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1. INTRODUCTION

One of the main uses of quality control chart methodology is to detect when a process goes “out
of control,” as defined by a sample point’s falling outside some defined region characterizing an
in-control state. Several different quantities associated with the quality of a production process
are typically measured, such as mean process performance and variability of the output. When
an out-of-control condition is detected by such a chart, a typical recommendation is that “... an
investigation is undertaken to find the assignable cause of this extreme variation” (Duncan 1974),

«

or to ... take action when a point falls outside the ‘control limits’ ...” (Duncan 1974), or to
make some adjustment to the process, if possible. There has been less said concerning exactly how
one goes about attaining such goals, yet the operator must ultimately make some decision about
the appropriate action to take, and the amount of any adjustment. The purpose of this paper is
to propose readily-implemented techniques for estimating the amount of adjustment to be made,
and to investigate the statistical properties of these techniques. Such an investigation indicates
how well these kinds of techniques would perform when applied in an actual production process.
Specifically, we investigate three different proposals for specifying adjustments, and pay particular
attention to any tendency to overadjust, i.e., to take action resulting in being out of control in the
opposite direction; in some contexts overadjustment is much more serious than underadjustment,
and is thus to be protected against. One of the important conclusions from this study is that
the process have an adequate capability index (ratio of tolerance range to six times the standard
deviation of an individual item's measurement); only in this case is it possible to gather, without
producing appreciable rejectable product, the required information to make an informed decision
about the correct action.

As an example, suppose that a process is being monitored by an X-chart using the standard
three-sigma control limits, and a subgroup mean falls outside these limits. This provides fairly
strong evidence that the process mean is no longer centered at its desired location, and we thus
should attempt to estimate, in some way, an appropriate adjustment amount in order to re-center
the process. The methods examined in this paper provide such estimates (in different ways, with
different results), and our numerical evaluation in Section 3 indicates how well these methods may
be expected to perform in practice; we give indication there of sample sizes required to obtain good

performance.

We assume in this paper only that an X-chart is being maintained, using the standard three-
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sigma limits. Our interest is in the process mean rather than the variance; an R-chart may well be

of interest in itself and could also be constructed, but it is not needed in cur techniques.
1.1 Applications

The most important application of the ability to estimate an adjustment amount is clearly in
determining an adjustment amount that is subsequently actually made. There are, however, other
uses for an estimate of a shift amount (see below) in the process mean. In designing control
chart sampling plans in an economically optimal way, the inputs are typically various parameters
associated with the cost of sampling and of producing rejectable product, and the amount by
which the process mean has shifted; see Duncan (1956, 1971), Goel et. al. (1968), or Montgomery
(1980). Of these inputs, the most critical one is the shift amount, i.e., the sensitivity of the output
(being typically subgroup size, sampling frequency, and width factor for the control limits) to
misspecification of the cost parameters is far less than to error in specifying the shift amount.
With the techniques described below, one could obtain accurate estimates of a typical shift amount
for a process to use as input to the economic design of future control chart sampling plans.

Throughout the paper, we attempt to follow the same notation as Grant and Leavenworth
(1980): the true (parameter) process mean is X', the standard deviation of an individual item
produced is o', the subgroup size is n, and the control limits are set at X" = 30'/\/n.

In an X-chart, the signal for detection of a change is that a subgroup mean, X, falls outside
the control limits. Although we focus on such a detection rule in this paper, other rules could be

used as well, such as runs tests, or CUSUM charts.
1.2 Types of Changes

Given that the process mean has changed, it could in principle have arrived at its new value by
any route. It is useful, however, to classify such routes into three categories. A shift change is an
instantaneous change in the actual process mean from X' to some new value X" = X' + 6o, where
it 1s assumed to remain; this kind of change is characteristic of the result of suddenly introducing a
new raw material lot, or of a catastrophic failure of a machine tool. A drift change occurs when the
true process mean ceases to be constant over time, and begins to drift in a straight line (constant
slope) away from X'; this is typical of gradual tool wear. All other types of change might be called
erratic. In this paper we focus on shift changes, partly because it is possible in this situation

to carry out the most complete analysis and to make the most definitive recommendations, and
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because the literature on economic design of controi charts focuses on this case. Further, the
problem of estimating a drift change might first be addressed by understanding shift changes, and

would involve techniques such as regression or forecasting.
1.3 Literature

The problem of detecting a shift in the mean of an ongoing process and related problems have been
examined fairly extensively in the statistical literature. Few authors, however, have considered the
ultimate adjustment decision made by the operator, the assumption apparently being that once
an estimate of process location is made, the best adjustment amount is the difference between the
desired process center and the present location. Our literature review reflects this emphasis in the
literature and so concentrates on three topics related to estimation of the shift.

