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ABSTRACT

Theory. The theory of Davis and of Seitz on the magneto
resistance effect is summarized and its extension in several directions
is begun. Formulas are develcoped for the case where the magnetic field
H does not lie along the ks axis, and for the case where the energy E
and the relaxation time t are not even functions of ki, kz, and kg. The
case where the temperature is not close to absolute zero is briefly in-
dicated, and the necessary formalism is also set up to deal with non-
cubic crystals. A new theorem is found regarding the absence of any
magneto~resistance effect, either at a low temperature or at all tempera-
tures.

Experiment, Experiments are described measuring Ap/p under
various circumstances. Using a field of the order of 500 Gauss, most of
the experiments deal with Bi and its anisotropy effects under various
conditions of preparation. The results obtained are not essentially new,
but represent our effort to get down to basic quantities from the measure-
ments, A few other materials have also been measured, in view of the
temperature requirements stated in the contraet, but so far no material
with strong and temperature-insensitive MR effect has been discovered,

In neither the experimental nor the theoretical phase did we
encounter any unusual difficulties,
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FORTHCOMING PUBLICATIONS

Theoretical aspects of the MR effect will be presented in a
paper by L. P, Kao and E, Katz at the meeting of the American Physiecal
Society, Detroit-Ann Arbor, Michigan, March 18-19-20, 1954; see the
Bulletin of the American Physics Society, 29, 35 (1954), V8. The paper
will contain essentially the leading ideas of the theoretical part of
this report, augmented by some extensions and elaborated after the
closing date of the report. It is intended to publish the theory, but
not until it has been developed much further than is the case at present,
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QUARTERLY REPORT NO. 2

MAGNETTICALLY SENSITIVE ELECTRICAL RESISTOR MATERIAL

A. INTRODUCTION

As was anticipated at the end of the previous quarterly report
(in the section "Plans for the Immediate Future"), work has been undertaken
on certain experimental and theoretical developments. Accordingly this report
is divided into a theoretical part, and an experimental part.

The theoretical part describes what has been done in extending the
Davis theory of the magneto~resistance effect, This work was done by L. P. Kao
and E. Katz. (Mr. Kao has been with this project for only two months .) It
wag necessary to state in quite a few places that this or that problem will
be worked out further as the aim during this period was primarily the exploring
of the possibilities and directions in which the theory could be extended with
a reasonable amount of labor, As a result of this exploration we feel certain
at present that a great deal of significant information lies within reach Jjust
ahead, as may be estimated by the results obtained in this relatively short
period,

The experimental part describes measurements on bismuth., This work
vas done by Mr, Tantrgporn and Mr. Patterson, with Professor E., Katz super-
vising. This work produced a number of leads, described in this report, which
it is hoped to investigate in the near future,

B, THEORETICAL PART

l. Motivation
The motivatign for this study was derived primarily from a sentence

in A, H. Wilson's book dealing with the magneto-resistance effect of real

metals as measured, for example, by Justi and Scheffers, This sentence states:
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"It does not seem likely that any model, simple enough to be tractable
theoretically would give a magneto-resistance curve of the complexity of
those actually observed." This complexity is seen in Fig. 1, which is taken
from E. Justi's book.® The personnel of this project agree with Wilson that
the problem is not simple, but it is felt that the difficulty is one of labor
and persistence rather than of principle, This view is supported by the fact,
indicated in the previous report, that the theory of Davis, which is closely
related to earlier work of Wilson, is limited to a number of restricted
conditions which can be generalized without essential difficulty. ©Such condi-
tions are special orientation and symmetry of the sample, very weak fields
for which only the H2 term is significant, and very low temperatures,

2. Outline of the Davis Theory

The eigenfunctions of conduction electrons in an unperturbed periodic
lattice are of the form

where u has the periodicity of the lattice, The number of electrons whose wave
vectors lie in the range k and k + dk is (l/lm3 Y (k dk, where dk stands for
dk,; dks dkg. With perturblng electric and magnetic fields F and H the equa-
tion of Boltzmann which expresses & stationary condition becomes

- (e/m) [F + vk x Hfel »of + (£ - £)/t (k) = © (1)

Here ~e is the charge of the electron, vy is the group velocity of a wave
packet about k, and fo is the value of f when F = H = O. It is assumed
that

I. a relaxation time t (k) can be defined, and

II. dinterband transitions can be neglected.

The gradient is taken in k-space, A discussion of some conditions for the

validity of Equation 1 is found in Wilson's book and in a paper by Jones and
4

Zener®, Assumption IT is discussed by C. ZenerS, For Vi We can write
v = (1/M<E (k) , (2)

where E (5) 1s the energy eigenvalue belonging to k. While Equation 2 is
usually credited to Zener, it was not until 1951 that its validity was estab=-
lished in the presence of a magnetic field by Luttingers.

A great deal remains to be investigated about the‘precise limits of
validity of Equations 1 and 2, However, these equations will be used as

2
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starting assumptions to see what can be derived from them regarding the MR
effect, Essentially this approach was also followed by Davis.

