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We develop and evaluate the validity and power of two specific tests for the
transition probabilities in a Markov chain estimated from aggregate frequency
data. The two null hypotheses considered are (i) constancy of the diagonal
elements of the one-step transition probability matrix and (2) an arbitrarily
chosen transition probability's being equal to a specific value. The
formation of tests uses a general framework for statistical inference on
estimated Markov processes; we also indicate how this framework can be used to
form tests for a variety of other hypotheses. The validity and power
performance of the two tests formed in this paper are examined in factorially
designed Monte Carlo experiments. The results indicate that the proposed
tests lead to Type I error probabilities which are close to the desired levels

and to high power against even small deviations from the null hypotheses

considered.
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1. INTRODUCTION

Stochastic processes often provide useful models of real world phenomena
in which randomness is an important feature. Many applications are found in
the physical and 1ife sciences. See, for example, Berlin et al. (1979) for
the use of a Markov il1lness-death model; Read and Ashford (1968) and
Kalbfleisch et al. (1983) for modeling an organism's path through consecutive
stages of development; and Shah (1976) for consideration of drug transport
through different body components. Markovian analyses have also been employed
for selection and evaluation of mental health programs (see Trinkl 1974;
Meredith 1976). For applications to hydrologic systems, see Denny gt al.
(1974) and Yakowitz (1973, 1976). Further, demographers have employed these
models in studying human and industrial migration (Spilerman 1972; Collins
1972; Lever 1972), and brand shift and firm size change have been so modeled
by marketing researchers and economists (Telser 1962a, 1962b; Kelton and
Kelton 1982; Adelman 1958; Collins and Preston 1961; Hallberg 1969).

Valid modeling of an existing real world process requires that the
parameters of the chosen model be estimated from data which are available or
can be collected. Furthermore, it is often of interest to perform statistical
inference about the true model parameters, in addition to obtaining point
estimates.

A very simple stochastic model which has found wide use is a stationary
Markov chain, The number of parameters to be estimated may be few relative to
more sophisticated models, yet the Markov chain offers considerable predictive
abi1ity. When observing the operation of a Markov chain, there are
essentially two different kinds of data which might be collected. Micro data
are the most desirable, since we observe the number of actual individual

transitions from each state i to each state j. If one has access to these



data, maximum 1ikelihood estimators of the state transition probabilities can
be computed in a straightforward manner; furthermore, hypothesis tests are
available (see Anderson and Goodman 1957; Billingsley 196la, 1961b; Kullback
et al. 1962).

On the other hand, micro data are frequently unavailable. Instead, we may
have to rely on macro data (also called aggregate frequency data), where we
know only n1(t). the number of entities occupying state { at time t. Here,
the actual state-to-state transitions are not observed. Such data arise, for
example, in the Census of Population, market share reports or trade bulletins,
and in the Census of Manufactures. Whereas the problem of point estimation
has received considerable attention for these data, development of hypothesis
tests has been lacking. Perhaps the most common method of point estimation is
the method of restricted least squares, described briefly in Section 2; see
also Miller (1952), Madansky (1959), Lee et al. (1977), MacRae (1977), Kelton
(1981), Ka]bffeisch et al. (1983), and Kalbfleisch and Lawless (1984), Bedall
(1978) proposed certain specialized chi-square tests based on analogy to
frequency table analysis techniques.

In this paper, we also propose specific hypothesis tests from macro data,
but these are based on a general framework developed in Kelton and Kelton
(1984a), The value of such an approach is that this general framework could
be used to develop any number of specific tests of interest in a given study;
this paper shows how to use this framework in two cases. The first null
hypothesis considered is that all dfagonal elements p;; of the one-step
transition probability matrix are the same, and the second hypothesis {s that
a particular P13 equals a particular value. We then investigate the validity,
robustness, and power of these two tests by carrying out fairly extensive,
designed Monte Carlo studies.

In Section 2 we briefly review least squares point estimation from macro



data and the general hypothesis test development framework from Kelton and
Kelton (1984a). Section 3 develops tests for the two cases of interest, and
gives an example of applying these kinds of tests to a brand shift model for
the brewing industry. The validity and power of the tests proposed in this
paper are empirically investigated in Section 4, and a general discussion

follows in Section 5.

