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CHAPTER I
INTRODUCTION
1.1 Historical Background
In the years prior to World War II the design of

feedback control systems was an art that was based on a

few isolated facts tempered, of course, by the designer’'s
experience. This resulted in much "cut and try" engineer-
ing, with varying degrees of success. During World War

II certain groups, notably those at thé Radiation Labora-
tory and Bell Laboratories were called upon to develop cer-
tain servomechanisms to meeﬁ some of the military require-
ments. As a result of this concentrated effort, the design
of feedback control systems advanced from an art to that

of a science, based principally on the works of Bodela

Draperz, Hall3, Harris4, Bazen5’6, MacColl7, and NYquistso

1. '"Network Analysis and Feedback Amplifier Design" (book),
D. Van Nostrand, New York, N.Y., 1945, pages 168-169,.
451-476.,

2. "Design Factors Controlling the Dynamic Performance of
Instruments”, C.S. Draper and A.P. Bentley, Transactions
ASME, Vol. 62, July 1940, pp. 421-432.

3. "The Analysis and Synthesis of Linear Servomechanisms®,
A.C. Hall, Technology Press, Massachusetts Institute
of ‘Technology, May., 1943.

4. '"Frequency Response of Automatic Control Systems",
Herbert Harris, Electrical Engineering, August=
September 1946, pp. 539=546.

5. "Theory of Servomechanisms", H.L. Hazen, Journal of

Franklin Institute, vol. 218, 1934, pp. 279=331.

6. "Design and Test of a High-Performance Servomechanism",
H.L. Hazen, Journal of Franklin Institute, Vol. 218
November 1934, pp. 543-580.



with the exception of the work of Maccoll7, the theory
developed was a linear theory, that is, one based on the
solution of linear differential equations.

In the past decade the linear theories which were
developed in the early °'40s have been refined and some
new methods devised. A considerable amount of effort has
also been expended in the areas of nonlinear control
system analysie and in the study of sampled-data systems.
A review of current literature reveals, however, that an
area still exists which has been by-passed by other

investigators, namely, a comprehensive study of a class

of linear systems commonly referred to as conditionally

stable systems. Although individual cases of this class

of systems have been treated since H. Nyquista first
recognized that such systems do exist, this general class
of systems has never received any organized attention.

The word conditionally stable was prckably first used

by H.W. B@d@l when he described Nyquist“sg work in
connection with feedback amplifier design. Although not
formally defined by either Nyquista or B@del personally,
they recognized that some feedback amplifiers exist which
are open-=loop unstable, but which can be ﬁ@ablized by

closing the final feedback loop.

7. "Fundamental Theory of Servomechanisms"(book)
L.A., MacColl, D. Van Nostrand, New York, N.Y. 1945,

8. "Regeneration Theory", H. Nyquist, Bell System
Technical Journal, Vol. 11, January, 1932, pp
126-147.



A Conditionally Stable 3ys£em as defined by Brown and

campbells is “a system which is unstable for a particular

gain, but stable for both largé:‘and smaller gain values".

A review of literature reveals Herr and Gerst'’, and
Tfaversll, have studied systems'ﬁhiqh they also defined

as conditionally stable. A closer inspection of the
systems studied by them would reveal that their definition
of cdnditional stability does not égree with the one pro-
posed by Brown and campbell,9 The systems considered by
these latter authors were openmloqp ungtable. Inspection
of the root-locus plots for these systems would reveal that

- they satisfy the following definition: "a system that is

stable for a particular value of gain, but is unstable for

both higher and lower gain values". A comparison of these

two definitions shows. that they are essentially opposite
in their definition of‘the useful regions of operation.
In an attempt to clarify this situation, in the work that
followg, both types of systéms will be discussed.

The author'’s interest in conditionally stable systems
stems from the paper by Travers;l‘who stated without proof
that using conditionally stable control systems the foilowing
advantages could be achieved over the conventional absolutely

stable system:

9. "Principles of Servomechanisms® (book i, &, szows,
D. P. Campbell, 1948, p. 172, John Wiley & Sons Inc.

10. "The Analysies and an Optimum Synthesis of Linear Servo-
mechanisms”, D. Herr, I. Gerst; AIEE Transactions,
Vol. 69, 1947, pp. 959-70.

11. "A Note on the Design of Conditionally Stable Feed-
back Systems”, Paul Travers, AIEE Transactions,
vol. 70, 1951,



1. These systems sometime permit larger gain compared
to an absolutely stable system of the same band-
width.

2. These systems sometime permit a smaller bandwidth
for the same loop gain.

The reasons for nminimizing the bandwidth are:
1. 7To minimize the transmission of noise by the system.
2. To reqguire the lowest frecuency response charac-

teristic for the physical elements of the system.

. 0
1.2 Research of Herr and Gerstl

jlerr and Gerst published an article summarizing their
study 0f a class oi servomechanisms having an open-100p

frecquency response function of the following form:
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whare v 22 and t2 1, while r +t -g=2 or 3. The
parameters ¢, r , and t are variables which control the
high, medium, and low-frequency attenuations rates,

and @, and ® are the corner frecguencies associated

2
with the logarithmic representation of the magnitude

of the open-loop function (see Figure 1.l). The
problem which they treated was: Given A , M . and

max
the high-freguency attentuation rate, determine that
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attenuation~rate

Y which minimizes ;@ , the band-

width ratio. a

The authors were trying to minimize the effective
bandwidth of the closed-loop functions, since this type
of system would: a) minimize the amount of energy re-
quired to operate the system, b) minimize extraneous
noise present in the system, and c) utilize all the
bandwidth possible in a given situation.

The approach they used to solve the above problem
was: a) to create a normalized %{s) fﬁnction having the

following form:

13
. 1 1l + a X{(jw)
o - Pramel
Xr(jw) 1 + Db X(jw)
where "
I
X= _jo ,a=_VK , and b = >§K 1.2-3
\Y'/__, w . w *
K 1 2
b) To form a new function
c(x,a,b) &3y - 1 & £(X.8.0) 1.2-4

M T g(x,a)

where C 1is the %‘ intercept of the M contours in the

KG(s) plane. M in this case is the magnitude of the

system response function. The authors chose to deal with



¢ rather than M because the analysis could be more
readily carried out.
c) To determine where M>1 is a maximum and C(X,a,b)

is a minimum in the equation
g(X,a) c(X,a,b) = £(X,a,b) 1.2=5

This was done by partially differentiating this equation
with respect to X , yielding

[f%'g(x,a) c{X,a,b) = j%‘f(x,a,éﬂ 1.2=-6
X=X»7

whose solution, when substituted back into equation 1.2-=5

yields
g(Xm Q) C(Xm a,b) = f(xm ,a,b) 1.2=7
. I , _
d) Now since C(Xh ,a,b) = w2 1 , assign M = Mmax

(design parameter) and form a second equation

Cc-g(X,a) = £(X,a,b) 1.2-8

e) DPartially differentiating equation 1l.2=8 with respect
to X vyields



c {j§% g(X,a) :(j% f(X,a,%ﬂ ; 1.2=9
B X=X

and upon substitution this value of X back into equation

1.2=8 above yields

C g(Xm ,a) = f(Xm ,a,b) 1.2=10

f) Now equations .1.2-9and 1.2-10 define b as a function
of a . Following their method b is now maximized by
differentrating equationl.2-10 partially with respect

to a .

d
C<§z=g(xm  a) = Ja f(xm :8,D) 1.2=11

g) Equation 1.2=9,1.2=10 , andl.2-=11 form a simultaneous
system of equations which can be solved for Xh , @,b,
Solutions are restricted to positive values of xh a,b,
for which b<{a , for which b is actually maximim, and
of course which corresponds to a stable systemo} |

One of the systems treated by the authors was

. w1 , 1

A:f“’-ﬁ-v-}g‘z (l+'=]w.‘) :;‘Lz Ll;_i_.i}.{lm

(o) LW, 2 X (1 + bx)2
(1’+JZG)

2



In this case

g(x.a) = (1 + a’x°)

£(x,a,b) = bASs 20%x% x (1 + 2b%- 4ab) - 2%°

The simultaneous set of equations which must be solved is

2 2 2.2

4.8, p2x%4 ¥4 - 4ab) - 2%° = c(L + a°x’)
m m

b'X 4+ 2b X +X (L +2b
m m m

ap?x® + 602x¥ + 2%% (1 + 2b%- 4ab) - 2 = a’c
m m m

and

ac = «4bX2
m

They Nyquist diagram for this class of systems is shown
in Figure 1:2 , while the corresponding root-locus will

be found sketched in Figure 1.3 .

1.3 Research of Travers

Utilizing the same form of an open-loop function as
proposed by Herr and Gerst, Travers chose Krohn's® criterion
as his starting point in developing a set of criteria for

minimum bandwidth systems. Noting that Krohn's criterion

* See reference 12 on following page



10

A - PLANE

[- 28

Xz+®

--
-1+j0

X . (I + 4=
G’ o+ )4t

Figure 1.2 Nyquist Diagram of a Minimum Bandwidth System



11

/
/
s - PLANE /8
/ fiw
/
/
/
/
A,
/ 3
—< - >— Do \ Jz
_l \ \—DOUBLE ORDER POLE
DOUBLE ORDER POLE \
--——\-%
\
\
x - OPEN LOOP POLE \
e~ OPEN LOOP ZERO | \\
\

\

Figure 1.3 Root Locus Sketch of a Minimum Bandwidth
System



12

will be satisfied using this open-loop function if

g=1r =1, and in addition, making use of the following

equations
Mmax
‘ KG(j(Dm) l = 2 -1 le3'='l
\/M -1
, max
Arg KG(jw ) = Sinwl [ L } - T 1.3=2
. m M 4
max
and
J*‘ Arg KG(me) + %] = (r=l)wl - th = 0 1.3-3
’ w 2+ w2 2 + w2
1 2
Travers established the following relationships:
®2 4(r-1)t
] = y ’ lv3°4
w - =11 @ .2
1 {cos = )
M
max
“n 2 (x-1)
_— = , 1.3=5
@ cost L
M
o max
L2 2t
w = “"l l la3°°6
m  cos T

M
max

12,

"Theory of Servomechanism®, (book), James, Nichols,
Phillips, McGraw=-Hill Book Co., New York, N.Y., 1947,

p. 182, Krohn's criterion states that in order to
utilize the maximum phase margin of a system, the open-
loop transfer function should be tangent to the
M-contours at the point of maximum phase margin, provid-
ing the curvature of the open-loop function does not
exceed the curvature of the M-contours. This curvature
requirement is satisfied by making g =r-1 in equa-

tion 1.2-1.
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Inspection of equations 1.35 and 1.3=-6 will reveal that

fﬂ is not dependent on t , the order of the pole away
w1
from the origin, and %% is not dependent on r , the

order of the pole at the origin, as it was in the case
of the work of Herr and Gerst.

The use of Krohn's criterion with this class of loop
functions permitted the separation of the high-and low-
frequency attenuation rates about wh . The effective
bandwidth has been made independent of "t". "“t" is used
only to determine fg .

W

m

1.4 The Missing Link

A review of literature has therefore shown that a
definite gap does exist in the analysis and synthesis of
linear systems which are conditionally stable. While in
practice such systems do exist, their design and stabiliza-
tion have been treated as a more complex problem requiring
an extension of the design techniques normally used. A
class of conditionally stable systems have been discussed
by Herr and Gerstlo, and Traversll° Also brief mention
about such systems will be found in the books by Bode, *
James, Nichols, Phillips,** and to a lesser degree in the
book by Nixonl3° In each case the authors have discussed

specific examples. However, such questions as:

* Reference 1, pp. 162-163
** Reference 12, pp. 177-192

13. "Principles of Automatic Controls" (book), F.E. Nixon
Prentice-Hall, N.Y., 1953, pp. 114-121.



1. What are necessary and sufficient conditions
for an unstable open-loop system to be closed-
loop stable?

2. Are all conditionally stable systems open-loop
unstable?

3. Are there any advantages in making an open-
loop system unstable?

4. Given a prescribed unstable open-loop system,
how can it be modified to give satisfactory
closed-loop response?

were left unanswered.
An attempt to anwer these questions has led to the

subject matter presented in this dissertation.

1.5 8cope of the Research

The objectives of this dissertation are therefore as
follows:
1. To study the advantages and disadvantages of
systems that are open-loop unstable.
2. To establish the design conditions which permit
a feedback control system that is open-loop
unstable to become stable on closing the final

loop.