In solving Equation 1 Davis introduces:
Restriction 1: The field H lies along kg,

Assumption III: The material is isothermal; H and F are homo-
geneous throughout the material,

Davis then defines the function ¢ (k) and the operator Qs (Q in
Davis' notation) by:

f = fo -0 (k) Oo/E = fo+ 0 (k) g (E) , (3)
and
Qs = = (VE XV)a « (4)

The function g is a peak function about the Ferml energy level E, and ap-
proaches the Dirac delta function for low temperatures; i.e,, for any reasonable
function P (E) we have

fgm)P(E)aEzP(Eo) : (5)

The operator (s can be considered as the third component of a vector operator.
It has the important property that when it operates on any function of the
energy E the result is zero,

Substituting from Equation 2, 3, and 4 into Equation 1, an equation
for ¢ (k) is obtained

P (k)/t (k) + (¢/n) F «+9E - (eB/tP c) 0g (k) = O,  (6)

where the product of F and ¢ is neglected, This is equivalent to assumption
IV. The electric field F is not large erough to cause deviations from Ohm's
law; i,e., the relationship between F and the currentis linear. This assumption
is very well satisfied and we shall not modify it.

The solution to Equation 6 can be written ag a power series in H
o0

§ (k) = - (-e/mZ (eB/m2 )" (t0s)" (tF *TE) . (7)

n=1

The current density J in relation to the fileld F is

J = (e/bn®) f v £ (k) dk

i
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N fgyE g(E) ¢ (k) dk . (8)

The integration is over all of k-space. Substituting from Equation 7 we have

o]

D) (e8/r2c)” [ & (®)VE (400)" (tvE * E) ak . (9)

n=0

From this equation all expressions pertaining to magnetic effects on the elec~
tric current are derived, in particular for the conductivity, the Hall coef~-
ficient, the coefficient of the transverse and the longitudinal gquadratic
magneto-resistance effect, In deriving these expressions Davis introduces
restriction 2: E and t sre even functions of k;, ks, and ka. He noted in
particular that if E and t were spherical surfaces in k-space then the coef-
ficients of magneto-resistance vanished for restriction 3: very low tempera-
tures.

A remarkable result was that under these restrictions the ratio of
the transverse and the longitudinal effect was always > 4.08 for cubic materialg
whose TFermi energy surface was described by the first cubic harmonic following
g sphere.

3« Summary of Davis' Assumptions and Restrictions

The following assumptions were made and are retained in the present
work,

I. A relaxation time t (k) can be defined.
IT., Interband transitions can be neglected.

ITT, The mgterial is isothermal: H and F are homogenous throughout
the material.

IV. The current and F are proportional (Ohm's law)

The following restrictions were applied at various stages and will
be broadened below,

1. H lies along ks.
2, E and t are even functions of k;, ko, and ka.

3. T~0 (g (E) is a delta function),
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L, Only terms up to HZ were calculated.

5« E (k) and t (k) have cubic symmetry and can be adequately
described by & sphere snd the first higher cubic harmonic,

4. Definition of the Present Problem in Terms of Eguation 9

—

The present considerations will deal only with the transverse MR
effecty The most general problem is defined thus: the sample is asgumed to
be a single crystal in the form of & long thin wire, The orientation of
crystallographic symmetry elements is not related to the direction of the wire
but the magnetic field H is normal to the wire. The direction of the current
J ig along the wire and no tramsverse current is present., The coordinate axes
can be chosen in two ways

() k1, kzy and kg are as in Davis' case, l.e., kg along H, k; along J ,on

(b) K1, Ko, and Kz are according to crystal symmetries.
Both cases have certain advantages in that certain integrals vanish and the
transformations of these integrals from one system to the other one will Dbe
important.

The general problem will be approached by discussing progressively

more general cases, starting with simple conditions. This is both didactically
and historically Jjustified. For practical applications these intermediate

cages seem to throw considerable light on the problem.

The current density will be measured in units of €®/hx®n2 and the
magnetic field in units of 7Zc/e,

Thus Equation 9 is reduced to

J = Z an g (E)VE (ms)xl (tVE » F) dk (10)
n=0

D« General Case A

Here H is along ks and hence Equation 10 is applicable.

We derive now a general expression for the conductivity as measured
in & wire in a transverse magnetic field, The condition that no transverse
current flows is
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d1 = o011 F1 + 012 Fz + 013 F3

Jz = om Fi + Ogz Fo + 023 F3 = 0, (11)
and

Jg = 031 F1 + 032 Fo + 0ag Fz3 = 0,

wvhere oy j are the components of the conductivity tensor with magnetic field
present, referred to the k-axes,

According to Equation 10 oy 3 can be written as

O0iy = Z [n]inn ’ (12)
n=0
where
gy = [ & @®9E (9)° (95 & )

By partial integration it is geen that
[nlgs; = (7 (0l (1)
iJ had Jl -
Elimingting F; and Fg and introducing the measured conductivity o defined by

d1 = dFy , (15)

Equation 11 yields

o = o11+(0=2z 033+0232)"1 {612(012 O33+013 O23)+015(012 Oza+01s 022)}; (16)

Additional symmetry conditions simplify Equation 16, (See section 7,)

6. General Case B

Here the wire direction cosines are A, m, and n with respect to the
coordinates Kj, Ko, and Kg adapted to the crystal symmetry. The equations for
vanishing transverse current are

d 4
R (Z F1+>  Fob > F; =m™ QZ Fi+ > Fotb > Fa
11 iz 13 . 21 ‘22 23

(17)