2. REVIEW OF LEAST SQUARES ESTIMATION AND HYPOTHESIS TEST FRAMEWORK

In this section, we review the least squares method of obtaining point
estimates for the transition probabilities Pyj of moving from state 1 to state
j in one step. For a discussion of alternative estimators (such as those
obtained by weighted least squares) and their properties, see Lee gt al.
(1977), MacRae (1977), and Kalbfleisch and Lawless (1984), We also briefly
review the general hypothesis test methodology from Kelton and Kelton (1984a).

We will need the following notation:

R = the number of states
T = the number of transitions
N = the number of entities (i.e., individuals) observed
ny(t) = the number of the N entities fn state 1 at time t
y;(t) = ny(£)/N = the proportion of the N entities in state 1 at time t
y(t) = [y (8)y «ous yR(t)]
P = the one~step transition probability matrix with (i,j)th element
Pij
n(t) = a1l x R row vector with ith entry's being the (true) probability

that an entity occupies state i at time t.



2.1. Least Squares Point Estimator of P

The idea behind the LS estimators of the p1j's is based on noticing that
y(t) is an unbiased estimator of n(t), and recalling the fundamental property
of Markov chains that n (t) = n(t=1) P, Thus, we would expect that y(t) =
y(t=1) P, and the LS estimators minimize the sum of squared deviations between
yj(t) and 1gly1(t-1) Pij for states j = 1, ...s» R=1 and time periods t =
1, «ees T, subject to nonnegativity of the p1j's and to the row~-sum
constraints on the estimated P, (State R is omitted to avoid redundancy.)

This problem can be phrased as a standard quadratic programming (QP)

problem with 1inear inequality constraints, as follows. Let

P = [pyyrecesPRyr coeer P1,R-1%+***PR,R-11"*
Yy = Iy1(seery; (M wuves ypop(Dseeasygpa (MY,
X" = a TxRmatrix with (t+1,1)th element y,(t), for t = 0, ws
T=1l, and 1 = 1, «e» Ry
and
X = a T(R-1) x R(R-1) block-diagonal matrix with R-1 copies of x*

along the diagonal,

where ' denotes transposition. With this notation, the approximations of the

Xp. (Note that p contains all the

R-1
parameters to be estimated, since p;g =1 - I p1JJ The LS estimator of p is
j=1

previous paragraph may be stated as y

the solution f to the QP

min (y = Xp)' (y = Xp)
P

R-1
subject to P1j 20and = Pij L1, fori =1, ..., R,
J=1
From the solution, we obtain a sum of squared residuals SSR = (y = Xf)'

(y = Xp) which 1s used in our hypothesis testing framework. This QP problem

may be solved by a simplex=like pivotal algorithm, such as Lemke's (1968).



2.2. Hypothesis Tests for P

A general hypothesis testing framework proposed in Kelton and Kelton
(1984a) is now briefly reviewed. A null hypothesis H, generally imposes some
additional restrictions on the p1j's. Taking into account these restrictions,
corresponding y, X, and p matrices are defined (which may differ from those
above), the assocfated QP is solved, and we obtain a sum of squared residuals
SSRg for the restricted model. From the same data, an unrestricted model is
fit where y, X, and p are defined ignoring the restrictions imposed by Hoe A
sum of squared residuals SSR; is obtained for the unrestricted model. While
it will always be the case that SSRy > SSR, the test attempts to ascertain

whether the difference is significant.

Let

q = the number of (additional) restrictions imposed by Ho»

v = the degrees of freedom (number of independent observations
minus number of parameters estimated) in the unrestricted
model,

and
Fq.v = [(SSRg - SSRU)/q] / (SSRy/v).

Following Chow (1960), Fisher (1970), and Theil (1971), we proposed that Fq,v
be treated as having an F distribution with (q,v) degrees of freedom (d.f.),
under Hy. Many assumptions for the general 1inear model (e.ge» y=Xp is a
vector of uncorrelated, homoskedastic, normally distributed errors), however,
are violated so that the actual distribution of Fq.v under Hy 1s unknown;
Monte Carlo studies for robustness are thus appropriate.

