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Abstract

When simulating a stochastic model to estimate steady-state parameters of processes of interest,
the initial conditions used to start the simulation often bias the estimators, sometimes severely. A
common method for ameliorating this bias is to delete, or truncate, an initial portion of the run.
If the initial conditions are far from steady state, a large amount of data may have to be discarded
from the beginning of each simulation run, increasing costs. We investigate feasible methods for
initializing such simulations that lead to lower estimator bias or, alternatively, less requisite deletion.
Deterministic and stochastic initialization rules are compared, with appropriately chosen stochastic
rules’ being preferable. Forms for the initial distribution are suggested by the maximum entropy
principle, and the parameters of these distributions may be specified from short pilot runs of the
model. The goal throughout was to develop initialization methods that adapt to the particular
model being simulated, yet are robust to variation in and misspecification of run parameters and
conditions on the part of the analyst. These initialization rules are then applied to queueing models
with both steady-state and transient properties known, to a computer model with known steady-
state mean but unknown transient, and to a model of an actual manufacturing system with neither

steady-state nor transient characteristics known.

Subject classification: 767 initialization methods, 769 initial transient reduction.
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Simulations of dynamic, stochastic systems may usually be classified as either terminating or steady-
state. Terminating simulations aim to estimate a parameter of the process defined relative to specific
starting and stopping conditions, which entail a natural beginning and end of a simulation run.
Steady-state simulations, however, have no natural starting or stoppAing rules, since the parameter to
be estimated is defined as a limit as simulated time becomes infinite, and is defined independently of
the initial conditions. Thus, the actual starting and stopping of a steady-state simulation becomes
a difficult problem. Law (1980) contrasts these two types of simulations in several examples, and
discusses the appropriate framework (replication of the entire simulation) for statistical analysis of
the terminating type.

The framework for statistical analysis of steady-state simulation is far less clear, and has been
the subject of a considerable amount of research over the past decade. Although it is hazardous to
attempt any comprehensive classification of methodologies, most of these could be probably be put
under one of the following six categories: Replication, batch means, time series modeling, spectral
analysis, regenerative methods, and standardized time series. We surveyed, in Law and Kelton
(1984, 1982), the first five of these as they existed then; additional work includes Schmeiser (1982)
and Meketon and Schmeiser (1984) on batch means, Schriber and Andrews (1984) on time series
modeling, and Heidelberger and Welch (1981) on spectral analysis. The standardized time series
method is developed in Schruben (1983) and Goldsman and Schruben (1984). One important dis-
tinguishing characteristic among these methods is whether a single “long” run of the simulation is
used, or multiple “short” runs. Batch means, time series modeling, spectral analysis, and regenera-
tive methods work from a single long run, replication uses multiple shorter runs, and standardized
time series may be applied to either a single long run or multiple short runs.

The motivation for this work was in the method of replication. Here, several independent
and identically operated simulations are made in order to produce the independent and identically
distributed (i.i.d.) observations Xj,Xj,..., where X; is the output measure of interest from the
Jth entire simulation run. For example, X; could be the average over the jth run of the times in
system of parts in a manufacturing simulation. In outline, this method is identical to that used for

terminating simulations. Replication has two principal advantages:

(1) It is a very simple method to apply, by far the simplest of the six techniques mentioned above.
Most simulation languages have some facility for specifying that a model be replicated some
number of times.

(2) It produces the i.i.d. sequence Xj, X3, ....of observations on the system, to which the methods
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of classical statistics may be directly applied. This includes not only the familiar confidence
interval construction and hypothesis testing, but also methods such as multiple ranking and
selection procedures, a very useful class of techniques in simulation since several alternative
system designs are frequently of interest. The key ingredient in being able to apply such
techniques is that we have i.i.d. data, with expectation equal to the desired performance

parameter.

The last ingredient just mentioned, that the data are unbiased for the performance parameter of

interest, leads to the principal disadvantage of replication:

(3) The initialization methods used to begin most steady-state simulations are typically far from
being representative of actual steady-state conditions, leading to btas in the simulation output,

at least for some early portion of the run.

