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Abstract

Traffic modelling has traditionally focused on evaluation of performance of the
traffic system in order to determine the aggregate benefits of various possible alterations
to the traffic network structure. This paper provides a framework for improving the
performance of existing traffic networks by providing real-time route guidance based
on traffic conditions changing dynamically in real time and anticipatory projections of
short-term future traffic conditions. The value of these projections is that they tend
to route vehicles away from an area which is not currently congested but is predicted
to be congested by the time the driver would arrive in the area. A number of research
issues are identified upon which implementation of the anticipatory model will depend.



also reduces discrepancies between routing assignments which minimize individual costs and
assignments which minimize total costs.

3 Traffic Assignment Models

The past modelling of traffic has been based primarily on user optimality, also known as
Wardrop’s first principle, which states that no driver will use a path from his origin to his
destination if a shorter path is available to him. If all drivers are in a user-optimal state,
the system is said to be in equilibrium. The mathematical statement of Wardrop’s principle
is: all paths used for an O/D at equilibrium have equal cost, and all unused paths have
cost greater than or equal to the cost of paths used. This gives rise to a number of closely
related mathematical equilibrium models, including nonlinear complementarity, variational
inequality, and mathematical programming problems [Friesz, 1985]. The inputs to these
models are a network structure, demands for travel between each O/D pair, and expressions
for cost of travelling the links of the network as a function of the volume of traffic using
each link. The primary outputs produced, when solution techniques are successful, are the
volumes of traffic to be found on each link of the network at equilibrium. These models suffer
from two poor implicit assumptions: first, that all drivers measure travel costs identically,
and second, that all drivers have perfect information on the state of the system.

Furthermore, most of the equilibrium models contain no element of time. The traffic
volumes which are input to the cost functions are calculated as if a driver occupies all
the links on his route during the entire duration of his trip. Also, no recognition is made
of demand for travel varying over time, and link capacity, which is at least implicitly a
parameter of the link cost function, is held constant, even though in practice non-recurring
congestion occurs every day as a result of traffic incidents, thus reducing capacity.

Traffic assignment models with dynamic elements do exist. A nonlinear mathematical
program minimizing total travel cost (i.e., system optimality) can be constructed in a net-
work of many origins and one destination from conservation-of-flow constraints, if for each
increment of time ¢ up to some horizon T the following are known: number of drivers depart-
ing each origin node at time ¢, cost functions for each link for each increment of time, and an
departure function, determining how many drivers can depart a link in a single time period
as a function of the volume on the link [Merchant and Nemhauser, 1978]. By including
a decision variable expressing how many cars will be permitted to exit a link, constrained
by the departure function, the formulation is extended to make the mathematical program
convex and provide explicit information on when traffic can be routed so that it will nat-
urally distribute itself system-optimally (i.e., when the flow permitted to leave each link is
equal to the upper bound provided by the departure function at each time increment, so
that societal intervention is limited) [Carey, 1987]. Carey also offers generalizations to the



model to include multiple destinations. The weaknesses of this model include the absence
of a corresponding user-optimal formulation and the explicit assumption needed for certain
results that no link is short enough to be travelled completely in less than a single time
increment, which may not apply to network models using certain artificial structures used
to describe elements such as turning penalties. Also, the model suffers from end-of-study
effects and does not guarantee that each driver reaches his destination.

Some traffic assignment models do not depend on mathematical equilibrium statements
and are more heuristic in nature. The chief non-equilibrium methods are the capacity-
restraint model and the diversion models. The capacity-restraint model begins by assigning
all traffic between an origin/destination (O/D) pair to the shortest path (with respect to
travel time) connecting the O/D. Then all travel times are calculated as functions of the
resulting traffic volumes, and these travel times are used to adjust the previous traffic as-
signments iteratively. Among the faults of the method are the absence of any guarantee of
convergence of the algorithm and failure to consider limits on roadway capacity.

Diversion models are based on the idea that drivers will not behave according to perfect
user optimality in terms of travel time, because drivers do not have perfect information
and because preferences vary among drivers and do not depend solely on travel times. The
relative volume assigned to a pair of routes depends on some index comparing the routes, such
as ratio of travel times, and as the index increasingly favors one route, a greater proportion
of traffic is assigned to that route. These models are no longer used as much as they once
were; they do not reliably produce assignments which correspond well to measured traffic
volumes [Matsoukis, 1986].