-1
= F -
n\ 2 Pt 2 Fet 3 Fa)
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where j{: are the components of the conductivity tensor with magnetic field
1J
present, and referred to the K-axes,

Let the magnetic field have direction cosines A, p, and v. For a
transverse field

N+ pm + vn = O . (18)

Then the general equation replacing Equation 10 becomes

I - 2 B f g (B)VE (6{M + p0z + vag})" (4VE - F) dk . (19)
n=0

Accordingly
ach et
Z = Z Hni Z [P, a4 II“P"‘QL}ij AP p.q y P-4 (20)
9 n-0 ¢=0 p=0

where
[p, 4, n-p-qlyy = f g (B)oB; (Pl (801)° (802)% (1052 P ) (tvEy) ax , (21)

and P[(tQ1)P (£05)9 (t03)2"P-4] is the sum of all permutations of p operators
tQ1, q operators tllp, and n-p-q operators tlz, in different order. This sum
consists of n'/pt q! (n-p-q)! terms. It is seen that the integrals in
Equation 13 are specigl cases of integrals of the type in Equation 21, for
which p = 9 = 0. '
By partial integration it 1s seen that
n
[py 9, n-p-alyy; = (=) [Py @, n-p-aly; - (22)

Additional relations among these integrals due to symmetry are given
in section 7. The measured electric field F along the wire is given by

F = F1 L +Fom+Fzn ., (23)

The measured current density J in the wire is related to F by

where Z, the measured conductivity is
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) = Mmoo, (25)
A = Det | )~ | (26)
0 m n
Ato= -1 -1 -1 -1 -1 -1
z:11 0 z:21 : 2:12 ! z:22 g E:lS Q E:28 g (27)
Y o 4mr-y w1y g -y e N D It
11 34 1o 32 a3 33

We now proceed to consider formulas for special cases of high symmetry.

7. Vanishing MR Effect for Certain Symmetries

Assume, as in Davis' case. that E and t are even in k,, k, and kas.
This means in most cases that the crystal axes K;, K5, and K3 coincide with
ki, ko, and kg and that for t (k) and E (k) there are reflection planes normal
to these axes. -Remember that H is along ks and J along k;. According to the
principle of ‘time reversal the origin of k-space is always an inversion cen-
ter. Hence the axes are also twofold rotation axes, and the symmetry of the
reciprocal lattice belongs to one of the classes

Dzhy Dsh, Th, Oh, or Deh
For Dgy and Ty, the k-axes must lie along the crystal axes.

For D4h, k, must lie along the fourfold axis and k, and ks along a pair of
twofold axes, or cyclic interchanges of this configuration. There are two
pairs of twofold axes at 45° 1o each other in the plane normal, to the
fourfold axis.

For Dgh, k; must lie along the sixfold axis, k, and ks along a pair of two-
fold axes, or cyclic 1nterchanges of this configuration. There are three
pairs of twofold axes at 30° to each other in the plane normal to the six-
fold axis.

For Oy, k; must lie along a fourfold axis and kp and kg either along other
fourfold axes or along twofold axes, or cyclic interchanges of this con-
figuration.  There is one pair of twofold axes and one pair of fourfold
axes at 45° to each other in thevplane normal to each fourfold axis.

‘The symmetry of the crystal itself may be of any class that yields
one of the above five, when augmented by an inversion center, hence, in addi-
tion to the above five, we may have

Doy, Coyy, D4y Doy, ‘C4v; YDG: Dah, Cev, T, Tg , or o,

i.e., all except triclinic monoclinic trigonal, and Cg, S4, Csh, Cep. For
these cases in the orientations specified above, the transverse magneto-
resistance effect w1ll now be derived.
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The integrals in Equation 13, denoted by [n]ij have now the following
symmetry properties

.’

[e]ij = 0 143

£ 0 onlyif i+ J = 3¢ (28)

O fori+ j#3

~
e
fI—
[ars
C
It

P

where e represents any even number and o any odd number,
According to Equation 12

0s;s 18 an even function of H

ii
O0i3 = 0Oz = O
012 = =0z 1is an odd functiom of H

and Equation 16 reduces to

P
¢ = (o011 Oz + 012 )/o22 . (29)

Using Equation 12 after slight rearrangement

o]

oo‘ % O)
o = o5 [1 +Z B Mo /{1 + azife o, B )], (30)
— (0)zz
m=1 m=1
where m-1
Mew = ) {(20)az (en-20)s + (20 % Vi (Ba-2nidia) s (51)
' =0 '
i /e
(n)g; = [n];3/([0]11 [0l2z2) y (32)
and the conduectivity with H = O
UO = [O].'Ll . (35)

Only even powers of H occur in o. It is clear from Equation 30 that the ex-
pression for Ap/p = (o, - 0)/0, is much simpler than that for Ap/py =

(0o - 0)/o , therefore attention will be confined to the former, Knowing Ap/ps
Ap/py can always be found by the substitution

AE. = _AE[E_ . (34 )

Po 1-n0/p

10
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For resistance changes of a few percent the two guantities are indistinguish-
able; for larger changes Ap/p approaches 1 as Ap/p, goes to infinity and both
quantities vanish simulteneously, The following theorem can be proved.

