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ABSTRACT

In this final report a summary is given of theoretical and experi-
mental progress made in the field of the galvanomagnetic effects during the en-
tire period of about three years of this project. For details the reader is
referred to previous reports. Part of the present and the previous report has
constituted the greater part of the doctoral dissertation of L. P. Kao. The
unfinished character of the work is partly due to the very great complexity of
the subject, and also partly to the fact that the research is still being car-
ried on.

The scientific motivation of this research is based primarily on two
facts which became clear very early. Figure 1 shows that galvanomagnetic ef-
fects under very symmetric conditions have a detailed structure. According to
the state of the electron theory three years ago, one could conjecture that
this structure contains interesting information about the electronic energy
surfaces and affords possibly the most direct way to learn all the details of
these surfaces. It is of fundamental importance to have a way of getting ex~
perimentally at the details of the energy surfaces. 1In order to develop this
way, the theoretical work of this project was undertaken and is being contin-
ued. The experimental work was undertaken in order to parallel the theory and
to explore the galvanomagnetic effects of certain special systems. It soon be=-
came clear that meaningful measurements were hardly possible until the theory
had made considerable progress.

In order to enable ug to describe the galvanomagnetic effects prop-
erly and completely, the phenomenological theory had to be developed first (see
Section B). This theory, moreover, is a prerequisite for taking meaningful
measurements. It is based on the validity of Ohm's law. The dependence of the
components of the conductivity tensor on the magnetic field is represented by
a three-dimensional Taylor series in powers of the magnetic field components.
The coefficients of the various powers are the galvanomagnetic constants (brack-
ets).

Onsager's relations imply certain parity relations for the galvano-
magnetic effects, given in Section B-2. The relations between the brackets due
to any type of crystal symmetry have been developed previocusly and are sketched
in Section B-3 for the case of bismuth. Further progress of the phenomenologi-
cal theory, applied to special cases, is reported in Section B-k, 5, and 6.

Section C describes the methods used in preparing single crystals of
bismuth and in measuring its zeroth-, first-, and second-order galvanomagnetic
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constants (brackets). Results of measurements are given for temperatures be-
tween room temperature and -150°C (see Tables III, V, and VII). The relative
smallness of the brackets [200]zsz and [011];1; can be understood qualitatively
by noting the similarity between the bismuth lattice and a hexagonal structure.
Considering bismuth as a distorted face-centered structure, however, does not
clarify any of the relative magnitudes of the brackets.

In Section D an attempt is made at generalizing the electronic theory
of the galvanomagnetic effects. By eliminating undue restrictions of the cus-
tomary approach, general expressions for all the brackets are obtained in terms
of the relaxation function T(E) and the energy function E(E)o Under these very
general conditions a set of lemmas is derived which governs necessary and suf-
ficient conditions for the vanishing of certain galvanomagnetic effects. This
analysis sheds light on, among other things, the question of why previous the-~
ories often have led to predictions of zero longitudinal magneto resistance,
contrary to experiment, and it is now clear how such discrepancies can be
avoided. It is believed that the analysis of the conditions which make for
small galvanomagnetic effects is a first step in the direction of finding large
effects.

The appendix contains proofs of various theorems and a list of cor-
rections for previous reports.

vi
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OBJECTIVE

This project aimed at developing the understanding
of the magneto resistance effect (change of electrical resis-
tivity in a magnetic field) by theoretical and experimental
research, with the ultimate aim of developing materials with
more favorable magneto resistance properties than are avail-
able at present.

vii
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A. INTRODUCTION

The present report is intended to be self-contained regarding gen-
eral ideas, while for details the reader will be referred to previous reports.

The purpose of this research has been restricted, up to the present,
to gaining more insight into the quite complex directional properties of the
galvanomagnetic effects. Soon after the beginmning of the research in 1953 it
became evident from the literature that the galvanomagnetic effects, that is,
the effects of a magnetic field on the electriecal conductivity of a single cry-
stal, are very complex. The magneto resistance effect, the Hall effect, the
Corbino effect, and several other names represent merely special cases of the
galvanomagnetic effect. The complexity of the magneto resistance effect is
illustrated by Fig. 1, which represents the variation of the electrical resis=
tance of a single cubic gold crystal as a function of the azimuth angle at
which the magnetic field is applied (after Justil)o The other galvanomagnetic
effects are necessarily of similar complexity.

Before any basic understanding, pure or applied, of the information
concealed in this articulate effect can be developed, it is first necessary to
develop a phenomenological theory. The purpose of a phenomenologlcal theory
is to describe measurements systematically, to permit comparison of different
measurements, and to guide the experimenter in measuring basic data. It also
provides a frame with which future electron theories must comply.

No systematic phenomenclogical theory for the highly anisotropic gal-
vanomagnetic effects was available and consequently many misconceptions could
be found in the literature. We have developed the phenomenological theory, an
outline of which is given in Section B of this report, while details are found
in previous reports. This theory defines the mode of desecribing the effects
in the following way. The components of the electrical-conductivity tensor
are expanded in a power series in terms of the powers of the three components
of the magnetic field B, along suitably chosen coordinates. The coefficients
of this series expansion are the material congtants by means of which the gal-
vanomagnetic effects are completely described. These coefficients are called
"brackets." Measurements must aim at. determining them.

Older approaches had terminated such power series after the first or
second power of B, but Fig. 1 clearly implies that higher powers are by no
means negligible. The coefficients of such power series are not all indepen-
dent. The symmetry of the crystal, and of the measuring arrangement with re-
spect to it, defines relations between the coefficients which the phenomenol-
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ogical theory gives. These relations must be known for any given material of
whatever symmetry, before one can plan measurements which will permit the de=
termination of the brackets. In addition, much of the complexity of Fig. 1
will turn out to become qualitatively understandable as a result of the symme-
try relations.

We chose bismuth as a first substance for measurement. It is known
to have the largest galvanomagnetic effects among the elements. Its anisotropy|
is pronounced. Meanwhile, a number of investigators have published measure-
ments of some of the brackets of bismuth (or data from which these can be de-
rived), so some checks are possible. The present report gives the results of
our own bracket measurements of bismuth, between room temperature and -150°C.
The method of preparing oriented single erystals of bismuth and the method of
measurement, a discussion of certain sources of error which the new phenomenol-
ogical theory helped us to avoid, and the results of the measured brackets are
given in Section C.

The work is clearly open in three directions. First, brackets of
higher order than given presently should be measured for bismuth. Second,
other materials, selected for possibly obtaining larger effects than with bis=-
muth, or other desirable features, should be prepared and measured. Third,
the electron theory of the galvanomagnetic effects, of which only a very un-
satisfactory beginning is presently in existence, should be developed further.
Mutual support of work in these three directions can be expected.

Preliminary steps in these directions have been reported previously
and some additions are given in Section D of the present report. Work along
these directions is being continued.

Because of the relatively large amount of groundwork that was found
to be necessary, the present report, although final in name, does not answer
the question that initiated this work in anywhere nearly final form. This
question was, in what direction to search for materials with more desirable
magneto resistance properties. The conclusions are; For pure bismuth the
magneto resistance depends on the orientation and the temperature. The effects
of temperature are almost independent of the orientation. The most sensitive
orientation is obtained when the sample length (direction of current flow) is
midway between two binary axes and the magnetic field is along the third binary
axis, transverse to the sample. The influence of alloying agents studied so
far decreases the magneto resistance, but several avenues have not yet been ex-
plored.
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B. PHENOMENOLOGICAL THECRY

1. DEFINITIONS

In an isothermal, nonferromagnetic, single crystal of arbitrary sym-
metry, placed in a homogeneous magnetic field B, a constant current density
J 1s maintained by means of a suitable electric field F. Evidently,

r o= F(I,B) . (1)

The dependence of F on B represents the galvanomagnetic effect. The
component Fd of F along an arbltrary direction d can be measured by means of
potential pro‘bes° Ir d is parallel to J, the resultlng dependence of F//(J B)
is called the magneto Tesistance effect° if d is normal to J, then FiﬂJ B) is
called a Hall effect. Both are special cases of the galvanomagnetlc ("g.m.")
effect.

For weak fields B, the Hall effect is known to be proportional to Bj
the magneto resistance effect is proportional to B2. For stronger fields, and
especially at lower temperatures, the dependences are much more complicated.
In 1905 Voigt laid the foundation for an appropriate description of the aniso-
tropy of the g.m. effects, but a general treatment of the anisotropy was not
available up to the present.

The nature of the problem demands that two coordinate systems be
used in the phenomenclogical theory. The results of g.m. measurements are
best described in terms of "laboratory coordinates," which are defined by the
geometry of the electrodes applied to the crystal. On the other hand, the ef-
fects of the crystal symmetry are best described in terms of "symmetry coordi-
nates,” which are defined by the orientation of the crystal axes. Thus the
effects of crystal symmetry on measured quantities must be found in two steps:

a. The effects of anisotropy as described in the symmetry coordinates.
b. A transformation of the results from symmetry to laboratory coordi-
nates.

In this way a completely general formalism, covering all crystal symmetries
and all geometries of measurement, as well as arbitrary orientation of the

magnetic field, has been obtained explicitly.

The laboratory coordinates <& (o =1 )2 5) are defined as follows:




—— The University of Michigan + Engineering Research Institute

x1 is taken along the current density J,
x® is the plane of J and d, and

x3 gecordingly.

These definitions 1mply

F =3 =0 . (2)

In the case of magneto resistance, d lies along J, allowing one degree of
freedom for x2 and x3 in the plane normal to x1. Vector and tensor components
with respect to the laboratory coordinates will carry Greek superscripts. The
convention of summation over repeated indices will be followed.

‘2. PARITY RELATIONS

Merely on the basis of a couple of very general assumptions a number
of far-reaching parity relations can be derived. We assume Ohm's law:

04 a1 1 (5)

The g.m, resistivity components pal depend on B. We also assume the validity
of Onsager's relations:

oP(B) = oPY-B) . (&)

Taking & = B = 1 in (3) and (4), it is seen that the magneto resistance is an
even function of B without exception. Taking C #1 in (3) and (4), it is seen
that the Hall effect is in general neither an even nor an odd function of B.
However, in a number of special configurations the crystal symmetry may impose
an even or an odd parity on the Hall effect. The complete list of such con-
figurations was shown to be as follows.

Consider the crystallographic point group, obtained from that of the
crystal by augmenting it with an inversion center.* Then one can easily prove
with respect to the rotation axes of this augmented group:

a. The Hall effect is odd if either
1. B lies along a rotation axis of order higher than 2 and either
or d is normal to B, or if
is normal to an axis of even order and either J or d is along
that axis.
b. The Hall effect is even if either
1. B lies along any rotation axis and is coplanar with J and d, or if

g
2. B

¥Because B is an axial vector, it is invariant under inversion, as is pUB.
Hence the proper group to be considered is the augmented group.

5
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2, B, J, and d are normal to the same axis of even order.
c. The Hall effect vanishes if B and either J or d lie along one rota-
tion axis (of any order).