Beyond the weaknesses already discussed lies a basic weakness of traffic assignment mod-
els. The outputs of these models are the aggregate traffic flows which would occur if a
traffic network characterized by uniformity of driver preferences and information, and by
fixed capacities, were left to settle into some natural state. But given the constantly chang-
ing conditions, the concept of this equilibrium state is of dubious value in real time. The
aggregate traffic flows are significant in long-term network planning, but they do not assista
driver in selecting from the possible routes for his O/D; real-time decisions are not improved
at all.

To improve quality of travel and reduce congestion, we must better use existing capacity
by improving route choice.

4 Dynamic Route Guidance

As is common in traffic modeling, we will assume a known network structure representing
the highway system, with a set of nodes I, with N members, and a set A of directed arcs
(or links) (¢,7) connecting node ¢ to node j. On such a network, if we assume, to begin,



that some constant cost (e.g., travel time) ¢;; for travelling each link (,7) is known, then
the problem of finding the shortest (i.e., least-cost) route from any origin to any destination
can easily be solved by a shortest-path algorithm applied to a dynamic programming (DP)
model of the network. Assume the origin to be labelled node 0 and the destination to be
node j, and let f; be the cost of the least-cost path from node 0 to node ¢, for any : € I.
Then we may use the recursive formulation

fi= H;il.l{fi + ¢ij}
i#]

Suppose, as seems likely for traffic networks, that c;; > 0 on all arcs (¢,7). Also, let n be
the average number of outgoing arcs per node. Then we can solve for the shortest path
from node 0 to all nodes ¢ € I by Dijkstra’s method, with computational effort no more than
O(Nnlog N) [Denardo, 1982], and since n is likely to be a small constant in traffic networks,
we may consider the work required to be O(Nlog N). For instance, on a machine executing
one million instructions per second (MIPS), which would be slow for a personal computer by
today’s standards, the time required to execute this calculation for a network of 5000 nodes
is on the order of 0.1 seconds.

One way to use this model would be to set some average cost ¢;; on each arc, but this
ignores both recurring (demand-based, e.g. rushhour) and non-recurring (capacity-based,
e.g. incidents) congestion. It would be better to have real-time measurement of the state
of the traffic network, so that at each point in time the quantities c;; represent the costs of
travel on the network in its current state. However, improvement is still possible, because
the cost ¢;; of travelling link (z,7) right now is not entirely relevant if link (z, ) is distant in
travel time from the origin node being considered.

Suppose, however, that we possessed quantities ¢;;(t), which measure the cost of travelling
link (z,7) at time ¢, for t = 0,---,T, where the current point in time is ¢ = 0, and T is
some study horizon, expressed in arbitrary time units (minutes, 2-minute periods, 5-minute
periods, etc.). Furthermore, assume that these travel costs consist purely of travel times.
Then a new DP can be written, one with dynamic costs, by controlling the stage of recursion
with the objective function itself. Let f;; be the cost of the least-cost path from node 7 to
node j, departing node 7 at time ¢ = 0, and consider the quantity cx;(fix). Since we are only
considering travel times at this point, if we assume that the duration f; is expressed in the
units of ¢, then ck;(fix) is the time it will take to travel link (k,j) given that we arrive at
node k as early as possible, i.e., at the time f;;. Therefore, we may formulate the problem
of finding the fastest route from node 7 to node j by

fij= Ip;gl{fik + exi(fir)}

and solve for the shortest path by Dijkstra’s method at no additional computational effort
compared to the static shortest-path solution above.
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Figure 1: Violation of the principle of optimality
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Of course, we can generalize the formulation to include costs other than travel time, by
replacing cx;( fix) with cxj(tix), where t;; is the time component of the shortest path with cost
fir. However, for generalized costs, it is possible that the algorithm will find a suboptimal
solution, i.e., overlook the least-cost path from node 7 to node j. To illustrate, consider the
network in Figure 1, with the costs as shown. The shortest-path algorithm finds that the
shortest path to node 3 is the arc (1,3), with a cost of 10, and at ¢ = 10 the cost to go from
node 3 to node 4 is 20, for a total cost of 30. However, the path through node 2 has a total
cost of only 25. This failure occurs because of a violation of the DP principle of optimality,
which states that any route that is part of an optimal route is itself optimal for the nodes
it connects. In our example, the violation occurs because a better complete path results
from an inferior partial path to node 3. A sufficient condition to prevent the occurrence of
suboptimal partial routes is that ¢;;(t + s) + s > ¢;;(t), which would be true on average for
travel times [Prakash, 1989]. To ensure an optimal solution in the absence of this sufficient
condition would require T-fold expansion of the state space, with a corresponding increase
in computational effort.