Using factorially designed Monte Carlo experiments, we have already

evaluated three such hypothesis tests formed in the above manner. These tests



were aimed at examining the adequacy and validity of the simple stationary
Markov chain model for all entities alike. The Type I error probability
estimates were generally close to the desired levels; for example, the overall
average observed percentage of rejections at the (desired) 10%, 5%, and 1%
levels were 9.97%, 5.61%, and 1.32%, respectiye]y. Moreover, the three tests
proved fairly powerful to various considered violations of the null
hypotheses. We refer the reader to Kelton and Kelton (1984a, 1984b) for

details.

3. FORMATION OF TESTS

We now use the general methodology of Section 1 to develop tests for two
specific Hy's. The discussion should also give an indication of how tests for

other hypotheses of interest can be formed.
3.1. Constant Diagonal Probabilities

The null hypothesis is Hp: pyy = Pyj fori=1, we» Rand j =1, ..r R,
Under this Hy, the probab111ty that an entity will remain in its current state
for the next time period is the same for all states. Alternatively, we can
think of Hy as stating that the outmovement probabilities 1-p11 are the same
for all states i. This is of interest, for example, in studying geographic
migration of population or industry, and in consumer brand selection to detect
differences in repeat- and transfer=-purchase probabilities across brands.

Ho mposes the following set of q = R-1 (additional) restrictions on P
(recall that the PiR's are never explicitly estimated):

R-1
P11 = P22 = """ = PR-1,R-1 =1 - Jle’RJ'
As PR1? er PR,R-1] Must be estimated anyway, we retain them in the

(restricted) model and drop P11 P22» «ees PR-],R-1° Thus, the parameters to



be estimated compose

p = [P210P31p..u pRl’p].Z’p32'""pRZ"""plvR'l’""pR-Z,R-l’pR,R-].]"

Here y(t) = y(t-1) P may be expressed equ1va1ent1y as

R R-1
yge) ® B yg(tDpgy +yy (DL - 2 o), (1)
1§ |

for j =1, ees R=1 and t =1, «e» T. Writing (1) in matrix notation leads

to y = Xp, where

y = [yl(l)-yl(O),...;yl(T)-yl(T-l),....:yR_l(l)-yR_l(O),...,
yR_l(T)'yR_l(T‘l)]'

and X is constructed as follows. For t =0, ...» T=1 define

*
X; to have (t+l)st row [y,(t),...oyp_(t)sygp(t)-y; (£)1,

X;_l to have (t+l)st row [y;(t)s...oypop(t)ryp(t)=yp_ (t)],

and, for k = 2, ...» R=2, define

x; tO have (t‘l'l)St I"OVI [yl(t)lo.clYk_l(t)’Yk+1(t)"oc’yR_l(t)D

yR(t)‘yk(t)].

For k =1, .e» R=1, define the T x (R=1) matrix Zk to have (t+l)st row

[0y veer Oy -yk(t)], for t =0, ue» T=1, F1na11y, let




The restricted QP is then

min (y = Xp)'(y = Xp)
P

1’ 'XKX] R-l

subject to Pij 2 0 for
1=l’nol'R’1#j

R-1 R-1

j§1p1j + (1 - k‘:‘1ka) L1 fori=1, «eus R=1
J#

R-1

JilpRJ <

These constraints can be further simplified and collapsed into matrix form for
a standard QP statement. Solving this QP leads to SSRp.
The unrestricted model in this case is exactly as stated in Section 2.1,

and v = (T=R)(R=-1), Fq.v is computed as in Section 2.2.

3.2. A Specified Probability

In some situations there may be special interest in the probability of
one-step transitfon from a specified state i; to a specified state j,» e.g.
population migration from the Northeast to the South in the U.S. The
appropriate null hypothesis 1s thus Hg: p10’10 = ¢, where ¢ is a fixed,
specified constant between 0 and 1; this Hy imposes only one additional
restriction on P, soq=1. Inthiscase, p is as in Section 2.1, except that

p‘O’JO does not appear (so p is a row vector containing R(R-1)-1 elements).