14
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CHAPTER II
CONTROL SYSTEM CONCEPTS

2.1 Transfer Function of a Linear System

A complex control system will in general consist of
a number of electrical, mechanical, hydraulic and pneumatic
elements interconnected in a given physical complex. The
physical complex must in turn be broken down into a number
of small sections in such a way that each section may be
considered as acting independently. Under these conditions,
a number of differential equations can be written relating
the various sections. In addition, if these equations are
linear or can be linearized and still describe the opera-
tion of the system in a satisfactory manner, they can be
transformed from the real time domain into the complex
s-domain using the Laplace transformation. If the initial
conditions are now equal to zero, one or more transfer
functions Gi(s), i=1, 2, 3, . . . will be obtained
relating the various components of this system. The
procedure for obtaining the transfer function of a
physiéal element is found discussed in such books as

Gardner and Barnes14 or White and Woodsonls

14. ‘"Transients in Linear Systems", (book) M. F. Gardner
and J. L. Barnes, Vol. 1, 1942, Chapter V.

15, "Electromechanical Energy Conversion," (book) D. C.
White and H. H. Woodson, 1959, Chapter II.
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In the work that follows, it is assumed that the
problem of reducing a physical complex to its equivalent

linear transfer function form has been solved.

2.2 Stability of Open~Loop Systems

Attention will now be focused on a typical transfer
function, G, (s), obtained as a result of applying the
procedure discussed in the last section. It is a rational
function defined as follows:

m
Xz(s) a. +a. s + = - = ams

Z(s) 0 1
= G, (s) = = - - - n
xl(s) i P(s) b0 + bls + bns

2.2=1

which can be represented in block diagram form as shown
in Figure 2.la . In representing a system in block

diagram form, it is implied that the initial conditions

operator* is assumed to be zero. In addition, if the

transfer function block Gl(s) is to be connectéd in
cascade with a second transfer function Gz(s) = E; (s),
X
2
(see Pigure 2.1b), the following assumptions are implied,
namely
1) The function'xz(s) is not altered as a result of
connecting Gz(s)_to it. In other words it assumes
that Xz(s) operates into an open circuit or into

a system Gz(s) having a much higher impedance level.

* See reference 14, page 132
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2) The impedance level of Gl(s) is such that it
causes no change in XI(S)’ the excitation
function.

In order for Gl(s) to be physically realizable

as a voltage ratio, rx;arn, while to be physically realiz-

able as a transfer impedance, i.e. EL(S)' , h = m=1l,

I
Now equation 2,2-1 may be wri%ten as

(s+zl)u(s+zz)v~ - (S+Zm)w

Xz(s)=xl(s) F(s) = Xl(s)

(S+pl)u'(8+p2)v - - (s+pn)w°

where in general z ., may be real

1, Zp, v e Py pz' o e
or complex, and u, v, w, w', v', u', may be of any order
as long as they are finite. '

If zi or pj is complex, however, its complex
conjugate zi* or pj* must also be present. The following
question may be raised regarding the characteristics of
Gl(s)° "What must be the restrictions on Gl(s)‘éo insure
a stable response from Gl(s) which will be independent of
the input function xl(t)?"

The following approach is used to answer this
question:

In order to determine the stability of the function
Gl(s), it is necessary to give the input which is described
by xl(t) an infinitesimal perturbation and note what
happens to the output as a function of time. The easiest
type of perturbation to give the input is a unit impulse.

When xl(t) represents a delta function input occurring at
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t =0, Xl(s) = 1, and eqguation 2,2-3 with this input func-

tion may be written in expanded form as follows:

’ K ' ] . ’
X, (s) = N iy + V “ay + - s + K
2 - E (s+Pi)‘ . (s+P2)J o E (Sv{—pn)Z oo
i=1 j=1 /=1
2.2-3
Taking inverse transforms of both sides, equation 2,2-3
becomes;
u-2
x (t) = |K £ + “2 + N S
2 - 11 (u-1)! (u-2)! tee
. -2 -
- v-1 K.tV
t 22 -p.t
. e .2-4
+ KZl (v-1) ¢ + (v-2) . + J e "2 + 2.2
i w-2
~ w-1 K, .t
t N2 -p t
+ K%l Ww-1)° + (W-2) 1 + e } e " n + ... Ka,a(t)

-

From equation 2,2-4 the following restrictions regarding
the location of the poles of F(s) in the s=plane can be
deduced:

1. pl' pz' o o e pi cannot be negative real or can-
not have a negative real part if complex, for xz(t) to
remain bounded for all values of t.

2. pl' pz’ o & o Pj cannot have pure imaginary values,
or the system will be continuously oscillatory.

3. A pole or order 2 or more at the origin must be
excluded since these lead to functions of the type Kbtr

where r >1
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2.3 Stability of Closed-=Loop Systems

Since it is possible to talk about either the stability
of the closed-loop function % (s) or the stability of the
open-loop function % (s), the definition of open-loop
stability will now be extended to include a closed-1loop
system of the type shown in Figure 2.lc . It consists of
a device known as the error detector which senses the
differences between the input and output. Although in an
electrical circuit this is usually the difference between
two voltages, in the general case, it represents the
difference between the input, or the regulated variable,

and the output, or controlled variable.

x(s) Oy(s) TRl (s)  x(s), | G1(s) = Ga(s)  [=x3(s)
(a) (b)
R(s) —n 2(e) KG(s) ~C(s)

(c)

Figure 2.1 Block Diagram: Representation of Linear
Control system
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The closed-loop system, which is represented by the block

diagram shown in Figure 2.lc is defined by the following

equations:
c ‘
=(s) = KG(s) 2.3-1
and
[of _ KG(s) _
RS) = T ka(s) 2.3-2
Equation 2.3-2 can be written in expanded form as follows:
B P
Q(s) ) EQ co + cls + cps _
R co d +d,s + -~ = =d Sq
0 1 q
2.3=3
n =
T 8. | - - -
i1 j ! (s+al)(s+a2) (S+ap)
’TEIT' o, (548,) (s48,) - - = (s48)
i=1

where g 2>p for‘g(s) to be physically realizable. A com=-
parison of equation 2.2-1 with 2.3-3 reveals the closed-
loop function to be identical in form to the open=loop
function, and therefore all the restrictions placed on
the open=loop functi@mﬁ%{s), to guarantee its stability,
also apply to the closed-loop function, %(s),

In the majority of feedback control systems the design-
er usually possesses a stable open-loop function, and he
is called upon to add passive compensation so as to achieve
satisfactory closed-%oop performance. In the study of con-=
trol systems a desigﬁer may be confronted however,with an
open-loop system that contains a right half-plane pole,and
it is therefore open-loop unstable. The following questions
must then be answered:

l. Is it ever possible to stabilize the closed-=loop

system if the open-loop system is of this type?



2. What restrictions must be placed on this type
of'g(s) function in order that the %(s) function
be stable?

The answer to question 1 will be "yes" if it can be shown
that at least one case is possible in which KG(s) is un-
stable but the closed-loop function %(s) is stable. &as
an example, consider the second-order system having the

following form:

o a + als
=(s) = - - X 2.3-4
E(s) KG(s) bo " b2s2

where ao' al’ bo, b2 are all positive real numbers. Now
in this case the poles of KG(s) lie on the jw axis and
therefore the open-loop function is continuously oscilla-
tory. Ecquation 2.3=5 represents the closed-loop function
of eguation 2,3-4.

a + a,s

KG(S) _ O 1 2.3=5

= 2
1 + KG(s) (ao+ bo) + als + bzs

C
2 (5)

Inspection of equation 2.3=5 reveals that the poles lie in
the left-half plane, and therefore-%(s) will be stable.
Question 1 can therefore be answered affirmatively.

The answer to cquestion 2 is not so apparent since all
possible types of open-loop functions must be considered.
It is therefore discussed in detail in the work that

follows.

2.4 Linear System Block Diagram Transformations

The block diagram of a physical system consists of the
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interconnection of & number of linear blocks of the type
described in Section 2.l. If the system is complex, its
reduction to a single operational expression can be time
consuming. Graybeal16 has shown that by using eight
prototype ecuivalences given in Figure 2.2 , it is
possible to change any multiple-loop system containing a
number of interconnected linear blocks into a whole host
equivalent systems. In order to show that these trans-
formations are equivalent, consider as an example, the
case shown in Figure 2.2g . Starting with the left-

hand configuration shown, the following ecuations can be

written:
€1 =¥ ¥ 2.4-1
X5:= Gyq%y 2.4-2
ei = el:t x3G32 2,4=3

Substituting equations 24-1 and 2?#42.into equation 2.4-3

equations 2 4=5 and 2.4-6 are obtained.

ei = Xl - G3lx3 4 x3G32 2.4=4
el' =X, = X, (G31:F G32) 2,4=5
ei =Xy - xé 2,4=6
Xy = %x,(G3 F Gy,) 2,4-7

Inspection of equations 2.4-5 ,2.4-6 , 2.4-7 «reveals that
they are indeed the defining equations of the right-hand

diagram of Figure 2.2g

l6. Graybeal, T.D., "Block Diagram Network Transformation",
Trans. AIEE, Vvol. 70, pp. 985-990, 1951.
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2.5 The Prototype Configuration

In Section 2.4 the subject of linear eqguivalences in
a feedback control system was introduced. In this section
these ideas will be utilized to show that any linear block
or group of blocks can be left unaltered when applying these
transformations to a random configuration while reducing the
remainder of the system to some prescribed configuration.
Since, in general, when the transfer functions are combined,
a multiple-loop system will result which will also have a
random configuration, it is necessary to approach the
problem in an organized fashion, and pick a specific con-
figuration which will serve as a prototype for the work of
this dissertation. After some consideration, the prototype
shown in Figure 2.3 was considered most promising. It
consists of two differentials 1 and 2, interconnected by
transfer functions Glz(s), GZO(S)' GOZ(S)' GOl(S)° In this
configuration, the inner loop (enclosed by the broken lines)
represents a closed-loop system whose transfer function in
general takes on any form, stable or unstable, represent-
able by a rational function p(s)/q(s). The function GlZ(S)
and GOl(s) represent the remaining portions of any multiple~-
loop system. In order to see that the configuration of
Figure 2.3 is completely general, let us consider the
system shown in Figure 2.4a which contains 5 differ-
entials and 6 transfer functions. The inner loop enclosed
by the broken lines represents the unstable inner loop in
this case. This corresponds to the unstable inner loop in

Figure 2.3 , which is also shown within the broken lines.



G p(s) Gao(8)

Figure 2.3 The Prototype Configuration

The problem at hand is to take the configuration of
Figure 2.4a and reduce it to the prototype of Figure
using the equivalent linear transformations shown in Figure
2.3 . First apply transformation "e" of Figure 2.2
and in this way interchange differentials 1 and 5. Next

G

apply transformation "b" of Figure 2.2 and combine G 43°

34’
The resulting configuration is shown in Figure 2.4b .

Next move G12 on the other side of differential 2 by

application of "d" in Figure 2.2 and interchange differentials
2 and 5 by applying Figure 2.2e . The resulting configura-
tion is shown in Figure 2.4c¢. Combine Gl? G45 and

G4

1l + G34G43

and its associated differential 5 with the
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»C(s)

(s)

Goz

(c)

G.z[ G3a ] Fo ===

4

T+G,.6 {
R(s ) - 3443 G«, : $»Cls)
+ +6.6 [———GH—] |
- 12743 H-GMG"3 K

3'-'—2+G°2+G°, <

(d)

Figure 2.4 Reduction of a Complex System Utilizing
Linear Block Transformations
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aid of Figure 2.2b. The resulting configuration is

shown iﬁ Figure 2.4d. .Inspection of Figure 2.4d reveals
the box in broken lines to have been unaltered in this
process and therefore it represents the unstable inner loop
of Figure 2.4a . The transformations of Figure 2.2. can be
applied in any order to a given linear system to reduce it
to the prototype of Figure 2.3.. In this way the specific
loop under consideration can be separated from the remaind-
er of the system and its effects on the rest of the system

can be analyzed.

2.6 Root-Locus Methods

Since the root-locus method of analysis has been used
as a major tool in this dessertation, a summary of the well-
known properties which govern the behavior of root loci
will be discussed. For a more detailed treatment of these
aspects of the subject, the reader is referred to a number

17, 18, 19, 20, 21

of excellent papers on the subject. Some

17. "Graphical Analysis of Control Systems", W. R. Evans,
Trans. AIEE, Vol. 67, 1948, pp. 547-557

18. *“Servomechanism Analysis", G.J. Thaler and R.G. Brown,
(book), McGraw-Hill Book Co., Inc., New York, 1953
Chapter 14.

