ON FINDING THE FIRST LINK
OF A FASTEST PATH*

David E. Kaufman
Robert L. Smith
Department of Industrial & Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48109-2117

Technical Report 95-25

May 1993
Revised November 1995

*This work was supported in part by the Intelligent Transportation Systems Research
Center of Excellence at the University of Michigan.

On Finding the First Link of a Fastest Path

David E. Kaufman
Robert L. Smith
Department of Industrial and Operations Engineering

University of Michigan
Ann Arbor, Michigan 48109

May 14, 1993

Abstract

We consider algorithms designed to find the first link of a fastest path more rapidly
than the entire path can be computed. In application to IVHS, such algorithms would
allow drivers requesting in-vehicle route guidance to begin their trips as soon as the
optimal first link could be computed, rather than waiting for the computation of the
entire path before starting.

We demonstrate that the 1A€ algorithm (Lark and White [1]) for first-link deter-
mination can be applied by maintaining easily computed bounds on the cost of paths
to the destination, even though the algorithm as originally proposed requires values of
potentially difficult integer programming problems. We suggest how an IVHS system
might provide the initial bounds on path durations to destination which the algorithm
requires, and we suggest directions for continuing investigation. '

1 Introduction

One vision of IVHS route guidance consists of an in-vehicle unit computing the fastest path
for its driver’s desired trip, given link travel times transmitted from a central traffic authority
reflecting current conditions in the road network. However, once the driver has input the
desired trip, the fastest path computation may take longer than the driver wishes to wait.
Not only does this introduce delay at the beginning of the trip, but it would also work against
acceptance of the new technology by end-users and reduce societal return on investment in
IVHS infrastructure.

In this paper, we discuss modifications to the A% fastest path algorithm (Lark and White
[1]) which would identify the driver’s optimal first decision, i.e., the first link on the fastest
path, in less time than would be required to find the entire fastest path. The driver would
then be free to begin his trip by executing that first decision, so that his driving time on the
first link of his trip is also being used to compute succeeding optimal decisions.

Lark and White’s 1A® algorithm for this purpose requires at every node expansion the
solution of a multiple choice integer program which expresses dynamic programming rela-
tionships. However, we show that under conditions relevant to IVHS, alternate versions
of the algorithm using easily obtained surrogates for the IP solutions must terminate after
exactly the same number of node expansions as the main algorithm, while still finding the
optimal first decision.

Our discussion will be in terms of what has been called elsewhere quasi-dynamic routing,
using a network model with static link travel times presumed to be updated by external
sources to reflect changing road conditions. However, the time-dependent (fully dynamic)

fastest path case should present little additional difficulty.

2 Review of A*-type algorithms

Let the network consist of nodes N' = {1,..., N} and links A C A x N, with nonnegative
link travel times c(n,n’) for all (n,n’) € A. We assume that the network has no cycles of
negative cost. Let the trip be from node 1 to node N.

The A* algorithm (a generalization of Dijkstra’s algorithm; see e.g. Pearl [2]) requires a
heuristic function h. We denote the duration of the fastest path from any node n to node
N by h*(n), and we assume that h is admissible, i.e., that h(n) < h*(n) for all n € N.
Similarly, let g*(n) be the duration of the fastest path from 1 to n. We begin the algorithm
by initializing g(1) = 0 and g(n) = oo for n > 1 and the set of open nodes to S = {1}.

The main step of the algorithm is then to choose a node n whose evaluation function
f(n) = g(n) + h(n) is minimal over S for ezpansion. Node expansion consists of removing n
from S and setting g(n') = min{g(n’), g(n) + ¢(n,n’)} for all n’ € SCS(n), where SCS(n) =
{n’ : (n,n') € A} is the successor set of n. For each n’ whose g value was updated, set
a backpointer to n indicating the optimal predecessor node, and add n’ to S. This step
repeats until node N is chosen for expansion, at which time the algorithm terminates with
g(n) = g*(n) equal to the duration of the fastest path.

The A€ algorithm (Lark and White, 1993) generalizes A* to potentially more informative
- heuristic information. It uses a heuristic set H of nonnegative-valued functions on NV, calling
H admissible if A* € H. Nodes are chosen for expansion in A® by the evaluation function
f(n) = g(n) + £(n), where {(n) = inf{h(n) : h € H} for n € N. (A* using { as its heuristic
function is the special case H = {h : £ < h}.) The expansion step is as in A* with one
difference: define

U(n,n',H) = sup{h(n) — h(n') : h € H},

and ignore links (n,n') such that U(n,n’, H) < ¢(n,n’).