An objection to this scheme of routing is that all drivers are receiving the same route,
leading to congestion and complete lack of user acceptance of the technology. However, the
more frequently the estimates are updated, the more incremental the method becomes; if a
number of drivers are routed to the same next link from a certain node within a short period
of time, this affects the forecasts, making the link less desirable to the next wave of drivers
to reach that node. A further beneficial influence would be the variety of routings resulting
from an implementation which allows sufficient customizing of cost functions to individual
drivers’ preferences. Also, the all-or-nothing routing scheme should be successful in early
stages, when market penetration of IVHS technology is low. However, a different strategy
may be needed to deal with incidents. An incident can be represented as a discontinuous
shift in the capacity of a link, and this may cause a large proportion of the drivers who are
very close to the incident location to simultaneously determine identical diversion routes,
which would become overloaded; one possible solution would be to have the updates for



a given link calculated very frequently and transmitted frequently to drivers close by but
infrequently to drivers far away. It should be noted that incident control is also a primary
argument in favor of anticipatory route guidance. When an incident occurs, anticipatory
route guidance will immediately start making the region where the incident has occurred
less preferable for drivers who might otherwise pass through the area, freeing capacity on
the alternate routes around the incident and possibly reducing the duration of the congestion
caused by the incident.

When a driver is ready to begin a trip, at ¢t = 0, he wants the “best” available route to
his destination. If his preferences are accurately represented by the cost functions used to
determine the quantities c;;(t), then he can be provided with a minimum-cost route for which
the cost on any link is projected based on the point in time when he is expected to travel
that link. Toward this end, one can picture an infrastructure which transmits raw traffic
data to the vehicles, where a processor customized to the driver’s preferences calculates the
travel costs and the least-cost path.

This model is a basis for real-time route guidance. Dynamic character is incorporated by
the fact that whenever the projections of ¢;;(t) are altered by unusual congestion behavior
or incidents affecting link capacities, a revised minimum-cost path, from the driver’s current
mid-route location to his original destination, can be computed. Each node is an opportunity
for a routing decision, and the anticipatory model allows each driver decision to be the best
possible given the information about current and future conditions available at the time of
the decision.

5 Anticipatory Traffic Modelling

In the previous section we assumed the existence of projections of ¢;;(t), the travel costs
on the links (7,7) at time ¢. In this section, we consider how these projections might be
developed.

The primary input to these travel costs will be the volumes of traffic projected to be on
the various links at time ¢ = 0,...,T. These volumes are a major determining factor of travel
times, which will often be the main component of travel cost. Let us denote these volumes
by v;;(t). Then we can conjecture that v;;(¢) will have two main components, one from the
segment of the traffic which is in contact (IC) with a Traffic Advisory Center (TAC), and
the other from the segment of traffic which is not in contact (NIC). For now, let us assume
that the NIC traffic routes itself independently of the routing decisions of the IC traffic; this
does not seem too gross, since the NIC traffic has information of an almost entirely static
nature.

There are a number of sources of information which might help in projecting volumes
v 7¢(t) due to NIC traffic. One of these would be measurement of current NIC link volumes.



Another would be historical data on the NIC traffic volumes that are typically found trying
to use the various links at the time of day for which the projection is being established.
Toward these ends, it might be helpful if sensing equipment placed on the links is capable of
distinguishing between cars which are accepting information from the TAC and cars which
are not. Also of use as an input would be estimation of the demands for travel between an
O/D; these can be used as inputs to the existing equilibrium models, which may still have
some value in describing flows of traffic with static information.

To investigate projections for IC volumes, we may imagine that once an IC driver selects
a route based on dynamic information, his hardware provides that route to the TAC, and
that the hardware also transmits the driver’s current link and intended route whenever these
change. Then we always have the location and route of every IC vehicle in the system. We
can, in a sense, track IC vehicles through the future of the traffic system, according to the
projected travel times on the links in each vehicle’s route. For each ¢ for which we wish to
find v;;(t), we then have a picture of where the IC traffic which has already registered on
that day should be.