The "new" galvanomagnetic effect recently reported by Goldberg and Davis® 1l-
lustrates cases b.2 and ¢ (see Fig. 2).
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Fig. 2., Dependence of the "planar Hall voltage” on
the angle V¥ between current and magnetic field for
a Ge sample, after C. Goldberg and R. E. Davis.,a

3. THE EFFECTS OF CRYSTAL SYMMETRY

For the purpose of describing the effects of crystal symmetry it is
convenient to refer to "symmetry coordinates" k; (i = 1,2,3). These are adap-
ted to the erystallographic point group of the crystal augmented again by an
inversion center, as follows:

ks is taken along the rotation axis of highest order, except for'Thz
where it is taken along a twofold axis,

k; is taken along a twofold axis normal to ks if there be one, and

ks accordingly.

Vector and tensor components with respect to the symmetry coordi-
nates will carry ILatin subscripts. The components Gij(E) of the conductivity
tensor and pij(g) of the resistivity tensor are functions of B, characteristic

6
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of the material at any given temperature, and independent of the electrode ge-
ometry of galvanomagnetic measurements.

Most g.m. measurements suggest that qij(g) can be expanded in a
three-dimensional Taylor series in powers of the components By, Bz, Bs, thus:

[o) n m
GlJ(E) = x X % [m-p, D, n-‘-m]i. Blm_p sz Bg" (5)*
n=0 m=0 p=0 J
Y n m
= L B" L L [m-p, p, n-mly; 7a"F 9P 4" (5a)

n=0 m=0 p=0

Here y; are the direction cosines of B with respect to the symmetry coordinates
The coefficients, the "brackets,” are independent of B. They are the true phe-
nomenological g.m. constants, dependent only on the kind of material and the
temperature. It was shown that the occurrence of terms cos nf in the Fourier
analysis of measurements, such as represented in Fig. 1, requires that terms

up to the n-th power be retained in (5). It is evident that many terms will
often be required, so only a phenomenological theory for all n is satisfactory.

The effects of crystal symmetry on the measured functions pal(g) are
obtainable in two steps:

a. The effects of anisotropy on the brackets.
b. The dependence of p%(B) on o;3(B).

The effects of crystal symmetry on the brackets are derived from the
requirement of invariance under a symmetry operation of the augmented group of
the crystal. There are eleven such groups and the resulting symmetry relations
for all of these have been tabulated in previous reports, the trigonal and
hexagonal tables giving all relations up to and including the sixth power of B,
while the tables of the other groups give the relations for all powers of B.
Also, formulas for the number of independent brackets for each of the eleven
classes were tabulated.

For bismuth (augmented group Dai) the first few relations are repro-
duced in Table I. The interpretation of this table is as follows. The place
of a bracket in the table is important. If a place is occupied by its own
bracket, as indicated by the first row and column, this bracket is chosen in-
dependently. If it is occupied by another expression, the bracket of that

*The measurement of pal would seem to suggest a power=series expansion of
pij(g) instead of Uij(E)e The latter is preferred because its coefficients
admit of a simpler electron theoretical interpretation. However, the symme-
try properties of the p and o brackets are exactly the same. The results to
be reported for o brackets can, therefore, be applied directly to p brackets

if desired.

T
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TABIE T

BRACKET RELATTONS FOR BISMUTH

| ! I
13 11 | op | 33 |
|
n=0 [000] [000]41 : [000]41 : [000]as :
]
1j 0% ! 31 ! 12 |
T T u
n=1 [100] [100]2s l 0 l 0 l
[010] 0 I [100]lzs | 0 |
[o01] 0 ' 0 | [o0l]e |
| | !
1] 11 l 22 | 33 l 23
1 \ i
n=2 [200] [200];; | [200]zz ; [200]as |  [200]za
[020] [200] 25 ' [200]11 [200]as | -[200]23
[002] foo2l,, | [o002]l., | [0021as | 0
[011] [011]; | -[011],; ! 0 | [011]55
I I [
ij 23 I 31 ! 12 l
[011] [011]2s : 0 : 0
[101] 0 | [011]z3 | [011]1y
[110] 0 | 2[200] 23 | [200]11 = [200]22

place is dependent and equal to the expression found at that place. For ex~
ample:

[110]12 = [200]31 - [200]z2

Because of the Onsager relations, the ij values 32,13,21 do not require explic=
it tabulation. Indeed,

[m-p, D, n!m]ij = (“)n [m-p, p, n‘m]ji o (6)

Any brackets with n £ 2, not listed in Table I and not reducible to it by (6),
vanishes.

The number of independent brackets for bismuth, it was shown, is
1/2 n2 + 2n + 2 when n is even and 1/4 nZ + n + 5/& when n is odd. Similar
formulas for other groups were given previously. The explicit expressions for
o%L which result from Table I after transformation to laboratory coordinates,
have also been tabulated in previous reports, up to n = 2. The expression for
bismuth is:
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p%L(B) = {[ooo];i (£1%2,% + 12205%) N [000]az 131130‘} +
+3B {[100123 [000]71 [000135 (71£:P + 7222°) + [00L];2 [000173 7313é}‘“
- B([000J3 [000135) { 7471200020 [000sy (220" + 11" +
([200]2z [000]ag + [10013s) £2722" + [200]11; [0001ag 217221 +
([200]as [000111 + [100133) £5¥2a® [000]11 [000]133 ].+
*)

e o
72 [[20012s 100011 (-£2™8a® - 2otz

2 o o
([200]22 [000]as + [100]aa) £1 21" + [200]1; [000]as Lo fo™ +

+

(120015 [000133 + [100139) 6¥s* [000]5; [000134 | +
732[F002]11 [000]53 + [OOl]iz [000]as [00017% (£:%1,% + £2M2%) +

+ [002]as [000]3; [000155 255" +
7273[[011111 [000]as (2. %1% - 22702%) +

+ ([011]23 [000]11 - [100]2s [001]42) (féaﬂsl + 13a121)] +
7371[}011111 [000]as (ffxlzl + lzaﬂll) +

-+ ([Oll]za [000]11 = [100]25 [001]12) (£31f:1 + flaﬂsli] +

7172i}[000133 [200]33 - [000]as [200]zz - [10013a) (£: %2 + £2%42) +

+ 2{200]23 [OOO]ll (2’3a£11+ llalsl)]}-l-

+B3{., . (7)

Here 2? is the direction cosine between the i-th symmetry coordinate axis and
the O~th laboratory coordinate axis, and £% vanishes if @ = 1, and equals the
direction cosine between the k-th symmetry axis and the B~th laboratory axis
(L#£p #£a)if a # 1. Thus (7) expresses the result of measurements in terms
of the direction cosines y; and the magnitude B of the magnetic field, the di-
rection cosines ! fixing the geometry of the electrcdes with respect to the

9
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crystal axes, and the material constants (brackets).

It was shown in a previous report how these results can be extended
to higher powers of B. The explicit expressions become soon formidable, how=-
ever, to the point where they are hardly manageable. Thus it is useful to have
general rules which cover the behavior of the series. During the period cov=
ered by the present report some progress has been made in this direction for a
number of frequently occurring special cases.  These will be reported in the
next section.

4. FURTHER PROGRESS OF THE PHENOMENOLOGICAL THECRY

Some aspects of the phenomenological theory that have presently been
worked out are described.

It can easily be shown that

Q1 — oy _ L1,

o*(B) = pyifjtt = Aljzizj/zx R (8)
where A;s-is the cofactor of o;4 in A = det 043, and £% iz the direction cosine
of the laboratory coordinates axis ¢ with respect to the symmetry coordinate i.
For 0 = 1 the equation represents the magneto resistance, for o # 1 the Hall
effect, and this is true for all that follows. Substituting the expansions of

all 055 into (8) we obtain

a1 aL . Ul anel :
B) = (2. Pap B3N + 7 B Y, Mon BEM
P+ (B) ("q::O an + n:OQZT]-kl )/n:0 =8| (9)

The explicit expressions of Pg%, Qgﬁ+l‘,and Mzq in terms of the
brackets and the two sets of direction cosines can be readily obtained from
(8) and (9) since M is the expansion of A,and P and § are expansions of
(Aijﬂglﬁ)n However, as stated above, these expansions soon require undue la-
bor when one goes beyond the terms quadratic in B. Thus one can ask whether,
for some special cases at least, the expansions simplify sufficiently to be
manageable. Three classes of special cases were found in which (9) assumes
practical forms. The first class, which is valid for all crystal symmetries,
all measuring geometries, and arbitrary orientation of the magnetic field, was
worked out previously. Here the series (9) is simply broken off after the quadd
ratic terms. Equation (7) belongs to this class. The second class is valid
for some crystal symmetries and pertains to special measuring geometry. The
third class is valid for isotropic substances only, and permits arbitrary meas-
uring geometry.

10
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a. Galvanomagnetic Tensor for Special Orientations¥*.--Thig class of
special cases applies to all crystal symmetries except Sz and Coh. The 3-axis
is taken either along a rotational axis of three-, four-, or sixfold symmetry
or along a twofold axis if it 1s accompanied by another twofold axis normal to
it. This class is divided into two subclasses according to the relative ori-
entations of the magnetic field and the current.

Case 1. Transverse Field

Assume
(1) Laboratory coordinates are along symmetry coordinates, i.e.,
1 = 45 = 15 = 1
(2) The magnetic field is along the kg-axis, i.e., 73z = l.
(3) The current flows along the k;-axis.
According to the results of previous reports under condition (2) there are only
two kinds of nonvanishing brackets, [oaw] s, [oocelii , which will be abbrevia-

ted by [w]iz,[elii, 1 = 1,2,5. Here o and e represent arbitrary odd and even
numbers. Then it can be shown that

p™(B) - pX1(B =0) = - L B2M Usp / [0lyr 2 B30 Ny (10)
n=l =0
p?X(B) = - L B2WL [2n + 1115 / [olyn 2 B2M Wpy (11)
- n=0 n=0
p3%(B) = 0 (12)
where
2 BNy = ¥ BN o]y [2n]az + X BFW Uz (13)
=0 =0 =l
?il
Uz = q{)%Qﬁkqull[3ﬂ22+[EQ+Hu:Hm‘2qmlh2} ‘ (14)

*In most papers on the theory of galvanomagnetic effects the formulas for this
class up to the second power of B are used instead of equation (9).

11
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Case 2. Longitudinal Field

Assume

(1) Laboratory coordinates are along symmetry coordinates, i.e.,

oy

13 = 15 = 13 = 1

(2) The magnetic field is along the kg-axis, i.e., y3 = 1.
(3) The current flows along the kg-axis.

Then

p%3(B) - p%*(B=0) = - Zl B3N [2n]ag / [olas an B [21]ss  (15)
’q: . =

p3(B) = 0*2@B) = o0 . (16)

Note that Equations (10-16) have the same parity as predicted in Section B-2,
from which one can in fact write down equations (12) and (16) directly.

