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ABSTRACT

The transient probabilistic structure of arbitrarily initialized M/Em/l and
Em/M/l queues is derived in discrete time. Computational algorithms for
obtaining the required probabilities are provided, and their application in
calculating a variety of system performance measures is illustrated. The
results are used to investigate the question of initializing simulations of
systems such as these in order to promote rapid convergence to steady state,
if that is the object of the simulation. These results are consistent with
earliér studies for transient queueing systems, such as the M/M/s, but allow
greater flexibility in specification of interarrival or service-time models

inherent in the Erlang distributions.



1. INTRODUCTION

Analytical results for transient characteristics of queueing models are not as
widely available as are steady-state results, but are directly useful for
studying the finite-time properties of systems accurately represented by such
models. Theré are several additional indirect reasons for having exact

transient results in simulation applications and methodological research:

® To serve as a controlling system in the external control variates
technique for variance reduction (see, for example, Gaver and Shedler
[4]). If a termihating simulation is to be done for a system resembling
a simpler system with known transient behavior, this second system's
output from a simulation would be expected to be strongly correlated with
that of the system of interest (assuming the use of common random numbers
for both simulations), leading to large variance reductionsﬂ The wider
the class of analytically tractable models from which to choose, the

greater the similarity possible, leading to better variance reductions.

® To serve as benchmark models on which to test techniques for controlling
startup bias in steady-state simulations (see Gafarian, Ancker and

Morisaku [3], Schruben [18], or Kelton and Law [9]).

® To serve as benchmark models for studying alternative methods for
initializing simulations aimed at estimating steady-state parameters

(see Wilson and Pritsker [21] or Kelton and Law [10]).

This final reason served as the main motivation for the present paper, and is
treated in more detail later.
Available transient results for queueing models may be classified

according to whether the time measure is continuous (real time) or discrete



(indexing by customer number). Continuous-time results for M/M/1 and M/M/s
queues appear in Morse [13], Saaty [17], Rothkopf and Oren [16], Clark [2],
van Doorn [19], Whitt [20], Halfin and Whitt [6], Pegden and Rosenshine [15],
Grassmann [5], and Odoni and Roth [14]; see also references in these papers.
Whereas continuous-time analysis is useful for studying questions such as the
queue length at a particular time or the experience of a customer who might
arrive at a certain point, discrete-time results are more relevant if we are
interested in the experience of, say, the nth arrival to a system or the state
just after the nth arrival. Such is the case in manf simulations, where one
typically focuses on estimating properties of customers' delays in queue,
other continuous-time parameters (e.g., mean queue length) being estimable
indirectly from délay statistics via conservation equations (see Carson and
Law [1]). Papers dealing with discrete-time transients of queueing systems
include Heathcote and Winer [7], Morisaku [12], and Kelton and Law [10].

In this paper we extend the body of discrete~time transient results to
include M/Em/l and Em/M/l queues, where Em denotes an m-Erlang distribution.
Also, our results permit arbitrary initial states of the system in terms of
the number of Erlang stages present; this allows a numerical evaluation of the
effect of alternative initial conditions on the nature of convergence to
steady state, a general question of interest in simulation aimed at estimating
steady-state parameters.

In Sections 2 and 3 the analytical results for the two classes of models
are derived, with specific algorithms for computational implementation and
application. Section 4 reports on numerical evaluation of these results to
address questions of initialization to promote rapid convergence to steady
state in simulation experiments. Some conclusions are drawn in Section 5, and

the Appendix contains proofs of the results in Sections 2 and 3.



2. THE M/Em/l QUEUE

Let A be the exponential arrival rate, u be the m-Erlang service rate (where a
complete service time is composed of m consecutive exponential stages each at
rate mu), and let p = M u; it is not necessary to assume that p < 1 for any of
the results of this paper, so that the rate of explosion of these queues could
be studied in the case that no steady state exists. For n > 1, let t be the
time of arrival of the nth customer to the system. The "method of stages"
analysis of this system proceeds by using as a state variable the number of
exponential service stages (rather than customers) present in the system,
i.e., if there are c customers present in the system (including the one in
service, if any, so ¢ > 0) and the customer in service is in the dth of his m

service stages, the system state would be cm - d + 1.
2.1 Mass Functions

The embedded discrete-time process used is defined (following Morisaku [12])
as

X = the number of service stages present in the system
n . ) . . )
at time tn' including the m stages arriving at time tn’

for n > 1. Letting k be the number of stages in the system at time 0 (k > 0)
and noting that the range on X is then {m, m+l, ..., k+nm}, the probability
mass function of xn, conditional on k, is