Theorem, The necessary and sufficient condition for vanishing Ap/p
(for all powers of H) is

‘Q‘S (tEl) = CE2 K (35)

where a subscript i on E means differentiation with respect to ki and c is an
arbitrary constant.

Proof, First it will be shown Eq %5 is necessary and sufficient for
My = O. Second it will be proved if Eq35 holds, Mgy = O for all m, Since
Ag/p = O (for all H) implies Ms = O the theorem is then proved.

First Part. Consider

Mo = (0)zz (2)1+(L)iz = O . (36)

If the explicit form of these symbols is substituted in Equations 32 and 13,
this is & Schwartz equality, since the integrand of the last term squared equals
minus the product of the integrands in the first term. It is well-known that
the necessary and sufficient condition for this to vanish is that the integrands
of [0]lsz and [2]1; be linearly dependent, This condition is Jjust Equation 35,
which estgblishes the first part of the proof.

Second Part, If Equation 35 holds it is a simple matter‘to show that

(2k + 2)11 = =c® (2k)zz , (37)
and ‘

(2k + 1)12 = =¢ (2k,z22 « (38)

Substituting this into Equation 31 it can be seen that the terms between {}
vanish for all values of ¢ and m, thus the second part is proved and so is
the theorem,

This theorem has a mmber of interesting consequences

(a) If Equation 35 is satisfied there is ﬁo resistance change
for all H at any temperature.

(b) If E is of the form ak12 + bko= + cka? and t is constant
Equation 35 is satisfied; thus the MR effect vanishes to
all orders., The term cka2 may, in fact, be any even

11
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function of ks« The quadratic form is of interest, since
it is mentioned in various places in the literature.

An interesting paradox was encountered when it was found
that for certain functions E (k) and t (k) the MR effect
would vanish, although Equation 35 was not satisfied,
This seems to contradict the theorem, The explanation of
this paradox is as follows:

The conditions under which the theorem is provéd lead
to Equation 35 ds the necessdary and sufficient condition
that the MR effect vanish for all temperatures., However,
if Equation 35 is not satisfied, the MR effect must not
vanish for any temperature T £ O, It may happen that the
discrepancy between the right and left sides of Equation
35 becomes smaller and smaller as T + 0 and in the limit
as T = Oy Equation 35 is satisfied. This seems to be a
rgther academic case gt first, but it is of practieal im-
portance, since the temperature is always very low compared
to the degeneracy tempersture of the electron gas and hence
is close to absolute zero., Consequently g (E) is usually
taken as a delts function, for example by Davis and by
Wilson., Thus, the usual calculation does not reveal the
difference between an MR effect that vanishes only for
T = O and one that vanishes for all T, The conditions given in
Equation 35 refers to the cases which vanish for all T,
while an extension of the theorem is required for cases
that vanish only for T = O, It is easy to show, along
lines similar to those used to prove Equation 35, that the
necessary and sufficient condition for vanishing MR effect
at T = 0 is

[Qs (tE1) = cE21E=EO (39)

Here the integrands of Equation 35 are considered in terms
of the independent variables E, 6, ¢, and E, is the Fermi
energy. Relation 39 is then valid for all © and @, The
explicit expressions for E; and Eg in terms of the new
variables have not been substituted. If, in addition, t
is a function of the energy only, Equation 39 reduces fur=
ther to

(03 E1 = cEz] (40)

E=Eo

Under the conditions specified, this is necessary and suf=-
ficient for vanishing MR effect at absolute zero, whereas

12
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at higher temperatures the effect becomes, in general,
proportional to T2, as may be seen by the familiar ex~
pansion of Fermi integrals such as Equation 13, It is
interesting to note that behavior of this sort has never
been observed; on the contrary, the observed effect usu-
ally decreases with rising temperature, Appdarently
Equation 39 or 4O is not satisfied in all cases studied
experimentally so far, Further work on estimating what
conditions mske this T® effect large may be done later,

(d) In particular, if E is &s described in (b) and t =
t (E), Equation 40 is satisfied and the low—~T MR effect
must venish, Likewise, the two=-band model suggested by
Wilson for Bi, in the simple form in which it was sug-
gested, leads to zero MR effect,

(e) While the conditions of Equations 36, 39, and 40 are not
of great help in finding materials that have an exception-
ally ldarge MR effect; they do serve to discard certain
materials a priori, In particular the very low values for
the MR effect in good conductors such as Cu, Al, etcs, are
understood. In these materials the top band is half filled
and the free-electron spproximation is reasonably good,
with the energy surfaces probably not too far from spheri-
cal.

(f) In this connection it is also interesting that Justi's
observations on Au (cubic) at low T show very pronounced
minima of Ap/p for those angles (n . 45°) which satisfy
the symmetry conditions stated at the beginning of the
present analysis,

(g) It may be possible in the future to extend the approach of
this section to cases where the difference between Qs (tEp)
and eEp is small,

(h) It is, of course, possible to write Equation 30 as a single
pover series in H2, The coefficients are lengthy expressions
in terms of the M and parentheses quantities and will not be
given here,

(1) If the erystal is cubic with its fourfold axes along the cur-
rent and the magnetic field, we have in addition to the above
symmetry conditions

(0)33 = (01 (1)

13
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8. Some General Expressions for B in the k System