This instial transient problem has limited the effectiveness of replication for steady-state analysis.
The advantages (1) and (2) above, however, are sufficiently attractive to promote attempts to
overcome the disadvantage (3). Most research to date on initial transient detection and reduction
has focused on deletion (or truncation) of some initial portion of the run where the transient bias
is most severe; see, for example, Gafarian, Ancker, and Morisaku (1978), Adlakha and Fishman
(1982), Schruben (1981, 1982), Schruben, Singh, and Tierney (1983), Welch (1983), and Kelton
and Law (1981). These methods attempt to identify at what point the output record from within
a run appears to have attained “steady state,” and data are retained only from this point on. Such
identification may be problematic for some models, and, even if the identification is successful, may
prescribe that a large amount of initial deletion is necessary to be safe. In multiple replications,
deletion would be necessary from each run, possibly resulting in large portions of the output records’
being discarded.

The assumption behind the deletion approach is that the initial conditions are given, and are
not representative of steady state. Our purpose here is to investigate better ways to initialize
steady-state simulations that promote more rapid convergence to steady state. Deletion may still
be necessary, but the amount of deletion should be reduced. Our goal is to find feasible, model-
dependent methods that are robust to variations and imprecisions on the part of the simulator.
If the deletion tactic represents a “cure” to an existing initial transient problem, then robust
initialization may be thought of as an attempt at preventative medicine.

We limit our consideration here to models that may be initialized by specifying a single, discrete
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value; extending these ideas to multivariate state spaces is the subject of current research. Thus,
our goal here is to find a way to specify “reasonable” values for the initial state of the system. We
develop alternative initialization methods in Section 1, which are then investigated in Section 2
on models about which varying amounts are analytically known. Section 3 contains some general

conclusions.
1. INITIALIZATION METHODS

In this section we discuss alternatives for initialization. The basic distinction is drawn between

determanistic and stochastic initial states.
1.1. Deterministic Initial States

The most common way of initializing replications is to begin each one in an identical deterministic
state. The canonical example is empty and idle initialization of queueing models (usually the
default in simulation languages, which may not be conveniently changed). This clearly results in
the runs’ producing i.i.d. X;’s, provided that they are terminated in the same way. The choice of
the initial state may consider convenience or economy in programming.

A better (at least from the statistical standpoint) consideration would be some sense of simi-
larity to steady-state conditions. Wilson and Pritsker (1978) evaluated finite state space Markov
processes and found that choosing an initial state near the mode of the steady-state distribution
produced favorable results. We found in Kelton and Law (1985), Kelton (1985), and Murray and
Kelton (1985) that, for M/M/s, M/E,/1, E,/M/1, and M/E,,/2 queues, the initialization state
(representing the number of customers or Erlang stages present at time 0) can have a dramatic
impact on the rate of convergence to steady state,;and that jnitializing in a-state at least as con-
gested as the steady-state mean induced comparatively short transients. Optimal initial states
were found, but the cost functions (bias and time to near-stationarity) were quite steep around the
optima; thus, one would have to be quite precise (or lucky) in choosing the initial state to realize
the potential gain. In order to implement such ideas, some a priori estimate of the mode or mean
of the steady-state distribution would be required, perhaps available from debugging or pilot runs
of the model.

It is characteristic of deterministic initialization that each replication will pass through a tran-

sient phase that is identical across replications, since the initial state is always the same. For
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example, in a queueing model initialized in an undercongested state, all replications will be down-
wardly biased. One could purposely vary the initialization state across the replications in a study
to produce a range of biases that may offset one another. However, this destroys the identically

distributed nature of the replications, rendering subsequent statistical procedures invalid.
1.2. Stochastic Initial States

One way to allow for different realized initialization states across replications, yet retain proba-
bilistic identity of the runs, is to draw the initial state from some distribution. The replications,
though actually begun in generally different numerical positions, are still i.i.d. since the rule by
which the initial states are chosen is always the same. Indeed, the ideal would be to draw the
initial state from the steady-state distribution itself, and the simulation would immediately be in
steady state. This being clearly unworkable, we need to find appropriate feasible ways to specify an
initial distribution. Both the form and the parameter(s) of such a distribution must be determined
somehow.