19. "Control System Dynamics", W.R. Evans, (bookj) Chapt.
7 and 8. McGraw-Hill Book Company, Inc., New York, 1954.
20. "cControl system Synthesis", John G. Truxal, (book),
McGraw=Hill Book Company, Inc., 1955, Chapter 4,
pp. 224-277.

2l. '"Feecdback Control System" - J.C. Gille, M.J. Pelegrin,
P. Decauline, (book), McGraw-Hill Book Company, Inc.,
pp. 235=255.



of the more recent developments and some of the less
Kknown properties have been treated in greater detail.
a) Definition of the Root-Locus
The open-loop transfer function of a linear feed-
back control system having m zeros and n poles can

be described by the following operational ecuation:

m
KL (s +2,)
g(s) = KG(s) = l;l 1 2.6-1
(s + p.)

where zi and pj represent the zeros and poles of the open-
loop function respectively
The corresponding unity feedback closed-loop function

for this system is described by

m
B
T At ) — e (87 %) 2,62
R 1+ KG(s) WQT Tmr °
j=1 (s + pJ.) + K =1 (s + zi)

The dynamic behavior of the system is determined,
in part, by the location of the poles of %(s), which
are the roots of the characteristic equation. In terms
of the open~loop poles and zeros the roots of the

characteristic equation are given by the zeros of

TET (s + pj) + K 1mr (s +2,) =0 2.6-3
j=1 i=1

In ecuation 2.,6-3 the plus and minus signs indicate
degenerate and regenerate feedback, respectively. BEqua~-

tion 2.6-3 when refactored will have the following form:
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n
TT (s + BJ.) = 0, for n > m 2.6-4
j=1

which puts the roots of the characteristic equation, Bj,
in evidence. A comparison of equations 2,6-3 and 2.6-4
- reveals that the closed-loop poles are, in general,
functions of the open-loop poles, open-loop zeros, and

loop gain. 1In symbolic notation, Bj may be expressed as

= d L] ° ° ° © ° I} 2’6-5
Bj = QK Py Py, P, %1, %2, Z)

which puts into evidence all the factors controlling the
location of the roots of the characteristic equation.

The root~locus is defined as the locus of Bj when K is

chosen as a parametric variable with pj and zi fiked,

Inspection of equation 2,6-5 reveals that it is possible
to choose any of the remaining quantities as parametric
variables. These have been considered more recently by

22f,23. Their results will be discussed later

some authors
in this chapter.

Inspéction of equation 2,65 reveals that the root
locus can also be defined as the zeros of the equation

1l + KG(s) = 0, or where

22. "Some Mathematical Properties of Root Loci for Control
Ssystem Design", F.M. Reza, Transactions AIEE, 1956
Bagic Science Peper 56-125. '

23. "Synthesis of Feedback Control Systems by Gain-Contour
and Root-Contour", V.C. Yeh, Transactions AIEE, VOl.(App &
Ind) pp. 85-95, May :1956.



-1 degenerative feedback
KG(S) = 206“"6

+1 regenerative feedback

Equation 2,6-~6 when written in polar form becomes

eJ(W =+ 2nm) degenerative feedback

- jo _ . -
X6 (s) —/oe P - 3(0 < 20m) 2.6=7

regenerative feedback
Referring to the above definition of the root locus, it
is apparent that determining the root locus of a system

results in determining where the

T £ 2NT degenerative feedback
Arg KG(s) = ' 2.6-8
0 + 2N7 regenerative feedback
and where IKG(S). = 1,

In the above equations

N=0, 1, 2, ...

In constructing the root-locus one therefore maps
either the positive or}negative real axis (degenerate
or regenerate feedback) in the KG(s)-plane into "“slits"
in the s-plane.

b) A summary of Well Known Root-Locus Properties

In constructing the root-locus the following well
known properties are utilized:

1. A branch of the root locus starts from every

open-loop pole where K = 0 and terminates at

an open-loop zero where K =00,

30
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2. The root locus of a real system is always symmet-
rical about the real axis.

3. The closed-loop system will become unstable when
a branch of the root locus enters the right-half
plane.

4. For a realizable transfer function, G(s), there
are as many branches of the root-locus as the
number of poles of G(s). If the numerator and
denominator of G(s) are of degree m and n,
respectively, there are n-m zeros of G(s) located
at infinity, hence n-m branches of the locus
terminate at infinity.

5. The asymptotic center is the intersection point
of all linear asymptotes. For a real system this
point is on the real axis:

N

m

b - 7

T - ng Py i1 b Arg 5" = 180°+360°N  2.6-9
° n-m ) n-m

where P, and zi are poles and zeros of KG(s),
respectively.
6. At a junction point of the branches, the tangents

to the locus are equally spaced over 27 radians.

2.7 Gain-Loci and Phase-ILoOci

The definition of the root-locus as discussed in section

2.6 is in reality a special case of the more general gain-loci
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and phase-~ loc:.?2 123,24,25 The form of KG(s) as given by

equation 2.7-1 namely,
c K %1 (s +z,)
E(S) = KG(s) = - 2.7-1
. S + ,
50 ( PJ)

where zi and pj represent the zeros and poles of the open-
loop function, respectively, equation 2.7-1 can be written
in the following form, which puts in evidence the amplitude

and phase relations of this function:

% r Job
KG(s) = /o If - ; Ty 2.7-2
T, R, e’"J
A_]g]_ )
m n
7 = Z o Y B 2.7-3a
i=1l j=1
T, ¢
/0 = K i?——-}- 2.7-3b
5Ty Ry

While in section 2.6 }Z’was either zero or some multiple
of w, in the case of phase loci .79 is allowed to take on

all values. Under these conditions a new group of loci will

22. See reference 22 section 2.6
23. See reference 23 section 2.6

24. "The study of Transients in Linear Feedback Systems
by Conformal Mapping and the Root-Locus Method" Victor
C. M. Yeh, Trans. ASME, April 1954, pp. 349-36l.

25. "synthesis of Feedback Control Systems by Phase-2Angle
Loci" Yaohan Chu, Trans. AIEE, Vol. 71, part II, 1952
pp. 330-339.
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be obtained with ¢ as & parameter. Correspondingly, Dby
letting/ﬂﬁ take oﬁ values other than unity, the value it
has in the case of the root-locus, a group of gain-loci will
be obteained for each value o?/o\

The concept of gain and phase loci will become readily
understandable by considering the'following example of &

second-order feedback control system containing two left-

o)

ralf plane poles o, B, gain K, and defined by the following

open-loop transfer function:

C jP S £
=(s) = e = = . . 2.7-4
= //9 (s + a)(s + B), r.el®1 ¢ 9
1 2
ox
jﬂ -6 6, 2.7-5
and

//9 = = R} 2.7-6
1

In order to determine the phase-angle loci, the parameter,

jﬂ , has been assigned the following values:

¥ =0, + %F (N=0, 1, 2, ...)

in the KG(s) plane,which will be found plotted in Figure

2.%5a + The corresponding "slits" produced in the s-plane
by allowing K to vary along a prescribed phase-angle locus
are shown in Figure 2.5b . Inspection of Figure 2.5a

reveals that lines of constant //0 will be concentric
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KG(s) - PLANE

P=8/3,K=8
w
37
4/3,K4"\ 5
2
£2/3 ,Ks2 \
=1/3,Ks|
T - o »u
5L
4 7_}
I
2
AW

s - PLANE

Figure 2.5 Gain and Phase Loci of a Second-Order Control

System
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circles about the origin of the KG(s)-plane. The corres-
ponding "slits in the s-plane are shown as the dashed lines
in Figure 2.5%% Inspection of eguation 2.7-6 reveals
that for prescribed pole?locations of ¢, and B, varying
//9 in KG(s)-plane correSponds to varying K in the s-plane.
Thus, in reality the value of//O and K are related by a
constant. Since the system gain, K, 1s usually a design
parameter, it is usually the one that is plotted.

The ideas presented here will be further discussed in

section 4.7.

2.8 Method for Determining the Roots of an Nth Degree
Polynomial in s.

A new and little publicized method of solving for the
roots of a characteristic equation was recently found by
the author.* The technigque, which utilizes the basic
cdncepts of the root-locus technicue, is in no way restricted
by the order of the system. The rules governing the
behavior and construction of the root-locus also applies in
this case.

Given:

n n-1 . n=2
F(s) =8 + als + azs + an y 2,8 1

which is an nth order polynomial in the complex variable
s, and one whose n roots are desired to graphical accuracy.

The'procedure used to determine the roots can be

* The original method, which was attributed to Walter
BEvans of Autonetics Division of North American, hes
not been published to the best of the author's
knowledge.



described as follows:

1)

2)

B
o

F

The polynomial 2.8-1 is factored by first removing
an and then factoring an s out of the remaining
terms. The following form of ecuation 2.g «y
results: _

n-1 n-2 N o
F(g) = s {; + alS + - a‘ﬂ-l + c:.n 2.8-2

How if within the brackets of 2.8-2 the term a9

9 Rangt*
is removed, the resulting terms will again contain
a common factor s, wnich can again pe removed.

fAguation 2.8-1 now tekes on the following form:

. o]
, - n=3 . ' .
s (s + a8 b -G ) + a

a paac
1 n-2 n-1 n
Tha above procedure is repeated until all the co-

efficients except a, ere removed. The final form

of F(s) is

Starting with the inner-most factor neamely, s(s+al),
5
s (s+a.)

is constructed using root locus techniques. ince

the root-locus for the function Fl(s) =2

. .2
what is really wanted are the factors of s + als+a?,
attention is focused on locating on the root-locus

of Fl(s) those points where Kl = |a2| . At this

point us(s + al)| = Kl =8,
at these points s  + als + a, 0. Thus Zl and
32 which are the zeros of 32 4 als + a2 , have

been found.

or, in other words

i

(s) = s -——.{s [s(s+al) + azj + a3} 4 —— an_l +an 2.8

Sy

<



5) Knowing the location of these two roots permits
one to move on to the next step of the procedure.

This consists in making a root locus plot of

2

s(s + zl)(s + 22)

F,(s) =

which is the next grouping of factors in the next
innermost parenthessis,
After the root-locug is constructed, attention is

again focused on determining where on the gz(s)

3

root-locus KQ z=

a ‘ . This will yield three
roots, which in factored form become

s + Z s 4+ 7 s + 3
[~

6) The procedure used in 4) and 5) above is repeated

until all the roots of F(s) have been determined and

F(s) = (s + Al)(s + AZ)(S + A3) « - . . (s + An) 2.8-5

The above procedure can e viewed as determining the

root-locus of an n loop linear feecdback control system. If
K
o

P, (8) = +——— s consicered which is the inner-most func-
1 s(s+al) ’

tion in the inner-most loop, then finding the roots of the
polynomial F(s) corresponds to solving for sach root-locus

of this n-1 loop control system, which in this case possesses
& prescribed configuration. This configuration which is
shown in Figure 2.6 consists of a singles pole on the real

axis and a pole at the origin of the inner-most function and
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a pole at the origin in each of the n-2 external loops.
Inspection of Figure 2.6 reveals the gain constants to

be ratios of the coefficients of the polynomial. 1In each
case once the angle condition of the root-locus is determined,
the closed loop roots are determined as a result of the

feedback properties and the prescribed gain constants.

indicating the rem&ining elements and loops present that
exist in an nth order system

Figure 2.6 Simulation of an n-th Order Polynomial as a
Control Systam

The method will now be illustrated by an example and
proceeds as follows:
1. Given F(s) = s4+ 12s3+ 56s2+ 88s 4+ 68

2. Factor F(s) as follows:

F(s) = s[s{s(s + 12) + 56}+ 88] + 68
3. Starting with the inner-most factor, namely

s(s + 12) determine Ehe locus of roots of the

1

ETE‘I“IET using root~locus

function Fl(s) =

technigques. The resulting locus is shown in
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Figure 2. 7a

Now determine where Is(s + 12)| = Kl = 56. This
represents the location of the roots of the poly-
nomial within the braces, which in this case is

found graphically to be

(s + 6 + j 4.43) (s + 6 - j 4.43)
Utilizing the newly found roots at S= -6 - j 4.43
and s = -6 + j 4.43, determine the open-loop roots
of the next grouping of terms, namely, the closed-
loop roots of
F.(s) = . K2 ,
2 s(s + 6 + J 4.43) (s + 6 - j 4.43)