P (n,i) = P(X =i | Xy = k),
where X, is the initial number of stages. The first arrival occurs at time

0

tl' which is exponentially distributed at rate A; thus, tl > 0 and the first
arrival finds at most k service stages already present. The following three
propositions (proved in the Appendix) are sufficient for computation of the

Pk(n,i)'s.



Proposition 1. For n > 1,

o/(p +mI"  if k >

v
—

Pk(n,k+nm) =

|
o

[p/(p + m)]n-l if k =

Proposition 1 represents a boundary contition i.e., that Xn is at its maximum.
The following proposition establishes another boundary condition concerning

the mass function of the system state just after the first arrival.

Proposition 2. For k>l andm+ 1< i<k+m-1,

k-i+m

P (L,1) = [(m/(p + m)] [p/(p + m)].

Note that k = 0 is excluded in Proposition 2, but in this case xl = m almost
surely. The following result is the main recursion, and is true regardless of

whether k is zero or positive.

Proposition 3. Forn>2andm+ 1<i<k+nm-1,
k+(n-1)m -
oy j-i+m .
P(mi) = [p/(p + m)] z (m/(p +m)] P (n-1,3).
j=max(i-m,m)
Note that the case i = k + nm, omitted in Proposition 3, is covered by
Proposition 1, and that for the case i = m, we obtain
k+nm

Pk(n,m) =1- Z P
i=m+l

k(n,i).

2.2 Computational Algorithm

The formulas in Propositions 1 - 3 above can be used directly to compute the
mass function of Xn, but it is possible to manipulate them into the following
more efficient algorithm. The procedure must be invoked in the order n = 1,
2, 3, ..., and takes as input the values of n, m, p, k, and Pk(n—l,i) for m <

k + (n-1)m (unless n = 1); the output is Pk(n,i) form < i <k + nm.



procedure M/Em/l [n, m, p, k, Pk(n-l,i); Pk(n,i)]
if n = 1 then
if k = 0 then
Pk(l,m) € 1; return
else
h«n/(p+m; P (Lkm) «p/(p+m;j s« P (Lk+m)
for i« k+m-1tom+ 1by-1do
Pk(l,i) « bPk(l,i+l); § ¢ s+ Pk(l,i)
end do
Pk(l,m) ¢« 1 - s; return
end if
else
a€p/(p+m; bel-a; Pk(n,k+nm) « an_l; s« 0
if k > 0 then Pk(n,k+nm) €« aPk(n,k+nm)
for i «k+nmm-1to 2m by -1 do
Pk(n,i) + aPk(n—l,i-m) + bPk(n,i+l); § ¢ 5 + Pk(n,i)
end do
for i «2m -1 tom+ 1 by -1 do
Pk(n,i) « bPk(n,i+1); S ¢ s + Pk(n,i)
end do
Pk(n,m) € 1 - s; return
end if

end procedure M/Em/l

The principal storage requirements of this algorithm are two vectors of
maximal length k + (n* - 1)m + 1, where n* is the largest value of n for which
the mass function of Xn is desired; the first vector holds Pk(n—l,i) and the

second holds Pk(n,i). After the nth invocation, the previous mass function



Pk(n-l,i) is replaced by the newly computed Pk(n,i) for input into the (n+l)st
invocation. Translation of the algorithm into any structured language should
be immediate; the computations in Section 4 were carried out using VS Fortran,
a subset of Fortran 77. It was found that double precision (64-bit) was
necessary to avoid buildup of roundoff in the recursive computations by the

time large values of n (e.g., 500) were reached.
2.3 Applications

Given the mass function Pk(n,i) of xn’ it is possible to develop simple
formulas for several standard measures of queueing performance. Immediately,

the expectation and cumulative distribution function of Xn are given as

k+nm
Ek(xn) =.Z 1Pk(n,1)
1=m
and
x|
P (X <x)=2P(ni),
1=m

where L'J denotes the greatest integer function, Ek and Pk respectively denote
the conditional expectation and probability measure conditioned on the event
XO = k, X is any real number, and an empty sum is defined as zero.