The coefficient B of the quadratic term can be expressed also in
terms of the integrals (n)ij in more general cases than those of Davis by
means of Equation 16, The derivation is tedious but straightforward. Using
a system of ki, ko, and ks axes as before with H along ks and J along ki, we
find

3

g - (0)zz2 (2)as + (2)22 (O)as = 2 (0)as (2)2z + (1)2s® (42)

(0)2z (0)az = (0)a2s>

2

) —%r{ﬂo)ll [(L)za + 2 (O)as (2)zz + (0)2z2 (2)as + (0)as (2)z2z]

+ (0)120-2(1)15 (1)23-2(0)as (2)12 + 2(0)zs (2)13=(0)12 (2)33-2(0)1a (2)2a]
+ (0)13[2(1)12 (L)2s + 2(2)12 (0)23-2(2)1a (0)22-(0)1a (2)22]
+ (0)z3[-2(1)1z (1)13-(0)2s (2)11]
+ (0)z2 [(L)1a" + (2)11 (0)as]
+ (O)as (1)12?}

where J
lo| = det (0)15+ (43)

If ko occurs even in E and t, (€)i12 = (e)zs = (w)iz = O and Equation 42
reduces to

B___(O)le[ (Oks (2)az+ (L )223]"2(0)13 ©)as | (0 Joz (213 = (L)12 (V23] +(»O)§.3[(0)22(2)11+ (l.)212]

(0)22(0)33[(0)§3“(0)11(0)33]

(4h)
Ify, instead, kg occurs even in E and t, then (n)iz = (n)zs = O,leading to
2 2 2
B - (0)22 (2)11 + (0)22 [(L)12 - 2 (0)12 (2)12] + (2)22 (0)1a (45)
2

(O)zz [(0)12 = (0)11 (0)22]

Tt is seen from these results that a reflection plane normal to kg is more
effective in simplifying than one normal to ks, If both reflection planes are
present both Equations L4 and 45 reduce to Davis' expression, which in the
notation used here reads

B = - (2)11 (0)zz ~ (1)12° (46)

1h
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The effects of a number of other symmetries on Equation 42 remains to be
investigated, In the general case Equation 42, B is determined by 15 con-
stants, In Equation 44 there are 9 constants, in Equation 45, 6 or T con-
stants (6 if it is taken into account that (0);7 (0O)op = 1) and in Equation
46, 3 constants, The expressions for B are the same, whether Ap/p or Ap/po

is evaluated, The purpose of deriving these general expressions is to trans-
form them later to a k-gystem of certain symmetry which does not coincide with
the k system, The resulting expressions for B will have to match corresponding
expressions derived along another approach. But besides providing a check for
later work, they have some value as new relations.

9. A Remark about the Dependence on the Azimuth

For cubic materials Justi and coworkers have found & strong de-
pendence of Ap/p on the angle ¢ between H and one fourfold cube axis, while
the current flows along another fourfold cube axis., H remains always normal
to the current, From the general tensor character of the coefficients in the
series

Ap/p = BH2 + CH4 + DHS, , , (%7)

it follows that these coefficients must generally be of the form
B = By + B sin 2 (@ - @) (48)
C = Cp +Czsin2 (f - fL) + Cg sin b (g - ﬁ;ﬁ s (49)

D = Dy + Dz sin 2 (@ = fy) + Dg sin k4 (3 - By) + Dy sin 6 (% - ¢d"9r
. . 5 etc, (50)

For cubic symmetry with the current flowing along a fourfold axis, only the
terms with sin 4n ¢ can differ from zero, Thus, B can only be & constant in=-
dependent of ¢; C can consist of a constant and a term in h¢, g8 can D3 E
contributes 0, 4, and 8@; etc, Thus, the complex patterns observed by Justi
require the study of high coefficients.

The faet that Ap/po is approximately a straight line for high values
of H does not imply that these higher coefficients vanish, The straight line
does not pass through the origin, so the coefficients, far from being negligible,
will converge more or less rapidly to zero, with dlternating sign. In order to
describe the main features of the observations on Au, it is necessary to go
to coefficients of H24, and at present this does not look worthwhile., However,
this phenomenon is noted here because it points to what we believe is a correct
interpretation of the rule stated by these authors, that planes with low indices
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show a strong reduction in Ap/p compared to planes with high indices, We would
reformulate this as follows: if a Fourier analysis of Ap/p as a function of ¢
were made, the contribution of the component with hn¢ is primarily due to the
coefficients of H*® and H*™Z in Equation 47. It is a general characteristic
of Fourier series of this sort that they lead, under the conditions of cubic
symmetry, necessarily to rather sharp peaks at places with low indices, Thus,
it seems that in the future the problem of the azimuth dependence and that of
the behavior for high H will turn out to be two aspects of the same formula,

10. Some Symmetry Relations among the [0, g, n-q]

The measured conductivity Z is expressible in terms of the quantities
[py a9, nnp-q]ij according to Equation 20, 21, 25, 26, and 27. For the case
that ¢ = O omit the first term in the bracket and write [q, naq]ij, instead
of [O, dy n»q]ij, This case is of sgpecial interest and & number of relations
have been established among these quantities for certain symmetries, An ex-
hgustive treatment of this topic must, however, be deferred, The symmetries
refer to the K system regarding E (K) and t (XK).