The first issue is determining whether a shift in the process location has actually occurred.
The quality control literature has provided shift detection rules based on a count of the number of
sample points falling in given areas on the control chart, see, e.g., Chapter 18 of Duncan (1974).
These rules are derived from the probability of a sample point’s falling within a certain number
of standard deviations, given that a shift has occurred. A more sophisticated approach is Page’s
(1954, 1955) CUSUM method. which utilizes all sample data.

Assuming that a shift in the location of the process has occurred, another issue is determining
at what point in the past it occurred. This “change point problem” has been treated extensively,
notably by Quandt {1958, 1960, 1972), who modeled the problem as one of determining when the
second of two consecutive regression models takes effect in a stream of data. Knowledge of the
change point is important for inspection purposes but important for machine adjustments only if
one wishes to include data before the first out-of-control point in estimating the process location,
since we assume that the first out-of-control point indicates the shift occurred at a previous time.

The third statistical issue, given that a shift in the location of the process has occurred, is
estimating the current location of the process. Some methods of estimation based on classical
methods are given in the present paper. Barnard (1959) and Chernoff and Zacks (1966) offer a
Bayesian estimator which is essentially a weighted mean of recent observations with the largest
welghts on the most recent observations.

Only a few writers suggest that the best machine adjustment from an operational viewpoint
may not be of equal size and of opposite sign from the estimated amount of the shift. Grubbs

(1954) suggests a procedure which requires n adjustments and results in a total adjustment which is
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unbiased and has the least possible variance of any n-step adjustment. Avoiding overadjustment on
any particular adjustment is not a criterion of concern under this procedure, and many adjustments
may be necessary to return the process to control. Jackson (1977) provides a statistical evaluation of
adjustment amounts, dividing the possible errors in adjustment into four categories and determines
the probability of a “bad” adjustment as a function of the shift in mean and the width of the
control limits. Jackson suggests a partial adjustment in cases where a full adjustment has a high

probability of producing a more severe out-of-control condition.
2. ESTIMATING SHIFT CHANGES

In this section we discuss three methods for estimating shift changes. While it may be tempting to
use the first method, we will demonstrate the danger in doing so. The final two methods are more
complex (and potentially more costly, depending on the capability index), but will turn out to be

greatly preferable in several ways.
2.1 Using the Out-of-Control Point

The first method for estimating a shift change is to use the out of control point itself, minus the

desired process center, i.e., the adjustment would be
AO = -(—)—fooc - .X_”),

where X, is the value of the out of control point observed, and X is the desired process mean; see
Jackson (1977). Thus, X, is a random variable, but X7 is to be regarded as a constant that would
be known in practice. The difficulty with this idea is that, by design, the random variable Xoq. is
biased away from X' since a subgroup mean would not be declared out of control if it were near X'.
In other words, regardless of whether the actual process mean is X’ or not, Xooc is conditioned on
not being inside the control limits, so is not an (unbiased) observation from the population of all
subgroup means, and thus misstates the difference between the actual process mean and the desired
mean, X'. In Appendix A, we derive a formula for E(Yooc), the éxpected value of the out-of-control
points, assuming independent and normally distributed individual observations. In Table 1 are
selected values of E(Xooc) as functions of the subgroup size n, and of §, where the process mean
has shifted from X’ to X" = X' + §¢'. Without loss of generality, we assume that X' = 0 and
o' = 1. In this case, a perfect average adjustment would result if E(Xo.) = 8, and overadjustment

if E(Xooc) > 6. The tendency to overadjust is quite clear, especially for small n or small §; for
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example, if § = 0.50 and n = 5 (a typical suggested subgroup size), the average adjustment is
more than 200% larger than desired, resulting in a worse position after the adjustment than if no
action had been taken at ail. Thus, unless it is known that the shift amounts tend to be quite large