‘ b. Explicit Expression of o™ (B) for Isotropic Substances.—Upon the
introduction of a magnetic field, EH isotropic sample behaves anisotropically,
as if it possesseda rotation axis of infinite-fold order along the direction of
the magnetic field. In this case one can always take the 3-axis along the mag-

netic-field direction; thus only brackets of the form [oon];., or [n]ij, are
involved. There are only three kinds of nonvanishing brackets: [ooeli; ,
[ocelss , and [oow]iz . Therefore, remembering that [oool;; = [o000]as , the
explicit forms of PA , QQ%+1 , and M, contained in Equation (9) can be readily
written out as follows:

n n
PM =g Y [2(n-a)luy [2alas + 45 457 £ [2(n-a)]ax ([2al1s - [Palss) +
L " q=0 q=0
nil
+ A [29+1]32 [2(n-q) + 1112 (17)
G = - 4s I [2(10)]ss [2a4i]ie (18)

' r r
Maq = g [E(W‘T)]ssi 2 [2(r-a)lyy [2aly1 + 2 [2(r-q)+1le [2‘1”1]12}; (19)
r=0 a=0 g=1
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where E; has been used as an abbreviation defined by

N A
Thus, if A =y, 2; automatically vanished in agreement with the evenness of
the magneto resistance, while 1f A\ # u, the subscripts ijk must be a permuta-
tion of 123 of the same parity as the superscripts Apv. In that case ﬂz is
the direction cosine between the symmetry axis k and the laboratory axis v.
Note that if A~, p~, and 3-axis are orthogonal to each other, then pk“(B) is
a purely odd function of B. This result conforms with the prediction of Sec-
tion B-2. ‘

5. PHENOMENOLOGICAL THECRY OF THE CORBINO EI*"FECT-)G5

a. Galvanomagnetic Effects as Boundary-Value Problems.--In the pre-
vious section the phenomenoclogical theory of the isothermal galvanomagnetic
effects for single crystals was developed quite generally insofar as Ohm's law
is valid, i.e.,

Fa = DOB _{B (a,B = 1)2:5) . (20)

In order to obtain pQB the general practice is to employ samples of convenient
geometry such that the solutions of the equations

Curl F (B) = O (21)

DivJ (B) = O (22)

satisfy certain boundary conditions. Note that the vectors J and F are now
functions of the constant external magnetic field B.

In Section B, we used the boundary conditions
J2 = Js = O o (23)
The physical realization of (23) limits us to samples of special geometry.
Boundary conditions other than (23) have also been used, related to the vari=-

ous sample geometries employed (described in Table II).

Volterra,5 in 1915, made a rather extensive study of the galvanomag-
netic boundary-value problems for isotropic samples. For single crystals the

*The material presented in this section can be regarded as an immediate exten-
sion of the late Prof. W. W. Sleator's work,h Prof. Sleator's paper was kind-
ly brought to our attention by Prof. O. Laporte.
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TABLE II

VARIOUS GEOMETRIES EMPLOYED¥

Geometry Author
Rectangular plate Hall, 1879
Split rectangular plate. .
Crueciform: Righi, 1883
Semicircular plate 1 4 . 1886
Circular plate with a radial saw cut Ettingshausen and Nernst, 1
Circular plate with circular electrodes Corbino, 1911
Circular plate with point electrodes Alimenti, 19153 Bordonavo, 1915
Square plate with two perpendicular sets of arms Heaps, 1918
Circular cylinder with planar radial field Poppelbaum, 1953

*See References 3, 5, and 6.

problem in general becomes much more complicated. Since the final aim of stud-
ying the galvanomagnetic effects 1s to obtain the material constants, or brack-
ets, 1t does not seem efficient to adopt an awkward geometry involving incon-
venient boundary conditions. Nevertheless, a simple case will be investigated
in this chapter for historical and practical reasons. The case involves a cir-
cular disk bounded by two concentric circular electrodes. Such an arrangement
is known as a Corbino disk. It was employed by Corbine” for the first time in
1911. In the literature, however, the “"Corbino effect" has been used quite
loosely to include galvanomagnetic measurements pertaining to cases where a
current (rather than a voltage) transverse to the magnetic field is measured
irrespective of the geometry of the sample.¥

, In the next section it will be shown that a simple relation exists
between the Corbino effect and the other galvanomagnetic effects, for isotropic
samples or properly cut single-crystal samples with a suitably oriented mag-
netic field.

b. Corbino Effect for Single Crystals.—Consider a circular disk cut
from a single crystal such that the normal is along a three-, four-, or sixfold
axis of rotation. Suppose a constant radial current is maintained at constant
temperature through two concentric circular electrodes by means of an electric
field. When a constant magnetic field is applied normally to the disk, either

*It is clear that the earlier controversy (see Reference T, p. 127) regarding
the relative significance of the Hall and Corbino effects becomes meaningless.
They, as well as the magneto resistance effect, are special cases of the gen-
eral galvanomagnetic effect.
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of the following pairs of equations can be used as boundary conditions:

P I

oo~ o , (25)

it
il

0 (2k)

with @, r, z denoting a cylindrical laboratory-coordinate system such that the
z-axis is along the 3-axis and along the normal. Either (24) or (25) lead to

JZ = FZ = 0 (26)
Frp
F o= —— 2 o FFogq, (27)
> B 1
pri~ + piz2
F o1z
P ——BE T, (28)

p11% + p15°

or in terms of the brackets directly:

J = 7 ¥ 821 [0021]11 (29)
n=0
J¢ = - FF Zb BEML [o0(2n+l)lis o (30)
'q:

Note that the symmetry of the problem permits one to take any two perpendicular
axes in the plane of the disk as the 1- and 2-axesy thus the first halves of
Equations (27) and (28) reveal general relations between the Corbino measure-
ments J¥, JP, F¥, the magneto resistance pj;;, and the Hall effect p;5. From
these relations or Equations (29) and (30) one can immediately draw the follow=
ing conclusions for a Corbino disk:

1. The radial current J¥ is always an even function of the normal mag-
netic field B.

2. The circular current J¢ (which is usually known as the "Corbino cur=
rent") is always an odd function of the magnetic field B.

These conclusions are also valid for isotropic samples. Experimental confirma-
tion can be found in References 3, 5, and 6.

The simplicity of Equations (29) and (%0) is noteworthy. They afford
direct measurements of the brackets, which can then be used to test the micro-
scopic theories much more readily than the usual magneto resistance and the
Hall measurements. However, they involve only a limited number of brackets,
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and they cannot be used to determine a complete set of brackets.

One might think that another set of boundary conditions such as

FZ2 = J%2 = 0 (31)

would be as effective as (24) or (25). But this is not the case, because of
the way Equations (20) are coupled.

6. APPLICATIONS AND PROGRAM FOR FURTHER WORK ON THE PHENOMENOLOGICAL THEORY

Complete tables of the relations between the brackets for all values
of n, the exponent of B, are given in the previous report for all crystal clas-
ses except the trigonal and hexagonal, for which the relations have only been
tabulated up to n = 6, inclusive. Tt is desirable to extend the latter tables
to include all values of n.

Partial or complete isotropy should be studied in detail, as well as
the question of what effects can be expected of a polycrystalline sample of
many randomly oriented anisotropic crystallites. The gquestion is in what man=
ner the highefuorder brackets average out in a given measurement setup.

The question of what measurements should be taken. to determine the
galvanomagnetic constants, how this can best be arranged, what checking rela-
tions have to be satisfied by the measurements, is of direct experimental im-
portance. The previous report gives the answers for the class Dgy of bismuth
for n up to two. For the sake of completeness these results are summarized in
the next section (C) of the present report. A similar analysis for higher n
as well as for the other crystal classes remains to be done. ‘

The results of measurements show that sometimes brackets with the
same n~value differ by several orders of magnitude. The occurrence of excep=-
tionally small bracket values among brackets of the same n can be attributed
to two causes. 1In the first place, the atomic arrangement may deviate only
slightly from one for which the bracket would vanish identically. In the sec-
ond place, the details of the electron energy-level structure may be responsi-
ble. Analyses of the first kind of causes are required, for any given case,
before causes of the second type should be invoked.

The relations between the Fourier coefficients of polar diagrams, as
in Fig. 1, and the brackets remain to be worked out. However, one can state
in general that the occurrence of a component cos N¢ leads to a contribution
in

Ap

2L o n
5 ﬁgo A, cos ¢
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to the coefficients A, withn = N, N-2, N-4, ... etc. Any particular A, is
the result of brackets of order > n. Consequently, the occurrence of the com=
ponent cos N¢ requires a measurable influence of brackets of at least the or-
der N. A superficial inspection of Fig. lc shows, apart from a slight mis-
alignment of the crystal which is responsible for the lack of fourfold symmetry,
that values of N up to 24 certainly occur.

C. MEASUREMENTS AND RESULTS

The experimental task of measuring the galvanomagnetic effects con-
sists of several steps. First, single crystals of given purity and dimensions
must be prepared, and thelr crystallographic axes must be determined. Next,
measuring equipment has to be made. It turns out that special equipment is
required for the absolute determination of the zero-order brackets near room
temperature, while relative measurements of all brackets as a function of the
temperature are carried out in another setup. The measurements are then made,
the galvanomagnetic material constants (brackets) are extracted from them, and
their significance is discussed.

A1l measurements to be reported are for bismuth (group Dgi). The in-
dependent brackets to be determined are, for n < 2,

n=0 [000]y; [000]as

n=1 [100]zs [001]12

n =2 [200]y; [200]sz [200]ss [002]5;
[011]3; [01l]2g [200]25 [00R]ss -

The meaning of [100]za, for example, it 1s recalled, is the coefficient of By
in the conductivity ogzg, i.e., the coefficient of the electric field component

along Xo when the current flows along Xo.

1. PREPARATION OF SINGLE CRYSTALS

The purpose is to grow single crystals of pure Bi with known orien=-
tation of crystal axes, in a shape suitable for electrical measurements. The
raw material used was bismuth from the American Smelting Co. of New Jersey, and
was said to be 99.99+% pure.

The first step is the preparation of Bi rods 2<5 mm in diameter. To
- obtain this, a 50-ml crucible containing about 50 gm of Bi is placed in a vac-
uum bell jar. Several glass tubes about 35 cm long with one end closed and an
inner diameter of from 2-5 mm are placed vertically into the crucible with the
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open ends down. The bell jar is then rinsed three times with He and evacuated
to about 102 mm Hg. (The He rinse is done to prevent the formation of an ox-
ide film on the Bi when heated.) By means of a heater coil around the crucible
the Bi is melted and forms a seal around the lower end of the glass tubes. The
glass tubes are also heated over their entire length by a vertical oven. Then
He is let into the bell jar and pushes the Bi up into the glass tubes. The
bell jar is then removed and the tubes are then drawn up at the rate of about
15 cm/hr out of the vertical oven past an air 'jet so that the Bi solidifies
slowly from the upper end. This method prevents the breaking of the glass up~-
on solidifying (Bi expands when solidifying). This method sometimes gives sin-
gle crystalss the trigonal axis is then usually normal to the length of the
tube. The material has a clean, shiny appearance.