The locus for this case is shown in Figure 2.7b.
Next determine the location on the root-locus of
(5) above where

s(s + 6 + j 4.43)(s + 6 - j 4.43) = K2 = 83.
As a result of applying these amplitude conditions,

the poles of F3(s) are found to be

(s + 3.08)(s + 4.46 + j 2.95) (s + 4.46 - j 2.95),
The above process is again repeated by now

writing F3(s) as follows

K3

F3(8) = (s + 3.08) (5 + 4.46 + J 2.95) (5 + 4.46 = J 2.95)

and first determining the argument conditions on
F3(s), and, then determining where the amplitude

conditions are satisfied. From the root-locus oF
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Figure 2.7c the roots of F(s) are found graphically to

be

F(g) = (s + .95 + j 1.1)(s + .95 ~ j 1.1)
(s + 4.98 + j 3.05)(s + 4.98 - j 3.05)

e

which compares very favorably with the exact values

(known in this case) as

F(s) = (s + L + j)(s + 1 = 3)(s + 5 + j3)(s + 5 ~ j3)

o

While the above d@scriptioniof the method leads to
solutions of graphical accuracy, in the case of higher
order systems there may be considerable error utilizing
this method. A review of the root locus plots will reveal
that i1f an error is made in f£inding the locus in the céase
of the inner-most functions, these errors will scounulats

Thise probliam can hHe circuavented to ¢ cartain degrea oy
solving Zfor the soots 0f the inners binomiel &7 4+ 128 4+ 58

i

analyticaliy using the cuadratic formula, anc thzen otilize
this information in determining the roots of the higher
order polynomials. In & similer mannar it is possible to
extend the analytical approach to the real axis pole from
the graphical plot and to utilize this in the following
mannexr:

From root-locus plot (see Figure 2.7b) the real axis

root was estimated to be at s = ~3.1l. Taking this root and

dividing it ocut of the trinomial gives



41

[ s - PLANE
AW
A
' - «—h—> '
-8 -4 -8
A
(8 +6+]443)(s +6-]443)= .88 \\
X -OPEN-LOOP POLES
i A -CLOSED-LOOP POLES \
s(s-12) =-56 (b) \

X —OPEN-LOOP POLES
& — CLOSED-LOOP POLES

(2)

(c)

Figure 2.7 Solution of an n-th Order Polynomial by Root
Locus Techniques



s 4+ 8.9s + 285.41
3 2
s 4+ 3.1 s 4 128 4 56s + K

s3 + 3.ls2

8.982 + 56 s

8.982 + 27.59s

28.41s + K
28.41s + 88,071

Since remainder must be zero K = 88.071. However to
satisfy the next outer bracket, inspection of F(s) reveals
this constant should be 83. It is apparent therefore, that
an error does exist and the root at s = -3.1 must be
modified if greater accuracy is desired. This can be done
with the aid of a calculator to any desired degree of
accuracy. Once this has been accomplished, the remaining
factor being a quadratic can be solved using the quadratic
formula. Since for a third order system the approximate
location of the real axis root can always be found and the
argument condition of root locus position is precisely
known, the above procedure can always be carried out. Thus
the roots of the cubic can be determined to any desired
degree of accuracy. These roots now serve as an accurate
starting point by which to locate the roots of the remaining
expression.

In the case when a fourth degree polynomial has real
axis roots, the above technigue can bé extended to the
fourth order equation. If the roots (as determined by the
root-locus) are complex, the above technicue cannot be

carried out since the precise location of the root locus

curves is not accurately known.
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CHAPTER III
SECOND ORDER CONDITIONALLY STABLE
CONTROL SYSTEMS
3.1 Background

An idealized feedback control system represented by

the following closed loop transfer function:

2

c dzs + dls + dO

g(s) = 5 3.1-1
ezs + els + eo

has been considered as the logical starting point for
this investigation. While second-order systems seldom

exist in practice, they lend themselves readily to

ana 1S . , do,
nalysis If d2 1

negative, and zero values, it is apparent that all second

do are allowed to assume positive,

order systems that are closed loop stable are being con-
sidered. In addition, if in Figure 2.3 Gl2 = Gol = 1,
the configuration of Figure 2.3 reduces to that of Figure

3.1. The defining equations then become

o] =

E(s) = KG(s)

(o} _ _ _KG(s)

R(s) T 1 + KG(s) 3.1-2
and

E(S) 1

R\ T 1 + KG(s)
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where KG(s) may in this case contain its own feedback
loop. This, of course, is necessary to generate unstable

%(s) functions.

1)
i .. Open=
Loop
:/ under
| consider-
| ation
|
|
|
_I
Figure 3.1 The Prototype Configuration
Now. let
2
%‘S) =1 +1KG(S) = b252 U 3.1-3
: ezs + els + eo
then
(e.- b.) s> + (e.- b.)s + (e~ Db )
o) = xa(s) = 2—2——"—= °© 2. 3.1-¢

bzs + bls + bo
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and 5
C KG (s) (6, by)s™ + (e;= by)s + (e - D))
=(s) = 3.1=5
R 1 + KG(s) 2
e.s +e,s +e
2 1l o)
If

d, =e, - b ' dl = el~ b1 , and do= e,- bo
then equation 3.1-5 is equivalent to equation 3,1-1.

Inspection of equation 3.1-4 reveals the following in-

formation:

1. The zeros of g(s) and %(s) can be in the right or
left half plane depending upon the relative
magnitudes of bo, bl, b2 and eo‘ el' e2.

2. Any missing powers of s in the denominator poly-
nomial of %(s) must be present in the numerator
for a system to be stable.

3. In addition consider the special case when

K(s - zl)(s + 22)
(s = p))(s + p,)

%(s) = 3.1-6

where 2z are real and positive.

1, %2, P, Py,
Under these conditions
K(s - zl)(s + z2)

(s = pl)(s + p2) + K(s - zl)(s + 22)

—g-(s) = 3.1-7

K(s = zl)(s + 22)

o=

(1+K)sz + [(p2+ K.zz)-(Pl-l- Kzl) ] s - E:Plpz"' Kzizzju

3.1-8
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solving for the closed-loop poles of equation
3.1-8 reveals that the closed-loop function
contains one right-half plane pole and therefore

yields an unstable closed-loop system.

3.2 A Comparison of the Two Commonly Encountered Definitions

of Conditionally Stable Systems

Conditionally stablé systems have been treated in
detail by few authors. Review of the iiterature reveals
that in many cases authors have specifically excluded this
class of feedback control systems from their discussion.
As stated in Section 1.1 Brown and Campbell called a

conditionally stable system a system which is unstable for

a particular gain, but stable for both larger and smaller

gain values. While the definition used by other authors

is a system that is stable for a particular value of gain,

but is unstable for both higher and lower gain values.,

To get a clear insight into these definitions the root-
locus of a typical system from each catagory is compared.
In Figure 3,2a is shown the root-locus for a system
satisfying Brown and Campbell's definition. Inspection

of the open loop function which characterizes this root-
locus reveals'ﬁhat it contains only left half plane poles
and at least two finite left half plane zeros. #As the
gain 1s increased, it is apparent that a pair of closed
loop poles move into the right half plane for a prescribed

range of gain, but with further increase in gain the root-
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locus and therefore the closed loop poles return to the left
half plane.

On the other hand, the system whose root-locus is shown
in Figure 3.2b possesses a pole of order 2 or more at the
origin, or one oxr more right half plane open loop poles.

In this case the closed loop system is unstable for small
gain since the locus lies in the right half plane, but
becomas stable when the closed loop polés move into the
left half plane. Depending upon the order of the system,
as the gain is increased one or more branches of the locus
return to the right half plane, thus indicating unstable
closed loop behavior.

Both types of systems are ones which require care
in their design and are therefore avoided by many control

system designers.

3.3 cConditionally Stable Ssecond-Order Systems

In section 3.2 two different types of conditionally
stable systems were discussed. Inspection of Figures 3.2a
and 3.2b reveals that neither of these systems is second-
order in nature, and therefore it is necessary to modify
the above definitions in order to include all possible types
of conditionally stable systems.

Cconditionally stable systems as used in this disserta-

tion is that set of linear feedback control systems, whose

internal zeros all lie in the left half plane, whose root-

locus contains one or more branches that cross the jw-axis

more than once, and/or whose root-locus contains one or more

right half plane open-loop poles. This result would be cb-

tained for the system represented by Figure 3.2b if two additional
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s = PLANE / /]

\
NOTE : NOT TO SCALE \ \\
€ (6)- K(s?+2s +26) C (e K(s2+25+2)
E " s(s+1Ns+2) E s(s-1)(s +1)s+2)(s+I0)

Figure 3.2 Root-Locus Plots Representing Two Types of
Conditionally Stable Systems
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finite left half plane zeros were added to the system.
In this investigation all mathematically feasible second-
order %(s) functions were investigated using principally

the root~locus method of analysis. As a result of this

analysis it was found that conditionally stable second-

order systems may arise when the open-loop transfer

function contains one of the following:

1) One or two right half plane poles, one or two
left half plane zeros.

2) A negative gain constant in the error channel;
one or two finite left half plane zeros, two
poles located anywhere.

3) A pole of order two at the origin. This represents
the. limiting case of a conditionally stable system,
since in this case for zero gain constant the
root locus approaches the imaginary axis.

As an example of 1) above, consider the open loop function

+ K($2+ s + 1) _ +K(s + .5 + j.866)(s +.5 - j.866)

KG(s) = ‘ : .
(s°~ 1.4s+.98) (s =7+ j.7) (s =.7 = j.7)

3.3-1

This function is characterized by two right half plane
poles and two left half plane zeros. The root-locus for
this function is shown in Figure 3 .3 . Inspection of the
root~-locus reveals that for small gains the closed-loop
function contains two complex right-half plane poles and

therefore the system is unstable. As the system gain is
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increased from zero to infinity, the closed-loop poles

move from the right half plane into the left half plane.
In this case for K= 1.4 the closed-loop system will be
continuously oscillatory, while for K> 1.4 the closed-
loop system will be stable. In this case as the gain of
KG(s) increases from zero to infinity, the poles of the

closed loop function always remain complex.

Jw
s-plane
~.54+3j .866 e |
7o+ 3.7
R
—
7= 3.7
~.5 = j .866.\_/

Figure 3.3 Root-Locus Plot of a Conditionally Stable
: gystem with Two Complex Right-Half Plane
Poles

As an example of 2) above, consider the open loop function

_K(s%+ 1.45 +.98) _ -K(s+.74].7) (s+.7-1.7)
(s+.5+j.866) (s+.5~].866)

KG(S) = 303":’2

(sz + 8 + 1)



51

This open loop function is characterized by two left half
plane poles, two left half plane zeros and a negative gain
constant. The root-locus for this function is shown in
Figure 3.4, Inspection of the locus reveals that for
small system gain the closed loop function contains two
left half plane poles which yield a stable oscillatory
system. As the system gain is increased, the closed loop
poles move into the right half plane. Still larger

system gain, will yield a closed loop function having two
real right half plane poles. As the gain is made still
greater the closed loop roots move again into the left
half plane. As the gain tends to infinity, the closed
loop roots become complex and lie in the left half plane.
In this case since the poles and zeros of KG(s) lie in the
left half plane, the open loop function is stable although
the closed loop function may be stable or unstable depend-
ing upon the system gain. More specifically the system
will be unstable for 1.0l > K>.715

Jjo
1
-.5 + j.866 ¥
-7+ §.1 s-plane
—7 -j 07
-.5 - j .866 -]

Figure 3.4 Root-Locus Plot of a Second-Order System
with a Negative Gain Constant
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As an example of the third class of functions, consider

the open loop function

K(s® + 8 +1) _ K(s +.5 +].866) (s +.5 = j,866) , , .

s? 52

KG(s) =

The open loop function is characterized by a pole of order
two at the origin, and 2 internal left half plane zeros.
The root-~locus for this function is shown in Figure 3.5 .
Inspection of this locus reveals that for positive gain
this system cannot be rightly referred to as a condition-
ally stable system, since as the system gain is changed
fr6m~zero to infinity, the poles of the closed loop
function always remain in the left half plane. However,
it does represent the limiting case of a conditionally
stable system, since with the addition of another pole

it can be shown (see Section 4.5 that it is possible

for the locus of this system to move into the right half
plane‘before finally terminating at the zeros that lie

in the left half plane.