(relative to ¢'), or the subgroup size is large, it appears dangerous to use this type of rule.
2.2 An Unbiased Estimator

Having seen that using the out-of-control point as the sole basis for specifying a shift amount can
lead to severe overadjustment, we turn to other methods displaying better performance. Both of
these methods involve continuing the process, without adjustment, until m additional subgroup
means past the out-of-control point (and not including it) have been- observed. Such a plan pur-
posely delays making an adjustment in order to collect information on what that adjustment should
be. It is certainly not necessary to maintain the same subgroup size or sampling frequency as be-
fore the out-of-control point, under the independent sampling assumption; it may be advisable to
alter both during this period to minimize defective production. Furthermore, the attainment of a
sufficiently high capability index is very important for the economic feasibility of these sampling
plans; this is discussed below with the numerical results.

Let X1,..., X}, denote the m subgroup means collected past the out-of-control point; note that
since there is no conditioning on these values’ being in or outside the control limits, these constitute
a random sample from a normal (assumed) distribution having mean X" and standard deviation
0'/\/n. Immediately, an unbiased estimator of X" is f(m),the sample mean of Xi,...,Xpm, and
an unbiased estimator of the ideal adjustment —é0' = —(X" — X') is A4; = - (i(m) - Y); recall
that X7 is known, but X" is not. A; is clearly an unbiased estimator of —&¢’, and is also normally
distributed with mean —éo' and standard deviation ¢'/y/nm; note that the stability of A; depends
only on nm and not on n and m alone, giving rise to equivalence of alternative sampling plans
maintaining constancy of nm. From the statistician’s viewpoint, i(m) 1s the “best” estimator of
X", enjoying such additional properties as being a maximum likelihood estimator, and being the

minimum variance estimator from the class of all unbiased linear estimators of X".
2.3 A Conservative Estimator

One undesirable property of adjustment A;, however, follows from the symmetry of its distribution
about —d¢'. Thus, it is equally likely that A; will be above —80' as below it; i.e., in application to an

industrial process, A; has a 50% chance of resulting in overadjustment. In many applications (e.g.,

-
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turning operations), overadjustment is much more serious and costly than underadjustment, since
overadjustment results in expensive scrap, while underadjustment may result only in less expensive
rework. Thus, despite the good statistical properties of Aj, it may be unacceptable due to the
high likelihood (50%) of its resulting in overadjustment. Thus, we searched for a “conservative”
alternative to Aj; simple rules of thumb, such as adjusting by half of A;, could be proposed, but
would not make good use of available information.

The same subgroup means Xi,..., X, used to form a point estimator for X" can be used to

form a confidence interval (CI) for A" as well, by standard methods. An unbiased estimator of

Var (i(m)) is §*(m)/m, where

m

s (m) = Z (X,» - :X:(m)>2 /(m -1)

=1
and again under the random normal sample assumption on the X’s, a 100(1 — a)% CI for X" is

X(m) T tm—l,l—a/?‘?(m)/\/ﬁ; (1)
where t,,_11_4/2 denotes the upper 1 — /2 critical point of the t distribution with m — 1 degrees
of freedom (DF). Note that s*(m) is an unbiased estimator of ¢'*/n, so if o' were known, the CI
(1) could be replaced by

X(m) = 2y_, /00" /\/nm
la/a /\ )

where z;_, /o is the upper 1 — o/2 critical point of the standard normal distribution. Our devel-
opment, however, will be based on the more general assumption that ¢' js unknown, since a shift
in the process mean may well be accompanied by a change in its variance as well; thus we will use
the CI (1). If an R-chart is being kept, examination of it may indicate whether such a change in
the variance has occurred.