The second step is the preparation of single crystals with suitably
oriented axes for galvanomagnetic measurements. A Bi rod, still in glass tub-
ing (a2 0.07-inch inner diameter), is held vertically. A heating coil is moved
downward by a clock motor at the rate of about 1 inch/hr, The melting zone in
the operation is about 5/8 inch long. The operation is done in about 1072 mm
vacuum. (At lower pressures the Bi melt would develop enough vapor pressure
to kick itself out of the tube.) To start the operation the upper end of the
Bi is heated to melt, and a seed crystal, mounted such that the trigonal axis
of the seed is at the desired angle with the rod to be seeded, is moved down to
touch the melt. After 10 min the connection is found to be in equilibrium, and
the coil is moved downward as far as the desired length of the newly grown sin-
gle crystal. This method of growing is very satisfactory for the trigonal axis
away from the rod and is 2530% succegsful for the trigonal axis along the rod.
Vibration in the room is found to be the disturbing factor. For best results,
the seed crystal should be slightly larger than the rod.

After removing the glass rod from the growing apparatus the glass
around the Bi is taken off by HF in a lucite container (lucite appears to be
resistant to HF) and the Bi surface cleaned by a bath of about 0.05N nitric
acid, then rinsed and dried.

Crystals obtained in this way were particularly suitable for measure-
ments of brackets with n > 0. For the measurement of the absolute (n = 0) con-
ductivities [000]1; and [000]as, special samples were prepared according to a
modified method, as follows. A winding of widening pitch makes it possible to
apply a thermal gradient to a steel boat inside a vycor tube. Bismuth is placed|
in the boat, with thin sheets of mica between Bi and steel. (The purpose of
the mica is to prevent any diffusion of steel into Bij however, it was found
that no observable difference results from omitting the mica as far as conduc-
tivity measurements are concerned.) After the Bi is inserted, the tube is
evacuated and flushed with helium three times. After the last flush the tube
is again evacuated to a pressure of approximately 1073 mm of mercury.

The heater coil is then heated, allowing the Bi to melt from one end.
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After the Bl is completely melted, the heating current is gradually decreased,
allowing the steel boat to cool slowly but always maintaining a good thermal
gradient. The Bi melt then starts to s0lidify along this thermal gradient and
a single crystal is produced. In this process no precautions need to be taken
to insure that each melt starts crystallizing from one spot in the melt. It
just happens. There seems to be no preferred direction of growth. Crystals
of all orientations have so far been obtained, randomly.

In order to obtain any desired axis orientation, the same method has
been employed with a slight variation, using seed crystals. A seed crystal
and a Bi rod are introduced into the boat. The Bi rod and part of the seed
are melted to insure a good connection. The melt is then cooled from the seed
as before. Single-crystal Bi rods of about 12 cm by 7 mn”® obtained in this way
were used for the measurement of the conductivity.

The seed can be gotten either from a previously grown crystal or from
a method devised for this purpose as follows. A metal strip in the shape of a
quarter circle, one inch wide and 1/2 inch thick, has one continuous V-groove
cut along six consecutive sides of a regular 2h-sided polygon, so that each
straight section is about one inch long and makes an angle of 15° with adjacent
sections. A previously grown crystal of arbitrary orientation is bent to lie
in the V-groove, preferably with its trigonal axis in the plane of the polygon.
The metal strip is then heated at one end and the Bi is melted along a temper-
ature gradient. However, the melting is stopped short of the end of the Bi
rod. This allows the end to remain solid and act as its own seed. Cooling is
then started toward the oppbsite end. When finished there remains a single
crystal of Bi in the shape of six connected straight sections. It is then
cleaved at each bend, thereby producing six given seed crystals all differing
by 15° from each preceeding one. Any crystal can be used as a starting point.
In this way seed crystals of any desired axis orientation can be obtained.

2. DETERMINATION OF THE CRYSTALLOGRAPHIC AXES

A single crystal of Bi can be cleaved in four directions, three con-
taining the binary axes (imperfect planes) and one normal to the trigonal axis
(perfect plane). The planes can be distinguished visually. All crystal axes
are determined from the perfect plane.

The trigonal axis is determined accurately by means of a shadowgraph-
ic method. The crystal is mounted in a light beam and a 5 to 10 times enlarged
image is observed. The crystal is rotated around its own axis normal to the
light path, until the focused  shadow of the perfect plane is a straight line.
This allows for the measurement of the angle by an ordinary protractor to be ac-
curate within 1/2°or better.

i In order to determine the binary axes, the sample is mounted with its
perfect plane horizontal under a vertical microscope. On the perfect plane one
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can then see three sets of parallel lines intersecting at 60°. These lines
are parallel to the binary axes.8 The determination is better than l/2°,

3. EQUIPMENT FOR THE ABSOLUTE MEASUREMENT OF ZERO-ORDER BRACKETS NEAR ROOM
TEMPERATURE

Many crystals of varied orientations were grown by the procedure de=-
scribed in Section C-l.

A Teeds and Northrup Kelvin bridge was used to determine the resis-
tance of the crystals with an accuracy of two parts in the fourth significant
digit. Direct current was used and balancing was accomplished with a sensitive
galvanometer.

The sample holder consisted of two knife edges for potential leads
and two flat contacts for current leads, and could take samples from three to
twenty inches in length. The base of the sample holder was made of lucite with
a long V-groove cut into it. OSome measurements were taken at ambient tempera-
ture in air, whereas another part of the measurements was taken with the sam-
ples and holder immersed in a water bath, thermostatically controlled to with-
in 0.1°F. A traveling microscope and a balance were used for the measurement
of the distance between the potential probes and for the mass, these quantities
being required to make the results absolute.

L. EQUIPMENT FOR THE RELATIVE MEASUREMENT OF BRACKETS AS A FUNCTION OF THE
TEMPERATURE

The sample holder and sample to be deseribed below were immersed in
a bath of isopentane (mp < -150°C) for temperature control. The liquid was
contained in a Dewar and could be moved into and out of the magnetic field of
a magnet. The isopentane in the Dewar is cooled by a controlled flow of 1i-
quid air through a copper coil submerged in the isopentane until freezing. Then
the bath is warmed up slowly after the flow of liquid air is stopped. The meas-
urement can thus be done continuocusly at all temperatures upward. The temper-
ature is measured by a copper-constantan thermocouple (accuracy * 1°C).

The magnet consists of a permanent magnet (Alnico), the strength of
which can be set by an energizing coil, and then remains constant during many
measurement runs. The air gap is 5-1/2 inches wide and the field 1in the gap
was found to be constant to within one-half percent in a central region of
2-1/2—inch diameter. For most measurements the value of the field was 345 % 3
gauss, measured both by fluxmeter and by a proton resonator. This low value
was chosen for studying the lower-order brackets in order to minimize the in-
fluence of terms of higher order than the second in B.

The voltage of the potential probes is balanced for zero magnetic
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field by means of a simple potentiometer bridge circuit. The change when the
sample is moved into the magnetic field is amplified and recorded on a lLeeds
and Northrup recorder. A sensitivity of 10 uv for full-scale deflection is
thus obtained, corresponding to 0.06% of the total sample resistance under av-
erage conditions of our measurement.

N The sample holder (Fig. 3) is an important part of the equipment.
The Dewar flask which must fit between the magnet poles limits its size. The
sample holder must permit changing of the orientation of the sample with re-
spect to the magneticvfieldvin all possible ways. For this purpose it is fit-~
ted with an assembly of gears and graduated scales which permit the necessary
changes to be made without removing the sample from its place in the thermostat
or in the magnetic field. The sample holder has gone through various stages of
improvement, and while further improvements are still being planned, its latest
form will now be described briefly. It is made to allow three rotational de=-
grees of freedom for the Bi sample. The Bi rod, approximately 1 inch long and
2 mm in diameter, is held, by two potential-probe springs, in a V-shaped groove
cut in a rectangular lucite piece (1-1/4" x 5/8" x 3/16"). The lucite piece
is mounted in a rectangular cut in a circular brass disk. The brass disk is
mounted on two brass prongs such that the line joining the two prongs and the
Bi rod are mutual perpendicular bisectors.

Fig. 3. Schematic diagram of sample holder,
showing the three rotation axes.
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The axis of rotation of the lucite piece will be denoted as the Q-
axis, while the axis of rotation of the brass disk is the y-axis. Thus Q- and
y-axes are perpendicular. The y-axis, in turn, can be rotated about a vertical
axis, which will be denoted as ¢-axis. The current leads are soldered to the
ends of the sample. The MR probes are two sharp pileces of bronze pushing the
rod against the V-groove with only slight spring pressure. The Hall probes are
two bronze straight wires normal to the brass disk, pushing laterally against
the sides of the rod, such that the contact points form a line parallel to the

V-axis. The laboratory coordinates % are defined in Section B-1.

With the sample holder described above, the following notation will
be used so as to define the orientation uniquely. First, the "positive" di=-
rection of the trigonal axis has to be chosen, arbitrarily, as either upward
or downward normal to the perfect plane. It was decided to call the direction
of kg positive if, when the crystal is placed on the sample holder while the
brass disk is normal to the f-axis, ks - § > 0. Simultaneously the positive
direction of x® is chosen: ks - Q_>75, §§ . ﬁ = +1. Then x1 is also chosen
as the positi;g-direction if x1 « kg > 0. Automatically then §f is fixed. The
positive rotation axis ¥ is chosen along 550 The symbol O is defined as the
angle around xl, and is zero when kg - 53 = 03 ¥ is defined as the angle around
Ei’ and is zero when xt . Q = +13 @_is defined as the angle around the downward
vertical (Fig. 3 is really drawn upside down to illustrate other features), and
$ = O when 53 « B = +1; k is defined as the angle around ks between x° and kq
which is along one of the binary axes, measured only when & = O. ‘“ T

5. ABSOLUTE MEASUREMENTS OF ZERO-ORDER BRACKETS (PRINCIPAL, CONDUCTIVITIES) AT
ROOM TEMPERATURE

In order to measure the zero-order brackets according to the expres-
sion

vy 1 2 g 1 1
P T a¢® - )[o00]., T °°° [000]as ~ [000114/ { , (32)

it is necessary to measure the resistance V/I, the mass per unit length m/ﬂ,
the length £, and the density d for several samples with different angles ©
between the trigonal axis and the rod. The resistivity measured at room tem-
perature near 20°C is plotted for different samples vs cos® @ in Fig. L -after
correcting all data to 20°C, using 0.004 per °C as the thermal coefficient of
resistivity. From the slope and intercept of the resulting straight line, the
zero-order brackets (principal conductivities) are determined for Bi at 20°C:

[000]41 9.06 x 10% om™ em™t

[000]33 7.21 x 102 om™t em™?!
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Fig. 4. Resistivity of Bi as a function of
the angle © between wire and trigonal axis.

The error in the above results is estimated to be less than 0.7%, but a few
points deviate more than this amount for reasons that are not understood pres-
ently. It is expected that improved control of purity and freedom of strain
will improve these results further.

