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Previous results for stationary continuous-time processes concerning allocation of a fixed amount
of simulation effort across independent replications are extended both to stationary and certain
nonstationary discrete-time processes. In particular, in the presence of positive autocorrelation,
variance is reduced if more short replications are designed. The magnitude, however, of the variance
reduction is not great as long as the computation budget is not tight, suggesting that a good strategy
is to design for a moderate number of replications in any case, which also mitigates potential bias

problems.

Key Words: Simulation; Variance; Replication; Budget constraint.



1. Introduction

One of the principal drawbacks of using simulation to study the behavior of complex stochastic
systems is that we obtain only estimates (as opposed to exact values) of desired system char-
acteristics. Such estimators are properly regarded as random variables (r.v.’s), whose degree of
imprecision or uncertainty is typically measured by their variance. Accordingly, considerable effort
has been devoted to finding techniques to reduce the variance of such output r.v. estimators, at
little or no additional cost, in which case more precise results are obtained for the same simulation
effort, or (equivalently) less effort is required to attain a desired precision. Many of these variance
reduction techniques (common random numbers, antithetic variates, and control variates, for ex-
ample) manipulate the random number generator to induce certain correlations in the simulation
output which then enter the variance formula, with appropriately signed coefficients, to reduce the
variance of the final estimator. Thus, some amount of internal modification of the simulation code
itself is usually required to use such techniques.

This paper examines a different method of variance reduction that is entirely external to the
simulation program, affecting only the duration and number of independent replications of the
simulation through the experimental design of the simulation study. Assuming a budget constraint
given in terms of the total amount of simulation possible (expressed either as simulation clock time
or as the number of discretely-indexed observations), a decision must be made before the simulations
are run as to the number of independent, identically initialized and terminated replications to make,
and the duration of each. Gafarian and Ancker [2| considered monitoring a stationary continuous-
time process with a positive, exponentially declining autocorrelation function during a simulation,
and showed that it is better (in terms of variance of the time-integral output estimator) to break
up the simulation effort into “many short” runs, rather than “a few long” runs. This paper
establishes similar results for discrete-time processes, which are often more informative and easier
to observe in simulation, that are either (a) stationary with any form of positive autocorrelation
function, or (b) nonstationary first-order autoregressive (AR(1)) with positive multiplicative factor;
a counterexample, however, demonstrates that the result does not hold for arbitrary nonstationary
discrete-time processes, even with positive autocorrelation.

Section 2 treats stationary processes with arbitrary positive autocorrelation function, and Sec-
tion 3 shows that, while similar results do not in general hold for nonstationary processes, they
are valid for positively correlated nonstationary AR(1) processes. In Section 4 some numerical

quantification of the results is presented, and conclusions and observations appear in Section 5.
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2. Stationary processes

Let {X1,X,,...} be a covariance stationary process with E(X;) = p and v, = Cov(X;, Xiy,).

From a simulated realization Xi, X3, ..., Xy, of m consecutive observations from the process, X, =

S.m . X;/mis an unbiased estimator of u, with

Var(Xn) = (70 + 2 "i::lu - p/mp) m &

(Empty sums, such as (1) in the case m = 1, are taken throughout as 0.) Thus, if we make k
independent replications of length m observations each, resulting in k independent realizations of
X, our final unbiased point estimator is Tkm, the sample average of the k independent X,,’s, which
has variance equal to the expression in (1), divided by k.

Suppose a budget constraint is imposed in the form of a limit n on the total number of X’s
that can be simulated, regardless of how these n observations are allocated to replications. We
must then decide, before simulating, on how many replications k to make, each of length m = n/k,
under the budget constraint. (It is assumed that n is divisible by k, a mild restriction since n will
probably be relatively large. Also, we require the replications to be of equal length m to preserve
the identically distributed nature of the within-replication averages, in order to allow application
of statistical methods based on an identical-distribution assumption.) Since Xim is unbiased for
p regardless of the choice of k and m, it is reasonable to focus on the effect of the splitting of
n into k times m on Var(-fkm); the following result shows that in the common case of positive

autocovariance, choosing many short replications is preferable to choosing a few long replications.

Proposition 1. For j = 1,2 let k; be a positive integer dividing n, let m; = n/k;, and assume
that k; < k;. For a covariance stationary process {Xi,...,Xn} with 4, > 0 for all p, we have

Var(fkl my) 2 Var(f;,zm2 ).

Proof. For j =1,2 let
m]"‘l

6= (1-p/m)rp

p=1

so that Var(fkjmj) = (o + 2¢;)/n. Thus, it is enough to show that g; > g;. Since m; > my,

1 . my—1 my~1 p
non=(5om) S S5 @
r=1 p=my
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which is clearly nonnegative since the autocovariance function is nonnegative.