The CI (1) is used as follows to specify an adjustment A. serving as an alternative to 4;. Let
L and U denote the lower and upper endpoints, respectively, of the CI (1). The idea is to use the
“conservative” endpoint of (1), rather than its midpoint (as done for A;), if possible. There are
four cases:
~(v-%)  #U<X
~(X(m)- %) #X(m)<F <V
fe= -(1-7)  #¥<L
~(X(m)- %) #L<X <X(m)

>
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Cases 1 and 3 in the definition of A, are the “usual” ones in which the end of the CI nearest to X'
(which lies outside the CI) is used to define the adjustment; this will result in a smaller absolute
adjustment than A;. Cases 2 and 4 are used if X’ falls inside the CI and are defined so as to avoid
adjustment in the wrong direction; in these two cases, 42 = A;.

Unlike A;, A2 will not be unbiased for the ideal adjustment —é&o'; it tends to underadjust due
to the conservatism in using the CI endpoints rather than the point estimate ?(m) The reason
for introducing A, is to decrease the 50% chance of overadjustment inhereﬁt in A;. The choice of
A or As would have to be made based on the relative penalty one feels would result from a bias
toward underadjustment as opposed to frequent overadjustment. The following section quantifies

the performance of the two adjustment rules to aid in making such a choice.
3. ESTIMATOR PERFORMANCE

In this section we evaluate analytically the statistical properties of the adjustment rules 4; and A,
proposed in Section 2. We assume without loss of generality that o' =1 and X' = 0.

The properties of A4; follow directly from the observation made above that it is normally
distributed with mean —¢é and variance 1/(nm). Thus, A; is always unbiased for the “ideal”
adjustment —¢, has standard deviation 1/y/nm, and overadjusts with probability 0.5.

The distribution of A2, on the other hand, is considerably more difficult to obtain, due to its
four-part definition and its (potential) dependence on the CI endpoints. In Appendix B we derive
the cumulative distribution function (CDF) Fg,(a) and probability density function (PDF) fy,(a)

of 42. and discuss computational issues in their evaluation. With f4,(a), the expectation of A; is

[e ]
E(4:) :/ afa,(a) de;
computationally the range of integration was truncated at points beyond which the absolute value

of the integrand was less than 107¢. Further,

Var(d) = [ (o= B(42)) iy (o) do,

-0

with a similar truncation of the range of integration. Both of the above two integrals were evaluated
numerically by the IMSL routine DCADRE, based on de Boor’s (1971) cautious adaptive Romberg

method. Finally, the probability that A, results in overadjustment is
P(Ay < =60') = Fy,(=b0")  if6>0

P(4; > —60')=1- FAZ(—50') if6<0



First we look at the variability of A; and Aj. Figure 1 shows a contour map of the standard
deviation of A;, denoted as o(41), as a joint function of n and m; as expected, o(4,) falls as n or
m increase, and has hyperbolic contours. Figure 2 shows a comparable contour map of o(4;) for
the case a = 0.10 (i.e., we use a 90% CI) and § = 1.00 (i.e., there has been a shift in the mean
equal to one standard deviation of an individual measurement). From Figure 2, we see that o(42)
is generally close to 0(4), with some tendency to be marginally higher, reflecting the fact that A,
may be defined in terms of a CI endpoint which has an additional source of variability (the variance
estimator s?(m)). Contour maps of 0(Az) were also produced for all ten combinations of a = 0.01
and 0.10, and § = 0.25,0.50,1.00,1.50, and 2.00. From examining these plots, o(4-) always falls
with n and m, and rises slightly with é (due to more frequent use of the CI endpoint in defining
Az). 99% Cls resulted in a somewhat more variable A than did the (shorter) 90% ClIs. Overall, 4,
appears to be comparable to A; in terms of stability, and depends in anticipated ways on various
parameters.

Bearing in mind that A; is always unbiased for the ideal shift —¢, we next examine the bias in

A, measured in terms of percentage of | — &/,
B(4z) = 100[E(4;) + 6| /| - él.

Figure 3 shows contours of B(A:) as a function of n and m, again for the case a = 0.10 and
& = 1.00. This shows that bias decreases as n or m increase, which was the case for most of the
other nine (e, §) combinations examined. The exceptions occurred for very small § (0.25 and 0.50)
in which case the CI (1) includes X frequently for small n and m; this means that 42 = A; and is
thus much less biased. However, o(A42) and the probability that A, overadjusts were in these cases
undesirably high. Further, as the shift § grows, the percent bias in A, tends to fall. Generally,
the bias was in the range of 5% to 40% of |§, for most of the cases evaluated, and can always be
reduced by taking enough data (i.e., increasing n or m).