Let us formalize this procedure. Define a path k to be any sequence of arcs connecting
an O/D and let K be the set of all paths. It will be convenient to refer to links not only by

(¢,7) but also by £. For any particular path k, let the links on that path be ordered by i

so that the expression £ -k< (¢,7) indicates that the links £ and (3, ) lie on path k and that
on path 7, £ precedes (i,7). Let hy be the number of drivers currently routed to path k. To
simplify the discussion, let us assume that each IC driver will follow the TAC routing advice
perfectly. Then on a given path k, we expect a driver to reach link (z,7) at a time t;; given

recursively by
tii= Y clte)
£2(63)
Then to determine how much previously routed IC traffic should be on link (¢, 7) at time ¢,

we need to sum the number of drivers on each path who should have gotten to link (7, j) and
no farther by ¢. This may be done by means of an indicator variable:

1 if (¢,7) € k and
IH(t) = tij St <tij+ ci(ti;)
0 otherwise

Then we may find the anticipated flows v;rjc by
v (1) = Y haIf(1)
keK

We can then augment this with projections based on historical data of the IC traffic that
will enter the traffic system between now and time ¢ (i.e., the IC O/D demands), and we
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can hope that this historical data will be of a very high quality, since it can be tabulated
day by day at the TAC as it is generated by drivers contacting the TAC.

The projections v;;(t) are then simply given by v/’ (t) + v '°(t). Then, we must have
functions which accept the v;;(t) as input and produce as output the projections ¢;;(t). For a
given link (z, ), parameters to the function will include speed limit, number of lanes, quality
of pavement, zoning of road (residential, business, controlled access, ...), and real-time
information such as time of day and weather conditions. A further input to the function
could be the driver generating the request, in order to calculate costs based strictly on that
driver’s preferences. The accurate formulation of such functions should present a considerable
research challenge.

If all this can be achieved, however, then a clear picture of IVHS system operation
emerges, with the projections ¢;;(¢) from the current traffic model being used to generate
least-cost routes, which in turn are inputs for the next update of the traffic model and the
projections v;;(t).

6 Inputs to a Generalized Model

The traffic model we have discussed so far is simplistic in some of its assumptions. This
section considers what generalizations are expected to be included in a working model in the
framework we have proposed.

The network model of a traffic system as simply a set of nodes and costed directed arcs
can be generalized considerably. We can include interaction of traffic at intersections, such
as the delays incurred at a signalized intersection with variable signal control strategies.
Penalties for making turns can also be included. The model can also be extended to other
modes of transportation, i.e., mass transit.

Issues of driver behavior will also be significant. Drivers will not always follow the advice
produced by an IVHS system; for instance, they may ignore suggested routes. Also, if in-
vehicle hardware is not required to automatically provide the vehicle’s current location or if
technology does not make this feasible, drivers may begin following a suggested route and
then deviate from it without notifying the TAC, reducing the accuracy of the anticipatory
projections. This sort of randomness may be of greatest importance when the system is
new and drivers are mistrustful. Another behavioral effect concerns the diversion of drivers
away from routes slowed by incidents; NIC drivers may observe IC drivers being diverted
and follow. Another diversion issue concerns whether diversion is being recommended for
reasons of system-optimality or user-optimality. A diversion strategy decreases total travel
cost by diverting traffic away from a congested link onto alternate routes. A system-optimal
diversion may achieve its benefit by reducing travel cost slightly for the many drivers on
the congested link, outweighing a possible large increase in individual travel cost for drivers



who divert; these drivers who are to be diverted may refuse to incur additional personal
delays or other costs of the diversion and instead stay on the congested link, anticipating
benefits resulting from the diversion of other driveis. As o last example, the behavioral issue
of varying preferences is very important. The cost of travel includes more than just the time
required to complete the trip, but the identity of the other factors and their relative weights
will vary widely among drivers. The IVHS system must be able to accommodate a wide
variety of preferences to be widely accepted.

In the preceding development, travel times on the links of the network are modelled
as simple numerical values, although possibly unknown and requiring forecasting. It may
prove more appropriate to model these travel times (and even other forms of travel cost) as
random variables, in order to provide drivers with information not only about the expected
time required for their trip, but also the variability. A saving in travel time is not always
valuable if it results merely in arriving early, but controlling the variability of arrival time
may be of great value in avoiding lateness. If we can forecast probability distributions
for ¢;;(t) instead of just numerical estimates, then we can apply Markov Decision Process
models, which are designed for network models with random costs and which constitute a
well-developed subfield of dynamic programming.

Lastly, the model need not be concerned only with providing a route from point A to
point B starting immediately. Other services could include suggestions of when to begin the
trip, aid in finding parking, or the route for the nearest hospital, for instance.

7 Research Issues

Having discussed the shortcomings of current traffic models and proposed a new modelling
environment, we now present a representative sample of research issues which must be ad-
dressed in order to achieve a successful implementation of an anticipatory modelling and
route guidance system of the nature proposed here.

