shown as a function of the aspect ratio. For thick strips, results derived in this
paper are compared with the finite element method (FEM) [6], the spectral domain
method (SDM) [7], [19] and an analytic differentiation of Wheeler’s incremental
inductance rule [2] 1. All the existing full-wave analysis models evaluate conductor
losses by using a perturbation method where the surface resistivity is given by the

incremental inductance rule and, as a result, cannot predict losses for conducting

1 This analytic differentiation is implemented through the microwave CAD software package LineCalc available
from EESOF.

13



strips with thickness of the order of a skin depth. The effect of the conductor
strip thickness on conductor losses is explicitly shown on Figure 5. On the figure,
conductor losses versus aspect ratio are plotted for the case of ¢t = 0.56 which
appear substantially different from the case of ¢t = 2,3 and 46 (= electrically thick
strips). Our results correctly predict that as the thickness of the strip increases
to values large compared to the skin depth, the loss decreases significantly to the
thick strip limit. This, of course, is due to the fact that the current is forced to
flow through a smaller area. |

The skin-effect problem may also be described as a function of frequency. The
attenuation constant « is plotted in Figure 6 for frequencies up to 20 GHz. Also
shown are the equivalent surface resistance of the strip (13) and the surface re-
sistivity R, of the infinite thick plane representing the ground plane resistance.
By using R, as the surface resistivity of the ground plane, results have been de-
rived which show the effect of the lossy ground on conductor losses (see Figure 7).
This effect is very important and therefore losses due to ground plane cannot be
neglected.

The present method also allows to account accurately for multiple metallizations
and roughness of the surface of the strip conductors. In Figure 8, the effect of a
periodic variation of the surface roughness on conductor losses is plotted as a
function of frequency.

The technique presented in this paper has also been applied to evaluate conduc-

tor and dielectric losses for the even and odd excitation modes in the case of two

edge-coupled electrically thick strips. The derived results are plotted in Figure 9
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as a function of the separation between the two strips and are compared to results
derived with the spectral domain method [7], [19]. The agreement is very good.
Similar results are presented in F igure 10 for the case of two-level interconnects as

a function of frequency.

4 Summary

An integral equation method has been applied to calculate the propagation con-
stant in shielded multi-layered structures involving an arbitrary number of non-
perfectly conducting strips by using the combination of a static Green’s function
inside the strips and a hybrid Green'’s function formulation in the dielectrics. This
method allows for the evaluation of dielectric losses in the substrate layers and con-
ductor losses in strips of arbitrary thickness. The skin-effect problem is adressed
and results show an increase in the attenuation constant for thin strips. As ex-
pected, finite conductive ground plane and roughness of the strip increase the
attenuation constant substantially. Several interconnects structures are analysed,
such as single lines, edge-coupled and broadside-coupled strips and compare well

with available data.
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6 Appendix

FEzpressions for the elements of the impedance matriz Z

i 2. 1 k? k2 k., ;
(27) = Fiwm - k2+k2{ - (#h) +-”,:2—(<P$.)}I§"I£”—ZJ§€25)

i 2 k k. 1 $ k,,-,- a \3

(22) = JomE gt { - (o) + 5 o oz (26)
' 2 k 1 k a\i

@) = T R ) e e
; 2. 1 k2 i k2 k,,,.

(z2) = zjwuogm{i(vi) B e} aomy - 239 es)

where
ke = wyferuo (29)
mn
k, = -+ (30)
b = JR-F R (31)
and
cos kgr(z—h) mkﬂ(“")"‘i’?;l
af 1 _ cos kzr(z'—h) l—jng'}nnk,,.z' .
(¢"‘ ) —tmk,,(z’—hH—jvﬁi l-jn:J tan ks (z/—h) (32)
tanksrz'+jny ,  1—jn3 jtanksez’
tanksrz+jn3 ,
2 C“k,r:' l-‘]ﬂr hnk"(z’-h)
a,f — a,f/
(‘pm ) - "‘llksr‘-'""j'lz_! l‘jﬂ;! tan ksp 2’/ (33)

tanker(z'~h)+inl , ~ 1-jn;  tanksr(z'-h)

In (29), €} is the complex permittivity of the substrate, and i (= 1, 2) represents
the regions above and below the point source, respectively.

Further definitions necessary for the interpretation of (25)-(28) are provided as

IO = o sin(ko +n3) Jalky ) (34)
IO = I (n+Doosllgo +5) Jn+1(ky‘%v) (35)
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,form=n=0
% = Z form=n#0 (36)
0 ,form#n

(12

x =
70 _ W% ,form=n (37)
0 , for m # n.
No general recurrence formulas were found for Z(® and Z). However, these
integrals can be written in a simple form as a weighted sum of spherical Bessel

functions.

In equations (32) and (33), ; and 5} are given by

; we; 78 ﬁ,‘ + 72§ tank, h;

s T E, % Z8 42 tank, (3)
o ke Ly Zli+iZ§tank.h
M o= = gf it it 3 (39)
wio Zy + 327, tan kg h;
where
Zi = % (40)
T
k..
78 = I 41
&= o (41)
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1. Ci=neric cross-section of a single shielded line
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Figure 2: Multiple Layered Structure



Current Distribution (f=1 GHz)
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Figure 3: Magnitude of current density inside a rectangular strip at a height of 3 mils above a
perfectly conducting ground (W = 3 mils, e = 4 x 107 S/m, f = 1 GHz. ¢t = 0.2 muls )
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Figure 5: Effect of Thickness on the Ohmic Attenuation Constant (a = 10 mm, b = 20 mm, d =
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