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Abstract

Hit-and-Run algorithms are Monte Carlo procedures for generating points that are
asymptotically distributed according to general continuous target distributions G over
open bounded regions S. Applications include nonredundant constraint identification,
global optimization, and Monte Carlo integration. These algorithms are reversible
random walks which commonly apply uniformly distributed step directions. We inves-
tigate nonuniform direction choice and show that under minimal restrictions on the
region S and target distribution G, there exists a unique direction choice distribution,
characterized by necessary and sufficient conditions depending on S and G, which opti-
mizes the rate of convergence. We provide computational results demonstrating greatly
accelerated convergence for this optimizing direction choice.
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1 Introduction

We consider the Monte Carlo problem of generating a sample of points according to a given
probability distribution G over an open, bounded region S in R". After motivating the
problem through several applications, this section discusses the limitations of exact sam-
pling methods, describes the Hit-and-Run asymptotically exact method, and previews the
contribution of the paper to Hit-and-Run direction choice.

1.1 Sampling Applications

Nonredundant constraint identification (cf. Karwan et al. [13]). Given a point z satisfying
a system of linear inequalities and a unit direction u, an inequality is nonredundant if it
is uniquely the nearest constraint to z in direction +u or —u. As a special case, consider
points z sampled uniformly from the relative interior of the feasible region of a linear program
and directions u sampled uniformly on the unit hypersphere, with all pairs of points and
directions independent. The probability that the sample fails to identify any nonredundant
constraint decreases to zero as the sample size increases to infinity. We can then more rapidly
solve a reduced problem including only the identified nonredundant constraints. These may
not all be found by finite sampling, but even if the optimal solution to the reduced problem
is infeasible for the full problem, the optimum for the dual reduced problem remains feasible
and provides a good initial point for solving the full dual problem.

Global optimization (cf. Dixon and Szegd [8,9], Rubinstein [18]). Deterministic iterative
optimization strategies typically choose locally improving search directions and step sizes
yielding improvement in each iteration. These methods often yield solutions which are
only locally optimal for nonconvex problems. A simple stochastic alternative for global
optimization is Pure Random Search [7], which samples points uniformly in the feasible
region and reports the sampled point with the best objective function as the optimal solution.
More practical methods commonly rely on the Multistart approach, applying local search
algorithms from some or all of a group of solutions chosen randomly from the feasible region
[17]. Both methods rely on efficient sampling of feasible points.

The potential of stochastic global optimization methods is illustrated by Pure Adaptive
Search (PAS) [16,24], in which a new iterate is uniformly distributed over the subset of
the feasible region superior in objective value to the current iterate. The number of PAS
iterations required to approach the global optimum arbitrarily closely is shown to grow only
linearly in dimension, a result previously suggested by the computational experience of Solis
and Wets [20]. For stochastic global methods in general and PAS in particular, efficient
sampling from arbitrary regions is therefore of significant importance.

Monte Carlo Integration (cf. Hammersley and Handscomb [11]). We may evaluate ] =
Js f(z) dz by noting that if the random variable X is distributed according to a positive
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probability density function g on S, then

1@ e p[HE)
= Js oo EL:(X)]'

The sample-mean method of Monte Carlo integration consists of generating Xi,...,Xn
according to g and estimating I by the unbiased estimator [ = (1/N)TN, £(X:)/9(X;).
Sample-mean estimation may be superior to deterministic numerical methods for nonsmooth
integrands with multidimensional domain [18]. The potentially strong dependence of the
variance of I on the choice of g motivates interest in sampling from general distributions
over S.

1.2 Exact and approximate sampling methods

We begin by considering some of the shortcomings associated with the exact sampling meth-
ods of transformation, composition, and rejection (Schmeiser [19]). A vector X of n numbers
drawn independently from the uniform distribution over the interval [0, 1] is uniformly dis-
tributed over the unit cube in R*. Given a bijective differentiable transformation 7' from
the unit cube onto S, then T'(X) is uniformly distributed on S if 7' has constant Jacobian
determinant. However, such transformation techniques are known only for a small class
of regions S, such as paralleletopes, hyperspheres, and simplices. Composition techniques
express the probability density to be sampled from as a mixture of densities conditioned on
a random parameter, for cases when the decomposed densities can be sampled more easily
than the composite [18]. These methods tend to be intractable in even moderate dimension
[22]. The most generally applicable methods are rejection techniques. Sampling uniformly
from a region R enclosing S and rejecting those points not in S, the remaining sample is uni-
formly distributed over S. However, the expected number of points in R needed in order to
hit S grows rapidly in dimension, making rejection techniques inefficient in high dimension.
The same problems are associated with sampling nonuniformly according to density g over
S, since this is equivalent to sampling uniformly in the region under the graph of g over S.