Note that the assumption of nonnegative autocorrelation was used only in the final step of the
proof, and that nonnegativity of (2) is necessary and sufficient for the result of the proposition to
hold. If the «,’s could be negative (as can arise, for example, in inventory systems) then (2) could
be negative, resulting in the opposite conclusion, i.e., that a few long replications are preferable to
many short ones. Thus, some knowledge of the sign of the autocorrelations would appear to be

helpful in designing the simulation experiment.

3. Nonstationary processes

Simulation of complex systems typically results in output stochastic processes which are non-
stationary, due to the often artificial nature of the initial conditions needed to start the simulation.
This section establishes a result similar to Proposition 1 for one useful class of such processes; the
proof, however, is entirely different.

Before establishing this, we demonstrate that the result of Proposition 1 does not hold in general
for any discrete-parameter nonstationary process, even if positive autocovariance is assumed. For a
general (possibly nonstationary) process {Xj, Xz, ...}, let 7 = Cov(Xj, X;) and define ?km formally

as in Section 2 (except now using the X;’s from the nonstationary process). In this case,
_ 1 m m
Var(ka) = ﬁkzz:'ﬁj, (3)
i=1 j=1

where n = km. As a counterexample, let {X;, Xs,..., Xs} be multivariate normal with covariance

matrix

— e e e QO
e S R A JURY U
I R e N I
Pt et RO =
bt RO bk ek ek
DO i ek ek fd ek

Note that ¥ is positive definite (so such a process exists), and that the correlations are all positive
(but not stationary). Choosing n = 6 and, as before, setting m = n/k, (3) is equal to 1.056 if
k = 2, but is 1.083 when k = 3; thus, increasing k led to an increase in Var(-_f-km), contrary to
Proposition 1.

One general class of nonstationary processes, however, does yield the result of Proposition 1.
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The AR(1) process is defined by the recursion
X p’+¢( -1~ H )+Ef1

for 1=1,2,..., and the €;’s are a sequence of uncorrelated r.v.’s with mean 0 and common variance
o2; we assume throughout that |¢| < 1. This class of processes was introduced as a model for
simulation output processes by Fishman [1] and investigated further by Turnquist and Sussman [4],
and by Kelton and Law [3]. While making such an assumption certainly entails some amount of
approximation, the relatively simple form of the AR(1) process enables a more intensive analSISis.
Further, this process shares many important features with actual output processes from simulation,
such as having an autocorrelation function that (at least asymptotically) declines exponentially;
depending on the initial specification of Xp, the process may or may not be stationary.

If we make the additional assumption that the e,’s are normally distributed and that Xj is
drawn from a normal distribution with mean p and variance o%/(1 — %), then the {X;} process is
stationary with mean 0, variance 02/(1 — %), and lag-p autocovariance v, = ¢Po%/(1 — ¢%); thus,
the result of Proposition 1 would apply. If, however, we do not make these additional assumptions
and let X be deterministically specified, then the {X;} process is neither first- nor second-order
stationary; for the rest of this section, we will assume that this is the case, and so Proposition 1
would not apply.

The conclusion of Proposition 1, however, still holds, as we show in the remainder of this section.
Defining X, and ?km formally as in Section 2 (except now using the X;’s from the nonstationary
AR(1) process), note first that from equation (4) of (3],

2 m
VarlTo) = o (1 ¢>((1 ¢ 2; (24601 - ¢'"))) . @)
The following Lemma is stated for use in evaluating the key expression appearing below in Propo-

sition 2.

Lemma. For ¢ a nonnegative integer and any real y,

() D y=0-y*h/(1-y)

p=0
(%) Zpy” b= (1- (g4 1)+ gy /(1= )
p=0
q
() Y= (1+y- (g D)%+ (200 + 20— Dy - )/ (y(1 - 9)°)
p=0



Proof. (i) follows from induction on ¢, and () and (4) are obtained by successively differentiating

through (i) with respect to y.

Proposition 2. Let n,k;, and m; be as in Proposition 1. Then for any AR(1) process with ¢ > 0,
we have Var(?klml) > Var(?k,zmz).

Proof. Dividing (4) by k; and rewriting yields
Var(ijmj) = Cl(]. - ngmj))

with ¢; = 02/(n(1 - ¢)?), c2 = ¢/(1 - ¢%), and g = (2(1 — ™) + ¢(1 — $™)?)/m for any positive
integer m; note that neither ¢; nor ¢, depends on m;. Thus, it is enough to show that g < gm,,
which would follow from establishing that g, is nonincreasing in m (since m; > mjy). Noting that

Im — Im+1 > 0 if and only if
by = 2+ ¢ _ 2(m+ 1)¢m _ 2¢m+1 + 2m¢m+2 + (m+ 1)¢2m+1 - m¢2m+3

is nonnegative, we use the relations in the Lemma to rewrite
(1 _ ¢)3 m—1 m
b = (Z(3p +4)(p+1)¢P+ 6™ (~p* - 2m+ 1)p+ 3m(m+ 1))¢P> )
p=0 p=0
Since ¢ > 0 and the coefficients in (5) of ¢” in the summations are always positive over the sums’

respective ranges, we see that hy,, > 0, and the proof is complete.