More easily interpreted than xn (the units of which is service stages) is
Yn’ the number of customers present in the system just after time tn' The
range on Yn is thus all integers between 1 and p'(k,m,n) = Lk/@] +n+1l

inclusively, and the relation between Yn and Xn is given by

Y
n

p if and only if pm < Xn <(p+m-1, if 1 <p<p'(kmn) -1

and

Y
n

p'(k,m,n) if and only if p'(k,m,n)m < X <k +nm

Thus, letting Qk(n,p) denote the mass function of Yn’ we get



(
(p+1)m-1
Z Pk(n,i) ifl<p<p'(kmn) -1
i=pm
Q, (n/P) =<
k+nm
z Pk(n,i) if p = p'(k,m,n)
{ i=pm

The expectation, for example, of the number of customers (not service stages)
in system just after tn is thus
p'(k,m,n)
E,(Y) = Z  pQ(n,p)
p=1
and the cumulative distribution, variance, etc. of Yn could be found

similarly. Further, if Zn denotes the number of customers in queue just after

t_, then
n

G
|
-
'_‘.
H
<
v

>1
0 ify =0

from which the mass function, expectation, etc. of zn can be found using the
probabilities Qn(n,p).

As a final application that is of most interest to simulation, let Dn be
the delay in queue (excluding service time) of the nth arriving customer. If
xn = m, then customer n arrives to find the system empty, Qo Dn = 0. However,
_ iﬁ xn = i > m, then at least one service stage remains at the time of the nth
arrival, so customer n is delayed in queue for the remainder of the in-
progress service stage, plus i - m - 1 additional complete service stages. By
exponentiality of service stages, the remainder of the in-progress stage also
is exponential, so that Dn is the sum of i - m independent exponential service
stages, each at rate mu, i.e., Dn is an (i-m)-Erlang random variable with mean
(i-m)/(mu). The cumulative distribution function of Dn is then obtained by

conditioning on Xn,



k+nm

P(D <x)= I P(D <X | X =1i) P (n,i)
1=m
k+nm _
=P (nm) + Z G;_ (xjmu) P (n,i),
i=m+1

where Gq(x;n) is the g-Erlang cumulative distribution function with mean gq/7,
-nX q-l j
G (xim) =1-e ™ L (nx)7/3!
q j=0
for any x > 0. 'Similarly, the expected delay in queue of the nth customer is
k+nm
Ek(Dn) = [l/(mu)]. L (i-m) Pk(n.l)-
i=m+l
Section 4 discusses results of evaluating Ek(Dn) over a range of system
parameters. Finally, the distribution of the total system wait of the nth

customer, Wn = Dn + sn, where Sn is an independent m-Erlang service time, can

be found from the distribution of Dn'
3. THE Em/M/l QUEUE

As before, let A and u denote the arrival and service rates, and define p =

M u. Here, however, service times are simply exponential, and we think of an

arrival as occurring in m consecutive independent exponential stages, each at

rate mA, with exactly one customer in some stage of arrival at all times; see,
for example, Kleinrock [1l1]. As soon as an arriving customer finishes the mth
stage of arrival (and thus physically arrives to the system), another customer
begins the first stage of his arrival. The state of the system is the number

of exponential arrival stages present, counting m for each customer physically
present. Thus, if c customers are physically present (including the customer

in service, if any) and the customer currently in the arrival process is in

the dth stage of arrival (1 < d < m), the system state would be cm + d - 1.