6. MEASUREMENTS OF ZERO-ORDER BRACKETS AT VARIOUS TEMPERATURES

Conductances were measured as a function of the temperature for two
crystals whose trigonal axes were accurately parallel and normal to the current,
by means of the equipment described in Section C=4. Conductance values were
converted to conductivities by means of a conversion factor obtained by com=-
parison with the results of the absolute conductivity measurements at room tem-
perature as described in Section C=5. The results are given in Table III and
in Fig. 5. A comparison with the results of other authors is given in the same
figure and in Table IV. The agreement is not bad but the deviations are lar-
ger than the errors of measurement and must probably be ascribed to slightly
different qualities of bismuth used. The ratio of the principal conductivities,
which gives the ratio of the overall principal effective masses, varies from
1.18 at low temperatures to 1.25 at room temperature.
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TABLE ITIT

EXPERIMENTAL VALUES OF THE ZERO-ORDER BRACKETS AS A FUNCTION OF TEMPERATURE

T (°C)

{00011

1000 ]33

20
10

0

-10
-20
=30
=40
=50
-60
..70
-80
~-90
-100
-110
-120
-130

- =140
-150

9.06 x 10% (2 cm)™?

9.36
9.65
9.97
10.33
10.71

- 11.10

11.55
12,02
12.53
13.10
13.70
1%.40
15.11
15.92
16.83
17.80
18.99

7.21 x 103 (@ cm)™t

T.hb
173
8.02
8.36
8.71
9.08
9.52
9.92
10.43
10.95

11.5%
12.16

12.85
13.70
1h.41
15.28
16.20

TABLE IV

COMPARISON OF ZERO-ORDER BRACKETS AMONG DIFFERENT WORKERS

. -1 em™t
Brackets T ( C) Ours Okada9 'Abeles and MEiboomlO
[000]11 +45 - 7.9% x 10° -
+27 8.90 x 10° - 8.53 x 10°
0 9.65 x 10° 9.48 x 103 -
(e 12.53 x 10° 13.16 x 103 -
-160 20.3 x 103 22.5 x 103 -
-197 25.9 x 10° - 27.7 x 108
[0001a3 +45 - 6.26 x 10° -
+27 7.02 x 103 - 6.65 x 10°
Y 7.7 x 10° 7.41 x 108 -
-T70 10.43 x 103 10.05 x 103 -
-160 17.3 x 10° 19.2 x 10° -
-197 22.2 x 10°3 -- 26.6 x 10°
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Fig. 5. The principal conductivities of
Bi as a function of the temperature-

7. MEASUREMENTS OF FIRST-ORDER BRACKETS (PRINCIPAL HALL CONSTANTS) AT VARIOUS
TEMPERATURES

There are two first-order brackets for bismuth, [100]z3 and [001] -
These are measured by means of the Hall probes. The general relation between
the transverse voltage V2 across a cylindrical uniform rod carrying a current

1t is lengthy. It simplifies considerably for two special settings of the
angles involved.

Setting 1.

The ssmple is placed with the trigonal axis vertical (along the ¢-

axis, i.e., ¥ - © = 0°. Then, using the same notation as in formula (32) one
has, up to first order in B,

= §(VE y2 _ [100]25 .
(ﬁm/hdﬂ)l/z.{(F;>H | <§ (3} = B.{[OOO]ll [000]33} cos® sin § . (33)

The linearity with B was checked for B up to 1400 gauss and found to hold with-
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out any trace of deviation. The measurements were taken at 345 gauss, setting
¢ to 90° and to 270°. Calculations show that the errors caused by slight mis-
alignment of the sample are negligible. Thus the bracket [100]zs is obtained.
The results are tabulated in Table V and Fig. 6. Near room temperature the ac-
curacy is 1%; at -150° it is estimated from runs with various samples to be 5%.

Setting 2.

The sample is placed with the trigonal axis horizontal, normal to the
¢-axis, i.e., ¥ - © = -90°, If o is exactly zero, then the Hall effect is an
odd function of B and one has, up to second order in B,

(nm/hdz 1/2i é) ( >} = {%‘%ﬁ%%ﬁ* sin @ sin ¢ . (34)

The linearity with B was checked beyond 750 gauss with no detectable deviation,
The measurements were again taken at 345 gauss, with @ at 90° and at 270°.

The values so obtained for the bracket [001].s are two orders of magnitude
smaller than [100]s3 and scattered widely. While for such small signals the
noise is about 10% of the signal, the spread of the data was considerably lar-
ger. Analysis shows that the errors, due to a slight misalignment of &, are
very large in this case. The reason is that in all other orientations one
measures a linear combination of [001],- and [100]sa, and the latter, being so
much larger, soon swamps the former. Special runs had to be made, seeking that
particular position of & for which the signal was an extreme, in order to find
reliable values for [00l];o. The results presented in the previous report for
this bracket are void because we were not yet aware of this difficulty. The
results given in Table V and Fig. 6 are believed to be accurate to within 10%,
higher values being possible, but not lower ones. Further work is in progress
to determine the [001],5 bracket more accurately. This is necessary for later
determinations of higher-order brackets. Table VI compares our data with those
of other authors. This table should replace the corresponding psrt of the Ta-
ble IV in the previous report, in which the data of other authors were not cor-
rectly converted, in addition to the above-mentioned fact that the values re-
ported for [001],s were off.

8. MEASUREMENTS OF SECOND-ORDER BRACKETS AT VARIOUS TEMPERATURES

There are eight second-order brackets for bismuth: [200],; ard[002k
describe the principal longitudinal magneto resistances; [200]z2, [200]3s, and
[002],; describe the principal transverse magneto resistancesi [0l1],, describes
a mixed transverse magneto resistance; [200]ss describes the principal quadra-
tic part of the Hall effect; and [0ll]ss describes a planar or mixed guadratic
part of the Hall effect.
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TABIE V

EXPERIMENTAL VALUES OF THE FIRST-ORDER BRACKETS AS A
FUNCTION OF TEMPERATURE

T (°C) +[100] 53 -[001],5
20 0.94% (@ cm gauss) ™" 4.2 x 1072 (Q cm gauss)™t
10 1.07

0 1.27
-10 1.41
-20 1.68 6.1
-30 1.97 6.9
=10 2.34 7.9
-50 2.73 9.0
-60 3.20 10
-70 3.86 12
-80 4 .58 13
-90 544 15

-100 6.53 17

-110 7.89

-120 9.60

-130 11.5

-140 4.1

-150 17.6

TABLE VI

COMPARISON OF FIRST-ORDER BRACKETS AMONG DIFFERENT WORKERS

o Gauss™* Q°T em™t
Brackets T (°C) Ours Okada9 Abeles and Meiboomlo
+[100] 55 +45 - 0.60 --
+27 0.9 - 0.76
0 1.27 1.19 1.25
-70 3.86 3.62 3.67
-160 22.5 25.5 -
-197 - - 61.7
"[OOl]lg +}-l-5 - 5«8 -
X +27 3.9 - 3.3
107 0 5.1 5.4 -
-70 11.7 15.6 -
-160 - 86 -
-197 -- -- 207
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Fig. 6. The principal Hall constants of
Bi as a function of the temperature.

The experimental determination of the brackets is carried out by
varying ¢ with constant ¥} k and © are constant for each sample, but may dif-
fer from one sample to anotherj O is set accurately equal to zero, according
to the measurement of [00l];x (see Section C=T).

By varying @ only, one can determine the three constants Cy, Cs, and
fo in the expression

[80/p = Co + Cz2cos 2 (f - P2)ly _ congt - (35)

which describes the magneto resistance up to the second order in B. The three
constants depend on the setting of the constant value of ¥ and on the value of
© of the particular sample. In order to determine the various brackets, the
three constants Cq, Cg, fs must be determined for several settings of ¥ and for
several samples with different 6.

It was shown in a previous report that, by using several settings of

¥ of one sample only, the following four combinations of second-order brackets
can be obtained:

[200]11 - [200]zz , [200]23 5, [011]1; , and [01l]zs
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The settings of ¥ used to obtain these brackets are:

Setting 1: as described in Section C-T7 (V - & =0), yielding

Aofp, = o+ Wz cos 2 (f - Mz) . (36)
Setting 3: with ¥ - 6 = 45°.
Setting 4: with ¥ - @ = -L45°.

Only the difference between Settings 3 and 4 is used, yielding

(pas = p-as)/ Po = ACo - Acz cos 2 (f - A¢2) o (37)

The identity

cos 2 M, = Be/Pes (38)

which 1s a direct consequence of the relations developed in previous reports,
must check.

Using the abbreviations
Po = [000]1, {[000]as + cos® & ([000]11 - [000]ss)} (39)
A = - sin 6 sin 26 sin 3k ,° (40)

one finds, in terms of the measured quantities 1Cg, 1¢2,WACO, ACg, Aé;,.and.the
constants © and k of the sample,

1
[200]25 [000];; = fo Cz sin 6 sin 2 ¢, (1)
B2A
1
(1200111 - [200]22) [000]ss -[100]8s = %;9‘3 cos 6 sin(2 p +3k)  (42)
[011]y, [000]as = Egg cos © Ao W2 sin 2 A4, (43)
=

[011]o5 [000]11; - [100]ss [001]4s Ege (Acy sin 3k - % Bo, 2 sin 2 s cos 3)(4k)
B2A

It was also shown in the previous report that, by using several (at
least two) samples with different values of O, the following four combinations

of second-order brackets can be obtained:

[200]11 + [200]z2 , [200]as , [002]; , and [002]as
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The settings of ¥ used to obtain these are:

Setting 1: as described in Section C-7 (¥ - 6 = 0), yielding (36)

il

Setting 2: as described in Section C=-T7 (v - o -90°), yielding
rofo = 2C, + 2Cp cos 2 (6 - 2¢2) . (45)
The identities

¢y + Cs cos 2 s 20, + 2Ca cos 2 2 (46)

I

and

20, sin 2 265 = - 52L- Do NB sin 2 A4y (47)

which are a direct consequence of the relations developed in the previous re-
port, must check.

One finds, in terms of the measured quantities lCO, 2Co, 2C2, 2¢2
and the constants © of the samples (k does not occur in these relations),

{(120013; + [200]22) [000]ss + [10012a} (1 - cos® @) +

2{[200]33 [000] 13 + [100]23} [000]1; cos® ©/[000]as = o “Co (48)

([002]1; + [001]152/[000]11) [000]ss (1 - cosZ @)+

2 =1 . P
[002]3g [000]7; [000]as cosZ 6 = - Eg (%Co - ZCz cos 2765) . (49)

By measuring several samples with different ©, and plotting the right-hand
side vs cos® @, a straight line should result, permitting the determination of
all four quantities; or, by using samples with © equal to 0° or 90°, the solu-
tion is very simple.

The results for all eight brackets are given in Table VII, and in
Fig. 7 the logs are plotted against the reciprocal temperature together with
data from other authors. In Table VIII the room-temperature data of various
authors are compared.