One of the main reasons for introducing A: as an alternative to A; is to reduce the probability
of overadjustment; As accomplishes this quite well. Figure 4 shows contours of the probability of
overadjustment as a function of n and m for the case @ = 0.10 and § = 0.50. (Note that this
value of ¢ is different from the § = 1.00 choice of Figures 2 and 3; for § = 1.00 the probability
of overadjustment was hardly ever greater than 0.05, producing a nearly blank contour plot.)
Again, better performance is achieved for higher n and m, and the overadjustment probabilities are

substantially lower than the 0.50 inherent in A;. As ¢ rises, the overadjustment probability falls
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rapidly (with a = 0.10 and & > 1.50, all probabilities were less than or equal to 0.05); displaying
the 6 = 0.50 case here rather than the § = 1.00 case used for Figures 2 and 3 represents a more
difficult situation for A, in terms of achieving lower probability of overadjustment. Somewhat
higher overadjustment probabilities were observed with a = 0.01 and small §, probably due to the
wider nature of such 99% Cls and their resulting tendency to contaiq X', making A; = A and thus
more likely to overadjust. For this reason, it appears that the 90% CI is preferable to the 99% CI.

Finally, we can use our results on the bias in As to address an important operational issue in
application of these techniques. The total number of items sampled past the out-of-control point
(but before any adjustment) for the purpose of estimating the adjustment is nm, consisting of m
subgroups of n individual items each. If we can choose n freely and view the value of nm as a
constraint, many alternative sampling plans may be possible; for example, if we are willing to let
the process run for nm = 20 more individual items, we could form m = 4 subgroups of size n = 35,
or form m = 10 subgroups of size n = 2 each, and so on. The splitting up of nm into n and m can
affect A,, in particular its bias. Figure 5 shows plots of B(A:) as a function of n alone, for several
different levels of nm; again we take a = 0.10 and & = 1.00 for this illustration. It appears that,
except for nm very small, it is better to have many subgroups of small size (i.e., choose n to be
small), than a few large subgroups. In fact, bias is minimized in these cases if n = 1, i.e., there is
no subgrouping at all. These observations hold also for other cases of a and ¢, except when § is
very small and nm is small as well. Thus, for situations in which experience indicates that shifts
are large (and thus of more practical importance), the post-out-of-control sampling should be done
as quickly as possible, and with subgroups of small size.

As an example of the use of these kinds of observations in practice, suppose first that over-
adjustment 1s no more serious than underadjustment, so that estimator A; is preferred. One goal
in sampling for adjustment specification in this case is to obtain an adjustment with prespecified
standard deviation, e.g., we want o0(A4;) = 0.10 or less. From the formula for ¢(A;) (or from Figure
1), this requires nm > 100; for example, m = 10 subgroups of size n = 10 individuals each would
do. (This is true regardless of the actual {unknown| shift amount é¢'.) On the other hand, if
overadjustment is to be avoided, rule A, would probably be preferable, and from Figure 2 we see
that, with subgroups of size n = 10, approximately m = 11 would be needed to attain a standard
deviation of 0.10; note that this is slighlty more data than were required for rule A4; to attain this
stability. For these choices of n and m, Figure 3 shows that 4, will be approximately 17% biased;

however, in this case A, will overadjust with probability of only about 0.05. While these values are
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for the case of a shift of one standard deviation in the process mean, the observation holds true
across a wide range of potential shifts that A, is only slightly more variable than A;, may entail
some bias (especially for small n and m), but has a very much smaller chance of overadjustment

than does A;.

4. CONCLUSIONS

In this paper we have examined three specific methods for quantifying the action to be taken when
there is evidence that the process has shifted to an out-of-control state. The first adjustment Ag
uses the out-of-control point itself and thus involves no additional sampling, but unfortunately
displays a bias toward (sometimes severe) overadjustment, which in many situations is much more
costly than underadjustment. Two other estimators, 4; and A, require that the process be left in
operation for some time after the out-of-control indication, to obtain unbiased information on the
current process mean. Aj is an unbiased adjustment, but has a 50% chance of overadjustment. A; is
somewhat biased toward underadjustment, but has a very low probability of overadjustment, and is
therefore probably to be recommended in many situations. Since both 4; and A: involve sampling
during a statistically out-of-control state, it is important that the process have a reasonably high
capability index to prevent production during this period of a large number of defectives. In this
way we can afford to obtain the information necessary to attempt an accurate re-centering of the

process.