3.1 Mass Functions

Let tj be the time of the jth arrival stage completion, for j > 1, and let xj
be the number of arrival stages present just after time tj. If there are k
(k > 0) arrival stages present at time 0, then the time of the nth (n > 1)
customer arrival (physical) to the system is tnm-k+mlk/ql' Note that at each
tj the system state rises by 1, and at the time of each service completion the
state falls by m. For j > 1 and k > 0, let

P (3,1) = p(xj =i | Xy = k), (1)
where Xo is the number of arrival stages present at time 0. Again, tl is not
zero, but is exponential with mean 1/(mA). To determine the rangg of xj,
first note that it is maximally j + k, an attainable bound in the event that
no departures occur in [0, tj]. At the other extreme, the minimal possible
value for xj occurs if there are no customers in the system just after time tj
other than the one completing an arrival stage at that time. If j + k is
divisible by m, then a customer physically arrives at time tj' so the minimal
xj is m; otherwise, the minimal xj is in {1, 2, ..., m-1}. In either case,
the minimal xj is attained if the maximal number of departures in [0, tj]
occurs, which is ng + k - l)/@]. Finally, since each customer departure drops
the system state by m, it is not possible for Xj to take on all integral
values between its minimum and j + k. Thus, the general range on xj is

{J+k-fm:0<f< [(3+k=-1/m}, (2)
the range of i over which the mass function in (1) must be computed. Here, f
represents the number of service completions occurring in [0, tj].

The following three results, proved in the Appendix, are sufficient for

calculating the mass function in (1) over the range in (2):



Proposition 4. For j > 1,

1 ifk<mand j<m-k
P (3, 3+k) = [mo/(mp + 1)]3+k_m if k<mand j>m-k .
[mp/(mp + 1)]J ifk>m

Proposition 5. For k-é mand 0 < £ < |k/m,

Pk(l,k+1—fm) = mp/(mp + l)f+l.

Proposition 6. For j >2and 1 <f< |[(j+k-1)/m -1,
£

P (3r3+k-tm) = [mp/(mp + 1)] Z [1/(mp + 1)]f"gpk(j—1,j—1+k—gm).
g=0
Note that the analogue to Proposition 5 for the case k < m is covered by the
first two branches of Proposition 4, since in this case the range of £ in the
set (2) for j = 1 is simply £ = 0; thus Pk(l,k+l-fm) = Pk(1,1+k), which is in
Proposition 4 for j = 1. Similarly, if f were O in Proposition 5, then
Proposition 4 would instead apply. Finally, as a result of Proposition 5 we
obtain
lk/m| -1
Pk(l,k+l- k/mjm) =1 - fzo Pk(l,k+1-fm),

completing calculation of the mass function of X In Proposition 6, the

lb
cases j = 1 or £ = 0 are covered by Proposition 4, and we obtain
[(3+k-1)/m] -1
P (3, 3+k= |(3+k-1)/m|m) =1 - z P (j,j+k-fm).
k £=0 k

3.2 Computational Algorithm

As for the M/Em/l model, we can derive from Propositions 4 - 6 a more
efficient recursive algorithm for computing the values for the Pk(j,i) mass

function for i in the set (2). The following procedure is entered in the

10



order j =1, 2, ..., takes as input j, m, p, k, and the values in Pk(j—l,i)

(unless j = 1) and returns the values Pk(j,i) for 1 in (2).

procedure E /M/1 [j, m, p, k, P, (j-1,1); P, (3,1)]
a¢emp/(mp +1); bel-a
if j = 1 then
if k < m then
Pk(l,k+l) ¢ 1; return
else
Pk(l,k+l) “a;s<€a
for £ ¢ 1 to |k/m - 1 do
Pk(l,k+l-fm) « bPk(l,k+1-(f-l)m); S €5 + Pk(l,k+l—fm)
end do
Pk(l,k+l—[k/q]m) *'1 - s; return
end if
else
if k < m then
if j <m -k then
Pk(j,k+j) 1
else
Pk(j,k+j) . aj+k—m
end if
else
P, (3,k+j) « &)
end if
s ¢ Pk(j,k+j)
if Kj +k - 1)/m| =1 then go to LAST

ifk>mor j>m-k + 1 then
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P (3/k+j-m) € bP, (j,j+k) + aP, (-1, j-1+k-m)
else
P, (3,k+j-m) ¢ a[b + P, (-1, -1+k-m)]
end if
s ¢ s + P (j,k+j-m)
for £ «2to |(j +k-1)/m -1do
P, (3, j+k-fm) « b, (j,J+k-(£-1)m) + aP, (3-1,3-1+k-fm)
s €s + Pk(j,j+k—fm)
end do
LAST:
P, (3r3+k- |(3+k-1)/mim) ¢« 1 - s
end if
return

end procedure Em/M/l

As before, two vectors of storage are required, one for the previous j and one
for the current j. Also, the length of the vector for storing Pk(j,i) is not

j + k (the maximal i), but is |(j + k - 1)/m] + 1, the number of values in (2).
3.3 Applications