The brackets fall into two groups according to their magnitude. We
consider the large brackets accurate to about 10% since they are derived from
several samples in good agreement with each other., The great similarity in
their temperature dependence also suggests a relatively small margin of error.
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TABLE VII

EXPERIMENTAL VALUES OF THE SECOND-ORDER BRACKETS x 105
AS A FUNCTION' OF TEMPERATURE, IN GAUSS™® Q~% cm™*

T(C)|-[200]11|~-[200]z2|-[200]as | -[002] 11| ~[002] a5 +[200]2s" |£[011]11" [+[011ks

20 8.38 2k .5 20.0 2.4 1.15 1.3 2.6 3
10 10.5 31.0 25 2.9 1.5
0 13.2 41.0 3l 3.67 2.1
-10 16.8 50.0 43 .75 2.7
-20 21.7 65.6 57 6.0 3.k
-30 27.9 85.0 h 7.5 4.25
-40 36.9 112 98 9.3% 5.3
-50 50.0 137.5 127 11.9 7.0
-60 67.8 194 168 15.3 9.2
=70 90.5 263 228 20.5 12.3%
-80 121 346 303 27.3 16.3
-90 161 163 405 36.1 22.%

*The ambiguity in the sign of [200]ss and [011];, is essential. It is due to
the two possible choices of a positive direction along a given binary axis.

TABLE VIII

COMPARISON OF SECOND-CRDER BRACKETS AT 27°C AMONG DIFFERENT WORKERS

Values x 105 x (-1)
Brackets in Gauss @ Q71 em”?
Ours™ Okada's | Abeles and Meiboom's

[200]41 7.3 7.0 6.
[200]2s 22.5 20.0 19.3
[200]as 19.2 18.5 15.2
[002] 11 2.1 IV 2.25
[002]33 1.1 1.5 0.7
[200] 23 1.3 0.5 .-
[011]41; 2.6 1.8 -
[011]25 - 3.0 - 0.5 -

*our results for [200]28, [011]17,and [011]lss are for TA25°C; Okada's
values are obtained from interpolation between 0° and 4L5°C. Abeles
and Meiboom's values are given at 27°C.
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Fig. 7. Results of measurements of second-order brackets for Bi.
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The small brackets, on the other hand, especially the last three, are particu-
larly sensitive to slight errors in k, and because of the manner in which 6
occurs, the mixed brackets are only insensitive to errors in © when the latter
lies near 45°. This condition was satisfied by using samples grown especially
for this purpose, as described. The net result of the various sources of er-
ror is an uncertainty of about 1 or 2 units x 107> for all second-order brack-
ets at room temperature and proportionally at lower temperatures.,

The data presented in the previous report for second-order brackets
were only preliminary, as stated, and are superseded by the present figures.

9. DISCUSSION

At this point a purely phenomenological discussion will be given. The
bismuth structure can be considered as almost belonging to the hexagonal class
Degn- Another way to describe the structure is to consider it as a slightly
distorted face-centered cubic structure whose body diagonal forms the trigonal
axis. It is worth-while to check how far a qualitative explanation of the rel-
ative magnitudes of the various brackets can be attributed to such slight dis-
tortions.

For the first-order brackets the similarity with Dgp gives no informa-
tion. The similarity with Op suggests equality of the two first-order brack-
ets, contrary to observation. Thus, the difference of the first-order brack-

ets can only be explained with more detailed electron theory.

For the second-order brackets the similarity with Dgp gives two rela-
tions:

[200]25 & O
[011]47 &= O

The similarity with Oy gives five relations:
2[200]23 ~ [011]:;
[200]ag 7~ [002]1;
2([200]zz - [200]a3) - ([200]y1 - [200]22) + [Oll]2s 7 O
2([200]11 - [200]z2) = ([002]y; - [002]sg) - [Olllzs ®¢ O

([200]22 - [200]s3) + J%f"[goo]zs ~ 0

The first two relations indicate that the smallness of [200]sg and [011];; may
be due to the similarity of the bismuth structure to Dgp. The first and last
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relations of comparison with Op are reasonably satisfied, but the other three
relations are so much off that one may well conclude that very little influ-
ence 1s exerted by the similarity with the cubic symmetry and that electron
theory must be called upon to explain the relative magnitudes of these brackets.

D. ELECTRON THEORY

1. INTRODUCTION

Various au.thorsll’l2 have developed an electron theory for galvano-
magnetic effects. The purpose of the present section is twofold. In the first
place, existing electron theories introduce at an early stage drastic simpli-
fying assumptions and restrictions. The present approach tries to keep the
treatment more general, thus giving a starting platform for further develop-
ment in the future. In the second place, a few theorems were discovered in
the framework of the present more general treatment. These theorems refer to
the (necessary -and sufficient) conditions under which certain parts of the
galvanomagnetic effects vanish. They are of interest, for example, in giving
a general understanding of why earlier simplified theories usually led to the
predicting of zero longitudinal magneto resistancej a simple criterion is es-
tablished which enables one at the outset to judge any approximate theory in
this respect. Furthermore, the theorems are of interest as a possible start-
ing point for understanding why the galvanomagnetic constants of some materi-
als are particularly small. It is reasonable to expect that progress in ob-
taining large galvanomagnetic effects is furthered by understanding the factors
which tend to make the effects small. However, further work will be necessary
to elarify all the issues connected with these theorems.

2. SURVEY OF THE RESTRICTIONS OF EXISTING THEORIES
All the existing microscopic th.eoriesll)l2 can be conveniently clas-
sified into two categories: the single~band model and the multiband model.*
Practically all models make the following fundamental assumptions.
(A) Ohm's law is valid, i.e.,
Ji = Uij(g) Fs (i,J = 1,2,3) . (50)
For the multiband model with ¢ noninteracting bands the conductivity tensor

components cij(ﬁ) are composed additively of the corresponding components of
all bands:

*¥The two-band model and the many=-valley model encountered in the literature are
special cases of the multiband model to,be worked out presently. The same is

true for the single-band model. 3),
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0;5(B) = XL o137 (B) . (51)

(B) According to the Bloch scheme, the charge carriers within each of
the g noninteracting energy bands are associated with a group velocity

v Vg g g AN=1,2,...,0 , (52)

where k is the quasi-momentum and 4 is Dirac's constant. When \ = 1, the su-
perscript will be omitted for the single-band model here and in all that fol-
lows. '

(C) The number of electrons or holes per unit volume in the A-th band
whose wave vector k lies within the range k to k +dk is

1

st ax (55)

The distribution funetion f(h) (k,t) becomes fo(k)(E) when B = F = 0. The lat-
ter function is defined by the Fermi-Dirac distribution and the distribution
of energy levels,

()

(D) In the presence of an electric field F and a magnetic fileld B, T
obeys the Boltzmann transport equationt

_e[g_'_

[eN e

v % B v t) + e (1) - 2 (@)1 (k) =0, (1)

B

-e and ¢ being the electron charge and the speed of light. The expression
T(K)(E) is the relaxation time pertaining to the A-th band whose existence is
assumed. The noninteraction of the bands is expressed by the fact that no
coupling exists between the equations for different values of A (different
bands ) .*

These assumptions are used in practically all theories of electron

*To be more specific, let us consider the case of a rather empty s-band that
overlaps nearly full p-band having slow holes and fast holes. By assumption,
the electrons in the s-band are the first kind of carriers, the slow and the
fast holes in the p-band are the second and the third kinds of carriers, re-~
spectively; these carriers are moving in the first, the second, and the third
bands, respectively, independent of each other's motion. Furthermore, no
transition of electrons to the p-band and no conversion from the slow holes
to the fast ones will take place, and vice verssa.
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conduction in solids. For their validity, see References 11-16.

The single-band model (A = @ = 1) was used by Jones and Zenert | in
1934 and improved by Davisl8 in 1939 and by Seitzl9 in 1950. It can be ex~-
pected to be a reasonable approximation only for alkaline metals and for low-
concentration n-type or p-type semiconductors. ZEven for p-type Ge and Si its
validity is limited because of the degeneracy of the valence bands. Davis?
and Seitz's treatments of the single-band model are restricted as follows.

Restriction 1: Validity is limited to special orientations of the magnetic
field and current relative to each other and to the crystallo-
graphic axes (Davis). '

Restriction 2: Validity is limited to low values of the magnetic field (Seitz )d

Restriction 3: Validity is limited to special classes of crystal symmetry
(Seitz and Davis).

Although the idea can be traced back to Riecke?C in 1898, the two-
band model (q = 2) was first introduced by Jones<l in 1936. Latei, develop-
ments by Sondheimer and Wilson,22 by Cham'bers,25 and many others2 followed.
These studies are restricted as follows.

Restriction &: The energy is no more general than a quadratic function in re-
criprocal space.

Restriction 5: The parameters used are (magnetic) field dependent, rendering
it impossible to study the effect of crystal symmetry in gen-
eral.

Another drawback of the two-band model in the hands of Wilson et al. is that,
because of the restrictions used, it always gives zero longitudinal magneto
resistance contrary to all known experiments.

The "many-valley" model is equivalent to a multiband model with el-
lipsoidal energy surfaces for each one of the noninteracting bands, arranged
to conform with the crystal symmetry of the substance.* The model was used by

Blochinzev and Nordheim> in 1933 and was recently elaborated by many auth-
ors.10,26-28

3. THE SINGLE-BAND MODEL

a. The Definition 9£ the Brackets.—If we write

*¥If this model is interpreted as containing many valleys in a single band, one
must Justify the agssumption that only intravalley transitions can take place
and that overlapping ellipsoids contribute independently and additively.
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£(k,8) = fo(E) - 0 90

and substitute into (54), omitfing the superscript A = 1 and neglecting terms
in F2 or higher, we have

e
FeVyf -3z B 00 = 0, (55)

where (I is an operator defined by
E = "VkEx vk = (9'139'2}93) . (56)

The solution & from (55) is well known.* It can be expressed in an ascending
power series of B, as follows:

o hEE Y e o

Consequently, the magneto-electric current density J can be written as

(-e/lmS)fffg f(k,t)dk
e/m{% ffkaE o 2o afo i , (58)

d

it

or in component form,

00 n m

J; = Y, B® Y X .[m‘pzpjn"m]ij 7lm-p 72p 7311— Fj ) (59)
n=0 m=0 p=0
where i,j = 1,2,3, and
[m n-p,p,n -m]lJ = ab fff( 5fo> {(Tﬂl)m-p('rﬂz) (TQS) m}( %%‘) dk , (60)
N
with
a = e2/hPh% b = e/a%c . (61)

*See Reference 11, p. 225, or Reference 17. Note that a sign difference in the
odd powers of ¢ is introduced acceording to the definition (56).
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P{}:means the sum of all permutations of (m-p) operators TQ,, p operators TQs,
and (num) operators T{g, in different order. This sum consists of n?ARm-p)!v
p!(n-m)¥ terms. o has the dimension of energy, 0/82 that of mass™t, and bt
that of gauss™'; hence a bracket of order n has the dimension of Ohm~! cm~%
gauss ™. By comparing Equations (59) and (50) with (5a) it is obvious that
the brackets defined by (60) are identical to those introduced in the phenom-
enological theory.