APPENDIX A: EXPECTATION OF X,

Here we derive the expectation of Xooc, an out-of-control point. More generally, suppose we are
sampling 17, Ya,... independent and identically distributed (IID) random variables (RV’s) from a
continuous distribution with CDF F and PDF f. Let a and b be fixed real numbers with a < b, and
Y € denote the RV obtained from the Y’s, except conditioned on not being in the interval |[a, b];
that is, to observe Y €, we sample the Y;’s and throw out any falling in [a, b]. Then it is easily seen

that the CDF of Y Cis, for any real y,

P(Y;<min{y,a})+P(b< V< y)
1 - F(b)+ F(e) ’

Fly) =P(Y < y) =
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and by considering three cases on the relationship among y, a, and b, the PDF of Y€ is

fw)/ (1= F(b)+ F(a)) ify<a
fflyy =10 fa<y<b
fly)/ (1= F(b) + F(a)) ifb<y

Thus, f€ has the same shape as f, except that it vanishes on la, b}, and is inflated elsewhere to

remain a density. Further, the expectation of Y € is

> , [ vl dy+ [T yf(y) dy  B(Y:) - [ yf(y) dy
B(Y) = /.oo v/ (s) dy = 1- F(b) +bF(a) T T1-F(b) + F(a)

(4.1)

Assuming normal sampling, suppose the Y;’s are IID normal with mean x and variance o°,
and let ® and ¢ respectively denote the CDF and PDF of the standard normal distribution. In our
quality control application, the Y;’s are subgroup means, a and b are the lower and upper control
limits (symmetric about X', but not about the actual process mean, if a shift has occurred), and

Y ¢ = Xoo; further, 4 = X", the new process mean, and o = o'/ /n. In this case, (A.1) becomes

- (/o) [} vo (v = X7)/(0'//m)) dy
1~<P(( - XN)/(o'/Va)) + @ ((a = X7)/ ('/3/n)

(A.2) was used to obtain the values in Table 1; the integral was evaluated by IMSL routine

E(rooc) = (A.?)

DCADRE, and ® was evaluated by formula 26.2.17 of Abramowitz and Stegun (1964).

APPENDIX B: DISTRIBUTION OF A4,

The purpose here is to derive the CDF and PDF of A,, the “conservative” adjustment in (2). Let
Ck denote the event that case k occurs in (2), for k=1,2,3, and 4; the cases are numbered in the
order listed in (2). Then, since the events Cj,..., Cy are mutually exclusive and exhaustive, the

CDF of 4, 1is

Fay(a) = P(42 < a) = meq}ck (B.1)

for any real a. The first step in computing (B.1) is to find the P(C})’s.
Let F, ¢ denote the CDF of the noncentral t distribution with v DF and noncentrality parameter

£, and let
n(b) = (X" =)/ (o'/v/nm)
for any real b; also write simply t = t,,_y1_4/2, §* = §*(m), and X = T(m)
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Proposition BI:

Proof: It is convenient to note first that
P(X<T) =P (2<-n(X) = (-n(¥)),

where
7= <i7— V) / (o'/v/nm) ~ N(0,1);

N(0,1) denotes the standard normal distribution. Since (m — 1)s?/(0"?/n) ~ x%_, (x2 denotes a

chi-squared distribution with v DF) and is independent of T,

X-b |/
Q(b) - 0,,//\/% \/ (m'

- 1)st/((e"/n)(m-1)) = (i— b) / (s//m)

has a noncentral t distribution with m — 1 DF and noncentrality parameter n(b), for any real b.

Thus,

P(G1) =P(U < X) = P(X + ts/vm - X < 0) =P(Q(X) < =) = F,__ (1),

as desired. This is used to obtain

P(C;) = P(X" < X7 < U) = P(X < X') - P(U < X') = &(~n(X")) - P(Cy).