Instead of sampling exactly according to G, Hit-and-Run algorithms generate samples of
points whose distributions approach G asymptotically. With each Hit-and-Run algorithm is
associated a direction probability distribution H over the unit hypersphere. The algorithm
proceeds from a current point ™ by generating a direction u according to H and selecting
z™*! according to G conditionalized on the resulting line set, i.e., the subset of S lying in
the direction +u from z™.

The most widely known version is the Hypersphere Directions (HD) Hit-and-Run algo-
rithm, proposed in 1979 by Boneh and Golan [6] and independently in 1980 by Smith [21].
HD selects directions according to a uniform distribution over the unit sphere and chooses



iterates uniformly on the resulting line set; in [22], Smith proves that the HD iterates ap-
proach a uniform limiting distribution independent of the starting point, and demonstrates
experimentally that Hit-and-Run is potentially more efficient than rejection techniques in
high dimension. Another example is Coordinate Directions (CD) Hit-and-Run, due to Telgen
(23], in which the direction is chosen uniformly from among the 2n coordinate vectors (the
vectors which parallel the coordinate axes in R") and the new iterate is chosen uniformly
on the resulting line set as in HD. These two algorithms were applied in Berbee et al. [3]
to identify nonredundant linear constraints, and the same application was also addressed by
the related Shake-and-Bake algorithms presented in Boender et al. [5]. Related algorithms
addressing global optimization include Improving Hit-and-Run (Zabinsky, Smith, and Mc-
Donald [25]) and Hide-and-Seek (Bélisle, Romeijn, and Smith [1]). With the exception of
the Running Shake-and-Bake variant and the heuristic direction choice methods in Solis and
Wets, all of the cited algorithms employ uniform direction distributions.

Bélisle, Romeijn, and Smith [2] have recently shown asymptotic convergence for general
target distributions G for the generalized Hit-and-Run class. Under minimal restrictions
on the direction distribution H, choosing new iterates conditionally according to G on the
line set causes the distribution of iterates to converge in total variation to G. The direction
distribution does not affect the asymptotic target distribution of the iterates, but as we shall
see, 1t has a strong effect on convergence rate. By extending the HD convergence rate analysis
of Smith [22], given the region S and target distribution G we will provide a bound on the
rate of convergence to the target distribution as a function of H and construct a unique
direction distribution H* which optimizes this rate bound. Finally, we provide examples and
computational results demonstrating significantly accelerated convergence by employing this
nonuniform direction choice.

2 The Hit-and-Run Algorithm

Denote the unit ball in £ by B = {u € ®*|||u|| < 1} and the unit hypersphere by its topo-
logical boundary 0B. Let S € R™ be an open bounded set. Let G be the target probability
distribution on §, assumed absolutely continuous with respect to Lebesgue measure V', with
positive density g continuous almost everywhere and bounded from above and away from
zero. Let o be the measure giving surface area of measurable subsets of B, and let H be
the probability distribution of direction choice, assumed absolutely continuous with respect
to o and having positive density h. We may now formally define the Hit-and-Run algorithm
in S associated with the target distribution G and the direction distribution H.

Hit-and-Run Algorithm

1) Choose an arbitrary starting point z° € S and set m = 0.
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2) Generate a random direction u,, € B according to H.
3) Select Ay, from the line set Ay, = {) € R|z™ + Au,, € S} according to the density

_ g(z™ + Auy,)
Ja,, 9(&™ + rum) dr

gm(A) A€EA,,.

4) Set 2™ = z™ 4+ A\, up and m = m + 1, and go to step 2.

Because step 3 searches for both positive and negative step sizes A in direction u, we may
when convenient assume without loss of generality that &(u) = h(—u) for all u € §B.

