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Abstract. The method given in Reference 1 is applied to the case of scalar
scattering by a perfectly reflecting elliptic cylinder illuminated by waves from

a line source parallel to the axis of the cylinder. The surface distribution in
the shadow zone is calculated, and the '"'creeping wave'" representation for the
scattered field in the shadow zone is derived. It is shown that the results are
applicable if and only if Rw » 1, where Ro is the smallest radius of curvature
on the cylinder and w is the wave number.

1. In a recent paper1 we have developed a theory of scalar diffraction for
bodies whose boundary surfaces are level surfaces in coordinate systems in which
the scalar wave equation is separable. We applied the theory to the case of dif-
fraction by a prolate spheroid and calculated the surface distribution. In this
paper we make a similar application to the case of an elliptic cylinder; but,

in addition, we consider the off-angle case and derive the "creeping wave'
representation for the scattered field in the shadow zone. The surface distribu-

tion is discussed in § 6, and the scattered field is described in § 7.

1N. D. Kazarinoff and R. K. Ritt, On the Theory of Scalar Diffraction and its
Application to the Prolate Spheroid, Annals of Phys. 6, 277-299 (1959).
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The asymptotic theory which we use to obtain our results gives us more
terms of the series, in descending powers of w, for the exponents of the '"creeping
wave' terms than does the elegant geometric theory of Kellerz. These extra terms
show that the condition Row 2> 1 is essential for our asymptotic theory to give a
meaningful result for the diffracted field. It is reasonable to believe that the
same restriction also applies to Keller's geometric theory. More specifically,
we show that it is the coefficient C of the attenuation exponent C J R_‘z/3 ds
which behaves in an unknown fashion when RO———>O; the evaluations of C which
have been made by Keller and the authors are performsad under the hypothesis
that Row > 1. In an appendix, we compare the magnitude of the attenuation term
which he obtains with the next term of the asymptotic series for the exponent in
the case of two prolate spheroids. We also note that Levy3 has applied the
geometric theory to the case of an elliptic cylinder and has given a mathematical
derivation of the results thus obtained which is based upon the use of the Watson
transform.

Generally, the analysis below closely follows that in Reference 1. Where

this is true we only elucidate the principal points in the argument and omit most

computations. Elsewhere we give a more complete discussion.

2
J. B. Keller, Diffraction by a Convex Cylinder, Trans. I. R. E., AP-4, 312-321

(1956).

3
B. Levy, Diffraction by an Elliptic Cylinder, New York University, Institute of

Mathematical Sciences, Report EM-121, December 1958.



THE UNIVERSITY OF MICHIGAN
2871-2-T

2. We consider an elliptic cylinder with semifocal distance c, eccentricity
e =sech £ o’ and semi-axes a and b. We introduce the (£, 1, z) coordinate

system defined by

x = ¢ cosh £ cos 7
y =c sinh § sin 7 (2.1)
zZ =z

On the surface of the cylinder, § = So; For this cylinder, the operators LS

and LT) appearing in Reference 1, Equation (3.2) are defined by the formulas

d?‘u 2 9
-L_u = + )Y sinh” £ u t>¢)
13 2 o}
d§
and
2
d
Lou= 224y sin®nu (-mrenza).
n an

The constant ¥ appearing above is c{w -~ is), where s is a small positive number.

The boundary conditions are

_3? =0 and u(g, n) =u(E, n +27). (2.2)
3
(o)

Both the operators LS and LTI are of the type considered in Reference 1,

Section 3; and for them, respectively,

Ja = J(#? sinh?£) > 20sc” sinh’ g >0
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and

d=dy? si® ) > 0.

The radial operator LE is to be considered on the interval [SO, oo) , E’O > 0.
For L%,, p=1, and hence p(&fo)# 0. In order to construct the resolvent

Green's function for L., we consider the homogeneous equation
EJ

Lgy-)ty=0, (2.3)

where 2 .
«sk<2wsc sinh £ . (2.4)
0

It has linearly independent solutions w, j =1, 2, with the asymptotic forms
J

-1/2 + i Y cosh§
W) = Gmh &) e {1 , —@)},
3

in which @(1) denotes a function which is bounded for & > N, l)’ l > N, and
lk , < N. In this and in succeeding formulas, the upper sign is to be used

when j =1, the lower one when j =2, Since Zﬁ(i J) > 0, the only solutions
of (2.3) in 1’ (EO, ®) are multiples of w,; therefore, L§ falls into Case I of