Rarely would there be information available sufficient to specify the form of an initial distribu-
tion completely. In the absence of much information about the appropriate initial distribution, one
way of specifying the form follows the principle of mazimum entropy, developed by Jaynes (1957)
and going back in essence to Laplace’s “Principle of Insufficient Reason” (stating that, in the absence
of contrary information, two complementary events should be assigned equal probabilities). En-
tropy maximization produces a discrete probability mass function (p.m.f.) p(x) = {p(z1),..., p(z)}

on the finite domain {zj,..., 2} that maximizes the p.m.f’s entropy

k .
Hp)=-)_ p(z)ln p(z)
=1

subject to the ezpectation constraints

k
Y glz)p(m)=v; for 1<j<t (1)

=1

where the g;’s are given, real-valued functions. (If we do not wish to impose any expectation

constraints, (1) may be omitted by taking ¢t = 0.) Formally, the problem is then

k
max H(p)  subject to Zp(z.) =1 and (1). (2)
i=1
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Solution of (2) can, in principle, be accomplished by introduction of Lagrange multipliers to account
for the constraints. The p.m.f. resulting from entropy maximization is the “maximally noncom-
mittal” distribution that obeys the constraints, in the sense that it agrees with the (observed)
frequency distribution obtainable in the largest number of ways from actual data that conform to
the constraints (see Jaynes).

In our situation, we considered two possibilities for the expectation constraints (1). First, we
may have no information at all from which to specify such constraints, so that (1) is vacuous. In
this case, solving (2) leads to a discrete uniform distribution on {zy,...,z}, ie., p(z) = 1/k for all
¢, and we would need only specify a range for the initial state. Second, we may want to impose a
mean constraint ¥; = v on the chosen p.m.f., i.e., in (1) we take t =1, g(%) = %, and v; =v. Our
interest will be in the case {z;,...,z} = {0,...,m}, and with these assumptions the solution to
(2) is

p(c)=ad® for ¢=0,1,...,m, (3)

for some positive constants a and b chosen to satisfy the constraints. This leads to setting a =
(1-16)/(1 - 6™1), where b is a solution to

—(m+ 1)b™1(1 - b) + b(1 - ™)
(1= b)(1 = bmt1)

=y,

which would have to be solved numerically. The situation simplifies considerably, however, if we
consider the case of large m, i.e., we ignore the truncation. In this case we can reparameterize (3)
as the more familiar p(c) = p(1 — p)° with p = 1/(v + 1). Given the uncertainty of the information
we are likely to have in choosing an initial distribution, this approximation seems warranted. Thus,
in this second approach, we need an a priori estimate of the steady-state mean v of the system
state. Finally, it is interesting to note that the geometric distribution for the number of customers
in system 18 the correct steady-state form for several queueing models, such as M/M/1 and G/M/1.

To summarige, the maximum entropy principle-suggests that, in the absence of any feeling
about the expected system state in steady state, we use a discrete uniform initial distribution, on
{0,1,...,m} in our applications. Thus, we must specify m somehow. If we have an estimate or
guess about the expectation v of the system state in steady state, we could use a geometric (perhaps
truncated at some m) distribution with parameter p = 1/(v +1). If one has additional information
in the form of expectation constraints, they could be built in and the form of p found. We did not
consider this explicitly, however, since our attitude was that relatively little will be known a prior:

about the steady-state distribution in most cases.
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By using a uniform or geometric initial distribution, we have replaced the problem of specifying
a deterministic initial state by that of specifying the parameter(s) of the initial distribution. It
seems that misspecification of such parameters may be less severe than misspecification of a single
state in which all replications will begin. These parameters could be specified either arbitrarily, or
by looking at some short “pilot” runs of the model, which may be available anyway from model
debugging and testing. The maximum state observed over such pilot runs would determine m for
the uniform initial distribution, while the average observed system state would give a rough value
of v and hence p for the geometric initialization. These pilot runs must also be initialized (and
terminated) somehow, so we are still faced with the need to specify something rather arbitrarily.
Again, the starting and stopping of these pilot runs is one more level removed from the actual
production runs of the model, and their specification should in turn be less important than arbitrary
setting of the parameter(s) of the maximum entropy distributions developed above. Pfesumably
one could think of initializing the pilot runs themselves stochastically, based on pre-pilot runs, and
so on. We stopped, however, with deterministically initialized pilot runs of somewhat arbitrary
length since the final production results appeared to be fairly robust to changes in the conditions of
these pilot runs. It will be necessary to specify some parameters arbitrarily and deterministically,
at some level removed from the production rums; it appeared from our results in Section 2 below
that using arbitrarily designed pilot runs to specify the parameters of the initial distribution was

sufficient.
1.3. Implementation Issues

In testing the above ideas on various models, we encountered some issues in terms of their imple-
mentation. Most importantly, if a queueing model is “loaded up” with some number of customers
initially, they must not be counted in the final output statistics. For example, if we are observing
the delay in queue process, the delays of those customers artificially placed in the system at time
zero cannot be counted in the average, to avoid potential bias. This can be accomplished by flagging

the artificial entities, for example by assigning their time-of-arrival attribute to be negative.