Such links are ignored because the dynamic principle of optimality assures us that
h*(n) = min{c(n,n’) + *(n') : n' € SCS(n)}. (1)

Thus if U(n,n’, H) < ¢(n,n’), then since h* € H, we find that h*(n) < c(n,n’) + h*(n'), so
that n' does not achieve the minimum in (1) and hence (n,n’) is not the optimal next link
from n. The link is thus pruned from the network. In particular, if n = 1, then the link
is eliminated from consideration as an optimal first decision. We now review other ways to

prune links from the network.

3 Pruning strategies

We can propose a trivial modification to A* which may find optimal first decisions quickly,
without resorting to A®. Recall for each node n’ touched in any expansion, we maintain a
pointer back to a predecessor node n for which g(n) = ¢(n,n’) + g(n'). We can easily trace
these pointers back to node 1 to identify the fastest known path to n’. Suppose that some
node m € SCS(1) does not lie on the pointer path for any open node n’. This implies that
for all open nodes n’, we have already identified a path from 1 to n’ faster than the path
through m. Since any optimal path from 1 to N must pass through some open node, m
cannot lie on any such path, and thus we may prune link (1,m).

Another simple way to prune links applies when the lower-bounding heuristic function £

1s monotone, i.e.,

£(n) < c(n,n') +£(n) for all (n,n’) € A. (2)

Then it is guaranteed that the fastest path from 1 to n’ discovered before expanding n’ is in
fact optimal (cf. [2]). In the monotone case we may thus prune link (n, n') if the backpointer
from n’ does not point to n when n' is expanded. Our analysis will assume monotonicity of

¢, and we will consider this pruning strategy to be in effect throughout our development.

The mechanics of the A® algorithm provide a more sophisticated pruning mechanism, by
allowing us to prune any link (1,m) for which U(1,m, H) < ¢(1,m). However, unless the
heuristic set constrains h* very tightly at node 1 and its successors, this pruning condition
will occur infrequently. Therefore, Lark and White propose another algorithm, called 1A%,
for the purpose of finding optimal first links. Their idea is to use node expansions to contract
the heuristic set. Since U is a supremum over H, shrinking H decreases U, pruning more
links from the network if the decreases in U values are sufficient to cross their thresholds.
The contraction is achieved by noting that the optimal heuristic satisfies equation (1) and
thus we may discard other heuristic functions. Formally, let Hy = H and at the kth node

expansion (from node n, say) let
AHy = {h: h(n) = min{c(n,n') + h(n') : n’ € SCS(n)}} (3)

and use Hy = Hy_; N AHj in the next iteration. Since A* € AH for all £, the contraction
operation preserves admissibility while increasing pruning power.

The greatest difficulty in implementing A® and 1A% may be in computing values of
U, which are values of optimization problems. In particular, even if H is a polytope, the
heuristic set is nonconvex after the first contraction. The new constraint (3) can be expressed

by introducing 0-1 variables y(n,n’) and constraints

h(n) < c(n,n') + h(n') for all n’ € SCS(n) (4)
h(n) > c(n,n') + h(n') = M(1 - y(n,n")) for all n’ € SCS(n) (5)
> ylnn) =1 (6)

n'€SCS(n)

for a sufficiently large value of M. Applying this formulation directly in 1A® would require
that at each iteration k we solve a number of 0-1 multiple-choice integer-linear programs

with side constraints, whose number of multiple choice sets is k.

Instead, we will investigate methods for quickly generating solutions which may be infeasi-
ble with respect to some of the added constraints (4)-(6) but which provide upper bounds U’
on the values of U. Clearly, U'(n,n’, Hy) < ¢(n,n') would then imply U(n,n’, Hy) < ¢(n,n’),
allowing link (n,n’) to be pruned. However, we will also show that although in general U’
may be greater than U, U(n,n’, Hy) < ¢(n,n’) only if U'(n,n', Hx) < c¢(n,n'), and thus the

alternate methods have the same pruning power as 1A but with less computational effort.

4 Tightening the upper bounds

Henceforth, we assume an admissible initial heuristic set Hy of rectangular form Hy = {h:
ly < h < g}, so that we begin with upper and lower bounds ug(n) and fo(n) on each
value h*(n). We further assume that ¢y and uy are monotone. We now consider the effect of
contracting Hy by applying only the upper-bounding constraints (4) at each node expansion.
This is the same as requiring h to be monotone with respect to (n,n’), a condition we know
to be true of A*.