Reference 1. We next single out the solution f; of (2.3) which satisfies the

2
boundary condition (2.2) and a solution P, in L (§ , oo):
0

Pu & 2 = wy (8, 1) wg (€, ) - wp (€, 1) wy (€, 0)

¢2 (S: A.) = W2 (E: A.).
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At EO, ]Dl = -2id . Thus, the resolvent Green's function is

P, (€)P, ) (E<E)
-1

G £, 1) = :
ZiXWZ (5 K} A‘) ' .
° Py ()P, (E)  (£'<E)

The operator L_ is to be considered on [ -, 1r] . To construct its

n

resolvent Green's function, we consider the homogeneous equation
L - (—A- ) = O,
ny y

where M\ satisfies the condition (2.4). Using the notation of Meixner and Sch'é.fke4,
we let yI(n, -A) and Y (n, -1) be the solutions of the homogeneous equation for

which

yI(O) =1, YI(O) = 0,
yH(O) = 0, yH(O) = 1.

It is then a routine computation to show that the resolvent Green's function for

the periodic problem is

yI( T )yI(1r -n) yH( T) yH(7r -n)

+ (2.5)

yI (m) yH(ﬂ)

Gn, T, -1) -}Z-

4 .
J. Meixner and F. Schafke, Mathieusche Funktionen und Spheroidfunktionen,

pp. 98-100, Springer-Verlag, Berlin, (1954).
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for T < 1. The relation
G(T.,n -N =GMm T, -1) (2.6)
then serves to define é’ for n <T.

3. We are now in a position to write down the contour integral representa-

tion, guaranteed by the theory in Reference 1 for the solution (£, n) of
[VZ +(w-is)2]v=p(z,’t) (s >0)
which we seek. The function p( =, T) is a distribution corresponding to a

line source at (=, T). The representation is

viE, n, =, T) =

/a/(n; T: ‘>L) G(E:S :A') d)\-’

27i

where [ is a path in the A-plane defined by the conditions

2
r=4+i§, 0< §< 20se sinhzéo:

in which £ and f are real. The integration path [" is oriented in the direction
+

of increasing,z . When s —0, v(&, N =, T ) reduces to the Green's function

for the elliptic cylinder relative to the line source at (=), T).

We shall consider the distribution on the surface of the cylinder and off

the surface separately. On the cylinder,
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v(5,1,2.7) = L / WZ(S’,»G(’?’t’ N . @)
27i r" Wy (go, N

As in Reference 1, we shall evaluate this integral by residues, the residues

contributed by the zeros of wz'(go, N, = > % >%,

V( g: ‘Y]:E:’t) = L 6(7),’5, _M dh

/ [w1(5, N5 o, Nl £, w5, W] WS, 0
4r¥ [

w5 , N
° (3.2)

In the case where it is practical to evaluate this integral by the residues contributed

by the zeros of w§(§o, M), the representation (3. 2) reduces to

! [ 4 ~
V(g,Y),E,/C) = -1 / W2<§: MWI(EO’ »WZ(L_A:M G(ﬂ,T,‘M d\ . (3.3)
4n? w5, N
4, Our first objective is to determine the zeros of wy( 30, A). We need only

sketch the analysis in view of its similarity to that in Reference 1, Sections 6 and

7. The differential equation satisfied by the W is

LY 4 (7 s+ Ny =0.
d%

If we let ) .
A= -Y sinh ;l 3 (4:.1)

then this equation takes the form

2
_d_Yz_ + Xz(sinhzg—sinhz.?l)y:o.
ds

We define v
¢*(5,E,) = sinh® § -sinh®%, ,

£
@(g, 31) =] ¢(t, 51) dt, .Z(g, 51,X) =Y é(g: 5‘1) s
gl

7
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and
1/6 -1/2
}‘(5,21) = @ / (g: gl) ¢ / (g.o g1) (g% gl) 3
with
HERNE Jim %(5 5)

In terms of the above notation, the solutions W have the asymptotic forms

= )’1/6 e+i)'f(§1) V(J) (5) + B(gy, Y)
J

g
I

1/6 +iJf(E i)
yUs Fts) o (€) + B(E,Y)

when lg[ £ N, and the forms

-1/2

; “HE -1
w, = (5,5) ehy [g(g) K 1)][1 +

B( £ )]

when [ g , > N. In these formulas B is used generically for a function which is

uniformly bounded for the range of k4 in question and for ] J , > N,

7/2
f(S)__j \]smh 5 +sin®0 a6,

and ()