2. RESULTS

In order to evaluate the initialization methods discussed in Section 1, we applied them to a variety

of models, ranging from simple queues with known steady-state and transient expected behavior,
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to a real simulation of a complex manufacturing system with neither steady-state nor transient

properties known.
2.1. Evaluation Criteria

We used three criteria to evaluate the effectiveness of the alternative initialization methods:

(1) Plots of the expected transient response (or an estimate of it) as a function of discrete time
(customer or job number). This provides a qualitative yet informative view of the nature and

rate of convergence of the model to steady state for initialization alternatives.

(2) The percent bias (with respect to the steady-state mean p) of the expected average E(Y (n))
of the first n points in a run, 100| ¥ (n) — u|/|u|. This provides a measure of the bias in a run

of length n points without deletion.
(3) The time (in number of simulated points) to attain near steady state (within 100¢% of u),
w(C,q) = min{n > 1: [E(¥;) - ul < glu| V> n},

where Y; is the ith observation within a replication. Here, C represents the initial state, which
could be a constant or a random variable. This measure indicates the extent of deletion still

needed for a particular initialization rule to converge to within a tolerance of steady state.

The first criterion was applied to all models, but the last two were used only for the queueing
models with analytically known transients since only in this case did they exhibit behavior that
was stable enough to be meaningful. The transient curves (1) usually provided enough information

to judge the effectiveness of the initialization rules.

2.2. Analytical- Modsls

Three different GI/G/s queues were used here, with the observed process { Y;} being the delay in
queue of the ith arriving customer, arrival rate 1, and traffic intensity p = 0.9 in all cases. The

three particular cases considered were

(1) The M/M/3 queue, with steady-state mean delay in queue u given in Gross and Harris (1974)
and transient expected delay in queue E(Y;) obtained from Kelton and Law (1985).

(2) The M/E4/1 queue, where E4 denotes a 4-Erlang distribution, with y obtained from tables in
Hillier and Yu (1981) and transient E(Y;) from Kelton (1985).
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(3) The E4/M/1 queue, with p and E(Y;) obtained from the same sources as for the M/E;/1 queue.

These are certainly very simple models, but the full analytic information about them allows us to
make a more exact analysis of initialization rules, at a reasonable computing cost.

Figure 1 presents the results for the M/M/3 queue. The horizontal axis jls the customer number,
1, and the vertical axis scales the expected delay in queue E(Y;) on various curves defined by different
initialization methods. The dashed line is at level u for all figures. The first panel of the figure,
labeled D, traces the transient for deterministic rules ranging from empty and idle (¢ = O customers
present initially) as the bottom curve, to ¢ = 30 customers present initially in the top curve. The
importance of the initialization is clear, with some states being far preferable to others. The V-
shaped curves in Figure 2 show the percent bias (top panel) and warmup period for a 5% tolerance
(bottom panel), as functions of the initial number c of customers present, indicating that ¢ = 14 is
the best deterministic initial state, but that missing this value by very much entails heavy penalties.
Panel U of Figure 1 gives the result of applying a discrete uniform initialization for the initial (now
stochastic) number of customers present, C. The range for C we took to be {0,1,... ,m}, and let
m = 10,20, and 30. The points on the curve were obtained by conditioning on C = ¢ and then
weighting the curves from panel D of the figure by the appropriate uniform p.m.f. p(c) = 1/(m+1),
plotting ) E.(Y;)p(c) as a function of 1, where E indicates that the expectation curve from panel
D with initial state c is being used. In this case, m = 20 appears to be the best choice, but in any
case these stochastically initialized runs (with parameters of the initial distribution being arbitrarily
specified) appear safer than most of the deterministic initializations. Panel G of Figure 1 is similar
to Panel U except that truncated (at ¢ = 30) geometric distributions with arbitrarily specified p
are used as the initial distribution; we let p take on the values 0.05,0.10,0.20,... ,0.90,0.95 with a
lower value of p producing a higher curve. Again, this stochastic initialization seems more stable
than deterministic rules, but the parameter choice appears to have some effect. The final panel
of Figure 1, labeled P, indicates the result of using a pilot run (initialized empty and idle, and
lasting for 100 delays in queue) to specify m for the discrete uniform initial distribution (top curve)
and p for the geometric initialization (bottom curve). These results are partly empirical, in that
our procedure was to make a pilot run, observe the maximum number of customers in the system
(to specify m) and the time-average number of customers present (specifying v and thus p), use
these initial distributions as in panels U and G to weight the curves from panel D, then repeat
this whole process 100 times. The curves in panel P are the result of averaging the resultant 100