Again, the assumption of nonnegative autocovariance (¢ > O here) is critical for the result, and
the opposite conclusion could be reached otherwise. In principle, one could investigate whether
the conclusion of Proposition 2 holds for higher-order autoregressive processes, as well as for more
general ARMA processes, by using methods similar to those above; it seems, however, that the

complexity involved would be formidable.

4. Numerical illustration

Propositions 1 and 2 establish inequalities about the variances resulting from alternative split-
ting of the simulation budget, but say nothing about the magnitude of the variance reduction
obtained from choosing a larger value of k. In this section we use the AR(1) model (both station-

ary and nonstationary) to quantify the nature of the decrease in Va.r(_)_zkm) as k increases, with n

fixed.



With the AR(1) process (with normal ¢;’s) initialized by drawing Xo from a normal distribution

with mean p and variance 0?/(1 — @%), the process is stationary with lag-p autocovariance vy, =
¢P0?/(1 — ¢%). Combining this with (1) results in

=(5),  om—2¢ — me? + 2™
VarlXim) = O T T oy

where the superscript (S) denotes stationarity.
On the other hand, if the AR(1) (with possibly nonnormal /) is initialized via a deterministic

choice for Xy, we get from the expression for Var(fkm) in the proof of Proposition 2 that

—(NS) =(5) ™ -¢)
Var(Xyy, ) = Var(X,,) - o km"(g + ¢)(f)“ e
s) =(5)

=(N.
the superscript (NS) denotes nonstationarity. As an aside, note that VaI(Xim ) < Var(X,,),

evidently reflecting the lower variability induced by the deterministic initialization in the nonsta-
tlonary case.

With o = 1, n fixed at 1000, 2000, 4000, and 8000, and setting m = n/k, Figure 1 plots the
standard deviations Var(?ii)) (solid lines) and V/ Var(zgv,f)) (dashed lines) as functions of k,
for k < 125 and dividing n; ¢ is taken as 0.90. The decrease in variance with k is evident in all
cases, but is less marked for a more generous budget. In fact, for n not too small, the quantitative
advantage of splitting into many (high k) replications appears to be only minor. (From plots not
shown for other values of ¢, the size of n required for the preceding statement to hold is smaller for
small ¢, and vice versa.) This is significant in the nonstationary case if we are using ‘_)ng) as an
estimator of u; this estimator is biased for u, and the bias increases with k (see [3]), so that choosing
k small is attractive from this standpoint. In the stationary case, however, i‘m is unbiased for p,
and it appears advantageous to make a number of replications provided that it is neither expensive
nor inconvenient to implement the multiple simulation initializations this would entail.

Finally, Figure 1 displays a curious crossing of the dashed lines, for example, Var(?&lgs io)
(n = 1000) is less than Var(fg:lo) (n = 2000), so that the variance is larger with more total data.
To explain this apparent paradox, recall that these simulations are initialized deterministically,
and allowing them to run for m = 20 points (rather than m = 10) extends further away from the

deterministic initialization, providing greater opportunity for variation that in some cases more

than offsets the increased information in the additional data.

5. Conclusions

This paper has focused on variability of estimators of means of positively autocorrelated
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discrete-parameter processes (or asymptotic means in the nonstationary case), and showed that
splitting the budget into multiple replications is always preferable in the stationary case, may not
be in the general nonstationary case, but is still preferable for the nonstationary AR(1) model
considered. Looking at the actual magnitudes, however, of the variance reductions obtained for
both stationary and nonstationary AR(1) processes, it appears that relatively little is to be gained
by splitting into many short replications unless the budget is tight. Thus, especially in the non-
stationary case where bias may also be a concern, a moderate number (no more than, say, 25)
of replications should result in reasonably stable estimators and adequate degrees of freedom for
efficient application of various statistical procedures, such as hypothesis testing about u or form-
ing confidence intervals for u. A cost model incorporating both the cost of variance and the cost
of eliminating the biasing effects of such nonstationarity on point estimators could quantify the
tradeoffs involved in the splitting of the budget into replications. In any case, it appears that
in automated procedures for run length determination, preference should be given to run length
increase over increases beyond about 25 in the number of replications to attain a desired precision

in the output.
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Figure 1. v Var(—y—in)/k) (solid lines) and \/ Var(.?(i,,/,)c) (dashed lines) as functions of k for AR(1)

processes with 0 =1 and ¢ = 0.90.