It is interesting to observe that the assumptions II (Onsager's re-
lation) and I1I[power-series expansion of cij(g)] of the phenomenological the-
ory come out automatically as consequences of Equations (55) to (59). Assump-
tion II is a consequence of the integration by parts of (60, leading to (6),
while assumption IIT is a consequence of the solution of the Boltzmann equa-
tion. This bears out the fact that the microscopic model is consistent with
the well-established thermodynamical relations (4). Note that (60) is obtained
without any restriction on the form of T(k) and E(k), except that (k) exists
and that T(k) and E(k) must have the same symmetry as the crystal plus an in-
version center. The addition of the inversion center, which is a necessary
consequence of the principle of time reversal, was arrived at in the phenome-
nological theory from the fact that the vector B is an axial vector (antisym-
metric second-rank terisor). Thus all brackets behave like the components of
a tensor of even rank, in the sense that they transform identically into them-

selves under the operation of an inversion.

Since all isothermal galvanomagnetic effects can be expressed in
terms of the brackets according to (9) for arbitrary orientations of J, B, and
the erystal axes, Equations (9) and (60) form the basis for a general micro-
scopic theory of the isothermal galvanomagnetic effects according to the single-
band model, without any of the restrictions mentioned in the previous section.
Therefore, this theory contains all previous works as special cases. For cry-
stal classes Dah, Dah, Dsh, Ths; On, Equations (10), (15), and (11) become Egqua-
tions (8), (9), and (7) of Davis, respectively, except that all higher-power
terms are written out explicitly, without introducing anything new in principle.

Further development of the theory starting from this point depends on
what information is available about T(k) and E(k). Unfortunately, at the pres-
ent, no reliable information about these quantities is available. A summary .
of various representative, simple assumptions about T(k) and E(k) is given in
Table IX. In an effort to obtain further insight into the theory, the follow-
ing three mathematical lemmas are useful.

b. Three Mathematical Lemmas .=

A number of general properties of the galvanomagnetic brackets can
receive some clarification by means of the following lemmas, proofs of which are
given in the appendix.
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TABLE IX

TYPICAL ASSUMPTIONS FOR T(k) AND E(k)

T(k) E(k) Authors Applications
Constant Kohler29 Kohler diagram
T(E) E = ak® + ¢ Jones and ZenerlT Ii
T(E) E = X ajki2 Jones2l Bi
7(E) E even in k,, kp, ka . 18
T = 8:k% + agys* E = Db1k? + boy,* Davis -
T = a1k® + azy,* E. ak® SeitzlI Cubic crystals
E = E-J Q3 jkikj Shoenberg?0 Bi
T = 7(E) Warped surface Lax and Mavroidesdl Ge and Si

TLemma l.

Lemma, El.

for all n is

*y, is the cubic harmonic of Lth order.

dk =

| +o

1=

where ¢ is an arbitrary constant.

Uz

Q3(TE1)

39

A Variation of the Schwartz Inequality.

Llet £, g, E,vg be four vector functions of k, then:

@ t=fz s fe- g rora oo o-ofs. o [rogemz o,

where each integral sign represents a threefold integration and
dky dkp dks .

(2) The equality of Equation (62) holds if and only if

The necessary and sufficient condition that

= 0

= ¢Eo P

(62)

(63)
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where ¢ is an arbitrary constant, B; = OE/dk; (i = 1,2,3), and

n-1
Uy = X {I2(n-q)]11 [29]zz+ [29 + 1112 [2n - 29 - l]lZ} ; (66)

q=0
with the abbreviation [ﬂ]ij = [0,0,1]1j -
An interesting corollary of this lemma is as follows. If Uon =0
for any value of 7, then it is zero for all values of 1. The proof is left to
the reader.

Lemma ITT. The necessary and syfficient conditlon that

[0021]33 0 (67)

for all n > 0 is

Q3(TEz) o, (68)]

i

provided that T 1s finite and positive, which is plausible on accoutt of its
prhysical meaning.

A consequence of this lemma is that if [OOEﬁ]Ss = 0, then [0027']as =
0 for all n'.2 7. ' '

Note that similar lemmas also hold if both the inner and outer in-
dices 1,2,3 in Equations (64) through (68) are permuted cyclically. Therefore

it is expedient to combine Iemmas II and III into one lemma as follows.

Lemma. The necessary and sufficient condition that

U;% = 0 and [29]3; = O (69)
is
Qi (TE;) = ExCigx  1,d,k =1,2,3 , (70)
where

Cj if ijk is an even permutation of 123.
Cigk = -C3* 1f ijk is an odd permutation of 123. (71)
0 if any two indices of ijk are equal.

Cj and Cj' are arbitrary constants. US% is defined such that Equation (66)
stands for U%% 3 [2n]i1 stands for a bracket in which all the inner indices
are zero except the i-th one, i.e., [27,0,0]11, [0,29,0]22, and [0,0,21]35.
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c. Special Conditions Satisfying Equation (70).-—By inspection one
can find various special conditions under which either Equation (65) or Equa-
tion (68) or both, i.e., (70), are satisfied. These conditions are listed in
Table X. In using this table, one follows each row and reads: If I and IT are
given, then IIT is satisfied.

For example, the second row states: If T(k) is a function of the
energy E(k), which is given by

E = Z aikiz y
i=1,2,3

and if the temperature is at absolute zero, the Equation (70) is satisfied [of
course (68) is also satisfied]. However, if one reads the Wth or 5th row, then
only Equation (68) is satisfied.

TABLE X

SPECTAL CONDITIONS SATISFYING EQUATION (70)

T | T 11
Relaxation Time T(k) Energy E(k) Equations Satisfied
T(k) = constant
E(k) = L ajk®
. i=1,2
r(k) = T(8), T = 0°K s
= ‘ Qi(TEj) = CijkEk
(k) = Ck/ = E(k) = E(k)
Qi(TEi) =0
T(k) = constant E(k) =E (L ank")
(k) = T(E) E(k) =E (L L an,ski)
The verification of Table X is straightforward and is left to the
reader.

d. Discussion.-—A number of interesting consequences are deduced
directly from the three mathematical lemmas. These will be stated for the
single-band model, whereas their validity for the multiband model 1s clear.
The physical significance of the mathematical lemma given by Equations (69)
and (70) is revealed by the vanishing of the even part of the galvanomagnetic
tensor p%1(B). That is, under certain conditions one can conclude by means of

L1
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this lemma that the magneto resistance vanishes, or that the Hall effect is
odd, or that terms quadratic in the magnetic field are absent. The results are
stated in terms of three corollaries. Corresponding statements about the Cor=
bino effect can be easily deduced from these corollaries and Equations (30) and

(31).

Corollary I. A Condition for Zero Magneto Resistance Change.

If: (1) for all crystal symmetries except Sy and Cgsp, the 3-axis is taken
either along a rotational axis of three~, or four-, or sixfold sym-
metry, or along a twofold axis if it is accompanied by another two-
fold axis normal to itg

(2) leboratory coordinates coincide with symmetry coordinates, i.e.,
2
2 = bz = 1 ,

(3) the magnetic field is along ks, i.e., y3 = 1l then the necessary and

sufficient condition for vanishing isothermal magneto resistance
change p11(B) - p*1(B=0) = 0, is Equation (70).

Proof: The proof is trivial if the mathematical ILemmas II and IIT are applied
to Equations (10) and (15).

Corollary II. A Condition for Odd Hall Effect.

If: (1) for crystal symmetries Ty, and Oy, the coordinates are taken as de-
scribed in Section B-3j;

(2) the magnetic field is along the k4 axisy

then the necessary and sufficient condition for paﬁ(g) being an odd function of
B is Equation (70).

 Proof: The proof is lengthy and will be found in the appendix.

Corollary IIT. A Condition for the Vanishing of Quadratic Terms.

If: (1) E(k) and T(k) are even functions in k;, in kz, and in ks}
(2) only terms up to B2 are considereds

then Equation (70) is the necessary and sufficient condition for

o0 o (0 if =1
e (B) - p (B=0) =

0dd function of B, if @ # 1 .
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Condition (1) limits the validity of the corollary to crystal symmetries of
Dzh, Dsh, Deh, Th, and On. These are general encugh to include all elements
except Po, Hg, As, Sb, Bi, and the transition metals. Note that for Ty and Oy,
o} (E;O) is zero because of the orthogonality and symmetry conditions.

Proof: See the appendix.

Corollaries I to III, supplemented by Table VIII, might be considered
as the microscopic counterparts to the parity statements of Section B. How-
ever, the phenomenological statements are perfectly general, while the validity
of the corollaries is limited to the microscopic models. On the other hand,
the microscopic theory can, at least in principle, be extended so as to describe
what happens when the conditions of the corollaries are only approximately met.
This is a branch which remains for future development .

Remarks About the lLongitudinal Magneto Resistance Change.--Many micro-
scopic models lead to zero longitudinal magneto resistance change, contrary to
experiment. What conditions made these calculated values zero? An answer is
provided immediately by Lemma IIT and Table X. For example, it can be shown
that, for n 2 1, [0021]3s and its cyclic equivalents are identically zero if

(@) 7(k) = T(E) only [or (k) is a constant],

(b) E(k) is a function of L apk™ or of L L ap iki"
- n n i

Now [002n]as is directly proportional to the longitudinal magneto resistance
change [see Equation (15)] when both the current and the magnetic field are
along the 3%-axis. This axils i1s also taken as the principal axis of a crystal
class of order higher than Csp. Consequently, zero longitudinal magneto re-
sistance change resulted in the works of Jones for Bi2l and of Abeles and Mei-
boom for p~type Ge,,26 Similar results under wider classes of conditions can be
predicted from Table X.

It is often claimed that condition (a) can be used for interpreting
experiments.* Assumptions (a) and (b) probably constitute good approximations
for certain materials under suitable conditions, e.g., Cu and Ag at high tem-
perature and under small magnetic field. Since there are more functions satis-
fying Equation (68) than Equation (65) (see Table X), this may imply that Equa-
tion (67) is approximately true more often than Equation (64). Thus one could
speculate that one more often finds the longitudinal magneto resistance change
smaller than the transverse one. However, this should not be used to rule out
cases where the situation is otherwise.*¥

*See, for example, References 26 and 29.

**See, for example, Fig. 4 of Pearson and‘Suhl (Reference 32).

b3
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About the Nonnegative Magneto Resistance Change.--It has been found
experimentally that, as a rule, o9 (B) - paﬁ(g;o) is a positive quantity,*
for substances involving no transition elements. Davisl® and others ,** using
Equation (10) for n = 1, stated that the Schwartz inequality

U3t = [001132 + [002]1; [000]22 > 0O (72)

provides the explanation. However, one has to use Equation (9) to claim a gen-
eral proof. Unfortunately, even for the cases of Equations (10) and (15), no
general proof of the positive definite nature is established as yet. Neverthe-
less, one can make some statements as follows.