For k =1,2,... let ny be the kth node expanded and let Hj, be the heuristic set obtained
by applying upper-bound constraints (4) with n = n; to contract Hj_, (taking Hj = Hp).
It is evident that for each k, U(n,n’, Hy) < U(n,n’, Hy) for all (n,n’) € A, since Hy C Hj.

Now define for all heuristic sets H and links (n,n’)
U'(n,n',H) = sup{h(n) : h € H} —inf{h(n’) : h € H}.

Then clearly U(n,n’,H) < U'(n,n', H).

Algorithm 1A€ already uses the values U(n,n’, Hi) to prune the A* search tree. Consider
two more algorithms, SU (Strong Upper bounding) and WU (Weak Upper bounding), which
use U(n,n’, H;) and U'(n,n’, H}), respectively, to prune the tree. The inequalities we have
just noted make it clear that WU prunes no more links than SU, which prunes no more

links than 1AC. Note also that because h* satisfies (4), Hy is admissible for all k, and thus

5

WU and SU are both guaranteed to find optimal first decisions.

Although the number of iterations (node expansions) to termination is nondecreasing
from 1A% to SU to WU, the effort per iteration has the opposite ordering. U(n,n’, Hp)
(used in SU) is the value of a linear program, while U(n,n’, H;) (used in 14) is the value
of an integer program. And as we now show, values of U’(n,n’, H}) (used in WU) are even
easier to obtain, by maintaining decreasing upper bounds ui(n) on h(n) for each n at each
iteration k.

Initially, the upper bounds are simply given by uo. In the kth node expansion (of node

n = ny), set
uk(n) = min {ug_1(n), min{c(n,n') + ug_1(n’) : n’ € SCS(n)}}. (7

Then, if equation (7) caused an updating (i.e., ug(n) < ug—1(n)), set ug(m) = min{ux_,(m),
¢(m,n) + ug(n)} for each link (m,n) € A not already pruned. Then, if ux(m) < wp_y(m),
proceed back from m in the same fashion. It is easily shown that this occurs for only
finitely many nodes as long as the network contains no negative directed cycles. Then,
for all nodes not updated already, set ux(m) = uz_;(m). By recursion on the iteration
number k we can easily prove that ux(n) = sup{h(n) : h € H}} for all n € N. It is also
evident that {o(n) = inf{h(n) : h € H}} when £, is monotone. Therefore we can compute
U'(n,n', H,) = ug(n) — £o(n’) without recourse to linear programming.

Thus the effort per iteration of WU is less than that for SU, particularly when we note
that SU requires solution of a linear program for each link considered for pruning, while WU
finds the values of U’ for all links by only one pass backwards through the network. The
following results show that WU is also just as effective as SU by the standard of number of

iterations until termination.

Lemma 1 Suppose that the set of nodes expanded through iteration k of algorithm SU does

not include n', for which there exists (n,n') € A. Suppose that ug(n) — c(n,n’) > £o(n').

6

Then there exzists h € H}, such that h(n) — h(n') = ¢(n,n’).

Proof: Let h € H be such that h(n) = uk(n); such h exists because ux(n) = sup{h(n): h €
H}} and H} is compact. We now modify this h to satisfy the conclusions of the theorem.
First, set A(n') = ug(n) — ¢(n,n’). By hypothesis, h(n') > £y(n’), and we can show by
monotonicity of up that h(n') < ug(n’). Thus since n’ has not been expanded, the only
constraints defining Hj which might be violated by this change are the upper-bound
constraints associated with links (m,n’) for nodes m already expanded. For such links,
set h(m) = min{h(m),c(m,n’) + h(n')}. It is easily shown that such h(m) satisfies the
simple bounds given by £, and uo. However, this update may have created a violation
of other upper-bound constraints. But if we propagate the update back just as we do
for u, a recursive argument makes it evident that if the updates ever stop, the resulting
solution must be in Hj. As before, there can be only finitely many updates in the
absence of negative cycles. Thus the updating stops with a heuristic function h meeting

the desired conditions. =

Proposition 2 If an link (n,n’') is pruned by SU in iteration k, then it is pruned by WU

in tteration k.

Proof: We consider two cases. First, suppose n' is one of the first k nodes expanded. Then
by monotonicity of £, the optimal path from 1 to n is known. If that path does not
contain (n,n’), then that link is eliminated by both algorithms. If the path does contain
(n,n'), then there exists A € Hj, (in particular, h*) such that h(n) = ¢(n,n’) + h(n').
Thus U(n,n’, H}) > ¢(n,n’) and hence SU does not prune (n,n’).