‘transient curves; this procedure mimics the pilot run strategy as it would be applied in practice.
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While there is still a transient portion present, its magnitude and_ duration are considerably milder
than most of the deterministic initializations, and it appears somewhat better to let a pilot run
determine the initial distributions’ parameters than to specify them arbitrarily. The horizontal
lines in Figure 2, labeled U and G, represent the percent bias (top panel) and transient duration
(bottom panel) when using these pilot run-determined initial distributions; while not as good as
the optimal deterministic initialization, these rules appear to provide a safer initialization policy
than most deterministic rules. By using a longer pilot run or one initialized in something other
than the empty and idle state, the results would be improved.

Figures 3 and 4 consider the M/E,/1 queue with p = 0.9, and parallel the conditions of Figures
1 and 2 exactly. The same general comments would apply; in fact, the stochastic initialization
based on a pilot run appears to be more effective here than for the M/M/3 model. Figures 5
and 6 give the results for the £;/M/1 model, again under the same conditions. In this case, the
pilot-run scheme appears to have nearly eliminated the initial transient; in terms of the length of
the transient (Figure 6, bottom panel), these rules are actually better than the best deterministic
rule.

These models, with their full analytic information, allow a relatively intensive examination of
initialization options. In the following two subsections, we consider two models with less analytic

tractability, but which are considerably more complex and realistic.
2.3. An Analytical/Empirical Model

It is generally easier to obtain steady-state means than transient means, and we now consider a
closed queueing system in this class. The model is of a time-shared computer system consisting of
a single CPU and 20 terminal users, sending jobs for processing by the CPU. The queue discipline
for the CPU.is round robin, i.e., there-is a maximum amount of time (0.1 time unit) that.a job
is allowed to occupy the CPU continuously, after which it is requeued at the.end. When finished,
a job returns to its terminal, and the elapsed time from the sending of a job from its terminal
to its return is called a response time. This terminal then enters a “think state,” which has an
exponential duration with mean 25. Additionally, there is a swap time of 0.015 required each time
a job is removed from the queue and placed in the CPU. The process observed here was Y; = the
response time of the ith job returning to its terminal. The steady-state mean response time u for
this system was derived in Adiri and Avi-Itzhak (1969), to which the reader is referred for more
detail. The scalar initial state here is C = the number of jobs present in the computer (CPU plus
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queue) at time zero, with the assumption that each such job has not visited the CPU at all yet.
While p is known for this system, E(Y;) as a function of ¢ is not, so we estimated this transient by
averaging across 1500 independent replications of the model for each of the 21 possible deterministic
initialization states ¢ € {0,1,...,20}. Panel D of Figure 7 displays some of these curves, and we
again see the consequences of over- or under-initialization on the transient approach to steady state.
Panel U displays the result of a uniform initialization between 0 and m for m = 5, 10, 15, and 20,
and Panel G does likewise for geometric initialization for p = 1/3,1/6, 1/11, and 1/16; these
arbitrary stochastic initializations again appear safer then an arbitrary deterministic initialization.
Panel P illustrates the use of a pilot run (of length 40 response times, in each case) to determine
a uniform or geometric initial state. The “0” indicates that the pilot runs were initialized with no
jobs in the computer, and the “H” denotes a pilot run initialized with half (i.e., 10) jobs present
in the computer initially. There appears to be much to gain by using such pilot-run-determined
initialization distributions, and slightly better results are obtained if these pilot runs themselves are
begun in something other than the empty and idle state. We repeated the experiments producing
Panel P of Figure 7, except using pilot runs of length 80 response times, twice as long. The results
were curves nearly identical to those presented, indicating robustness of the results to the choice