) J 1/2  +5mif12
V= (1) e

1/3

te) ¢ /(s)

where H(J) is a Hankel function,

1/3
Whenl)tl << lé’

, it can be seen from these formulas that wy( 50,?0 has

no zeros. Provided (§0,7)) is not too close to the shadow boundary, the zeros of
2

wa(§ O,A) corresponding to values of A with I AI >> 1 J ' have large imaginary

parts, and the terms which they contribute to the residue series may be neglected
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2
(see, for example, Franz5 and Levy3). When ‘ )LI is comparable to lb( ‘ , Wi(5, )

vanishes only if 1 /3

¢ a0 s e =0

— H + =0.

dg 1/3

it § = go’ go fixed, and A is considered as variable, the value 'Zr of .Z

which corresponds to the rih zero of wi( € , A may be thought of as the value of
o

£
(0]
3’/ A(t, 510, 7) ) dt
§

l(h;y )

which is attained when A = A .Since §, and X are related by (4.1). Thus

g = 5500 .

Because the zeros hr of

da | .1/3 (2)
a | ° H1/3“)]

are simple and because this function is analytic in a neighborhood of each of its

Zeros,

_ -1
£ =n + G

The zeros hr and the values of related functions such as ¢ H(Z) (t) at these zeros

1/3

are known6.

The relation / £o - -
B(t,B,(0,Y)) dt=h_ Y + O )
gl(x-rax ) AT r

5
W. Franz, Ueber die Greenschen Funktionen des Zylinders und der Kugel,

Z. Naturforsh, 9a, 705-716 (1954).

6
British Association Mathematical Tables, '"The Airy Integral', Cambridge
University Press, London and New York, 1946,
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may now be used to compute £ =5 (X.,A) by expanding the integrand on the
1 g

T

left hand side in powers of (t - 5 1 or (t - 50). It is vital to note that both of

these expansions are slowly convergent as £—o0. Therefore, the approximation
o

for gr which we obtain by neglecting all but the first two terms is not useful when

§O——-> 0 and w is fixed. We henceforward assume that §O is bounded away from

zero. We find, under this hypothesis, that )
-7

- 5/3 3 2[5 2
e % - o '3_3 / (1_12)2/3 - Te 3 (sinh 50+cosh 30) (_}_1.{)2/3
ro Z(SinhSOcosh 30)1/3 4 60(sinh Eo cosh§'0)4/3 4
C9j —5/3
+ Oy ). (4.2)
The specific value of )\r will not be needed.
Computation of
28, or |
now leads to an approximation for the residue contribution of wy at 7(1,:
O WiE N 3 2 R @ miuw
\ s = e h.H h [1+ .
R X SXsinhgocoshgo r1/3'r )
t (4.3)

In subsequent work, we shall also need an approximation for wj( 80, Ar). An easy

calculation yields the formula

. 3wri
1/2 5 1/6 -iH(5)+=
wi( go’ 2) = (-?2"—) / (37 “sinh 5, coshgo) / e 4

’

. hr1/3 {21/3 ey (g)} {1+g( 5—2/3)},
£=n,

1/3

10
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5. We next approximate G(ﬂ,t-kr). For )Lr = -Y sinh ’ér, the Liouville

asymptotic representations for N and yII are

1/2 "
g | KON oo [ 7] k) ] (5.1)
Ky(v)
0
and 7
sin(a’/ Kr(t) dt)
0
Yiu ™~
1/2
Y [x,0 x, on]Y
where
1/2
(t) = [ Sinzt + sinh2 ¥ ] (5.2)
Kr r . .
These results and the relations (2.5), (2.6), and (5.1) combine to yield
the formula T i
~cos | J [ j K (t)dt-| [ K.(t)dt
~ o T T
G(n,T,-N~ T 1/2 (5.3)
2 ¥ sin XJ K_(1) dt) [Kr(’C) Kr(‘f])]
0
6. In this section we consider the surface distribution, and we derive the

residue series for the integral in (3.1). The residue series we seek is a sum of

terms of the form "
WZ( E.: > A{[‘) G(YI.\’G: —A‘I‘)

2 [wys, »]Hr

These can be approximated by using the results of § §4 and 5. And,in fact, we
need such approximations in order to investigate the convergence of the residue
series and to see if the boundary of the region of convergence coincides with the

geometric shadow boundary. We perform further approximations by expanding

11
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in powers of ( 5r - go) and neglecting the terms which cannot be specifically

computed using the estimate (4.2) for §r— . Henceforward, we shall assume
o}

that the parameter s involved in Y is zero.