Now suppose n' is not expanded in or before iteration k. If WU does not prune (n,n’),

then
U'(n,n’, Hy) = ug(n) — Lo(n') > c(n,n’).

7

Lemma 1 then implies that there exists h € Hj such that h(n)—h(n') = ¢(n,n’). Thus

U(n,n',H) > c(n,n’) and again SU does not prune (n,n'). u

Thus the monotonicity of ¢y and ug assures us that we can apply the easily computed
values U'(n,n’, Hy) with exactly the same pruning effectiveness as the linear program val-
ues U(n,n', Hy). Since both algorithms terminate when they eliminate all but one of the
possible first decisions, they must both terminate after the same number of iterations. In

the next section, we demonstrate that a similar result holds for the integer program values

U(n,n’, Hy).

5 Tightening the lower bounds

In the previous section, we constructed a decreasing sequence {ux,k = 1,2,...} of upper
bounds on h*, the duration of the fastest path to completion. We used these together with
the a priori lower bounds 4, to prune links, and in particular first decisions, from the search
tree. In this section we construct an increasing sequence of lower bounds {{;,k = 1,2,...}
which will contribute to even more effective pruning.

As in the previous section, we assume a rectangular initial heuristic set with monotone
upper and lower bounds, and we let ui(n) for each node n and iteration k be as defined at

and after equation (7). Now, at the expansion of node n = n; in iteration k > 1, we perform

the update
£x(n) = max {{x_;(n), min{c(n,n") + £_1(n') : n’ € SCS(n)}} (8)

(note the similarity with equation (1)). Then just as with ug, we allow the update to

propagate back; if equation (8) caused an updating (i.e., &(n) < £x_1(n)), set

£x(m) = max {€x_;(m), min{c(m,m’) + f_1(m’) : m' € SCS(m)}}

for each link (m,n) € A not already pruned, and so on. (As before, this operation must
terminate finitely in the absence of negative directed cycles.) For all nodes not already
updated, set £, = £x_1. By recursion on the iteration number k we can prove that {¢(n) =

inf{h(n) : h € Hy} for all n € V. Therefore we can compute
U'(n,n', Hi) = uk(n) — l(n)

without recourse to integer programming.

Consider two algorithms, SL (Strong Lower bounding) and WL (Weak Lower bounding),
which use U(n,n’, Hy) and U’(n,n/, Hi), respectively, to prune the tree. (SL is identical to
1A%, but we will continue to call it SL to emphasize its relation to the other algorithms
under discussion.) It is evident that W L takes less work per iteration but may require more
iterations than SL. However, as we now show, both algorithms terminate in exactly the

same number of iterations.

Lemma 3 Suppose that the set of nodes expanded through iteration k of algorithm SL does
not include n', for which there ezists (n,n') € A. Suppose that ug(n) — c¢(n,n’) > £o(n').
Then there ezists h € Hy such that h(n) — h(n') = ¢(n,n’).

Proof: The construction used in proving Lemma 1 also suffices here. The update step
applied there enforces the dynamic programming functional equation (1) as well as the

monotonicity constraints (4). =
Proposition 4 If an link (n,n') is pruned by SL in iteration k, then it is pruned by WL
in iteration k.

Proof: We consider two cases. First, suppose n’ is one of the first k£ nodes expanded. Then

by monotonicity of £y, the optimal path from 1 to n is known. If that path does not

contain (n,n’), then that link is eliminated by both algorithms. If the path does contain
(n,n'), then there exists h € Hi (in particular, h*) such that h(n) = ¢(n,n') + h(n').
Thus U(n,n’, Hg) > ¢(n,n’) and hence SL does not prune (n,n’).

Now suppose n' is not expanded in or before iteration k. If WL does not prune (n,n’),

then
U'(n,n', Hy) = ug(n) — b(n') = uk(n) = bo(n') > ¢(n,n').

Lemma 3 then implies that there exists h € Hy such that k(n)— h(n') = ¢(n,n’). Thus

U(n,n’, H;) = ¢(n,n’) and again SL does not prune (n,n’). =

Therefore, while W L requires relatively little work per iteration, it performs exactly as

many iterations as SL to find the optimal first decision.

6 Application to IVHS

Our discussion so far has assumed that simple upper and lower bounds on the duration of
the fastest path to complete the trip from any node are readily available, and these bounds
satisfy monotonicity. We now consider how an IVHS environment makes it possible to obtain
heuristic information in this form without excessive computational effort.