of this characteristic of the pilot runs.
2.4. An Actual Manufacturing Model

In order to examine these methods’ performance in more realistic settings, and also to see whether
practical implementation of the techniques is workable, we examined a complex model of a man-
ufacturing system producing parts supplying the automotive industry. The system consisted of
seven operations on some 22 distinct machines in series/parallel configurations, with conveyors of
limited capacity providing material handling functions between the operations areas. Incoming
parts followed a prescribed route through the system, and the process observed was Y; = the total
time in system of the sth part produced. Neither the steady-state mean nor the transient mean
function of this system is known.

In order to establish a benchmark, we made one long run of 1000 observations, and grouped
the output into five batches of size 200 each; the resulting batch means were computed, and it
appeared from these data as well as from plots of the individual times in system that deletion of
the first batch (200 observations) was adequate to remove initial bias. Thus, we retained the last

four batches, and used their average as the benchmark for the steady-state mean. For convenience,
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we scaled this value to 1; with this scaling, the final four retained batch means were 1.07, 0.96,
1.07, and 0.91, indicating that steady-state seems to have been reached.

To see what would happen with the usual empty and idle initialization, we next made 10
independent replications of length 200 parts each, and observed the average time in system, resulting
in (after scaling to unity of steady state) ten values between 0.53 and 0.74, with an average of 0.61.
This represents a 39% bias with respect to the targeted steady-state mean, reflecting a fairly severe
initialization effect.

To implement the pilot-run-determined initialization, using uniform distributions, we observed
during the first of the above ten empty and idle initialized runs the maximum number of parts
present at several points of congestion in the system, and used these maxima to specify upper
bounds for uniform initializations at these points. Note that we are applying the univariate initial-
ization technique repeatedly in the same model, to different components. Ten replications, again of
length 200 parts each, were then made, drawing the initial state from these uniform distributions,
and the resulting number of parts were placed around the system at time zero. This ﬁme the ten
replication averages fell between 0.82 and 1.47, with a mean of 1.15. Thus, in comparison with the

usual empty and idle initialization, this technique cut the bias by more than half.
3. CONCLUSIONS

It appears that there is much to be gained by investigating the choice of initial conditions for
steady-state simulation, and that using stochastic initialization, probably with parameters specified
by short pilot runs, can greatly reduce the severity and duration of the biased transient portion
of the output. We have demonstrated on a variety of models that the techniques yield desirable
performance, and can be used on actual simulations of complex systems. While not eliminating
the transient completely, these.amethqds, produce.results: that are_much more reliable and stable,
and are less sensitive to errors-in judgment on the part of the analyst. It is recommended that,
particularly for relatively short runs in the context of the method of replication, simulations be
initialized stochastically rather than deterministically.

The results in this paper have been limited to models that can be initialized by specification
of a scalar. In the manufacturing model of Section 2.4 we simply applied this technique repeatedly
(and independently) to the several coordinates of a vector needed to initialize the system state. We
are currently investigating ways to account for dependencies between the coordinates of the initial

state vector in more complex models.

11



ACKNOWLEDGMENTS

This research was supported by a contract from the Decision Technclogies Division of Electronic
Data Systems to The University of Michigan. The input of Ziv Barlach, Sam MacMillan, and
Michael Moore, all of DTD/EDS was particularly helpful. The author wishes to thank Joseph
Murray of The University of Michigan for his help in the analysis, programming, and writing.
Conversations with Emily Roth of GTE Laboratories and Alan Rutan of Raytheon (who suggested
the medical analogy in the introduction) were also quite helpful.

REFERENCES

Adiri, I, and B. Avi-Itzhak. 1969. A Time-Sharing Queue with a Finite Number of Customers. J.
Assoc. Comput. Mach. 16, 315-323.

Adlakha, V.G., and G.S. Fishman. 1982. Starting and Stopping Rules for Simulations Using a
priori Information. Eur. J. Opnl. Res. 10, 379-39%4.