Given Pk(j,i), several measures of performance of the transient Em/M/l queue
are possible which parallel those for the M/Em/l described in Section 2.3.
Again letting Dn be the delay in queue of the nth (physically) arriving

customer, recall that t is the time the nth customer physically joins the

j(n)
system, where j(n) = nm - k + m[k/qﬁ; thus, we are concerned only with the

probabilities P (j(n),k+j(n)-£m) = P, (j(n), (n+|k/m -£)m), for

0<f<n+ |k/m -1. If £f=n+ |k/m -1, then the arrival at tj(n) finds

the system empty, soD =0. If £<n+ lk/m] - 1, then this arrival finds
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n + [k/@] - £ - 1 other customers in the system, each of which still requires
an independent exponential service with mean 1/u, so Dn is in this case an
(n-|k/m) -£-1)-Erlang random variable with mean (n + |k/m - £ - 1)/u. Thus,
given x > 0, the cumulafive distribution function of Dn is
n+ |k/m| -2

Pk(Dn <X) = fio Gﬂ*[k/@ _f_l(X;u) Pk(j(n),k+j(n)-fm) + Pk(j(n),nm)

and the expected delay in qheue is
n+ |k/m| -2

Ek(Dn) = (1/u) fio (n+|k/m| -£-1) Pk(j(n),(n+|3/m]-f)m),
where an empty sum is taken to be zero. Again, properties of the total system
wait Wn of the nth customer may be derived from these expressions.

As a second application, let Yn be the number of customers present in the

system just after t Thus, Yn = xi/m, and is a discrete random variable

j(n)°
on {1, 2, ..., n+|k/m} with mass function Pk(Yn=i) = Pk(j(n),im), enabling

computation of its cumulative distribution, moments, etc.
4. EVALUATION OF ALTERNATIVE INITIALIZATIONS FOR SIMULATION

The principal motivation for this study was to examine the effect of
alternative simulation initialization policies on the nature of convergence of
simulation output to steady state, for models similar to those analyzed above.
In a steady-state simulation, the goal is to estimate some property of the
steady-state distribution (assuming it exists) of tﬁe output stochastic
prbcess, often its expectation. One of the most difficult problems facing an
analyst in this case is choosing initial conditions which are in some sense
representative of steady state. Of course, it is impossible to do this
exactly since knowledge of the steady state distribution would be required.

Results such as those obtained above can be used to address the question of



prudent choice of initial condidtions.

In [10] we carried out such an investigation for M/M/s queues, and found
that for that system, it may be wise to initialize in something other than the
popular empty-and-idle state to reduce the length of time required for near-
steady-state conditions to be attained. One limitation of that study was that
all interarrival time and service time distributions were assumed to be
exponential. The results of this paper, while limited to single-server
systems, allow a much richer class of distributions to be used, the Erlang,
providing more realism; an Erlang assumption for service-time distributions is
especially attractive, since it appears that for many processes an Erlang-
shaped histogram arises from service time data. For [10] as well as this
paper, the critical point is that analytical transient results were obtained
allowing an arbitrary initial state specification, so we can evaluate the
resulting functions for various choices of initialization and observe
convergence behavior.