-.5 + j .866

s-plane

-5 - .866

Figure 3.5 The Limiting Case of a Condltionally
@+ahle Quatem
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3.4 Mathematical Derivations for the Root Locus of Second

Order Feedback Control Systems

In the construction of the root locus for real values
of %{s) the locus must lie on the real axis. The construc-
tion therefore imposes no real problem. When the roots of
%(s) are complex, in the usual case, the construction
of the root locus is a time consuming procedure which must
be done with care, if acceptable results are to be obtained.
In order to facilitate the plotting of the locus and to
add mathematical credence to the locus plots, the equations
that govern the location of the roots of'ﬁ(s) when they
are complex have been determined. As an example of this
technique, consider the second order transfer function
having the following form:

(s + zl)(s + zz)

3.4-1
4 (5 + p,) (s + p,)

KG(s) =

which is the form of the second example on page 51 . 1In
h = i = i .
this case zl QT + j wl ' pl (E + j wz and

z, = z,% P, = p* but 4 * of course, is real. The

problem at hand is to find the location of all the

complex roots of'g(s), as the gain /& is varied. Now
c, .\ _ _Ka(s) :
since R(s) =71 + Ka(3) what is really desired are the

zeros of 1 + KG(s) for all values of gainz% - Thus

l + KG(S) = O 304""2

or

* note,4% is used in this derivation in place of K:w;%
as previously defined.
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(s + zl) (s + zz)
KG(s) = -1 = ATE" pl)(s " 92’

3.4-3

Utilizing the complex components of KG(s), and at the
same time solving for ﬂ, the following equation is obtained

% _ (T+T)+ S0+ o)] [(T+T) + o - o) e

I:(Q‘+G‘Z)+ Jj(w +w2):| [(TH);) + j(w = (‘02{]

Now since % must be real, its imaginary part must be equal

to zero. In other words

[(cr+<r,)+ j(wml)j [(T+0)+ j(w”wlﬂ
"Q[’%] 3& ET+<§_)+ Jlarwy) ] [T +G)+ j(wwwzﬂ (=20

3 O4’w5

After expanding and collecting terms this can be written

in the following form:

2 2 2 2 T2
U +v2’vl+w2‘wl~ r @’ =
2(T - 1)
2 2 2 2 2 2 2 277*
U0~ Ty 0T+ 0, T Tp =Tyt &y -

3.4-6
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Equation 3.,4~6 will be recognized as the equation of a

circle with center at

2 2 2
w =0 i T =- Up "T1* 9~ 9 3.4-7
o c 2(:72 ~YT1)

and radius

A ]

, - - - >
T2 % ~ U—‘]_ ®y = vl 0'24:0;@1

2
/’ T, - 0, +J, 3.4-8

The root locus when the roots of %(s) are complex can

thus be found using equations 3 4.7 and 3.4-8 . When

the closed loop roots are real, théy will fall on the

real axis, and their root locus can readily be constructed.
The above results will now be applied to a specific example.
Let

- - S+o7+j07)(s+.e7"je7)
KG(s) = i?s T .5 + .866) (5 + .5 - 5.866) 3.4-9

By application of equation 3.4-7 the center of this circle
is found to be

w = 0 H U— — °25 = 049 + 075 - 049

fo c - 2('05 - °7) = + 005 304“10

By application of equation 3.4-8 the radius of the locus

is found to be



-

/ = \,:-‘-’-49:-323—-:?9- + (.05)2 = 1.02

Using a compass and a straight edge the complete
locus for this function can readily be constructed
(see Figure 3.6 ). The accuracy obtained by this
method exceeds that obtained by the usual "cut and try"
technique.

The author developed equations which would allow
rapid construction of the root-locus for all second-
order systems. These will be found listed in Figure 3.7,

Since this unpubliéhed work was carried out, Yeh24
published a similar list. However, his list also included
equations for the root-~locus of some third and fourth
order systems as well. The emphasis of Yeh's research
was to develop the form of the root-locus equations and

little mention was made as to its application.

3.5 Computer Study of Second-Order Systems

In order to verify the theoretical results on the
second~order system, a computer study was made of a number
of second-order systems that were open loop unstable.

Although it would be desirable to test the open loop as

24, See reference 24, Section 2.7

56
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4w
s - PLANE

)‘\\

Figure 3.6 Example of Root-Locus Construction
Utilizing Only a Compass and a Ruler
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Figure 3.7 Equations for Constructing the Root-~Locus of Second-Order Systems
When the Roots are Complex.
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well as the closed loop character of these systems, due
to their unstable open loop character, the computer study
was limited to the closed loop functions only. The
following computer "road map" was utilized for the simula-

tion of these systems which have the form

2
dzs + dls + do

2
s 4+ e,8 + e
1 o]

3.5=1

c -
R('*--3) =

Equation 3 g5-] may be rewritten in the following fashion:

c(s) = R(s) (d.s% + d.s +4) 3.5=2
2 2 1 (o}
s“ + e .8 + e ,
1 o |
Letting
R(s
Cx(s) = 2 ( ) 3,5=3
s + els + e,

equation 3.5=2 can be put in the following form:

2
C(s) = (dzs + d.s + do) Cx(s) 3.5=4

1
Now since the setup that is used to solve for cx(s)

will also contain squ(s) and s cx(s) terms, the right
hand side of equation 3.5-=4 may be solved to obtain
C(s). The "road map" for the simulation of this equation
is shown in Figure 3.8. The advantage of this "road map"
over others being that it is possible for the constants
el’ eo’ dz, dl, do to take on any positive value. In this
way it is possible to simulate either real or complex

poles and zeros lying in the left-half plane.
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Figure 3.8 Computer Diagram Used for the Study of Conditionally
Stable Systems with Left-Half Plane Closed Loop
Zeros

In addition, if dz‘ dl, do take on negative values, %(s)
will contain one or more right half plane zeros. It is

also possible by a modification of Figure 3.8 to simulate
these non-minimum phase functions. A road map to simulate

non-minimumphase functions is shown in Figure 3.9



G

' d
1 1 dl o e

All resistance have a value of 1 meg. ohm,
All condensers have a value of 1 microfarad

Figure 3.9 - Computer Diagram Used for Studying Conditionally Stable
Systems Containing Right Half Plane Closed Loop Zeros

In Table I are listed the necessary modifications that
must be made in the "road map" of Figure 3.9 to simulate

any prescribed second-order nonwminium'phase %(s)a

TABLE I.
Modifications Made
Closed Loop Functions in Figure
. d252 -as - a
a) E(s) = remove amplifier 5

s" +e,s +e
1 o



Closed Loop Functions (con't) Modifications Made in

Figure (con't)
2
o dzs + dls - do
b) E(S) = > remove amplifiers 5 and 6
s + els + eo
2
c —dzs + dls + do
c) E(s) = 5 remove amplifiers
s 4+ e.s + e 6 and 7
1l o)
2
c ~d2s + dls - do
d) ~E(s) = > remove amplifiers
S +e.8 + e 5, 6, and 7
1l o
2
c -dzs - dls + do
e) E(s) = > . remove amplifier 7
s+ e.s + e
1 (o)
c -dzsz- dls - do
£) E(S) =3 remove amplifiers
8 + els + eo 5 and 7

As an example of the simulation of a second-order
system, a computer study was made of a system defined by

the following open loop equation:

K(s + 4)
s - 38 + 5

c - -
E(S) = KG(s) =

The closed loop function for this system becomes

K(s + 4)
s2+ s(K=3) + (5 + 4K)

A root locus plot of this system is shown in Figure 3.10,

[ o
R(S) =
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_ < 1 +.3j2.83
1.5+ J 1.65
A a0 ~ —
It -5
1.5 - J 1.65
\“'l-j2;83
-3 bt
-3.5 =3 57

X = open-loop pole
® - open-loop zero

A - closed-loop pole

Figure 3.10 Root-Locus Plot of the System Studied on an
Analog Computer

Inspection of the root locus reveals that for K=1, the
closed loop system is unstable. In Figure 3°li are
recordings of the system response to a step input. It

is apparent that this system is unstable for this gain.
Now if the gain is increased until K=3, inspection of the

root locus reveals that the closed loop system possesses

63
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two poles on the jw axis. The system will be therefore
continuously oscillatory; w = 4.12 rad/sec, being the
undamped natural frequency. The computer recordings in
Figure 3.12 for this value of gain clearly indicate the
stable oscillatory natufe of this system. For K greater
than 3 and less than 22 the closed loop poles will be com-
plex and lie in the left half plane. Inspection of the
recordings of Figure 3.13 indicate the damped oscillatory
nature of the system for K = 10; the damping constant

for the system in this case being.f = .52. For still
larger gains the closed loop roots become two real left
half plane roots. 1In Figure 3.14 will be found the

recordings for K = 50.
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Figure 3.13 Time Response Curves for the System
of Figure 3.10 with K = 10
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of Figure 3.10 with K = 50
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CHAPTER IV
HIGHER ORDER SYSTEMS

4,1 Background

In chapter III the root locus method of analysis
was used to analyze second order control systems that
are conditionally stable. The ideas developed in that
chapter can be extended directly to higher order systems.
However, a more general approach is desirable, since the
complexity and the number of possible system: combina-
tidhs increases rapidly as the order of the system
increases. Attention in this chapter is therefore directed
toward the more general properties of the root locus as
applied to conditionally stable systems. These include
the following topics:

1. The behavior of the root locus for large values
of s.

2. The sufficient conditions which will insure that
the locus terminate in the left half plane.

3. The pbss;ble pole-zero configurations of KG(s).

4. Minimum or non-minimum phase'closed~loop systems.

4.2 Minimum or Non-minimum Phase Closed-Loop Systems

Up to the present time no specific mention has been
made as to what characteristics the closed-~loop function

must possess. In this section the characteristics of these
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systems are discussed &nd will serve as a justification
for the material in the following sections.

Cconsider the open-loop function

K(s + zl) - = = (8 + zl) - = = (8 + zm)

C
"'S=KG5= ‘402“’1
£%) (e) (s +p;) === (8+p;) === (s+p)
j n
and the closed-loop function
K(s +2,) == (s +2,) ~= (s +2)
-g-(s).: 1 3 I 4.2-2

(s + Pl) - = (s + pn)+ K(s + zl) -~ (s +z)

which in this form focuses attention on the relation between
the poles and zeros of the open and closed-loop functions.
A comparison of equations 4, 3.) and 4,2-2 reveals that
the zeros of the open-loop function are also the zeros
of the closed-loop function; while the poles of the closed-
loop function are dependent upon the zeros and the poles
of the open-loop function plus the loop gain, K.

In order to investigate the effect a zero has at
various locations in the s-~plane, two examples will be
studied.

Example of a third-order system with one real zero

Consider first the simple third-order system shown in
Figure 4.la and let a finite zero be added on the real
axis in the extreme left half plane. The behavior of the
root-locus will now be investigated as this zero, z,, moves
along the real'axis; As~z,—+-p3 the system becomes more

like a second~order system with vertical asymptotes located
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at (, (see Figure 4.1b ). The case when z, is located
so as to cancel P, is shown in Figure 4.lc .
As z, is allowed to move toward the origin, successively
different root-loci are obtained which, of course, lead to
a different set of closed-loop poles. When 2z, cancels p2
a second-order system results with vertical asymptotes at
U;1 . When z, cancels the pole at the origin, another

2

secbnduorder system results with a vertical asymptotes at
T, .

Now let z, enter the right half plane. Inspection of
the root locus (see Figure 4.1f ) reveals that no value of
positive real gain exists that would lead to a stable closed-
loop system, since one of the branches of the root~locus
always lies in the right half plane.

Example of a third-order system with complex zeros

As a second example consider a simple third order
system, but now let a pair of complex zeros be introduced
far out in the left half plane. Under these conditions,
the system will behave similar to a third-order system.
However, the addition of the complex zeros will force the
complex branches back into the left half plane for some
large gain, and therefore adding these zeros has made it
a conditionally stable system of a type described by Brbwn
and Campbell, namely, a system that is stable for small
gains but which becomes unstable for larger gains and then
becomes stable again as the gain tends to infinity.

In Figure 4.2 is shown how the root=-locus changes

with changes in the location of the zeros. Attention is
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directed toward Figure 4.2b where the complex zeros are
allowed to move into the right half plane. Under these
conditions the system will become unstable for some gain.
Truly, this is an undesirable condition, because the closed-
loop performance has not been basically improved by the
addition of the complex zeros.

As a result of the above observations the author has
restricted the work that follows to systems whose finite
zeros all lie in the left half plane, or in other words,

to closed-loop minimum phase systems.