Now, y(t) 2 y(t=1) P is equivalent to
R
R
(t) & 2 y,(t-llp,;; + (t-l)c (3)
yJO 1=1Y1 prO Y1O ’
1#1

0



for § =15 wes R=1 and t = 1, ..., T. Transforming (2) and (3) to matrix
form with a1l j and t included leads to y £ Xp, with y and X defined as
follows. Let y* be the y in Section 2.1, and let z be a T(R-1) x 1 vector
with y10(0). y1o(l), cees y1o(T-1) in locations (jo=1)T + 1, (jo=1)T + 2, ...y
JoT» respectively, and zeros otherwise. Then we let y = y* - cz, X is
defined as in Section 2.1, except that column (j5=1)R + {14 is deleted. The
restricted QP is

min (y = Xp)'(y - Xp)
P

subject to P1j 20 fori=1, ...0 Ry

J
(1,9) # Ugedg)

10 ceed R-l

R-1

lep1J 5 1 for 1 = 1’ eee) R
i # 1,

R-1

Zp Ll-c

31 toJ

J#ip

Again, these constraints can be put into standard QP form, and we solve the
problem to obtain SSRp. Also, the unrestricted model is as in Section 2.1,
with v = (T=R)(R=1),

For this test and for that of Section 3.1, the unrestricted fit was made
simply by applying the model of Section 2.1. However, that model will not
always suffice for the unrestricted fit. We refer the reader to Kelton and
Kelton (1984a) for two null hypotheses requiring different treatment for the

unrestricted model.
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3.3. An Example

As one application of the two hypothesis tests proposed above as well as
two of three tests from our earlier paper (Kelton and Kelton 1984a), we look
at market shares in the brewing industry from 1951 through 1971. The data
consist of yearly shares of national production or barrelage for Anheuser-
Busch (AB), Miller (M), and all other brewers (0), taken from Keithahn (1978).
For a more detailed econometric analysis of the brewing industry and of the
rise over time of Anheuser-Busch and Miller in particular, see Kelton and
Kelton (1982). The market-share data can be found in Table 1.

The basic unrestricted model of Section 2.1 was fitted to obtain the

following estimated one-step transition probability matrix:

AB M 0
.954 0.046 0,000

0.95
0.349 0.651 0.000{.
0.00

AB
M
0 0 0.008 0.992

Before applying the two tests above, we used two of the three tests
developed in Kelton and Kelton (1984a) to assess model adequacy and validity.
Note that ignorance of N, interpreted roughly in this case as the number of
beer consumers, does not preclude application of the proposed estimation and
testing procedure., Testing for stationary transition probabilities, we
obtained an F statistic of 1.114, which, with (6,28) d.f., yields a p-value of
0.379 (i.e., under the null hypothesis of stationarity, the probability of
obtaining a test statistic in excess of 1l.114 is 0.379). Thus, the required
assumption of stationary transition probabilities appears to be quite safe for
these data. The test for a zero-order process yielded a test statistic of
220,953, which, with (4,34) d.f., is highly significant, indicating strong

evidence that the process is autocorrelated.
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The null hypothesis of equal diagonal probabilities from Section 3.1 led

to a (restricted) transition probability matrix of

AB M 0

AB 10,993 0.006 0.001

M {0,007 0,993 0.000}.

0 |0.007 0,000 0.993
Comparing this matrix with the basic unrestricted one above, we note that the
outmovement probabil1ity for Miller has been forced to a considerably different
value. The test statistic, with (2,34) d.f., was 3.815 for a p-value of
0.032. This null hypothesis of equal repeat-purchase probabilities thus
appears to be suspect.

The test of Section 3.2 was used to investigate whether it is safe to

assume that the repeat-purchase probability for Miller in particular is 0.5,
i.e.s whether Miller retains 50% of its consumers over one year. (If we

numbered Miller as state 2, we are testing pp, = 0.5.) The estimated matrix

under this restriction is as follows:
AB M 0

M {0.455 0.500 0.045].

AB 10.922 0.078 0.000
0 {0.000 0.010 0.990

Compared with the first, unrestricted model, this matrix would not appear to
be substantially different. Indeed, the observed F statistic here is 0.677
with a p-value of 0.416, with (1,34) d.f. Thus, there is 1ittle evidence to

reject a 0.5 repeat-purchase probability for Miller.
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4, ASSESSMENT OF TEST VALIDITY AND POWER

As discussed in Section 2, the test statistics proposed above need not
have the desfred F distributions, under the null hypotheses. In this section
we report the results of a fairly extensive Monte Carlo study designed to

assess how closely the distribution of F ,v resembles an F distribution., Of

q
particular interest in a testing context is the probability that F exceeds

qQsV
a critical value obtained from a standard F table; this probability is the
actual Type I error incurred in a test with a stated (nominal) significance
level.