Values for Ek(Dn) were computed for both the M/Em/l and Em/M/l systems
across a range of parameter values: p = 0.5, 0.8, and 0.9 (always setting A =
1), and m = 2, 4, 8, and 9; k was chosen as described below. Figures 1 and 2
show plots of Ek(Dn)' as functions of n, for various initialization schemes,
for m = 4 and p = 0.9. The number of customers (not stages) physically
present in the system initially is ¢, shown next to the corresponding curves.
For simplicity, we assumed for the M/Em/l model in Figure 1 that the customer
in service (if any) was just beginning his first service stage at time 0;
similarly, for the Em/M/l model of Figure 2, thé customer in the arrival
process at time zero was assumed to be at the start of his first stage of
arrival. In both figures, the dashed line is at the expected steady-state

delay in queue, found from Kleinrock [l11l] for Figure 1 and from tables in

14



o
~N
et
A~
1]
by
o
o
a (\e
~ AN
w Q)

% 100 200 300 400 500

Figure 1. Ek(Dn) for the M/E4/l Queue with p = 0.9 and k = 4c.
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Figure 2. Ek(Dn) for the E4/M/l Queue with p = 0.9 and k = éc.
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Hillier and Yu [8] for Figure 2.

In both cases, Ek(Dn) converges to the steady-state expected delay
monotonically from below if ¢ = 0, but for other choices of c the approaéh may
be nonmonotonic (e.g. ¢ = 5 in both figures). Such behavior has been noticed
for the discrete-time M/M/s queues in [10], as well as in continuous-time
transient results by Grassmann [5] and Odoni and Roth [14]. As pointed out
in these last two papers, the initial decrease in the curves (even though they
begin below the steady-state mean) is attributable to the fact that ¢ > 0
implies that the server is initially busy (which is not necessarily the case
in steady state), increasing the probability of a downward state tranéition
with respect to its steady-state value. Plots of other cases exhibited
similar behavior; sometimes Ek(Dn) would begin above the dashed line, decrease
through it, then turn and converge from below.

As in [10], it is clear that nonempty initialization can greatly reduce
the time for the expected delays to fall within a specified band about the
steady-state value. Thus, in simulating systems such as these, it would be
advisable to investigate alternative initializations, especially if a large
number of replications are to be made for purposes of statistical analysis, in
order to reduce bias and shorten the length of nonproductive warmup periods.
Although oétimality studies such as those in [10] could be carried out, it is
anticipated that the results and recommendations would be similar. In
particular, empty and idle (c = 0) initialization may not be a good idea

unless p is quite small.
5. CONCLUSIONS

In this paper we have derived new discrete-time transient results for two

classes of single-server queueing systems that admit a rich family of

17
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interarrival or service time distributions; explicit algorithms for
computation of the required probability mass functions have also been
provided. Given these probabilities, several system performance measures were
derived and one of these, the expected delay in queue, was numerically
evaluated. The results of this evaluation were used to investigate the choice
of initial conditions in simulations of models such as these aimed at
estimating steady-state characteristics. The warmup period may be greatly
affected by this choice, indicating that some initial experimentation with a
given simulation model may prove fruitful in identifying good starting

conditions.
APPENDIX

To prove Propositions 1 - 3, let A denote an exponential interarrival time
random variable and let S be an m~Erlang service time; thus, E(A) = 1/A and S

= Sl + 700+ Sm where the Si's are independent exponential with common mean

1/(mu). Then P(A < Si) =N\ +mu) = p/(p +m).

Proof of Proposition 1: Pk(n,k+nm) = Pk(xn = k+nm), and since xn < k + nm,
this is the probability of no service stage completions in [O,tn], a period of
n consecutive interarrivals. If k > 1 then a service stage is in progress at
time O, at which time it renews (duevto exponential memorylessness), and will
again renew at each arrival. Thus, Pk(n,k+nm) is the probability of n

interarrivals during a single service stage, so is

]n

P(Al < 51' Az < sl, cees An < sl) [P(Ai < sl)

n
[P/(P + m)] [}

where Ai is the ith interarrival. On the other hand, if k = 0 then no
departure in [O,tl] is possible, so xn = k + nm is equivalent to interarrivals

AZ, ooy An occurring during a single service stage, having probability



[o/(p + m]"L,

Proof of Proposition 2: The event here is that exactly i service stages are
present just after the first customer arrival. This is equivalent to there
being k - i + m service stage completions in [O,tl] and the arrival must occur
before the next service stage completion. Thus, the event is

{sl <B ..., S <A, S A},

. . >
k-i+m k-i+m+1l
since the interarrival time A renews at the time of each service stage

k-i+m

completion. Thus, the required probability is [m/(p + m)] [p/(p + m)].