If a mirror plane normal to K; is present

[qy @=ql3; = O, (51)

[Q..v: €Q]12 = 0 (52)

[qy €=ql1zs = 0, (53)
and

[q, w-qlag = 0. (5h)

The same is true if K; is a twofold axis. If K; is a fourfold axis, in addi-
tion

[q, e-qlas = (—):q [e~q, dlas , (55)

if 2q = €and g = odd this is = 0 .
o 1

[-gy w~ql1z = (“)qr [o~a q 113 » (56)

@ e~d2z = (R [e~g das, (57)
and

[ e-din = % le-9 di, (58)
if 29 = e and ¢ = odd this is = 0. If a mirror plane is normal to Ko, in
addition to the above,

[w, e"b]ii = 0, (59)
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[0, ®' ~wl12 = 0, (60)
[e; w=elzz = 0, (61)
and
[e, ¢ =€laz = 0. (62)
If in addition to the above Kz is a fourfold axis
[0, €laz = [ey Olzz = [0y €l11 4 (63)
and
[0, elas = [e; Oliz = O« (6k)
11, Some Expressions for the Azimuth Dependence in a Cubic Case
Consider the case of a cubic crystal with current along K3 = ki

The magnetic field (along ks) msakes an angle @ with Kz and 9020 with Kp. The
angle ¢ is referred to as the azimuth, and Justi and coworkers have measured
Ap/p0 as a function of ¢ for Just such conditions,

On the one hand, the measured conductivity can be expressed in terms
of the quantities [n];. through Equations16 and 12, and these can be trans-
formed into [q, n~q]ij. In this way the azimuth dependence can be found.

Arother way to find the azimuth dependence is by using Equations 25,
20, and 22, This has not yet been done, but will be carried out as a check in
the future. The results of the transformations obtained so far are listed in
Table I in which S denotes sin h¢ and ¢ denotes cos 4@, So far, with the help
of this transformation tsble it is possible to express the coefficient B of HZ
and C of H%* in terms of the azimuth ¢ by means of the three quantities [0,0]ll,
[0,2]11y and [0,2]35 for B, and the eight quantities [0,0]11, [0,2]11, [0,2]a3,
[0,3]12y [1,2]13, [O4lt]i1, [242]25 and [O,4]s3 for C, For angles that are in-
tegral multiples of 90® the quantities in Table I reduce to the untransformed
ones [O,n]ij since 8 = Qandc = 1,

The quantity B, evaluated according to Equation 42 must be independent
of ¢ and this checks., The value of the comstant is then {-[0,0]11 [0,2]11 +
[O,lfi%}/[o,ofil, which is equivalent to Equation 46, The quantity C can best
be expressed for O and 45°, which determines its dependence on 4@, The ex~-
pressions have been obtained but need rechecking and will be regerved for a
future report.

In this way it is possible to express dll higher coefficients for
cubic crystals as a function of the azimuth in terms of the basic integrals
[q, n-q]ij* These integrgls can, of course, be expressed explicitly only in
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terms of the functions E (K) and t (K), which is again a subject for further
study. It is hoped that this study may then lead to insight intoc the reverse
problem, which is also theoretically important: can the shape of energy sur-
faces be determined in practice from magneto=resistance data? We sare aware
of Shockley's remarks in this comnection.

C. EXPERIMENTAL PART

1. Equipment

The magnet used in this work was a simple electromagnet with a gap
of gbout 5 cm and a cross section of about 5 x 5 em fed by automobile batteries,
The calibration of H in the gap has caused some difficulties and the figure
given in the previous quarterly report of 534 Gauss is certainly not quite
correct, It was determined by means of & commercial Gauss meter, which was
later found to be in error by some 15 percent, The field was actu=lly about
420 Gauss, Our field has been calibrated against those of three permanent
beta spectrometer magnets of 795, 3%0, and 107 Gauss, For many measurements
at the present stage the calibration is not now unsatisfactory.

The relation between magnet current and field has been determined
gnd is practically linear above 100 Gauss but not below, The accuracy of gbx
golute values for H is estimated to about 5 percent above 100 Geussj the
relative accuracy is somewhat better, In the course of time it may be neces«
sary to change to an air-coil magnet, but we feel & great deal of information
can still be obtained with the present setup, which hds the advantage of sim-
plicity, provided more calibration checks are made.

An improved sdmple holder was constructed to insure ss much 88 pos«
8ible, isothermal conditions and to permit rotation of the wire in the field
gbout the wire ag axis. The holder was sturdier than its predecessor and had
g finer scale, permitting more sdccurate reading of the angle (1-2°).

In order to study the orilentation of the cleavage plane in wires
which seem to be single crystals, a reflection microscope is in use, A holder
was designed and made by the machine shop which permits the wire to be turned
by measurable amounts about two perpendicular axes (gccuracy~2°) while under
the mieroscope, in order to obtain reflection from the cleavage plane at the
end of the wire,

A small zone-melting apparatus was built for zone-melting Bi-wires
in their glass sheaths, The wire is drawn through an electrically heated Pt=-
loop by a slowly and smoothly moving carriage at the rate of 6 cm/hour. An
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additional permanent magnet, providing a transverse field of 6000 Gauss can be
placed across the melted zone, but has not produced any noticesgble difference
up to the present,

Ew Materials

Most of the experiments were done with bismuth from two sources. The
cheap supply of granular Bi was from Baker and Adamson, reagent quality, 99.8%
pure, The other material was Bi, 99.9992% pure (ductile). Mr. Fitzpatrick,
from Muskegon, Michigan came to Ann Arbor in connection with our request for
information about the ductile, very pure Bi-wire which he manufactures, He
was kind enough to send us four complimentary samples of ductile Bi-wire and
also offered to make bismuth slloys for us provided we furnish the alloy ma-
terials other than bismuth, Since such alloys would be relatively expensive,
and would have to be made in relatively large numbers with varying content of
alloying materials snd verying parameters of the manufacturing process, we
Jjudged that it would be more expedient to study in detail the differences in
MR effect of the 99.8% pure wires and the ductile 99.9992% pure wires first.