Under each null hypothesis of Section 3, N independent realizations of the
process were simulated for T transitions, the appropriate models were fit to
these data, and an observation on the test statistic was obtained. These
steps were independently replicated 200 times, yielding 200 independent
observations on the test statistic. These values were used in chi-square (xz)
and Kolmogorov=Smirnov (KS) goodness-of-fit tests for the desired F
distribution. As a more direct measure of test robustness, we noted the
percentage of the 200 observations which fell above the upper 10%, 5%, and 1%
critical values of the proposed F distribution; the average absolute
differences of these percentages from their target values were also tallied.
The random number generator used for all experiments is that of Lewis,
Goodman, and Miller (1969).

Since the performance of the tests might be affected by various parameters
of the data, we employed a formal experimental design to specify their levels
and combinations. The five experimental factors in this context, are R, T, N,
n(0), and P, A resolution V, 2571 fractional factorial design was constructed

by writing a full 2% factorial design in the first four factors, and taking

the Tevel (sign) for P to be the positive product of the signs of the levels



of the other four factors (see Box et al. 1978). Thus, 16 independent sets of
200 independent test statistics were generated for each null hypothesis. The
numerical levels of the factors, including the selected small values for R,
were set with some consideration for our experience with the kinds of data
typically available in practice. The "-" and "+" levels for R were,
respectively, 2 and 4, for T were 25 and 50, and for N were 100 and 500. For
n(0), the "-" level specification was a uniform distribution on the R states,
and the "+" level was (0.79, 0.21) when R = 2 and was (0,79, 0.11, 0.05, 0.05)
when R = 4; these levels were judged to be "opposite" in the sense that one
gives an equiprobable initial state while the other puts a fairly heavy
probability mass on a particular state. As for P, the null hypotheses we
consider place different restrictions on the p1J's. so the values of P will be
given separately with each null hypothesis.

To investigate the power properties of the proposed tests, further
designed Monte Carlo studies were undertaken, in which the data were generated
in violation of Hy. The design matrix used was the same as for the validity
studies, but, because of the fairly large number of alternative hypotheses
that we wanted to consider, 100 (rather than 200) replications were made at
each design point. The "=" and "+" levels for R, T, N, and «0) are the same

as for validity; the levels for P are discussed separately for each test.
4,1. Constant Diagonal Probabilities

For this test, the "=" and "+" levels of P were

0.8 0.2
LO.Z 0.8_4

and

o
Lo &~y

13
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when R = 2, and, when R = 4, the two levels for P were

and

(Note that, 1n accordance with this null hypothesis, the diagonal elements are
always constant within a matrix.,) These values of P were chosen, on the one
hand, to induce a reluctance to change state, and, on the other hand, to
promote somewhat greater outmovement probability.

The average responses as well as the main effects of the factors are
presented in Table 2. The value of the xz test statistic is denoted by xz,

under which we also give the associated p-value. For the KS test, we report
D' = D, L(n % + 0.12 + 0.11/(m0+3],

where D, 1s the usual KS test statistic; the statistic D' was developed by
Stephens (1974) to allow the use of a very compact table of critical values.
Cio» Cg» and C; are the percentages of observed Fq’v's which exceeded the
upper 10%, 5%, and 1% critical values, respectively, of the proposed F
distribution.

The average p-value of x2 is 0.36, indicating a generally good fit,
although, for 6 of 16 individual runs, the xz values were significant at the
0.10 Tevel. The C.'s are 8.9, 4.7, and 1.2, being quite close to the desired
levels of 10, 5, and 1. (A 90% confidence interval failed to cover the target

rejection percentage in 12 out of 48 cases.) To demonstrate that these

average rejection percentages' being close to their targets is not the result
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of averaging some extremely high values with some extremely low values, the
absolute values of C.-r were averaged to obtain 2.3, 1.1, and 0.7; these
results are further indication of good Type I error probabilities.