By Theorem 5 of [2] the distribution of the Hit-and-Run iterates {z™,m = 1,2,...}
converges in total variation to G for any initial z°, i.e.,

lim Pr(z™ € Ale® = ) = G(A) A€Bs,z €S

uniformly in A, where B represents the Borel o-field on S. In fact, the cited theorem is more
general, not requiring g to be bounded allowing much more general direction distributions
H. In particular, our current restrictions on H exclude the CD version of Hit-and-Run
(where the direction distribution is not absolutely continuous) and other variations which
have zero direction density on some direction set of positive surface measure. However, the
convergence rate analysis here requires the stronger conditions.

For the HD algorithm, where G and H are uniform distributions, Smith in [22] established
the following bound on convergence rate:

Pr(z™ € Alz® = ) — vi4)

76| (1 —"—)m"1 A€Bs,zeS (1)

- n2n—-1

where v is the ratio of the volume of S to the volume of the sphere in R" whose diameter
is that of S. As an example, if S is a 10-dimensional cube, v ~ 1/250 and the number m
of iterations required to upper-bound the error term on the left by 0.01 is over five million.
Our goal is the generalize this bound to nonuniform target distribution G and direction
distribution H and then find a direction distribution H* which optimizes the bound on
rate of convergence to the distribution G over the region S. Ideally, we hope moreover to
achieve improvement in experimental performance (i.e., average case behavior) as well as in
worst-case behavior.

3 Optimizing the Rate of Convergence

Assuming the region S and the target distribution G to be fixed and satisfying the conditions
of the previous section, let Py(A|z) be the one-step transition probability distribution for
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the Hit-and-Run algorithm with direction distribution H. That is,
Py(A|z) = Pr(z™! € Alz™ = 2) A€ Bg,z € 8S.

We introduce the notation u,, = (y — z)/||y — z|| to represent the unit direction from z to

y. Also, A(z,y) = {)A € R|z + Augy € S} gives the set of feasible step sizes in the direction
between z and y.

Lemma 1 Given direction distribution H absolutely continuous with density h, for allz € S
the transition probability distribution Py(:|z) is absolutely continuous with density

(h(ucy) + h(—uzy))g(y)
ly — zl|" faw) 9(2 + rusy) dr

fa(ylz) = y€S,y#al (2)

Proof: Fix z. For 0 < r; < r; and measurable D C 0B such that D N (—D) = (), define
Cp(ry,r2) = {z + ru|u € D,ry < r < ry}, and let C be the class of all such sets. Let
Is(-) be the function indicating membership in S, and let S;, be a random variable
giving the Hit-and-Run step size from z in direction u. Let U be a random variable
distributed according to H over 0B.

For C = Cp(ry,r2) €C,

PH(C N Sl :E) = Pr(U € D,Sz,U € (7‘1,7“2)) + PI‘(U € —D,—Sz,U € (7‘1,7'2))
= [ Pr(Sau € (r1,m2))(h(w) + h(=u)) o(du)

A N (O R I CR T P S
- '/D~/Tl IS( + )Sn-lfj\(z,x+u)g(x+ru)dr 3? (d)

- / Is(y) (h(uzy) + h(—usy))g(y)
c ly = zl|"~! fa(z,y) 9(2 + Tuzy) dr
by change to spherical coordinates; see e.g. [12, p.4]
— / (h(uzy) + h(—ugzy))9(y)
cns [ly — z|~-1 fA(z,y) 9(z + rugy) dr

(3)

Since Bg is generated by the 7-system C restricted to S, equation (3) determines
Py(A|z) for all A € Bs as well [4, Theorem 3.3], completing the proof. =

1See [2] for an independently derived expression in the general direction distribution case. Note that we
have not defined fy(z|z); since V({z}) = 0, we are free to make the definition arbitrarily.



The following theorem bounds the rate of convergence to the target distribution by pro-
viding an upper bound on the deviation between the target distribution and the distribution
of the mtP Hit-and-Run iterate for any m, over all A € Bg, as a function of the direction
distribution H. We denote by H the class of absolutely continuous direction distributions
H with density A bounded away from zero.

Theorem 2 For H € H,
|Pr(a™ € Alz2® = z) — G(4)| < (1 - 8xV(S))™" AeBs,ze§ (4)
where by ts the density bound for H, given by
bg = inf, fu(ylz).

Proof: For H € H, we have S bounded, g bounded from above and away from zero, and
h bounded away from zero. Hence from the preceding lemma fg(y|z) is bounded away
from zero, i.e., 6y > 0. Then the thecrem follows from a result of Doob [10, p.197, case

b)]. =

In order to minimize the error on the left of (4) regardless of iteration number m, we seek
a direction distribution achieving the optimal error €*, given by

(1 - 85V(S)).