In gddition to the two types of Bi~wires described above and some
wires made of Bi with 0.4% Pb, & number of other materials were occasionally
tried, The motivation for other choices was twofold. In the first place, an
inspection of any list of superconducting materials shows that three elements
gre particularly effective in enhaneing superconductivity in other materials
that have only very low transition temperatures or no superconductivity at all,
These three are Bi, Nb, and N, A compound of Nb and N yields the highest
transition temperature known, Since Bi has both this enhancing property for
superconductivity and strong magneto-resistance effects, it seemed not alto-
gether impossible that there might exist a relationship between the two effects,
We have not as yet been able to obtain Nb wire, but we have ordered powder in
order to try to make the wire here, and will continue our efforts to cbtain
the wire from external sources, In the second place, we have given thought
to the technical requirements (PR and C-54-ELS/D-3420, 30 December 1953)
especially sections C-2¢ and B-i,. Since a major part of the temperature de=
pendence of Ap/p is due to the temperature dependence of p, it is clear that
materials with a zero or slightly negative temperature coefficient of p are
desirabley A few such materials have been measured, constantan, manganin,
carbon resistors and wires made of Wood's metal,

3« Measurements

While the ductile wires furnished by Mr. Fitzpatrick were said to
be single crystals, x-rays showed that this was not so, Figure 2 is a plcture
obtgined through the courtesy of Dr. S, Krimm of this laboratory, of a small




Fig., 2, X-ray photograph of Fitzpatrick ductile Bl wire showing
polycrystalline gtructure
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section of the wire and shows some spots with circles of comparable intensity.
Thus the sample ig far from a single crystal, Since we are not familidr with
the details of the manufacture of this wire, we cannot add any further inter-
pretation, We plan to make similar observations with other samples,

The Bi wires drawn in this laboratory showed, in general, a strong
anisotropy for rotation about the wire axis through an gzimuth angle Be
Theoretically (See sec, B9) this dependence can be represented for weak fields

by
Mo/og = H (B + Bp sin 2¢) , (65)

and this fitted the experiments very well; thus, it seems desirable to measure
the constants B; and By for various samples, They both will depend on the
angle between the trigonal Bi axls and the wire, In order to get down to
really basic material constants, of which there are about half a dozen in the
case of the Bi-symmetry (always ignoring terms of higher powers than Hz), more
independent measurements have to be made, but the theory associated with this
problem remgins to be analyzed later.

The experimental azimuth dependence is illustrated for & representa-
tive sample in Fig. 3, showing Ap/p, versus @, and in Fig. 4 showing Ap/pg
versus sin 2 (f - @o) which should be a straight line for & suitable choice
of Bo-

Table IT gives data for a number of Fitzpatrick wires, The absolute
accuracy is + 5% in H, usually about 1-2% in Ap/p, and in By and By consequently
about 10%‘ The relative error in By and By for the same sample and for com=~
parison between different samples 1s considerably less and is estimated to be
about 2%.

TABLE IT
1 ' | H ro/pox10% Bix10® Bsx10®° T
No. _ Bi Sample Gauss  Imax ° min ,l 2 Ohms
1 Fitzpatrick wire 428 16.3 0 8.9 0 1.8
99.9992% pure 19.4Q/ft
2 Same, melted and drawn 433 22,0 7.22 7.8 349 66
3  Arother sample 406 19.5 16 10.8 1.0 24
same treatment as 2
4  Identical 403 18.9 154 10,5 0«75 8
5 Tdentical 397 18.1 11.5 9kt b, 22
6 TIdentical 282 8.32 6.19 9,1 1.2 b5
7 Another sample melted 400 18.1 12,7 9.6 1.7 6.5

drawn, zone-melted Lx
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wires.
TABLE ITI
H A x10%* B 9
No. Bi Sample Gauss p/ggx | (B14B2)x10
1 Same as No. 1 428 16,3 8.9
Table II
261 7.6 11.2
119 2.5 17.6
2 Same as No. 2 L33 22,0 11.7
Table II
264 9.6 13,9
125 2.9 18,3
3 Same as No., 3 406 19,5 11,8
Table IT
270 8.7 11,8
135 2.2 12.1

99.8% pure Bi.