Looking at the main effects in Table 2, it appears that R is an important
factor. (This was further confirmed by probability plots.) In particular,
better performance is usually obtained when R is small. Thus, if one has a
choice in modeling, it would be advantageous to keep the number of states as
small as possible to obtain the desired information from the model. There is
as well some evidence to suggest that obtaining longer time records (large T)
has a desirable effect on test performance. Note the desirable negative
effect of T on both IC;-101 and 1C;-11.

The power studies undertaken for this hypothesis test use the same factor
levels (for R, T, N, and #£0)) as the robustness studies. For four of our
five designs, the transition matrices were chosen such that P11 # Ppp = e =
PR’ 1-€.» only py; was allowed to deviate from the otherwise constant
diagonal; this should provide a lower bound on power. To parameterize the
extent of deviation from Hy, we Tet d = pj; = pyp» which was constant for all
matrices within a given design. For the four designs, d took on the values
-0.5, -0.3, -0.1, and +0.1, respectively.

In Figure 1, the average (over the 16 design points) rejection percentages
are shown as a function of d for 10%, 5%, and 1% tests. The percentages for
d = 0 correspond to the validity results from the second column in Table 2.
The three power curves have an anticipated shape; power rises as |dl
increases. The test seems fairly powerful against even modest departures from
Ho»

Table 3 presents the average (over the four designs) main effects of the
factors on the rejection percentages. Consistent with the validity results

above, it is seen that a small state space leads to higher power. Further,



long time records and a large number of entities observed should enhance
power,

Finally, a fifth design was conducted which allowed al]l the diagonal
elements py; to be unequal. As expected, the rejection percentages in this
case were quite large: 97.25 for a 10% test, 94.13 for a 5% test, and 86.31

for a 1% test.
4,2, A Specified Probability

Here we tested the null hypothesis that Pp1 = 0.3 regardless of the other

parameter values. When R = 2, the "=" and "+" levels for P were taken to be

55 &
b5 &3

and, when R = 4, the "=" and "+" Jevels of P were

8 0
30

and

0.
0.

and

Again, the null hypothesis is satisfied in each case, and the levels of P were
chosen to model different outmovement probabilities.

The average p-value of x2 in Table 4 again indicates reasonable overall
fit. For this test, only 5 of 16 xz values are significant at the 0.10 level.

The average values of C. are again fairly close to their targets, although

16
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they are slightly large in this case. (90% confidence interval coverage was
not achieved in 17 out of 48 cases.) The average absolute deviations of C,
from r are somewhat larger than for the other test, but are still only a few
percentage points. As before, the most important factor on test performance
is R, and 1t 1s clear that small R is desirable in this test. Furthermore, it
again appears that long time records could be expected to yield better
results. Although it is not clear what practical implications there are for
the user, better results are also obtained if the true P induces higher
outmovement probabilities.

For this hypothesis test, violation of Hy for power investigation involved
simply altering row 2 of the transition probability matrix P, specified in the
above validity studies. In four designs, p,; was set, respectively, at 0.l,
0.5, 0.7, and 0.9. Again partial averaged power curves are generated (see
Figure 2), and they show that the test is powerful against even small
departures from Hy. We also note from Figure 2 that power increases with
deviation of p,) from its hypothesized value, i.e., with Ipy;=0.31, and that
the curves pass through the average estimated Type I error probabilities, from
the second column in Table 4, when Hy 1s true.

Table 5 shows the average (over the four different designs) power
performance effects of the factors considered. The policy recommendations are
consistent with those suggested by Table 3 (as well as by our validity
studies). The large negative values of the main effect of R imply that
increasing the size of the state space reduces power. On the other hand, T
and N are seen to have positive main effects on power, again suggesting the
benefits of long time records and a large number of entities observed. P and
n(0), the two factors essentially beyond the control of the modeler, have

relatively small impacts on power.
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5. DISCUSSION

In this paper, we have shown how a general hypothesis testing framework
can be used to develop specialized tests which may be of interest for a
specific estimation and inference problem involving Markov chains with only
aggregate frequency macro data. The results of our Monte Carlo studies lead
us to anticipate that the proposed tests should be valid in the sense of
producing nearly the proper Type I error probability, and should have good
power to detect departures from the null hypothesis of interest. The ability
to carry out such tests could allow more meaningful use of stochastic models
in physical and social sciences. When considering the use of a Markov chain
model in practice, we would recommend first that the three tests developed 1n
Kelton and Kelton (1984a) be applied to assess the adequacy and validity of
the model. (In that paper we acknowledge, however, that the test for zero-
order dependency does not establish the length of memory of the process if it
is not Markovian.) Then, we recommend proceeding with more specialized tests
such as those in the present paper, or others of interest in different
empirical applications.