7.1 Network Aggregation

In what detail must the transportation network be modelled? Must all highways, main
arterials, and minor routes be considered or can the system operate with only a subset of
all possible routes? An incomplete route may be difficult for a person to follow who is not
familiar with the area and does not have a navigational aid.

10



7.2 Travel Demands

It is easier to measure the traffic volumes on the links of the system at various times than
it is to collect data on the O/D demands placed on the network at various times. However,
this O/D data is needed to drive the models. There are trip distribution models, such
as the gravity model, that are used estimate the O/D demands from the cross-sectional
traffic flow data. Research must be done to determine whether these models are sufficiently
accurate, how they may be extended, how the O/D demands may be directly measured in an
inexpensive manner, and what benefits can be realized by modelling without O/D demand
data.

7.3 Driver Behavior

This is an area of great research need. Unknowns include whether a driver will accept a
suggested route, when a driver will divert from a suggested route, and the factors which
influence these decisions. Even given widespread installation of automatic vehicle location
(AVL) technology, we must have some idea of drivers’ intentions in order to project future
traffic conditions unless models using historical data prove more reliable than they have
in the past. Related human factors issues, technology acceptance, methods for improving
compliance, and socioeconomic issues affecting driver behavior must also be explored.

7.4 Travel Time/Cost Projections and Assignments

Measuring traffic flow with roadside detection devices can be accomplished, and from this a
general idea of travel time on a route segment may be determined. Projecting this traffic flow
at some time in the future may use historical values, but these do not consider dynamically
changing conditions. Models which project future traffic conditions, given current conditions
such as weather, day of week, or whether a large convention or sporting event is taking place,
must be developed in order to project travel times and improve vehicle routing.

7.5 Incident Modelling

When an accident occurs, blocking one lane of a three-lane highway, for instance, the model as
proposed would react by making a major discontinuous change in the parameter representing
the capacity of the affected link. It is not clear whether the routing diversions desirable for
this type of event can be handled within the basic framework of the model or whether there
is a fundamental theoretical distinction between this and other changes in the anticipatory
model which are more incremental in character. Furthermore, it is difficult to predict how
long the queueing and congestion caused by the incident will last. This duration is a very
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important input to the anticipatory model, because of its effect on the travel time and cost
of the affected link over the time horizon being considered. Since incidents are one of the
main sources of congestion, the success of IVHS in handling incidents is very important,
and the incident models developed will play a major role in determining whether [IVHS is a
cost-effective tool for improving the entire transportation system.

7.6 Time Horizon

If anticipatory models are required, then the planning horizon, T', must be determined. Each
vehicle route interacts with other vehicle routes to a certain degree. Over time and distance
while traffic is free flowing this effect is negligible. The effect is not negligible when traffic
densities and the chances of incidents are high, i.e., projected variance in travel times are
high. Thus, under certain conditions the traffic center may need only project travel costs
over a short time period. If a vehicle, however, may be arriving at a location when traffic
may be congested, even though the arrival time may be somewhat distant in the future, the
proper planning horizon may be much longer. Thus, under what conditions a short horizon
versus long planning horizon is necessary is an important research issue.

7.7 Model for Comparison

In analyzing the benefits of any new technology it is necessary to establish a benchmark for
comparison. A model must be developed which accurately assesses current performance mea-
sures and properly models improvements in these measures due to various implementations

of IVHS technology.

7.8 Effect of Market Penetration

When the IVHS system begins to operate, only a small fraction of the driving population
will be equipped to use it. In fact, market penetration may even peak at a fairly low level.
Therefore, it is necessary to determine the benefits achieved at various market penetration
levels. Existing studies indicate that a small change in the traffic volume on a link can
have a strong effect on congestion on that link, so considerable benefits may follow from the
installation of IVHS technology in a fairly small percentage of cars.

It should be noted that the traffic modelling and analysis component of IVHS research
on the issues raised here may be accomplished with few assumptions concerning specific
technological developments. The cost and benefit analysis can be done independently of
decisions such as how route guidance and other IVHS information is presented to drivers,
what type of communication system is used, or how automated vehicle control may operate.
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8 Conclusion

A dynamic programming formulation of an anticipatory route guidance system has been
presented which shows that a prototype route guidance system may be developed which will
also serve as a tool for measuring the value of different IVHS technologies. There are many
questions which transportation planners must answer prior to concluding IVHS is a part of
the solution to our transportation problems. The research required to properly model traffic
within the IVHS environment spans many academic fields and is quite extensive, but will be
of value even if many components of IVHS are not implemented. Thus, developing a model
which accurately models traffic and driver behavior is required to measure the value of IVHS
and should be of highest priority.
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