Proof of Proposition 3: The event is that Xn = i, and we will condition on

xn = j, in which case j must be at least i - m if Xn is to equal i. Further,

since m < Xn_ <k + (n - 1)m, the range of j is

1

max{i-m,m} < j <k + (n - L)m.
Thus,

k+(n-1)m
P, (n,1) =_j=§_m P (X =1 | X _, = P(n-1,3).

To compute the conditional probability, note that if xn_l = j, then Xn =i
exactly if j - i + m service stage completions occur in the space of the

single interarrival t, - t,-p and the nth arrival occurs before an additional

service stage completion. Thus,

R (% =i | X _ =3 =+ o/« m],

the desired result after simplification.

To prove Propositions 4 - 6, it is convenient to let Ai and S denote an

interarrival stage completion and a service time, respectively; an

interarrival time is thus A = Al + "0+ Am. With this notation, P(Ai <S) =

mA/(mA + u) =mp/(mp + 1).
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Proof of Proposition 4:

Case 1: k <m. Since k < m, no customers are initially present (physically)
in the system, so the initial departure rate is 0. The required probability
is that of the event of no departures in [O,tj], a period of j consecutive
exponential interarrival stages. Since the first arrival occurs with the
(m-k)th interarrival stage completion, j < m - k implies that at time tj no
customer has arrived, so Xj must be equal to j + k. If j > m - Kk, then the
required probability is that of no departures during j interarrival stages,
the final j - (m - k) of which are during a period when the server is busy,
which is

[pa, < )17 ™% = [np/mp + 1),

Case 2: k > m. Here, the server is initially busy and, as in Case 1, we want
the probability of no departures in the span of j interarrival stages; this
is

[P(Ai < S)]j = [mp/(mp + l)]j-

Proof of Proposition 5: Xl =k + 1 - fm exactly if there were f departures in

[O,ti], occurring if f service completions take place during one interarrival

stage but the next event is the interarrival stage completion. Thus,

£
Pk(l,k+1-fm) [P(Ai >9)] P(Ai <S)

[1/(mp + 1)1 [mp/(mp + 1)1,

as desired.

Proof of Proposition 6: Conditioning on xj-l’

[(3+k=2)/m|
P, (3, j+k-fm) = gio P (Xy=J+k-fm I Xs_)=3-1+k-gm) P (3-1,3-1-k-gm). (AL)
Case 1: j + k - 1 is divisible by m. Then Xj > m, so departures in [tj-l’tj]

are possible regardless. If the number of such departures is f - g, then
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0<f-gcx Kj - 1l+k-gm/m, implying that g < £ as well as g‘5
|(3 + k - 2)/m| on the range of the summation in (Al). However, since f <
[(3 + k - 1)/m| - 1 by assumption, it is easy to see that g < f is the
binding upper bound on g, so the range on g in (Al) can be reduced to
{0, 1, ..., f}. Finally, the probability of exactly f - g departures in
[tj_l,tj] is

[1/(me + 1)1 Fmo/mp + 11, (A2)
being £ - g departures followed by an interarrival stage completion.

Case 2: j + k - 1 is not divisible by m. Thus, m must be at least 2. Then

the minimal X__

5-1 is at most m - 1, creating the possibility of a zero exit

rate; this is true for the g = Ej +k - 2)/m| term in the sum in (Al). 1In
this case, Xj must be j + k - gm, so

1if £ = |(3+k-2)/m]

P (X, = j+k-fm | Ky = J-1+k- |(j+k-2)/m|m) =

k( ] . |0 otherwise
However, if £ = Uj + k - 2)/m], then due to the upper bound on f in the
proposition statement, we must have

f= [(3+k=-2)/m < |(3+k=-1)/m - 1. (a3)
To show that (A3) cannot hold, note that since j + k - 1 is not divisible by
m, there are integers h and r with 1 <r <m such that j + k- 1=hm + r.