As the Monte Carlo experiment was designed, we could observe the effects
of various modeling choices on test validity and power. There is clear
evidence that a small state space is desirable, and some evidence that lower
Type I error probabilities as well as higher power can be expected from long
time records of data. These recommendations are consistent with those of our

earlier paper.
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Table 1. Share of National Barrelage by Brewer*

Anheuser=-

Year Busch Miller Other

1951 0.0653 0.0312 0.9035
1952 0.0711 0.0359 0.8930
1953 0.0780 0.0248 0.8972
1954 0.0700 0.0252 0.9048
1955 0.0661 0.0258 0.9081
1956 0.0690 0.0264 0.9046
1957 0.0725 0.0275 0.9000
1958 0.0827 0.0263 0.8910
1959 0.0920 0.0269 0.8811
1960 0.0964 0.0270 0.8766
1961 0.0956 0.0303 0.8741
1962 0.0991 0.0308 0.8701
1963 0.1002 0.0311 0.8687
1964 0.1051 0.0333 0.8616
1965 0.1179 0.0365 0.8456
1966 0.1302 0.0398 0.8300
1967 0.1452 0.0428 0.8120
1968 0.1651 0.0435 0.7914
1969 0.1609 0.0446 0.7945
1970 0.1819 0.0422 0.7759
1971 0.1876 0.0401 0.7723

*Source: 1978 Federal Trade Commission Report, Table VIII,



Table 2. Means and Main Effects for Testing Constant Diagonal Probabilities

Main Effects

Response Means R T N n(0) P
2 24.05  11.50 3.10 7.70 0.55 0.15
p-valye  0.36  -0.45  -0.07  -0.23  -0.04 0.04
of g
D! 1.31 0.81 0.33 0.22 -0.38 0.10
Cyo 8.91  -1.19 0.44 -1.31 -0.44  -1,94
Ce 4,69  -0.38 0.63 -1.00 0.38  -1.50
o 1.16 0.06 =0.44  -0.69 0.69  =0.56

{C1p-101 2.28 1.06 -0.31 0.69 0.56 0.31
ICg=51 1.06 0.63 0.13 -0.00 0.38 0.75

1C;-11 0.72 -0.06 -0.56 -0.06 0.06 -0.19




Table 3. Averaged Main Effects for Power of Test for

Constant Diagonal Probabilities

Level of Test

Factor 10% 5% 1%
R -45,91 -54.00 -62.47
T 5.91 6.00 9.53
N 5.09 ~  6.63 9.84

n(0) 15.28 16.06 16.91

P -11.09 -11.50 -9.84




Table 4. Means and Main Effects for Testing a Specified Probability

Main Effects

Response Means R T N n(0) P
2 24.75 16,25  -5.30 3,25 3,20 -7.80
p-valye  0.39  -0.40  -0.08  -0.04  -0.01  -0.03
of x
D! 1.12 0.44  =0.19 0.18 =0.11  =0.26

C,p  12.38 575 -2,00  0.25 -2,13  -2.38
C 7.44 475 =175 1,25 -0.50  -3.13
Cy 213 238 -0.25 113  0.13 -1.63
ICjp-101  3.75 4,00 -0.75  0.25 -0.13  -2.63
ICs-51  2.88 4,38 -1.38 0.8  0.38 -2.75

ICy-1| 1.44 2.25 -0.63 0.50 . 0.50 -1.25




Table 5. Averaged Main Effects for Power of Test for

a Specified Probability

Level of Test

Factor 10% 5% 1%
R -7.59 -9.94 -13.88
T 7.47 9.31 13.63
N 4,66 6.88 8.63
n(0) -1,22 -1.88 -2.13

P -3.97 -4,19 -5.06




100

90

Rejection %
fo’ 48" %0 70 80

30

20

10% Test
5% Test — — — —
1% Test -===---.

Figure 1. Average Rejection Percentages for Testing

Constant Diagonal Probabilities
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Figure 2. Average Rejection Percentages for Testing

A Specified Probability
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