4.3 Extension of the Root-Locus Techniqgues

In section 2.6 some of the well~known properties of
the root-locus method of analysis were presented. However,
in the application of the root-~locus method of analysis to
n-th order systems the author has found the multiplicity
relationship between the s and KG(s) functions not clearly
defined. Consider, for exémple, the simple open-loop

function

KG(s) = = 4.3-1

and let

. P , )€
KG(s)=U+JV=f€ and s = T + jo=r&

Substituting these quantities into equation 4,3-1 and then
solving for r and © yields



. -
and y et —{L—~

The root-locus in the KG(s) plane (see Figure 4,33 )

is investigated by letting 0 </o< oo and 99 =T : 2N,
while N, which acts as a parameter, takes on all integer
values. For each new value of ﬁ, KG(s) will always map
the negative real axis. However, a study of the root-

locus in the s-plane (éee Figure 4.3b ) will reveal that

Jv Jo /

KG(s)-plane s-plane /

Figure 4.3 Showing the Multiple Mapping Property in
the s and KG(s) Planes
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for
N=0 e=-—375
N=1 0=~
N =2 ="§J3I'
N = 3 e=~-37-’—r-=~371

Thus, we arrive at the conclusion that associated with
each N there exists a certain curve or branch of the root-
locus in the s-plane. 1In this case, for N = 3 no new
branches of the root-locus are obtained. In general,
however, the number of branches that occur depend upon

the number of poles and zeros in the KG(s) function. The
multiple mapping of the negative real axis in the KG(s)
plane results in "slits" being mapped in the s=plane,

An example of a more complex root-locus diagram is shown

in Figures 4.4a and 4.4b . The different values
of N being distinctly labelled.
Jv Jw
J A
KG(s)-plane 'k\ s-plane
\ 7
/
T T Y X *—'?‘“"‘ e R e
' \
/ ‘e
'S
N=0,0p=m=n ————
N=1, ¢ = 3n —_——
N=2, ¢ = 5= P

(2) (b)

Figure 4.4 An Example Showing the Multiple Mapping
Property of a Higher-Order System



If, in place of letting ?’ take on fixed values in
ecuation 4,3-2 it is allowed to be a variable so that a
sector in the KG(s) plane is mapped, there will be a
corresponding sector in the s-plane which is defined by
® = - 3~ . These are shown in Figures 4.5a and 4.5b ,
In a more complex case a sector in the KG(s) plane will

map into an odd shaped region in the s-plane.
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Figure 4.5 An Example Showing the Multiple Mapping
Property Utilizing Phase-Angle Loci



76

As an example of a somewhat more complex plot, consider

the open=loop funétion

K(s + zl)(s + zz)(s + z3)(s + z4) 4 323
s(s + p;) (s + P,) (s + Py) (s + p) °

KG(s) =

where

24| > [23] > |22] > [21]| >[s| > [P > [oy]
A plot of the root=-locus for this system is shown in solid
lines in Figure 4.6, while the cross-~hatched area represents
the region associated with a sectof‘in the KG(s) plane
(in this case around # = T I 2wz,

As the number of poles and zeros of KG(s) increase and
as their locations change the sectors in the Smplane may
take on odd shapes. However, for a fixed zero-pole
configuration each section will alwéys start at a pole and

terminate at a zero of KG(s).

4.4 Crossing or Intersection of RootwLocus Branches

In the study of n~th order systems sooner or later
the following question must be answered:

"Is it possible for the branches of the root-locus

of a given system to cross or intersect?"

In section 4.3 it was shown that once the zero=-pole
configuration of KG(s) is given} a definite angular condition
efists over the entirevsurface of the s=plane, Any'fixed
angular value in the KG(s)-plane will map “slits" in the
s-plane, which start at each pole of KG(s) and terminate
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at each zero of the system as the value of//O is increased
from zero to infinity.

Now, in order for two distinct branches of a root-
locus to cross it is necessary for this crossing point in
the s-plane to possess two different argument values. The
only place such a condition can exist fgr a rational func-

tion KG(g) is at its poles and zeros. Therefore it is

impossible for two branches of the root-~locus which

possess different argument va;ues to intersect anywhere in

the s=plane except at the poles‘and zeros of the KG(s) func=-

tion.
The other type of intersection can be brought about
by the intersection of two branches of the root=locus

having the same argument value. Inspection of the system

shown in Figure 4.7 will reveal it to be such a system,

It represents the one of a family of zero-pole configurations

obtainable from this type (fourthmorder) of system, that

yielés a unique angular condiﬁion everywhere on the four

branches of the locus, which in this case is P = -,

A slight movement of the poles p, , p,* ., to the right

will result in the zero=-pole configuration shown in Figure
4.8 , while a slight movement of the poles, p, , p,* , to

the left gives the zero-pole configuration shown in Figure

4090
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\ // s-plane
\\\ //,
\\ /]
\ A / ka(s) = k
N\ /<f ® s(s+l)(se+ks+20)
ég)\\ /o
\ /T

-2-34

Figure 4.7 An Example of a System Possessing Three
Breakaway Points

A more detailed investigation into the characteristics
of systems which possess ihtersecting root=locus branches
will reveal, that it is a characteristic of even the simplest

second-order system. These systems which contain two closed=-
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loop poles that lie on the negative real axis for small
loop gains, but which become two'critically damped poles
for somellarger gain, and then two complex poles for still
larger gains. This in effect represents the same type of
argument condition as the example shown in Figure 4-7
In the case of the second-order gystem, however, there
exists only one point where the closed-~loop system has
two identical roots, while in the case of the fourth-
order system for small gains (i.e. K§= .8) the closed-
loop system possesses two real roots, while for K§= 1.25
the system possesses two pair of complex conjugate roots
at s = =2 + j§ 2.45.

In section 4.7, it will be shown that the points in
the system where two roots occur are in reality saddle

points or points of stagnation of the KG(s) function.

4.5 Conditionally Stable n-th Order Systems
In Chapter 3 the subject of conditionally stable second-

order systems was ilntroduced and a number of second-order
systems were studied. One of the topics considered at
that time was that of stability. In attempting to extend
the ideas presented to a general class of nuth order
systems, it is necessary to return to the n-th order open~

loop function

K(s + z )(s + 2 ) - - (s + Z, ) = (8 + zm)
(S+pl)(s+p2)~~(S+Pj)=~ (S+p)

KG(s) =

o« 6=1
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which was discussed in detail in section 2.6 .

In order to define a stability criterion for a
general class of systems, it has been found necessary to
classify the general n-th order system and to obtain an
answer to the following question: "Given a rational open=-
loop function, KG(s), which satisfies the definitipn of a
conditionally stable function, what set of sufficieht
conditions can be placed on KG(s) which will insure
stability of the closed-loop function,'ﬁ(s) ?" As a
result of this research three classes of open=-loop func-
tions were found which will always lead to a stable closed~
loop function for some real gain, K. These will be
discussed in turn:

Class A Conditionally Stable System is defined as one

possessing the following characteristics:

1) 1In equation 2.6-1 (n - m) = 1, or in other words,
the open~loop function contains a single order
zero at infinity, '

2) KG(s) contains (n - 1) left half plane zeros, and

3) KG(s) contains one or more right hélf plane poles,
or, a pole of order 2 or more at the origin.

Class B Conditionally Stable System is defined as one

possessing the following characteristics:

1) In equation 3 g.1 (n-m) = 2, or in other words, the
open-loop function contains a double order zero at
infinity,

2) KG(s) contains (n - 2) left half plane zeros,



3) KG(s) will contain one or more right half plane
poles, or, a pole of order 2 or more at the

origin.

Class C Conditionally Stable Systemsare defined as

ones possessing the following characteriétics:

1) 1In equation 2.6-1(n-m) > 3 or in other words,
the open-loop function contains a zero of order
three or more at infinity,

2) KG(s)»contains (n - 3) or less left hand plane
zeros,

3) KG(s) will contain one or more right half plane
poles, or a pole of two or more at the origin.

The conditions that must exist for each class of systems
to be stable will now be discussed.

Consider first systems that satisfy the conditions

defined under class A. The open=loop function will be
of the'form

Kle +2)) ~--(8+2,) 4.5-1

(s + pl) - == (s + pn)

KG(s) =

where all the zi lie in the left half plane, while pj
can fall in either the right or left half plane. To
satisfy the conditionally stable requirement, it is nec-
essary that at least some pj be in the right half plane,
or, as a limiting case a pole of order 2 exist at the
origin. In the above class of functions, however, all

the open=-loop poles may lie in the right half plane.

84



Now since all the (n - 1) internal zeros lie in the left
half plane, there will be (n - 1) branches of the root
locus which terminate at these zeros. The remaining
external zero terminates at infinity along the negative
real axis, and therefore some gain can always be found
which will place all the closed~-loop poles in the left
half plane,

Stability Criterion for a Class A Conditionally Stable

System
The stability requirement of the class A type

system can now be stated: A system meeting the require-

ments given under Class A above can always be stabilized

for some finite real gain, K.

Examples of root=locus plots for Class A conditionally
stable systems are shown in Figure 4.1¢,. Inspection of
the root-~locus and the corresponding open-loop function,
will reveal that a number of distinct zero-pole configura-
tions have been included.

Consider next systems that satisfy the conditions
defined under class B. The open-loop function will be of

the form

n-2 4,5=2

KG(s) =

where all the z, lie in the left half plane, while pj can
fall in either the right or left half plane. However, to

satisfy the conditionally stable requirement, item no. 3)
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listed under this class of systems must be added. Now
since all the (n = 2) internal zeros lie in the left half
plane, there will be (n = 2) branches of the root-locus
which will terminate at these zeros as the loop gain tends
to infinity. For these branches of the root-locus, there-
fore, some gain can be found which will place (n - 2) of
the closed-loop poles in the left half plane. It is now
necessary to investigate what happens to the remaining
2 branches of the locus which tend to infinity along the
asymptotes, which were defined by equation 2.6-9 in section
2.6 and which is repeated here for convenience,

m

n
2.5 T 2
= j=1

.= +
q — i ¢ Arg s' =M 2.6-9
(o] n=m n=m

For the case of (n -~ m) = 2, these asymptotes have an
Ir 4
ing branches of the root-locus tend to infinity in the jw

argument condition of - N7 , which makes the remain-
direction. Now, if in addition, the pole -~ zero configura-
tion is such as to make G( < @ . these asymptotes will
lie in the left half plane, and so will the remaining 2
closed-loop roots. |

Stability Criterion for a Class B Conditionally Stable

System
The stability requirement of the class B type of

system can now be stated: A system meeting the require-

ments given under Class B, above, can always be stabilized
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for some finite real gain, K, if in addition to these

requirements, a restriction is place on the zero-pole

configuration so as to make (; 1lie in the left half

plane.
Examples of root-locus plots for Class B condition-

ally stable systems are shown in Figure 4.11. They were
chosen because of their distinct zero-pole character.

Consider now the systems which satisfy the conditions
defined under Class C. They represent a number of dis-
tinct types as (n - m) takes on various values greater
than three. In order to investigaté the behavior of these
systems, attention will be focused on the specific class
defined by (n - m)= 3,. Under these conditions the open-
loop function will be of the form:

k(s + zl) - - == (8 + Zn~3)

(S+pl)-~--(S+pn)

KG(s) = 4,5-3

where again all the zi lie in the left half plane, while
pj can fall in either the right or left half plane. How=
ever, to satisfy the conditionally stable requirements,
item no. 3) listed under this class of systems must be
added. Now in this case there are (n - 3) internal zeros
which lie in the left half plane, and correspondingly
there are (n - 3) branches of the root=-locus which termin-
ate at these zeros as the loop gain tends to infinity.

For these branches of the root-locus it is therefore

apparent that some gain can be found which will place
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(n = 3) of the closed-loop poles in the left half plane.
It is now necessary to investigate what happens to the
reﬁaining 3 branches of the root-locus, which tend to
infinity along the asymptotes as defined for this class

of functions by

n m b n-3
2.P. =2 =z 2P~ 2,z
¢ J 1 ; J i
g - =1 =1 _ =1 i=1 4.5-4
° n-m 3
and N N
y _ =T = 2NT _ =7 = 2Nm e
Arg s' = ——=—==% = 3 4,5=5

Inspection of equation 4.5-5 reveals that the asymptote
of the remaining branches of the root-locus tend to

+ I -

: -3 and =T
radians with respect to the positive real axis. Thus,

infinity along lines which make an angle of

it is apparent that for this class of systems, if the gain
is made large enough the system will always become un-
stable. Intuitively at first sight, it appears that a
system possessing one or more right half plane open=loop
poles and having two of its asymptotes terminating in the
right half plane will always be unstable. However, a
closer investigation into various zero-pole configurations
will reveal that it is possible to have a zero-pole con-
figuration which will lead to a system that satisfies

the requirement of being cdnditionaily stable, namely, of

being unstable for small gains and then becoming stable
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as the gain of the system is increased, However, for this
class of system, if the gain is made sufficiently large
these systems will always become unstable. It is apparent
that the asymptote requirement, at least by itself, does
not produce sufficient conditions for stability in the
case of Class C systems.