€ =

inf
HeH
Therefore we formulate the convergence rate bound optimization as:

Find 6* = sup 6.
(P) ‘ Hex ?

Since each 6y is the value of a minimization, we call §* the mazimin density. By an
optimal direction distribution we will mean any distribution H* € H for which the maximin

density 6* is attained. Note that such a distribution is optimal only in the worst-case rate
of convergence as expressed by Theorem 2.

4 The Optimal Direction Distribution

We now investigate the maximin problem P in more detail. We will demonstrate that the
problem has a unique solution H* and characterize this solution by necessary and sufficient
conditions on H.

For each H € H, we define ff;(u), the infimal transition density in direction u, by

fr(u) = mglefs{fﬁr(ylm)} u € B.

Uzy=u



Then éy = inf,eop ff(v). The infimal transition density decomposes into two parts, the
first corresponding to the target distribution G and the geometry of S, which are considered
fixed, and the second to the direction distribution H, which we wish to optimize.

Lemma 3 The infimal transition density for H is given by

*(u) = ——(h(u —u u
fa(v) = p(u)(h( ) + h(—u)) € 0B

where p(u) is the span of S in direction u, defined independently of H by

dr
plu) = sup { DS TTITyy ol weom ®

Uzy=U

Proof: We have

in T — in g(y) % —u
mei%{fH(yl ) :;geii{fux,y)g(“m) dr Ty — a1 ) H A ))}
1
= @@ +h(=u). .

We now state the main result.

Theorem 4 Let S C R" be an open bounded set, and let G be a probability distribution on
S, absolutely continuous with respect to V with density g bounded from above and away from
zero. Then

i) There exists a unique optimal direction distribution H* € H.

it) The direction distribution H € H is optimal if and only if the infimal transition density
for H is constant, i.e., if ffj = ¢ for some ¢ > 0.

Proof: We begin by proving sufficiency. Assume that for the direction distribution H with
density h, there exists ¢ > 0 such that fj(u) = c for all u € 0B. Suppose that H is
not optimal, i.e., there exists a direction distribution H’ with density A’ such that

fip(w) 2 6 > by = fr(w) u € dB.

Then by Lemma 3, A'(u) + h'(—u) > h(u) + h(—u) for all v € 0B. But both h and
k' integrate to one over 0B, hence a contradiction ensues. No direction distribution
improves on the density bound éy = ¢, and H is optimal.
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Now we prove existence. Let H* be the direction distribution with density

.o p(u) u
h*(u) = o) o(da) € 0B

and corresponding infimal transition density fj.. Observe that ¢ bounded above and
away from zero and S open and bounded implies p is bounded above and away from
zero, and hence H* € H. For u € 9B,

2

T ) =y otdw) = ©

Therefore H* satisfies the sufficient condition and is optimal, with §* = §z+ = c.

To prove the necessary condition, assume that direction distribution H with density &
is optimal. Since H* defined above is also optimal, f5;(u) > 6y = 6* = f.(u) for all
u € 0B. Then by Lemma 3,

h(u) + h(—u) > h*(u) + A*(—u) u € 0B. (6)

Since both sides of this inequality must integrate over B to the value 2, equation (6)
must be satisfied with equality almost everywhere on B. Then by our earlier assump-
tion that h(u) = h(—u), we have h = h* almost everywhere, i.e., h* is a density for H.
Thus fr(u) = fu+(u) = ¢ for all u € B and the necessary condition is established.
Furthermore, we have proven that any two optimal distributions must satisfy (6) with
equality almost everywhere, i.e., that the optimal distribution is unique. =

This main result has intuitive appeal. To maximize the minimum of a probability density,
an obvious candidate is to choose a uniform distribution. The proof above shows that
although the infimal transition density is not itself a probability density, it does have a
certain normalization which depends on S and G through the span p, and to maximize the
minimum, uniformity is again the solution.