We first consider wy(i-, A). Since [= is large,

o i 4.5
- /2
wa(=,2) =exp{—iz{f H,(t) dt +f K_(6) do [1 + 9(J1/§ ) ’
£, 0 [Hr(a ]
where 2 2 2
H,(t) = (sinh’t - sinh™ 3 ) . (6.1)

Performing an integration by parts, we find that

-Qr(a) [ <9/ X_ _-.:J)]
wy( =, Ar) = exp% iy [Coth = Hr(z) + K (t) dt] 1+J( 1e -
[Hr(E])] /
0
(6.2)
with -1 sinh §
yi (t) = sin ___r . (6.3)
r sinh t
The exponential factors in the remainder of the rth residue term are
m i
Y 27rK 0 dt cos[x {j K (1) dt - lf Kr(t) dt H
e 0 r : 0 _ T ) )
sin [z/f K (t) dtJ
r
0
or K T/2 /2 n
-y j Kr(t) dt -j K (t)dtf -id 73 j K (t)dt - f K(t) dt
i)e ¢ 0 e 0 T
, /2
o T K0 at
(6.4)

12
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It is important to note that because

2 2 2
ﬂ/ 7r/ 1{/ sinh& cosh g dt
K_(t) dt = K (1) dt + (5_- §) ° o 4.,
r r 0
and because
3¢5, - %) <o,
w/2
& G S K (Ddt) > 0. (6.5)

0

Since (R (X) is large, it follows that the dominant term in (6.4) is

_ 77 7r/2
exp{ -i) { 5 K (t) dt | - S Kr(t) dt}
T 0

Therefore, by the relations (3.1), (6.2), (5.3), (4.3), and (6.4), the

surface distribution

3mif4 2 Y sinh § cosh § 1/2
V(g :Y) aSa,v) ~ _g—_—"‘ g 0 °
0 2 3
L) v T/2
expd -i ¥ [coth?_\ H() +J K (1) dt + j K (1) dt! -J' K (0 dtjl
T 0

/.

r g '@

1/2
P 7 (o) (1,0 k@ )]

(6.86)
where only the dominant part of the first creeping wave term has been included.
In this formula the functions H,., K, and “ér are defined by the relations (6.1),
(5.2), and (6.3), respectively.

Let us assume that 'r’ > T. Then if we expand K,. in powers of (gr- go)’

we find that the exponential terms in the above summation take the form

13
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Y] ,ZO(E) 7['/2
+ X‘ -j K (t) dt + coth =3 H (=)
[e) 0]
T 0 0
y LD 72
exp(-ix< +(sinh § cosh 3 (S - %) + - dt 7).
(0] 0o r (s} K (t)
+ Y0 0 0
n (3 /2
(5 - %7 P
- [0) + - °
2
T 0 0

sinh* £ ot (cosh‘2 go + sinh? 30) sin’t
. +

tanh [} cosh$

dt

3
KJ (1

H,(Z)

/

Each of the above integrals is a real quantity. The only terms with an imaginary

part in the above exponent are -i ¥, (§ - 50) and ( ?r— 50)2. Using the trans-

formation (2.1), we find that c f Ko(t) dt represents an integral f ds where ds is

the differential of arc on the ellipse bzx2 + a2y2 = a?p? and

that (ap)2/3. o1, / K;I(t) dt

-2/3
represents an integral f R / ds where R is the local radius of curvature on the

ellipse.

2
waves'' is as predicted by Keller . Now by (4. 2),

2/3
Y (sinh 50 coshgo) ( ‘5°I_— go) ~ _(.5}.21)_/_ C; ,
where 1/3 [ /
(~9wh2) . -ri/3 <3h >2/3 2/3 R 1/3
e e R S A G e U

14

This tells us that to a first approximation, the attenuation of the ''creeping
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2
R,=b /a is the radius of curvature at the ends of the semi-major axis of the

ellipse. Thus the second term in the above exponent becomes

sop - U@ s/ /s
+i C; j + j' - X R ds
s(T) s(0) s(0)

The formula for C; reveals an essential limitation upon our theory and
perhaps that of Keller; namely, the above expansion of the creeping wave exponents
in descending powers of w is meaningful only if Rw >> 1. In particular, for a fixed
w, R, cannot be taken too small. Thus, we have derived mathematically the ex-
pected physical restriction upon theories of this kind.