The above discussion oﬁ Class ¢ (n - m = 3) type of
systems can in general be extended to systems in which
(n = m>3). The Arg s' will of course be different for
each change in n - m. For example, for (n - m = 4) the
Arg s' = + %’.’f E L radians. This change in the Arg s'
requirement will not basically alter the ideas developed
for Class (n = m = 3) type of systems, and with slight
modification they can be extended to these‘higher order
systems. As (n - m) becomes larger, the possible range
of K or the choice of a suitable zero-pole configuration
will probably be severely restricted.

To date no general criterion has been found which can
be applied to Class C type sYstemsa However, certain
statements can be made regarding this class of systems
which will intutively help the designer when confronted
with such a system. They are:

1) Since in this type of system it is the branches of
the root-locus which are farthest in the right
half plane that must be controlled, the one way
possible to "bend" these root-locus branches back

into the left half plane is to cause a portion of
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the Arg s' asymptote to lie in the left half
plane.

2) The addition of one or more left half plane zeros
near the origin will aid in causing the locus to
move into the left half plane.

3) Routh's Stability criterion can then be applied
to determine whether the root-locus has really
crossed the jw axis.

Numerous conditionally stable systems which are of
the (n - m = 2) or (n -~ m = 3) type can be found.in practice.
However, no practical applications have been found where
(n = m>3).

In Figure 4.12 will be found a number of typical
zero-pole configurations for the Class C (n - m = 3) type
of conditionally stable system. Inspection will reveal
that they are all for systems possessing few poles and
zeros. For more complex systems, a wide variety of con-
figurations is possible. One such example is discussed

in detail in Section 4.8.

4.6 A Comparison of Defining Characteristics Between

conditionally Stable and Absolutely Stable Systems

In previous sections attention was directed toward
defining what is meant by a conditionally stable system
and toward discussing the stability aspects of such a
system. In this section attention will be directed toward

answering such questions as:
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1) How do the closed-~loop frequency responses of
these systems compare for the same magnitude of
KV?

2) what frequency response characteristics do the
closed~-loop systems possess if the open~loop
amplitude characteristics are identical?

3) How does the closed-loop time response of a
conditionally stable system compare with that
of an absolutely stable system?

Since in general the answers to these questions
depend upon the zero-pole configuration of the functions
involved, it was necessary to define the relative zero-
pole position of the functions utilized in the investiga-
tion, After some deliberation, it was decided to utilize
the closed-loop zero-pole configuration first proposed by
Guillemin26 and later exploited by Truxa127. However,
both authors restricted their discussion to systems
possessing left half plane poles. In the work that
follows, all tYpes of systems will be considered. As
mentioned by Guillemin26, his choice of a closed-loop
fuﬁction leads to open—;oop systems which have negative
real axis poles and zeros, and can therefore be readily
synthesized as R-C networks, providing of course, that
the "plant" possesses real axis poles and zeros. The

closed-loop function utilized in his study was

26. J. G. Truxal "Servomechanism Synthesis through
Pole-Zero Configurations", MIT Research Laboratory
of Electronics Tech. Report 162, August, 1950

27. J. G. Truxal, "Automatic Feedback Control System
Synthesis", (book) McGraw-Hill Book Company, Inc.,
1955, Chapter 5.
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(s + zl)

(s + 2y w S+w2)(’s+p) 4.6
n n 1
which contains two control poles and a real axis pole
and zero. The values of zl, pl, @, and ]' are chosen
in such a manner so as to meet the closed-loop require-
ments of frequency response, time response, specified
‘KV, and etc., or some combination of these quantities.
One of the reasons for choosing this function in
this study is that an explicit solution of the open-loop
function can be obtained directly. Carrying out this
procedure leads, after some manipulation,to:
plwrzu
c T (s + zl)
E(S) = 1 4,6-2

2 2 l™n
s [:s + (2 w + pl)s + (wn+ @ 0P~ 2, )]

The roots of the quadratic term with the brackets are:

- 2J'mn + Py .

o
"
fl
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Thus, given the closed-loop poles and zeros, it is possible

to substitute these values directly into equation 4.6-3

and obtain the location of the open-loop poles, which in

general are not located at the origin, Inspection of

equation 4.6-3 reveals that depending upon the relative

magnitudes of zl, pl, ]' . and ®, this closed-loop func-

tion can possess the following types of open-loop poles:

1)

2)

3)

wz
pl n

2

]>o,
1

sl and s2 are two left half plane open loop

2
For the ca:se when [wn + Z-Twnpl -

pdles} 55 is located at the origin.
P w2
2 1l ™n
When |w_ + 2y P - 2 - o0,

%(s) will contain one right and one left half

half plane pole; s, is located at origin.

3

2
when w 2 + 2,0 - El_fﬁ_ =0
n J %n pl_ z, )

%(s) will possess a double order pole at the
origin and one left half plane pole.

Further investigation into the conditions which lead

to the open-loop pole configuration of 3) above, will

reveal that it is directly related to Truxal's” equation

which relates the KV of a unity feedback control system

to the zero-pole configuration of the closed-loop func-

tion.

As derived by Truxal, this is

* gee reference No. 27, page 284, equation 5.21
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n m
1 2 L N 4.6-4
K, P. yan z

j=1 7 i=1

L2, L L 465
v % P 1
Now for KV =¢0 , it is apparent that
o, L oL . 4.6-6
®n Py 1
or
P, w 2
2 "1 "n _ _
w + Zr’wn pl - ——:;:—~ = 0. 4.6-7

The right side of equation 4.6-5 is the constant term in
the cquadratic factor of equation 4.6-3. Thus, condition
3) above corresponds to the case of infinite-KV . which is

in agreement with the other definition, namely,

K = lim s %(s) =lin s | = (s +2z)
s -0 : s—0 1. -

= 09 for s—0

It is also apparent from 2) above that certain values
of zl ' pl ,.r , and . correspond to certain closed-

loop reqﬁirements. These requirements can be met only
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if a right half plane open-loop pole is utilized. By
dividing the expression in 2) above by pl and mi (which
of course assumes neither to be zero) the following ex~

pression is obtained:

Il>—+ i—— -%—— <o 4.6-8
1 n 1

Thus, if the sum of the reciprocal of the closed~loop
poles is less than the reciprocal of the left half plane
zero, the open-loop function will contain a right half
plane pole. 1In addition, it should be pointed out that
whenever a closed-loop zero-pole configuration is of this
type, it will always lead to a system which contains a
negative KV , (a characteristic of systems possessing an
odd number of right half plane open-loop poles).

The relativé position of the poles can be better

observed if in the expression 4.6-8 the substitution

p p
A= ;L and B = ;L is made. The following expression
resul@s: 1
1+2rA-B<0. 4.6-9

In Figure 4.13 will be found a plot of this expression
for A and B greater than zero, and with_f as a parameter.

Thus for a specified f when B falls in the shaded area,

a right half plane open-loop pole results.

In order to gain further insight into this subject,
a comparison is made between two systems whose closed-
loop functions are of the form given by equation 4.6-1,

but whose zero-pole configurations are such that one of
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the systems possesses a right half plane open-loop pole,
while the other system possesses all left half plane open-
loop poles. 1In addition, a further constraint is placed
on the open-loop transfer functions, namely, that they
possess the same magnitude of velocity constant, KV'

The two systems considered possess the following transfer

functions:

System I
[%(s) = 73 (s ; 5/3) 4.6-10
S (s + 5)(s” + 5s + 25)
and
g(s) - 75 (s + 5/3) 4.6-11
B I s(s + 12.07) (s - 2.07) ° :
System II
[of _ 75 (s + 5/3)
{R(S)] T (s +'l.55)(s2 + 12.59s + 80.5) '/ 4.6-12
11
and
c _ 75(s + 5/3)
[E(Sﬂ T S5 + 12.07) (s + 2.07) 4.6-13
11 -
| Py Py
In system I above — = 1 and ;~ = 3, while in system II
wn 1
Py Py
5— = ,173 and ;— = ,928. It is apparent from equation
n 1 :

4.6-11 that system I contains an open-loop right half



1CLl

plane pole, while a study of equation 4.6-~13 reveals that
system II does not.
Taking the inverse transforms of equations 4.6-10

and 4.6-12 gives equations 4.6-14 and 4.6~15, respectively.

5t

c(t) =1 + 28~ + 4.6-14
3.16 ¢ 2-°%sin(4.34t - 79.29)
and
c(t) = 1-.0915 e'l'55t+ 1.29e"6'3ts1n(6.4t - 135.4°9) 4.6-15

A comparison of the time responses of these systems will
be found plotted in Figure 4.14. Inspection of these
curves reveal that the time response of system I possesses
a high degree of overshoot. This seems to be a character-
istic of systems possessing right half plane open-loop
poles. On the other hand however, if the criterion of
performance is to be the rise~time, it is apparent that
the rise-time of system I is considerable less than that
of system II.

It is left as a future investigation to make a

detailed comparison regarding the defining characteristics.

4,7 Relation Between Saddle Points and Root-Locus Plots

In previous parts of this dissertation various
aspects of root-loci and phase-angle loci were discussed,
In this section it will be shown that the breakaway point
on a root-locus plot is in reality a saddle point of the

KG(s) function.
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As discussed in Chapter 2, the root-locus plot in the
s~plane graphically represents where the Arg KG(s)= 7 f 2NT
radians. It was shown in section 2.8 that the root-locus
is a special case of the more general phase-angle loci
where the Arg KG(s)==§D f 2NTr radians, in‘which jﬁ takes
on all positive real values. In place of having Arg KG(s)
as a parameter it is possible to consider |KG(s)| as a
parameter. In the KG(s) - plane this corresponds to a
series of concentric circles about the origin. In the
s-plane the corresponding contours will take on some odd
shape depending upon the zero-pole configuration of the
system. In Figure 2.5a will be found amplitude and phase-
angle plots of KG(s) in the KG(s)~plahe, while in Figure
2.5b will bé found the correspondiﬁg plots in the s-plane
fo} a simple second-order system containing two real poles.
Additional information can be obtained however, if a
three dimensional plot is made which involves the magni-
tude of KG(s) as an axis perpendicular to the J and jw
axes of the s-plane. The plot ‘KG(jw)l vs. w is a special
case in this multi-dimensional plot which can be obtained
by passing a plane through the lKG(s)I and jo axes, and
then letting s = jw be the variable. If however |KG(s)'
is plotted as s is allowed to take on all complex values,

a three-dimensional plot is obtained which looks like a
"relief" map. On such a map, constant amplitude lines of
KG(s) would appear as level contours of constant elevation.

In Figure 4.15 is shown a three dimensional plot of the
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function.|KG(s)| = é . Inspection of this plot shows
a pronounced characteristic, namely, it looks like a
"pole", which in this case is located at the origin.
Common usage of the term "pole" for a root which lies
in the denominator of a function, F(s) dates back to
other fields of applied mathematics where this type of
function is often found plotted. However, to date, in
the area of control systems little work has been publish-
ed which utilizes the multi-dimensional contours in the
analysis or synthesis of feedback control systems. 1In
this section attention is directed toward relating the
breakaway points on a root-locus to saddle points as
defined in potential theory.

Consider now a simple second-order system of the
type depicted by the phase~angle and amplitude loci of
Figure 2.8la and 2.81b. The root-locus plot which is a
special case of the more general phase-angle loci is
given in the Figure by Arg KG(s) =\r = =T,

If s is allowed to take on all complex values and

I KG(s) | vs. s is plotted in a three-dimensional fashion
as described above, Figure 4.16 will result. Inspection
of this Figure reveals that the "relief" map for this
function contains two "poles" which occur at each of the
singular points of KG(s). 1In addition, it is apparent
that a trough or minimum point exists at point, s
along the real axis between these two poles. Since

there are points removed from the real axis for which
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KG(S)' L IKG(sm”, in reality this trough looks

rather like a "mountain pass" or has the familar shape

of a "saddle". Thus, point s is referred to as a saddle
point of KG(s). Since s is a minimum point for s = T,
it is possible to determine the minimum value by setting
KG(s)' = 0. It should be noted that since Arg KG(s) is
not plotted in this case, it is only a coincidence that
this point occurs along the root-locus curve. In this
particular case it is part of the negative real axis that
lies between the poles.

Ssometimes in finding KG(s)' = 0, it is possible to
obtain more than one value for sm. while inspeqtion of
a root~locus plot may reveal there is only one possible
breakaway point. The following questions then arise:

1) which, if any, of the values of s is correct?