In the case of Equation (15), if n is an odd integer, then by inte-
grating by parts n times it is clear that

- [0021]33 2 0 . (73)

If also in the pdwer-series expansion
2y B2 [002n]ss (74)

the magnitude of a term is always greater than that of the subsequent term,
then (74) is always nonnegative. We do not know of any convincing evidence
that this monotonic econdition holds. If it does, it means that the longitu-
dinal magneto resistance change is nonnegative for isotropic substances, and
for crystals except Csp and Ss when the measuring current is along the princi-
pal axis.

By means of Lemma I it can be shown in general that

_U§%>o if m=on 4+l (75)

B

2N . (76)

-z S0 if g

Thus a similar statement can be made about the transverse magneto resistance
change. That is, if in Equation (74) and in

2 B2N Ugy (77)
n=l

¥There are exceptions to this statement; for example, see Reference 33.
*%See, for example, Brooks (Reference 12).

/This statement is true for any of the brackets [002n]54, 1 = 1,2,3, and those
obtained from [002n];; by eyclically permuting the indices 1,2, and 3.

;%chever, Blom stated (Reference 34, p. 94): "Experimentally we find as a
rule that the higher (power) terms are smaller than the lower (power) ones."

bl
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the magnitude of each term is larger than that of the subsequent one, then,
from Equations (10), (13), and (14), the transverse magneto resistance change
is always nonnegative, for cases where the laboratory coordinates coineide with
the symmetry coordinates or where an isotropic sample is used. However, even
if the monotonic nature of the expression (7&) and (77) were granted, one still
has to study the most general Equation (9) for the magneto resistance.

Therefore, it should be emphasized that at present no theory predicts
the positive magneto resistance change in general.

ly, THE MULTIBAND MODEL

The multiband model, as described in Section C-2, is so postulated
that all formal derivations of the single-band model can be taken over directly
simply by writing

()
[m-p,p,n-m]3j = 2 [m-p,p,n-m]y's (78)
A=l,2,...,Q

[m-p,p,n m]( A ¥/1[L/‘(; af(ik aiik) .
oF i

x)
r {0 00721025, 00 0 007 (w5 @

J

with

If A = 1, then, by dropping the superindex 1, Equation (79) becomes (60).
Therefore all the formal developments of Section B can now be interpreted ac-
cording to the multiband model, without any of the restrictions mentioned in
Section C-2.

As an example, we can reformulate the often-used two-band formula as
follows. If one limits oneself to terms up to B® and to special geometries and
symmetries as specified for Equations (10) through (15), and interprets the
brackets according to two noninteracting bands, then FEquations (10) and (1L)
are comparable to Equations (8.523.4) and (8.521.9), respectively, of Wilsonfs
book. The additional formula of (15) would be zero if more restrictions such
as used by Wilson et al. on E's and t's were made. The Equations (10) through
(15) contain no field-dependent variables, such as the carrier densities n; and
np, so the effect of the crystal symmetry can be studied. Furthermore, by means
of tables in previous reports, they can be extended to cases where both geome-
| try and symmetry are arbitrary, and to cases where more noninteracting bands
and higher powers of B are desired.
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can be repeated, replacing Equation (70) by

QI(X)[T(K)EJO\-)] - Cijk Eko\‘) ’ AN o= l,2,oooq_ o

nitudes of the longitudinal and transverse magneto resistance.

between bands based on the present work may prove to be very fruitful.

*One example of such studies was given recently by Rittner.)?
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The mathematical lemmas, given by Equations (64) through (71) in
terms of the single-band model, can all be re-established for the multiband
model. Therefore, the mathematical lemma given by Equations (69) through (71)

(80)

Note that Equation (80) is more stringent than (70) in the sense that the same
constant Cjjx 1s required for all values of . Consequently, all three corol-
laries, for the single-band model, will hold also for the multiband model if
and only if condition (80) is read instead of condition (70). Then one can
repeat all the remarks about the zero, the nonnegative, and the relative mag-

A1l these formal results followed from the assumption that transi-
tions between bands do not occur. However, experiments have shown that re-
combination of electrons and holes does occur. Studies® allowing transitions

L6
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E., APPENDIX

1, PROOFS OF THE LEMMAS AND COROLLARTES OF SECTION D=3=b

Lemma io

Proof: Schwartz's inequality is
2
fivozdﬁlgfgo,gdgmffogdg >0, (A1)

The equality of Equation (Aol) holds if and only if
f = cg . (A.2)

One can now rewrite the left-hand side of Equation (62) as

1/2 /2
I = f_i:ox_f_dgfs».gd;s mfzozdgfgogd;s +

1/2
dzsfgog_dzs_ -

’1

+
ZnN

)

15

R

i

i
N
~

s

The first term of I is nonnegative. We can rewrite the second term as
v 11/2 ‘ 1/2 :
2 f£°£‘zd£+al [fz»§d£+aa] fzg,dgfzgdg ’

which is also nonnegative because both &3 and Qs are nonnegative constants
according to Equation (A.1)., This proves the first part of the lemma.,

It is obvious that Equation (63) is sufficient for the equality of

L7
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(62) to hold. Now we prove the necessity: If the equality of Equation (62)
holds, then one has both terms of I vanishing separately. ©Since the second
term of I vanishes, it is required by Equation (A.2) that

f = Cy G

F

C2g,

-where C;, Co are two arbitrary constants., Since the first term of I vanishes;
it ig necessary to have

Ciy = Co = C o
ge€odo
Proof: Sufficiency. If (65) holds, then
[29 + 2)11 = = c®[2q])a22
and
[2g + 1];, = - cl2qlaz

Substituting these into (66), it can be seen that the terms within { } vanigh
for all values of 1 and q.

Necessity. If (64) is true in general, then
2

Uz = [2]31[0)22 + [1]a2 = O & (Ac3)
If the explicit form of the brackets is written out according to Equation (60)4

the last expression is a Schwartz equality. According to (A.2) the necessary
and sufficient condition for this to vanish is that the square root of the ine-
tegrands of [2];, and [0]oz be linearly dependent, This is just Equation (65).
qo€ods

Lemma IIT.

‘Proof: Since the proof for sufficiency is obvious, one only needs to prove
the necessity. If Equation (67) holds, then

asz/“/i/\m %%& By (9a7) (1Es) dk

w [ [ [ (e ){Q(E)} & = 0.

n

[002]a3 -

48
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Since = (3fo/OE)T is nonnegative, (68) is true.
Ge€odo
- Corollary IT,
Proof: It is sufficient to prove the corollary for the case i = 53 1c.€oy 73 = Lo

Sufficiency. Using the conditions (1) end (2) with 1 = 3, it follows
that:

!
Pon = Zb{%%£§[2Q]22[2(ﬂ‘Q)]33 + 120502)13 [2(n-q) oo + z%zﬁ[e<n¢q)111[2q1z%} +
q:

N=1 a B
+q§0 Lalz[29+1]12[2n=29=1]1 2

= 6205 [2n12000]as + £242[20]1 [0)as + £o08[0]2 [20]ee +

=L B e 1
+ qzb (£1£1[29)22 + ﬂzﬂg[EQ]ll) [2(n-q)]ss + Ugﬂ ’ (Aok)
where a1 n-1
Uy = Eb Gg(nmq)]ll[QQ]ZE + [QQ+l]12[2ﬂ°EQ=l]1é> o
q

Because of condition (1) we have

[0]l11 = [0lzz = [Olas

and
[2nlze = [29]31 o

The first term on the right side of Equation {A.4) is zero because of the
orthogonality condition, and the last two terms are zero because of the lemma.

o o,
Necessity., If Pg% = 0 for arbitrary £; and ze, then the second and
third terms of (A.4) must vanish separately, that is U3f = 0. Thus the
proof is established by using the lemma.

Corollary III.

Proof: It suffices to prove the corollary for Dsh only, because all the other
symmetries contain Dsh as subgroup. When a % 1 the conclusion deals with the
Hall potential; when a = 1 it deals with the magneto resistance change. The
proof for both cases 1s established by showing R%3 = 0 if and only if Equation
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(70) holds. [See Equation (11) for the definition of R?é,]

- Sufficiency.
i =g .
ﬁ?% for Dsh, given by Table XV of Report No. 2136-5-P, consists of
terms either of the form of (65) or (68). These are all zero, according to the
lerma, if Equation (70) is true for all values-of 1 and j.

i é J e

The proof will be established by showing that a typical coefficient,
for example, _
Res = [011]s5[000]3; = [0101ay[001]15 ,

is zero if Equation (70) holds. Then the proofs for the coefficients of Rap
and RY3 follow identically if one permutes the indices 1,2,3 cyclically. Now
if (70) holds, one has

[011]os = C2C1[000]22
[010]a; = =C;[000111
[001]12 = =C2[000]22 &
Consequently
[011])23[000]31 - [010]5:[001]32 = O .

Necessity. IT R3' = 0 for arbitrary values of y's, then R%i = and
R%l< 3 are zero separately. Since R%i = 0 also for arbitrary values of £'s,
then each coefficient of E? Zg in i% is zero separately. Therefore, Equation
(70) is true according to the lemma.,

The proof is completed by recalling the second part (i < 3) of the
sufficiency proof.
2. LIST OF CORRECTIONS TO PREVIOUS REPORTS

The reports to which these corrections refer carry at the upper=right
corner of the cover page the serial number 2136-n-P, with n = 1,2, ..o 6o

Report Page Line Reads Should Read
n=1 4 27 n=1 n=20

11 1k 13 31

16 12 q=20 p=20

18 Table many errors; delete
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%? = signal in uV x

5L

Report Page = Line Reads Should Read
n=3 21 21 1 18
23 12 3 L
23 21 12 11
25 30 [202] 23 [202]33
27 Fig. 1b. H should be parallel to
, the ¢ = 0 line
%2 Fig. b abscissa, label 10° 10~°
3% Table VIII column 6 head should be
C x 10%©
n n
n=lk 3 31 (-)"1143 (-)*[131
b 26 Gij(wﬁ) 031 (-H)
9 add to =BosD = see. @
term =fp £3[200] 23 [000]3 1
11 16 [022]41 (002111
19 Fige 5 ¥ around outer semicircle should be @
n=>5 2 2 Fi,2,3 Fl;§;3
2 3 Fg F
27 bottom VII. VIII and by replacing e
by w and vice versa
33 6 delete: and Isotropic
a1 case QU1
35 1 paL pGl
38 2N add Tootnote: ! The whole
table should be divided
, by a factor (1=AB).
10 11 N Jael - (
b1 2l c =C
n=6 2 5 add [200]23 and [002]asz
12 3 reflect Fig. 3
16 14,23 Fo F2
L7 5 Ji1 Jt
20 Fige 8 curve labels [000]12[000]23 [001]12 [100]2s
26 Eq. 22 [000]a3 [000]Z3
27 see the corrected re=
28 sults in present re-
port
31 Fige Aol omit BZ in caption
32 Figes As2 The caption in upper corner should read

1,336 x 10~*
BV
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