From the proof of the above theorem, we have

Corollary 5 Under the conditions of Theorem 4,
i) The optimal distribution H* is determined by the span p of S given in (5), with density

. p(u)
h*(u) = —————o.
() Jo p(u) du
i) The optimal error €* is given by
2
€=1—-—-V(9).
Tz p@du’ )

Note also that H* is absolutely continuous with respect to o and has nonzero density on
all of 0B. Therefore, H* satisfies the conditions imposed in Section 2 to ensure that the
distributions of the iterates do in fact converge to the target distribution G.
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5 Optimal Direction Choice for the Uniform Target
Distribution over a Class of Convex Regions

We will now examine the issue of how to generate directions according to a optimal direction
distribution H* with density A*. We could proceed by a rejection technique, generating
directions u uniformly on 0B and accepting only if a uniform (0,1)-variate is less than
h*(u)/h, where % is an upper bound on A* (recall p is bounded from above, and hence
such a bound exists). This procedure is inefficient, particularly as n becomes large and S
deviates from a spherical shape. Moreover, A*(u) may be difficult to calculate. Under certain
conditions on the search region and target distribution, we can establish a potentially more
efficient procedure.

Assume the target distribution G is uniform over S convex. Since g is constant, the span
expression simplifies to

p(u) = sup ly—zl*  uedB. (7)

z,y€S
We further assume that S has a center s such that for almost all v € 0B, the supremum
defining the span in direction u is realized by points z,y € 05 (the topological boundary of
S) with s = (¢ + y)/2. We define the radius in direction u by r(u) = sup{r > 0|s+ru € S}
for all u € dB. By (7), we have p(u) = (r(u) + r(—u))* =(24*(u) for all u € B.

Theorem 6 Let S C R™ be open, bounded, and convex with center s, and let the target
distribution G be uniform. Let Y be a random variable uniformly distributed on S and let
U= (Y —9)/||Y —s||. Then U has distribution H* on 0B.

Proof: For measurable D C 0B let S,(D) be the part of S in the directions D from s, given
by ‘

S,(D)={m€S -””—“—‘“’—ep} .

RER|
Then,
Pr(U € D) = Pr(Y € S,(D))
fs,(D) dy
fs dy

Lrn(w)
= n o(du) by a change to spherical coordinates
o Tty 7@ y

plv) o
o Ty oty 7

/D h*(u)o(du) by Corollary 5.

I
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Hence U is distributed according to H* on 0B. n

Therefore, to evaluate the efficiency of optimal direction choice on the class of centered
convex regions we may implement exact optimal direction choice by generating points uni-
formly distributed in the search region and normalizing the vectors from the center to these
points. Of course, if we could do this efficiently we would already have solved the problem
which Hit-and-Run is designed to address. However, this theoretical result motivates an
easily implemented approximation to optimal directions. Since the sequence of Hit-and-Run
iterates converges to uniformity, we can try choosing directions by randomly choosing one of
the previous Hit-and-Run iterates and normalizing the vector from an approximate center to
the iterate. A simple scheme for approximating the center would be to set the ith coordinate
equal to the mean of the ith coordinates of the previous Hit-and-Run iterates. When we
present computational results in the next section, we will comment on the effectlveness of
this approximate method for optimal direction choice.

We now show that the class of centered convex regions is characterized by a single optimal
convergence rate bound.

Theorem 7 Let S C R" be open, bounded, and convexr with center s, and let the target
distribution G be uniform. Then the optimal error is identical to that for uniform direction
choice in a spherical search region, i.e.,

. 1
€ =1- T
Proof: By Corollary 5,
2
€ = 1- V(S
Ton ) o) )
2
= 1- V(S
> Jop (@) o(da) )
1
= 1-—==

For a spherical search region, ¥ = 1 in (1) and hence the same bound obtains. =

Now, we examine the optimal direction distributions and convergence rate bounds for
particular regions S. The first example verifies an intuitive result.

Example 1 Let S = {z € ®"|||z|| < b} so that S is the open ball of radius b > 0 centered
at the origin in R*. By (7), p = (2b)" and hence from Corollary 5 the optimal direction
distribution is uniform. This is natural; S looks the same from all directions, and we
have no reason to favor one direction over another. n
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Example 2 Nowlet S = {x € |0 < z; < b;,¢2 =1,...,n} so that S is an open rectangular

6

paralleletope determined by the upper bounds by, b,,...,b,. S is convex and has center
s = (b1/2,b2/2,...,b,/2). For any unit direction u, a siinilar triangles argument shows
bi/2|u;| to be the distance in direction u from s to the ith upper bound constraint.
Since r(u) is the greatest distance which satisfies all n of the constraints,

plu) = (r(u) +r(-u))" (8)

t

Since the optimal density is proportional to p, we can see either geometrically from (8)
or analytically from (9) that the density favors directions along the long axes of the
rectangle, and is maximized by the directions from s to the corners of S.