The ( Sr- 50)2 term in the exponent is of less interest. We have carried
out its computation only in the case of the prolate spheroid; see the Appendix.

As the discussion there would indicate, when 50——> @ and the cylinder becomes
circular the ( gr— 50) and ( g'r- 50)2 terms cancel in such a way as to produce the
expected exponent.

It remains to investigate the convergence of the residue series when summed
in the "creeping wave' form. The condition (6.5) shows that the convergence will
not be rapid unless " Lo(=) /2

f(§,7) = S + - K(;l(t) dt > 0.
T 0 0
In fact for a given 7, the condition

(T, n)=0 (6.7

15
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determines the boundary of the region of convergence. We shall show that this
is indeed the optical shadow boundary. To do this, it is convenient to put the

elliptic integrals of the first kind involved in f( §,Y1) into Legendre form. We

then find
en fin \[ — .
cosT “COSY) l-m
f(g,n) = + _ e dt .
a11/2
(1-2)(1-e*%
0 0 0 [ ]

The addition formula for integrals of the first kind can now be used to write

o

cosT ~cos”
j‘ + j as LY o,
0 0 0

1/2 1/2
coshEO{cos‘Csir1>7(cosh2 EO— cosz“r)) / —cosnsin’b(coshzgo—coshz?:) / }

where

a(T,n) =
2 2 2
cosh” ¥ - cos”Z cos™7
o
A tangent to the Eo -ellipse drawn from the point (=}, T) touches the ellipse

at the point (£ v) such that
0
cosh =) sinh¥ cosTcos?+ sinh =} cosh¥ sinTsin» = sinh¥ cosh¥ . (6.8)
o o (] )

When T = 0, it is a trivial matter to verify that (6.7) and (6.8) are equivalent.
For nonzero 7, the verification is easy but tedious.
7. Lastly, we discuss the far field in the shadow zone. In particular, we

derive the residue series for the integral in (3.3) for large ¥ and =, > § > 50, or

th

~—

for large =] and ¥ > =) > ¥. The r" residue R, is precisely
0

16
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(=21 )_lwz(E', )\T)wl'(go, Ar) times the rth residue in the case of the surface

distribution. It therefore follows from the relations (6.2), (4.4), and (6.6) that

R, =FE. ,
where
(sinhE cosh § )Z/3 [ 1/3 93 (%) J
R =
1/3 2/3 ( ) —_ 1/2
"2 PP [Hr(;)Hr(’ﬁ)Kr(’?)Kr(%’)] /
and
v Y
cosgb’“ K(t) dt - ” K. (1) dt, } f
E 0 4
I

i
sin (Y g K_(t) dt)
0

ﬂr(g) ﬁr(E) T
 expy -i X[coth?H (%) +coth(=)H (""')+ f + -f Kr(t) dt
0 0 0

In these formulas the functions H, K, and “Zr are defined by the relations (6.1),

(5.2), and (6.3), respectively.

We can also write E as a sum of creeping wave terms:
r

T

y ™ K

' w 1?(({5 ’ (Zn—l)j Kr(t) dt -i¥ | (2n+1) j’v - j
0

=1 Z e 0 +e v

n=0

J Kr(t) dt,

L5 L2
r
- exp? -iJ l:cothgﬂr(g) coth = H.(Z) + +j K (t) dt]
0 0

17
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Let
v 48

i
Ir(f) =-i) f I— (2n-1) j +j +
0 0

Then a typical exponent is

£(2)

j #t) dt .
0

| 2/3 -1
- 1Y cothSHo(Z) - 1Y coth = H(E) 10T (K) +i¢, L1 (k )+ ...

The description of the terms involving IO in terms of physical parameters is
essentially the same as that given at the end of § 6; and, of course, the remarks
made there upon the region of validity of the expansion also apply. It is a con-
siderably more tedious matter to verify that the creeping wave expansion

converges in the geometric shadow zone.

18
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APPENDIX

1 we developed an expression for the surface distribution

In our paper
induced by a plane wave whose plane is perpendicular to the axis of the spheroid.