TABLE IV

Table III shows deviations from the H® relation for the Fitzpatrick

Table IV gives data for a number of wires made from Baker and Adamson

H  Ap/pyx10%

No. Bi Sample and Treatment ®  Box10° r
° p-e e Gauss max min B1xl0 Paxl0 Ohms
1 Melted and drawn 386 20.2 11.h 9.5 2.7 20
2 Another sample same as No. 1 397 22.7 8.6 10.6 4.5 12,7
3 Another sample same as No, 1| 406 23.1 22,1  13.7 0.3 26.2
L %iized, drawn, zone melted 415 21.8 4.6 10.6 2.1 a

2k
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Table V shows deviastions from the H2 relation for various wires made
from Beker and Adamson Bi.

TABLE V
No Bi Sample H bp/pox10* (B1+B ).109
O« Gauss | max 148 )X
1 Same as No, 1 386 20,2 12,2
Table IV
367 18.3 13.6
2 Same as No. 4 h15 21.8 12.7
Table IV
277 10k 13,6
140 2,7 14,0
3 Alloyed with 0.4% Pb, 432 Th 4,0
melted and drawn
287 3¢5 4.3
138 0.83 h.3
I Another sample 132 | 1%.0 7.0
Same as No., 3 Table V
287 6.0 Tl

127 1.4 8.7

Table VI compares data for wires that were solidified in or outside
a magnetic field of 6000 Gauss normal to the wire during zone melting, All
wires were 99,8% pure Bi.

TABLE VI
H " Ap/poxlOt 9
Nos Bi Sample Causs mai/po min Byx10 BleO9 Oims
1 Same as No. 3 Table IV 406 2341 22,1 13.7 043 26,2
Untreagted
2  Part of same wire 392 20.9 543 8¢5 561 23,6
as sample 1, zone melted
in H=6000 Gauss
3 Another wire zone melted 3zg7 18.8 6.1 8.0 4,0 21.8
in H=6000 Gauss
4 Another wire zone melted %0l 21.1 17.3 12k 1.2 11.5

in H=6000 Gauss
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Measurements on wires of manganin, constantan, and carbon resistors yielded no
detectable Ap/po, which means that Ap/pO < 5.10‘5, or no more than about 1-2%
of the corresponding values for Bi.

4, Discussion and Conclusions

The data presented in Tables II to VI suggest the following con=
clusions:

Table II. The original ductile polycrystalline wire seemed to have
no azimuth dependence (Bz = O0); this may be connected with the random orien-
tation of the grains (Fige 2). Apart from some scattering from one sample to
another, it seems that melting and drawing this material in the usual manner
in glass tubing does not materislly affect the magnitude of the MR effect; if
anything, there is a slight improvement. The wires obtained in this way are
single crystals, as was occasionally checked byX-rays, and have reverted to
the brittle state. They exhibit an azimuth dependence varying in strength
from sample to sample, Also, additicnal zone melting does not affect the re=
sults., It seems at present that there is little connection, if any, between
the ductility or brittleness of the wire and its MR behavior at room tempera-
ture,

Table IIT. The wires from Fitzpsatrick show, in general, a more than
quadratic increase of Ap/py with H when untreated. When melted and drawn this
effect sometimes disappesars, Further work along this line is necessary to
establish this conelusion definitely and to trace its originy It may be due
to the presence of @ small negative term, linear in H, as found by Donovan and
Conns. It seems strange, though, that such a large linear effect should be
found for polycrystalline material

Table IV, The Baker and Adamson wire seems to have at least as good
or somewhat better MR properties than the Fitzpstrick wire, It shows, like
all wires that are made by melting and drewing in a glass tube, strong azimuth
anisotropy which seems to scatter more or less randomly, Either this material
is actually much purer than the tolerance given (99.8%) or the impurities are
of a nature affecting the MR effect very little, or the effect 1s rather in-
gensitive to impurities in this range of concentrations, This must be in-
vegtigated further.

Table V, The Baker and Adamson wires show a much smaller deviation
from the quadratic H relation than the Fitzpatrick wires of Table III although
there is a systematic trend, This trend is also present if 0.4% Pb is added,
but the H«calibration will have to be checked once more to make sure that this
trend is regl. If it is real, it may agein be due to a linear term and should
probably be absent for samples with very low Boe This remains a subject for
further study and clarification.
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Table VI. The data show that the MR effeect is not enhanced by zone
melting in a transverse magnetic field of 6000 Gauss, If anything, it is
slightly reduced.

General Remarks., The preparation, mounting, and measuring of a
sample is at present still rather time-consuming and may possibly be somewhat
accelerated,

D. PROGRAM FOR NEXT INTERVAL

Theoretical

Further development of the theory will follow present lines,

Experimental

We feel that there are still a number of factors in the study of Bi
to be cleared up: for example, the relation of the axial anisotropy with the
orientation of crystal axes relative to the wire, the question of the exist-
ence of a linear effect and a more accurate study of the influence of im-
purities starting from the very pure Bi.

We also plan to work on & number of alloys suggested by their super=

conductivity; this depends on their availaebility or the problems encountered
in mesking and shaping them,

E. IDENTIFICATION OF PERSONNEL

In addition to the persons identified in the previous report,
Mr, H, Patterson has worked on the experimental aspects of the project since
November 1, 1953 and Mr. L. P. Kao on the theoretical aspect since December 1,
1953, Both are experienced graduate students in Physics above the M, S, level,
Altogether the following man-hours were devoted to the work during the period
covered by the pregent report.

Hrs
W. Tantraporn 2h5
H. Patterson h
L. P« Kao 352
E« Katz ol
Total ?EE
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