Let us evaluate the uniform-direction and optimal convergence rate bounds. By The-
orem 7, the optimal error is 1 — 1/(n2""!). In contrast, recalling that 4 represents the
ratio of the volume of S to the volume of a sphere with diameter equal to that of S,
the uniform bound is determined by the term

-2 - 1= V(3)
n2n-1 n2"-1(1diam(S))"V(B)
2k

n(Xi, b9)"/?V(B)

For each of the upper bound vectors &° = (1,1,1,...,1), b = (1,2,3,...,10), and
b = (1,4,9,16,...,100) in R, Table 1 shows the values of the uniform-direction
and optimal-direction convergence bound terms, as well as the number of iterations
required to upper-bound the error terms in (1) and (4) by 0.01. Clearly optimal
direction choice is greatly superior with respect to worst-case behavior, reducing the
number of iterations required by two to six orders of magnitude. =

Numerical Results

We executed Hit-and-Run both with uniform and with optimal direction choice in each of the
three hyperrectangles of Example 2. The testing procedure was as follows: run Hit-and-Run
for 10,000 iterations, sampling each tenth point in order to reduce serial correlations. The
resulting 1000 points in R° were then shuffled to randomize their ordering. This procedure
produces ten samples of 1000 real-valued points, one sample in each coordinate direction.
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Table 1: Convergence bound values in R1°

Error terms # iters m required so that

Upper bound vector Uniform dir: Optimal direction: Pr(z™ € | z°%) — G(-) £ 0.01
e=1-—v/n2""1| ¢ =1-1/n2""! || Uniform dir. | Optimal direction

0’ =(1,1,1,...,1) 1-784.10"" 1-1.95.10"% 5.9 million 24 thousand

b =(1,2,3,...,10) 1-3.36-10"° 1-1.95-10"* 137 million 24 thousand

b =(1,4,9,...,100) || 1 —9.90-10"'* 1-1.95.10% 47 billion 24 thousand

Table 2: Frequency test statistics for Hit-and-Run in rectangular regions.®

X% Statistics® (ith coord. range (0, b;) broken into 10 equal cells)
Coordinate Upper bound vector/Direction choice method
b0 bt b?
i Uniform Optimal Uniform Optimal Uniform Optimal
1 57 o 10.6 o 9.3 o 11.3 o 6.6 o 80 e
2 109 o 6.6 o 2.5 80 o 87 o 26.4
3 83 o 10.7 o 13.9 o 14.1 o 30.8 124 o
4 8.1 e 72 o 56 o 12.3 o 16.8 o 40 o
5 104 o 17.6 20.9 13.0 o 27.6 10.0 o
6 22.0 20.8 50.4 14.3 o 498.8 53 e
7 19.5 75 o 19.3 18.2 843.2 18.1
8 . 8.6 o 158 o 13.0 o 48 o 563.0 155 e
9 9.7 o 16.6 27.3 7.7 401.2 71 e
10 16.0 o 9.4 o 44.0 85 e 773.1 76 o
# passing
uniformity 8 8 4 9 3 8
at o = 10%

3Statistics passing the frequency test are marked by e.
5Upper and lower x? values for a = 10%, v = 9: (3.3, 16.9).

We performed two-tailed x? frequency and serial correlation tests [15, pp. 59-60] to test
the hypothesis that the samples are uniformly distributed with respect to each of the ten
coordinate directions. The coordinate directions are each broken into 10 equal cells so that
each frequency test has 9 degrees of freedom. Smith [22] performed the same computational
test for HD on a cube in R!? (i.e., uniform directions with 4° as the upper bound) and
reported that seven of the ten coordinates passed the frequency test for uniformity at a
significance level of 10% and nine of the ten coordinates passed the serial correlation test at
the 10% significance level.

Tables 2 and 3 show the test statistics for the frequency and serial correlation tests re-
spectively. They show that with upper bound vector 4°, for which the optimal direction
distribution is the closest to uniform of the three upper bounds tested, the results of uni-
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Table 3: Serial correlation test statistics for Hit-and-Run in rectangular regions.