This expression is in the form of the well-known ''creeping wave'' representation,

Z.O7 (—1)“Z7A {eivr@r(*))+nLr:|+Z_i
Ir

n=0 r

namely

+ e

ii/r l:dj (v)) +nL ] —%i— }

We should like to point out the restriction upon our result and that given by the
geometrical optics theory of Kellerz. The restriction stems from the terms

(dr(‘r}) +nL r) and (d’i< (M) + nLr). We have shown that
1/2

N/ € -1
iv,d (] =i Va2 p2y | (22 at
1 -2
0

where a and b are the semi-major and minor axes of the spheroid, w is the wave
number, and §r is related to the r'! zero of the Airy function (Ref.1, Sect.10). If

one expands the integral above in a series of ascending powers of Sr - 50, where

-1
£ =e is the eccentricity, one obtains the result (taking into account only the
0

first 3 terms of the expansion)
7/2 7/2

1/3 -1/3 -2/3
iv d (77) ~ iw ds + i(cqw + Cow ) R ds
rr

Arc COS77 Arc COS??

- Y
+1i CqW /3 %t s
, e (1-8)] 1/

19
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where R is the local radius of curvature, s is arc length,

-ri/3  2/3
o, =€ (3hy /
1
2
-2mi/3 4/3
R (3h,) 3 6-m o2, r 3
Co = —_
2 8 15R 2/3 a
"Z7I’i/3 2/3
A N
C3 = - s

8a

R 0= bz/ a is the radius of curvature at the tip of the spheroid, and hr is the rth

zero of [1/3 (1/)3(t)j

In the geometrical optics theory of Keller2 only the terms / ds and
-2/3
Cy /R / ds are present.
Two observations of interest can be made from these formulas. Firstly,

we note that in the case of the sphere (e =0 and b = a) the term

-27if3 3 1/3
ie / (3h 4 R, [ -2/3
R ds

wl/ga

is the negative of the term

i [¢] h)_l/g
3 [(1 e2t2) (1 t-’*)]l/ 2

This is consistent with the known results for the sphere. Secondly, we observe

that if Ro—> 0, that is e —>»1, and if w is fixed, the cg and cg terms completely

c
dominate the attenuation. Let us estimate ———2— in the case n = r = 0, the

wZ/BkQCl
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case of the most significant term in the creeping wave representation. One finds

| 2/3
Je, ﬂb[/ (8-1TR/a) 33/3
= + 5
N TE 15ROz/s a
2/3
where |hy| = ~ %%.(1.0188).

Ifa=6in., b=.61in., and A =1.25 in.,

&Cz
~ 3/8 ;
w2;3&901

while ifa =1 in., b=.11in., and A =1.25 in.,

Therefore, for such spheroids and such a A it appears that our theory and that

of Keller will not give a significant result for the diffracted field. That is to say,
the condition R oW >»> 1 is essential for the expansion of the creeping wave ex-
ponents in descending powers of w to be meaningful. This condition is a con-

sequence of the fact that in order for the expansion of
2 ) 1/2

VS-S
_r dt
0 \1-#¢

in powers of ¥ - % to be useful, we must know € - £ ;whereas § - §
r o r o r (0]

has been estimated under the hypothesis that EO is bounded away from 1.

Further even if Row >> 1, since our theory is only an asymptotic one, we have

no a priori way of predicting for a particular choice of parameters whether or

not the additional terms in this series, which we have found, give a more or less
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accurate result than that obtained by consideration of only the first term. The
examples a =6 in., 1 in. have been chosen for discussion because of recent

7
measurements of Olte and Silver on such spheroids.

7
A. Olte and S. Silver, New Results on Backscattering from Cones and

Spheroids, URSI-Toronto Symposium, June 1959,

22



THE UNIVERSITY OF MICHIGAN
2781-2-T

A CORRECTION TO A PREVIOUS REPORT

In "Studies in Radar Cross Sections XXX, The University of Michigan,
Radiation Laboratory Report 25914 -T, (August, 1958)", two errors are made
which lead to erroneous conclusions.

Equation (2.5) is incorrect. It should read:

2 2
X - X
Wll-{-«pz[ r 2}4‘ 122 w = 0.
(x2-1) (1 -x) (1 -x)

In its original form, the equation led to an incorrect evaluation of the creeping
wave exponents. This was observed in Reference 1 of the present report, and

the corrected exponents appear in the appendix of the present report.

1
Also, the formula for 9y , on page 39, should now read:
oA

Al

oA

9 iy f(x )+2L
~ (xoz—l) % B2 }1/2 hrH(Z) (h.) e o4

r
?F?\r 8 Y X, 1/3

This results in a corrected formula (8.27):

(2) { 2 2 2
h 1- 1-¢&
1/3<H>] (-5 - 29

“ifa -1/4
lim R, = 2.3 i!_hnH
s —»0

( ivnd('r))+% il/nd*(q)—'%i_
e + e

1an

1+e
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