Thus,

(3 +k -2)/m| =h+ |(r-1)/m
= h,

since 1 < r <m, and

(3 +k=-1/m -1=h+ |(r-m/nf
=h+ |[r/m] -1
=h -1,

since r < m. Thus (A3) is contradicted, so that we must have f <
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Kj + k -2)/m|, for f in the range considered by the proposition.
Therefore, the g = Kj +k - 2)/“U term in the sum in (Al) drops out, and
the range on g can be restricted to 0 < g < |(j +k - 2)/m| - 1. For such
g, xj-l >m, i.e., there is at least one customer physically in the system
after tj—l'
occur in [tj_l,tj]. Also, g < min{f, [(j+k-2)/m] -1}, and this minimum is

In this case, xj = j + k - fm if and only if £ - g departures

easily seen to be £. Thus, the range on g in the sum in (Al) is
{0,1,...,£f}, and Pk(xj = j+k-fm | xj_l = j-1+k-gm) is given by (A2),

completing the proof.

REFERENCES

Carson, J.S. and Law, A.M. Conservation Equations and Variance Reduction
in Queueing Simulations. Operations Research 28 (1980), 535-546.

Clark, G.M. Use of Polya Distributions in Approximate Solutions to
Nonstationary M/M/s Queues. Commun. ACM 24 (1981), 206-217.

Gafarian, A.V., Ancker, C.J., Jr., and Morisaku, T. Evaluation of
Commonly Used Rules for Detecting 'Steady State' in Computer Simulation.
Naval Res. Logist. Quart. 25 (1978), 511-529.

Gaver, D.P. and Shedler, G.S. Control Variable Methods in the Simulation
of a Multiprogrammed Computer System. Naval Res. Logist. Quart. 18
(1971), 435-450.

Grassman, W.K. Transient and Steady State Results for Two Parallel
Queues. Omega 8 (1980), 105-112.

Halfin, S. and Whitt, W. Heavy-Traffic Limits for Queues with Many
Exponential Servers. Operations Res. 29 (198l1), 567-588.

Heathcote, C.R. and Winer, P. An Approximation for the Moments of Waiting
Times. Operations Res. 17 (1969), 175-186.

Hillier, F.S. and Yu, 0.S. Queueing Tables and Graphs. North Holland, New
York, 1981.

Kelton, W.D. and Law, A.M. A New Approach for Dealing with the Startup
Problem in Discrete Event Simulation. Naval Res. Logist. Quart. 30
(1983), 641-658.




10.

11.

12I

13.

14.

15.

16.

17.

18.

19.

20.

21.

23

Kelton, W.D. and Law, A.M. The Transient Behavior of the M/M/s Queue,
with Implications for Steady-State Simulation. Operations Res.,
forthcoming. '

Kleinrock, L. Queueing Systems, Vol. l: Theory. Wiley, New York, 1975.

Morisaku, T. Techniques for Data Truncation in Digital Computer
Simulation. Ph.D. Dissertation, Department of Industrial and Systems
Engineering, University of Southern California, 1976.

Morse, P.M. Stochastic Properties of Waiting Lines. J. Operations Res.
Soc. Amer., 3 (1955), 255-261.

Odoni, A.R. and Roth, E. An Empirical Investigation of the Transient
Behavior of Stationary Queueing Systems. Operations Res. 31 (1983), 432-
4550

Pegden, C.D. and Rosenshine, M. Some New Results for the M/M/l Queue.
Management Sci. 28 (1982), 821-828.

Rothkopf, M.H. and Oren, S.S. A Closure Approximation for the
Nonstationary M/M/s Queue. Management Sci. 25 (1979), 522-534.

Saaty, T.L. Time-Dependent Solution of the Many-Server Poisson Queue.
Operations Res. 8 (1960), 755-772.

Schruben, L.W. Detecting Initialization Bias in Simulation Output.
Operations Res. 30 (1982), 569-590.

van Doorn, E. Stochastic Monotonicity and Queueing Applications in Birth-
Death Processes. Springer-Verlag, New York, 1981.

Whitt, W. Comparing Counting Processes and Queues. Adv. Appl. Prob. 13
(1981), 207-220.

Wilson, J.R. and Pritsker, A.A.B. Evaluation of Startup Policies in
Simulation Experiments. Simulation 31 (1978), 79-89.