2) what do the other values obtained as a result

of setting KG(s)' = 0 represent?
In an attempt to answer these questions a third example
will be considered, namely, a second-order system that
contains a left half plane open-loop zero. In Figure
4.17 is shown the "relief map" for the system defined

by the following open-loop function

c - _ K(s + 2) -
E(S) = KG(s) = s(s + 1) 4.7-1

A study of Figure 4.17 reveals that the addition of a
real left half plane zero has altered the characteristics

of the "relief map" of the simple second-order system of
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Figure 4,46 . Setting KG(s)' = 0 in this case yields two
values of sm , namely, s = -.59 and‘sm = -3.,41. From
Figure 4.17 it is seen that these values define where a
minimum and a maximum occur in KG(s) as s is allowed to
vary along the negative real axis. A study of the root-
locus for this system, which is shown in Figure 4,18,
shows that the minimum or saddle point of KG(s) wuccurs at
the one breakaway point of the root-locus, while the
meximum point occurs at the other breakaway point where
the complex root-locus returns to the real axis.

As a final case, the system whose root-locus is given
by Figure4 7 will be investigated. As it will be recalled,
this is the system which contains intersecting root-locus
branches. In Figure 4.19 will be found the "relief map"
for this system. A study of the figure reveals that
this system contains three saddle points, one on the nega-
tive real axis mid-way between the real axis poles and two
others which occur at the complex values of s, namely at
s = -2 + j 2.5. 1In addition, as mentioned previously,
the root-locus does not in general indicate the bottom of
the valley between two poles.

The characteristics relating the breakaway point of
a root-iocus plot to the saddle point commonly used in
potential theory will now be summarized:

1) setting KG(s)' = 0 is a convenient method for

locating the breakaway points on the root-locus

of a low-order transfer function.
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|KG(sﬂ

Figure 4.13 "Relief" Map of a Control System with
Four Open-Loop Poles
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2) since not all values of s, determined in this
fashion are breakaway points, it is necessary
to utilize the Arg conditions of 1 + KG(s) = 0
to determine which values of s, apply.

3) For higher order systems the determination of s
requires the solution of a high order polynomial
in s. This leaves some gquestion as to the
desirability of utilizing this approach if

extreme accuracy is not needed.

4.8 Practical Examples of Conditionally Stable Systems

As mentioned in Section 3.2 conditionally stable
systems can occur in two ways, namely, either as the result
of the designer being "given a plant" that contains one or
more right half plane open-loop poles and which is therefore
open-loop unstable, or as the result of his changing an
inner loop of a complex system in order to achieve some
desired performance that couldn't be obtained by using an
absolutely stable inner loop. Under the former conditions
the closed-loop system will always be conditionally stable,
and care in design must be exercised if the closed loop
function is to be a stable one.

One of the prevalent examples of the former type can
be found in the missile industry at the present time,
where the dynamic behavior of the missile in the vertical
plane in inherently unstable in uncontrolled flight, and
suitable control must always be devised. A typical example

of such an open-loop function is the following:
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K (s + .025)
(s + .473s + 9.43) (s - .063)

KG(s) = 4.8-1
It is apparent that without feedback the system is un-
stable, since it possesses a right half plane pole. From
the root-locﬁs plot of the uncompensated unity feedback
system shown in Figure 4.20 , it is also apparent that
tﬂe closed-~loop system will also be unstable for K< 23.8.
In addition since the complex dlosed-loop poles possess
very low damping the system will be highly oscillatory
even for K>23.8. Inspection of equation 4.8-1 and/or
the root-locus in Figure 4.20 reveals it to be an
n-m=2 sysﬁem possessing one right half plane pole

and it is therefore a class B conditionally stable systenm.
Utilizing the ideas developed in previous sections, but

principally the results of Section 4.5, it is found that
s+3
s+30

it is possible to modify the characteristics of this

with a series compensating network of the form k

system and thus improve its performance by moving the
complex poles away from' the jw axis to the Y = ,5 line,
thereby allowing an increase in K& and allowing the
system to have a larger bandwidth. From the root-locus
of modified system which is shown in Figure 4.21, it is
apparent that the addition of the series compensation
network has forced the asymptote line from J_ = -.18

to Q: = -13.65. In the normal case this would permit

a range of loop gains to be utilized, unless very

specific bandwidth requirements are specified.
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As an example of the advantages of utilizing a con-
ditionally stable system to achieve a prescribed perfor-
mance, consider the double-loop system shown in block
diagram form in Figure 4.22. The physical form of this

system may consist of the following possible types of

components:
K, = an amplifier 4.8-2
)
—~————ee = g field controlled motor 4.8~3
s(s + 1)
sKt = an electric tachometer 4.8-4
53 K3
= an active filter 4.8-5

(s+1)2(1 + .25s)

The performance of this system will be studied under
varjious operating conditions. First consider the system,

if it were operated without the tachometer feedback loop.
This is equivalent to opening the tachometer loop at point,
p, (see Figure 4.22). The resulting system is now a single-
lobp second~order system, whose performance is defined by

the following open-loop and closed~loop functions:

K, K

C _ 1 2 _

E(S) s(s + 1) 4.8-6
K, K

Clg) = ——L 2 g

R(s) = 4.8-7

s 4+ 8 4+ K, K
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In order to study the system's performance two methods

of analysis will be applied, namely, the Nyquist diagram
and the root-locus technique. The results obtained in
this fashion are shown in Figures 4,23 and 4.24. From
Figure 4.23 the following information is obtained: for

an Mp = 1.3, KV = 1.37 sec”l and ®,. = 0.9. From the root-

locus plot in Figure 4.24, utilizing the same K&’ the

closed loop poles are found to be located at s = - %-+ jl.05
and s = - % - j1.05. The addition of the normal passive

compensation network in cascade with the open-loop func-
tion of equation 4.8-6 will result in only a mild increase
in the system Kv and W, for the same Mp. Attempts to
improve materially the K& or @, using only a single-loop
system are hopeless. If the feedback loop is now closed
at point, p, an entirely different approach is being made
to the problem. The system now contains two closed loops
(labelled 1 and 2 in Figure 4.22). It is now possible to
vary the over-all system performance over a wide range by
adjusting the gain, K4,
In order to demonstrate the type of performance that may

(see equation 4.8-8) in loop 2.

be obtained, the over-all performance will be evaluated
fér.twb specific values of K@.

Consider now the two~loop system shown in Figure
4.22 with point, p, closed. The equations governing

the behavior of the system under these conditions are:

3
D Ky K) K s
g (8) = . or
1 (s + 1)° (1 + .25 s)
3
. K s
-g (s) = & 4.8-8
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and

2
%(s) _ K(s+1) (s +4) 4.8-9

s 154 + (7 + KZ) s3 + 15 s2 + 13 s + 4]

The behavior of the system is now investigated by
first studying the behavior of the inner loop using a
Nyquist diagram, Bode diagrams, and the root-locus plot.
These plots are shown in Figures 4.25, 4.2a, 4.26b,
4.26c, and 4.27. The three methods of ana.ysis are
carried along‘more or less in a parallel fashion as in
the case of the single loop, primafily for comparison.

Inspection of Figure 4.25 which contains the Nyquist
diagram, reveals that for values of gain K4>-12 the
system will encircle the -1 + jO point in the g' (jw)
plane two times as w is varied from —}w to + ool,
Applying Nyquist's criterion in its most general form,
namely, 7 = N-P. to this diagram indicates that the
inner loop system contains two right half plane closed-
loop poles. |

Figure 4.27 shows that this closed loop system con-
tains two real left half plane poles and two complex
poles which move from the left half plane to the right
half plane as the system gain, K4, is increased from
0 to ee. For the value of K = 12, two branches of the

root-locus lie on the jw axis. This corresponds to the
D
By

Nyquist diagram.

(jw) locus passing through the -1 + jO point in the
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The performance of the over-all system will now be
studied for two specific values of inner-loop gain, namely,
K= 3.55 and K= 35.5. For K= 3.55 equation 4.8-9 in

factored form becomes:

K(s + 1)2 (s + 4)
s(s + 20.5)(s + .155 + j.65)(s + .155 - j.65)

%(S) - 4.8-10

while for K = 35.5 equation 4.8-9 takes on the following

form

K(s + 1)° (s + 4)
s(s + 147.2)(s -~ .1 .+ j.3)(s - .1-j.3)

%(s) = 4.8-11
A study of equation 4.8-10 and 4.8-11 reveals that chang-
ing the gain by 20 db has resulted in the following modifi-
cations:
1) Moving the complex poles of %{s) from the left half
plane to the right half plane,.
2) Moving the real axis pole much farther into the
left half plane.
In Figure 4.28 will be found the Nyquist diagrams corres-
ponding to the two values of gain, K4. It is apparent
from an inspection of the diagrams that the overall open-
loop behavior is complétely different in the two cases.
This is due £o the pair of right half plane poles in the
open-loop function in equation 4.8-11 which causes a

large amount of phase shift in the gljw) function.
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The closed-loop behavior of the over-all system will
not be investigated using the Nyquist diagram, and the
associated M circles. .The closed-loop frequency response
for these two values of K4 gain setting are shown in
Figure 4.28 for K adjusted to give an Mp = 1.3 in each
case. The velocity constant for this system when adjust-
ed in this fashion is K = 150 sec™t, for K, = 3.55 and
Kv = 104sec—l for K4 = 35.5. Thus, by adding an unstable
ipner loop, the KV of the system has been increased by
more than sixty fold. From Figure 4.28 it is apparent
that the resonant frequency of the two systems is also
widely different.

In Figures 4.29a and 4.29b will be found the root-
locus diagram for the system when operating under the
above conditions. Inspection of the diagrams indicates
tbe presence of the right half plane open-loop poles cause
the complex branches of the ropt-locus to move rapidly
far into the left half plane as the gain, K, is increased.
A constant damping line,.f = .5 for the two cases indicate
that much larger values of K1 can be used before the
system's complex closed-loop poles cross this line for
the case of K.4 = 35.5 than for Kﬁ = 3,55, This yields,
therefore, a large velocity constant and a correspondingly
smaller steady-state velocity error. In addition, moving
the closed-~-loop complex poles farther into the ieft—half

plane results in a system having a large bandwidth.
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CHAPTER V
CONCLUSIONS

The major objective of this dissertation was to
establish a better understanding regarding the character-
istics of conditionally stable systems. Although these
systems are found discussed in technical articles and
texts on feedback control systems, no organized treat-

" ment of the subject was to be found. The subject matter
was introduced with a brief discussion of control system
terminology and methodology. This was followed by a
discussion (see Section 3.2) of the meaning of a con-
ditionally stable system, where it was shown that the
word conditionally stable has been used to define two
types of systems possessihg widely different characterist-
ics. 1In this work the definition of a conditionally

stable system is one which becomes unstable as the loop

gain is decreased from some maximum value to zero.

Utilizing this definition allowsit to include systems
that possess both of the above characteristics. Also to
be found in this'chapter are the results of an extensive
‘study of conditionally stable second-order systems. The
insight in studying these systems was then utilized in
the study of n-th order systems, which culminated in a
set of sufficient conditions for conditionally stable

n-th order systems. More specifically, it was shown that
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if the closed-loop function is constrained to be a minimum
phase functlon, the open—loop function could be catagoriz-
ed into three types, A, B, C. sufficient conditions were
found for types A and B systems which would guarantee
stable operation of these systems for some specified loop
gain, K.

In addition, in Section 2.8 it will be found a
description of ‘a novel method for solving for the roots
of an n-th degree polynomial utilizing a modified root-
locus technique, which to the best of the author‘s know~
ledge has not been published. While in Section 4.4 will
be found a discussion regardihg the intersection of root-
locus branches, where it was shown that it was impossible
for root-locus branches not possessing the same argument
condition to cross except at a pole or zero of the open-
loop transfer function. Section 4.7 discusses the relation
between saddle points of potential theory and the breakaway
points of the root—locus;v Three dimensional contour
plots, indicate that breakaway points of a root-locus may
be either maxima or minima of the —(s) function. It was
shown that setting —1s)' = 0 is a convenient method for
locating the breakaway points on the root- locus of a low=-
order transfer function. Since not all the values of s
determined ih this fashion are breakaway points, the
approximate shape of the root-locus must be known before-
hand. For higher order systems the determination of s

requires the solution of @& high order polynomial in s.
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This leaves some question as to the desirability of utiliz-
ing this apprbach if extreme accuracy is not needed.
Although much of the emphasis in the control system theory
at the present time is directed toward nonlinear systems,
there are numerous topics in the realm of linear control
theory which have not been adaquately treated. These
include
1) An adequate method of describing the requirements
about a given physical system, so that the syn-
thesis problem becomes unique,
2) EBExtending the ideas of the root-locus so that
it can be more readily adapted to higher order
systenms,
3) To utilize more of the complex variable theory
which is probable available and known to the
mathematicans in order to enhance our under-

stahding of systems.
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