Gafarian, A.V., CJ. Ancker, Jr., and T. Morisaku. 1978. Evaluation of Commonly Used Rules for
Detecting “Steady State” in Computer Simulation. Naval Res. Logist. Quart. 25, 511-529.

Goldsman, D., and L.W. Schruben. 1984. Asymptotic Properties of some Confidence Interval
Estimators for Simulation Output. Mgmt. Sci. 30, 1217-1225.

Gross, D., and C.M. Harris. 1974. Fundamentals of Queueing Theory. John Wiley & Sons, New
York.

Heidelberger, P., and P.D. Welch. 1981. Adaptive Spectral Methods for Simulation Output Anal-
ysis. IBM J. Res. Develop. 25, 860-876.

Hillier, F.S., and O.S. Yu. 1981. Queueing Tables and Graphs. North Holland, New York.
Jaynes, E.T. 1957. Information Theory and Statistical Mechanics. Physical Review 106, 620-630.

Kelton, W.D. 1985. Transient Exponential-Erlang Queues and Steady-State Simulation. Comm.
Assoc. Comput. Mach. 28, T41-749.

Kelton, W.D., and AM. Law. 1981. A New Approach for Dealing with the Startup Problem in
Discrete Event Simulation. Naval Res. Logist. Quart. 30, 641-658.

Kelton, W.D., and A.M. Law. 1985. The Transient Behavior of the M/M/s Queue, with Implica-
tions for Steady-State Simulation. Opns. Res. 33, 378-396.

Law, AM. 1980. Statistical Analysis of the Output Data from Terminating Simulations, Naval
Res. Logist. Quart. 27, 131-143.

Law, AM., and W.D. Kelton. 1982. Confidence Intervals for Steady-State Simulations, II: A
Survey of Sequential Procedures. Mgmt. Seci. 28, 550-562.

Law, AM., and W.D. Kelton. 1984. Confidence Intervals for Steady-State Simulations: 1. A Survey
of Fixed Sample Size Procedures. Opns. Res. 32, 1221-1239.

Meketon, M.S., and B.W. Schmeiser. 1984. Overlapping Batch Means: Something for Nothing?
Proceedings of the 1984 Winter Simulation Conference, 227-230.

12



Murray, J.R., and W.D. Kelton. 1985. The Transient Response of the M/E};/2 Queue and Steady-
State Simulation. Technical Report 85-29, Department of Industrial and Operations Engineering,
The University of Michigan, 1985.

Schmeiser, B.W. 1982. Batch Size Effects in the Analysis of Simulation Output. Opns. Res. 30,
556-568.

Schriber, T.J., and R.W. Andrews. 1984. An ARMA-Based Confidence Interval for the Analysis
of Simulation Output. Amer. J. Math. and Mgmt. Sci. 4, 345-373.

Schruben, L.W. 1981. Control of Initialization Bias in Multivariate Simulation Response. Comm.
Assoc. Comput. Mach. 24, 246-252.

Schruben, L.W. 1982. Detecting Initialization Bias in Simulation Output. Opns. Res. 30, 569-590.

Schruben, L.W. 1983. Confidence Interval Estimation Using Standardized Time Series. Opns. Res.
31, 1090-1108.

Schruben, L.W., H. Singh, and L. Tierney. 1983. Optimal Tests for Initialization Bias in Simulation
Output. Opns. Res. 31, 1167-1178.

Welch, P.D. 1983. The Statistical Analysis of Simulation Results. In The Computer Performance
Modeling Handbook, pp. 268-328, S.S. Lavenberg (ed.). Academic Press, New York.

Wilson, J.R., and A.A.B. Pritsker. 1978. Evaluation of Startup Policies in Simulation Experiments.
Simulation 31, 79-89.

13






'6'0 =9 ‘anand) ¢/ /A Y1 10] anand) w sfe[aq paydadxy ‘1 aanSiy

sfe[aq p9dedxy



8 b
81
8
R
»
e
o 4
\/ /)
° -+ -

N 7
U

5;3 ’
Q
Q
&
<84

81

9 ) 0 "1 20 28 30

¢

Figure 2. Bias and Transient Length for the M/M/3 Queue, p = 0.9.
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Figure 4. Bias and Transient Length for the M/E,/1 Queue, p = 0.9.
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Figure 6. Bias and Transient Length for the E/M/1 Queue, p = 0.9.
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