X5o Statistics®
Coordinate Upper bound vector/Direction choice method
b0 b b?

i Uniform Optimal || Uniform Optimal Uniform Optimal
1 98.8 o 79.6 o 89.6 o 107.6 o 98.4 o 944 o
2 83.6 o 924 o 89.2 e 102.4 o 126.0 105.2 o
3 101.2 o 92.8 o 116.4 o 117.2 o 123.2 o 108.0 e
4 100.4 o 101.6 o 87.6 124.4 101.2 o 772 o
5 110.8 o 99.6 o 113.6 o 103.6 o 111.6 o 91.6 e
6 136.8 115.6 o 140.8 101.6 o 693.2 95.2
7 1244 88.8 o 106.8 o 134.4 1223.6 96.8 o
8 88.4 o 105.6 o 105.2 80.0 o 836.4 101.2 o
9 1152 o 88.0 o 97.2 o 102.8 o 574.0 103.6 o
10 79.6 o 107.2 o 127.2 124.4 1064.4 106.4 o

# passing

uniformity 8 10 8 7 4 10

at a = 10%

“Statlstlcs passing the serial correlation test are marked by e.
®Upper and lower x? values for o = 10%, v = 99: (77.0, 123. 2).

form and optimal direction choice are comparable. However, when we elongate the region
somewhat by using the upper bound &', only four of the ten coordinate samples pass the
frequency test with uniform directions, while nine of the ten coordinates pass with optimal
direction choice. The very elongated region with bound 4? yields results close to those for bt
with respect to the number of tests passed by each direction choice method, but note that
most of the coordinates which fail under uniform direction choice do so with spectacularly
poor x? values. The serial correlation test statistics tell a similar tale; although the serial
tests for uniform direction choice are largely passed with bound 5!, when we further elongate
the search region with bound 4%, uniform directions badly fails half of the coordinate tests.
Taken together, these results demonstrate that optimal direction choice accelerates conver-
gence of Hit-and-Run to a uniform target distribution on regions whose geometry makes
clear distinctions between search directions.

We can gain further insight by seeking to establish a connection between the test results
and the convergence rate bound values which apply to the regions tested. Theorem 7 and
Table 1 indicate that the convergence rate bound for Hit-and-Run with optimal direction
choice is the same for any upper bound vector. That is, the convergence bound analysis
suggests that Hit-and-Run with optimal direction choice should perform the same in any
rectangular region. Revisiting Tables 2 and 3, we see that this predicted behavior does
occur. The numbers of frequency tests passing for the three regions tested are 8, 9, and 8
respectively; the difference is not statistically significant. The differences among the number
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of serial tests passing (10, 7, and 10 respectively) might be considered significant, but two
of the three tests which failed for b' did so just barely; a slightly lower test significance
would have made the serial results as stable as the frequency results. The correspondence
of stability between convergence rate bounds and experimental performance for the differing
test regions provides empirical justification for the approach of accelerating convergence by
optimizing the worst-case performance bound.

In a general-purpose application, it will be more difficult to exactly generate optimal di-
rections. However, we are encouraged that comparable levels of acceleration can be achieved
by implementing the approximation method outlined following Theorem 6. When we ap-
plied this method to the three rectangular regions we have been considering, we found that
the resulting statistical samples were as close to uniformity as were those generated with
exact optimal direction choice. The numbers of coordinates passing the frequency tests were
7,7, and 9; the numbers of serial correlations tests passed were 8,9, and 9 [14]. We believe
that approximate direction choice methods of this type have great practical potential for
acceleration of Hit-and-Run convergence.

7 Conclusion

The problem of generating points according to a probability distribution G with density ¢
over an open bounded region S in ®" has application to Monte Carlo methods of simulation,
numerical methods, and optimization. Even for simple regions S and a uniform distribution
G, the computational effort of rejection techniques for exact sampling grows rapidly in
dimension. When S and G are complicated, the performance is much worse.

Hit-and-Run algorithms offer an efficient method for generating points which asymptoti-
cally approach the desired probability distribution G. However, experimental and worst-case
performance of HD Hit-and-Run is substantially degraded as S becomes nonspherical and
G nonuniform. In this paper we have generalized the Hit-and-Run convergence rate bound,
known previously for HD, to nonuniform direction distributions. We have constructed a
unique(@n@)ptimal direction distribution which significantly accelerates convergence to
the target distribution, to a degree consistent with the corresponding improvement in con-
vergence rate bound.
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