In IVHS, we may assume knowledge of constant characteristics of the road network,
including complete network topology (the “road layout”) and physical lengths and speed
limits on all links. Assuming that all vehicles obey the speed limits, then we know the
minimum link travel times for all links. By solving the static shortest path problem from all
nodes to the destination node N, we find lower bounds £o(n) on the duration of the fastest
path from n to N, independent of current traffic conditions. Thus ¢, could be computed
off-line and stored as data for real-time computation. It is trivial to show that this choice of

¢, 1s monotonic.

10

Figure 1: Sample network

We could construct the upper bounds similarly, but it might be difficult to set reliable
maximum link travel times except by setting them so high that the resulting bounds would
be too weak to be useful. Instead, we suggest a quick method which would be applied to
data on current conditions collected in real-time. We will apply the WL algorithm to the
network with link travel times as observed in real-time, to find fastest paths. So to get upper
bounds, we can simply examine the durations of arbitrary (or randomly generated) paths to
the destination. This computation is considerably faster than a fastest path computation,
since it requires no comparisons and only one addition per node, rather than one per link.
The resulting upper bound ug is guaranteed to be monotonic.

Consider the network shown in Figure 1, with current link travel times as shown, where
the desired trip is from node 1 to node 10. The links drawn in heavy lines in the figure have
been arbitrarily chosen for the computation of upper bounds, which appear in Table 1. Also
appearing in the table are a lower bound heuristic, produced from data not shown here, and
the values of h*, the optimal path duration from each node. It can be verified that the A*
algorithm would expand nodes in the order {1,3,4,2,5,7,8,6,10} with expansion of node

10 causing, termination. The order of node expansion is determined solely by 4o, thus the

11

n 1 2 3 4 3 6 7 8 9 |10
lo(n) | 1153 | 7.96 | 9.75 | 7.97 | 5.28 | 7.05 | 7.05 | 2.72 | 5.04
h*(n) | 20.67 [13.13 | 15.52 | 12.75 | 9.86 | 11.72 | 8.60 | 4.06 | 5.91
ug(n) | 24.45 | 23.83 |{ 19.30 | 24.60 | 14.60 | 11.72 | 12.39 | 4.06 | 5.91

(o) New) e}

Table 1: Duration of optimal path to destination, and initial bounds thereon.

same order is followed in WU and W L.

Although WU succeeds in pruning five intermediate links from the network, it does not
terminate until expansion of node 10, saving no iterations compared to A*. WL, however,
does better. It eliminates two more links than does WU when node 7 is expanded. Both
algorithms eliminate links (5,9) and (7,9); thus the optimal path must go through either
node 6 or node 8. The decision then hinges on whether or not node 8 should be reached
through node 5, because both algorithms have by this point identified link (1,2) as optimal
to node 5 and link (1,3) as optimal to nodes 6 and 7. However, the stronger pruning power of
S L succeeds in eliminating (2, 5) from the set of links which may lie on the fastest path from
node 1 to node 10, and therefore link (1,3) must be the optimal first decision. (The optimal
node sequence is 1,3,7,8,10.) Therefore, algorithm SL saves two complete node expansion

steps (nodes 8 and 6).

7 Conclusions and future research directions

We have demonstrated that the 1AC algorithm as proposed by Lark and White [1] can
find the first decision on a fastest path in fewer iterations than are required for the more
well-known A* algorithm. We have further demonstrated that the heuristic information
required by the algorithm can be generated rapidly to satisfy a monotonicity condition
which substantially reduces the effort per iteration of 1A% (or WL, as we have called it.)
However, W L generally requires more work per iteration than A*, because of the effort re-

quired to keep updating the bounds £; and u; in W L. Therefore, computational experiments

12

are needed to determine which algorithm is favored by the tradeoff between iterations and
work per iteration. The updated bounds also suggest stopping rules for e-optimal solutions,
that is, first decisions on paths which have duration at most € more than the fastest path.
Computational experiments would also determine which approach is faster for e-optimal first

decisions, for use when drivers are willing to accept slightly suboptimal paths in exchange

for reduced time waiting for routing advice.

References

(1] Lark, J.W., III, and White, C.C., IIL. 1993. A best-First Search Algorithm Guided by a
Set-Valued Heuristic. Working paper, The University of Michigan.

[2] Pearl, J. 1984. Heuristics: Intelligent Search Strategies for Computer Problem Solving,
Addison-Wesley Publishing Company, Reading, Mass.

13