Next,

P(C3)=P(X' < L)=P(Q(X") > t)=1- Fm_l’n()—;;)(t).

Finally,

P(C,)=P(L< X < X)=P(X > X") - P(X' < L) = 1 - ®(-n(X")) - P(Cs).

]

As a check, note that _;_, P(Cy) = 1.

The four conditional probabilities in (B.1) involve more complicated derivations, so will be stated

separately.
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Proposition B2:

P(42<a| () = { 1= Fm—l,n{?—a)(_t)//P(Cl) if a>0

0 fae<0
Proof Under Cy, ie., that U < X', we have A = X' — U > 0, showing the second case of the

proposition; thus, assume a > 0. Now for any real u,
P(U < u)=P(Q(v) < —t) = Fr_ypnw)(-1t),

SO

P(42<a| C)=P(U>X-a| U<X)
=1-P(U<X -¢q U< X)/P(U<YX)
=1-P(U<X - a)/P(b < X)
=1- F,,,_L,,(;g_d)(—t)'/ F ot

since a > 0 implies X' — a < X'

Proposition BS: Let d = a*nm(m — 1)/(t*¢"™), n = n(X"), and let g, and G, respectively denote

the PDF and CDF of the x* distribution. Then P(43 < a/Cz) =0if a < 0, and for a > 0,
P(d2<a| G) = {q»(—n) - (-1 - av/am/a") (1= Grr(d)
d : 1 /
- ®(-n-t/e/(m=1))gm1(c) ch/ P(Cy).
0

Proof: As before, Cy implies Ay > 0, so assume a > 0. Now

P(4:< a, C) =P(X =X < 0, X S X < X + tyf/m)

where

and

By normality, X~ N(X" 6"%/(nm)), n(m - 1)s*/a'® ~ x2_,, and X and s* are independent, so

that

= (®(-n) = (-1 = av/am/")) (1 = Gm-1(d)). (B:3)



To evaluate p;, we condition on n(m-— 1)s* /a'2 = ¢ and integrate with respect to gm-;; noting that

the event ts/y/m < a is equivalent to ¢ < d

d = —
pr = /0 P(X' - to' c/(nm(m - 1)) < X < X)gm-1(c) de
d
= /O (<I>(—n) - ®(—n—-t\/e/(m- 1))) gm-1(c) de

d
= &(-1)Gm-1(d) - /0 O(-n -t c/(m—1))gm-1(c) de. (B.4)

Substituting (B.3) and (B.4) into (B.2), simplifying, and using the definition of conditional proba-

bility completes the proof.

Proposition B4:

| 1 if a>0
P42<a] Gs) =1 (1- Fm_ln(ﬁ-a)(t))/P(%) if a<0

Proof: Under Cs, Ay = X' — L < 0, so assume a < 0. For any real £,
P(L> ()= PQU) > 1) = 1~ Froyio (1) (83
where Q(f) is defined above. Thus,
P(42<a| C)=P(X"-L<q X< L)/P(X < L)=P(L>X -a)/P(L>X),
which is as desired after using (B.5) with £ = X7 — a and again with £= X',

Proposition B5: With d,n,g,, and G, as in Proposition B3, P(4s < a|/Cy) = 11if a > 0, and if
a <0,

P(4;<alC)=1+ {@(—n) - ®(-n - av/am/o")(1 - Gp-1(d))

- /dé(—n +tve/(m = 1)gm-1(c) dc}/P(C‘*)

0
Proof: Under Cy, A2 = X' — f < 0, so assume a < 0. Then
P(A2>a|C)=P(X-X>0, X>X, X <X + ts/y/m)
=P(X" < X<X+ min{—a, ts/\/m})
=p1tp, (B.6)

with

>l

p=PX' <X<X -q —a<ts/ym)= (®(-n - ay/nm/a') = ®(=1)) (1 = Gm-1(d)), (B.7)
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by arguing as in the proof of Proposition B3. Further arguing as in that proof,
d
pr= [ @m0/l gmes(e) de -~ @(-1) s (d). (B8)
0

Substituting (B.7) and (B.8) into (B.6) yields the desired result upon simplification.

We can now substitute the results of Propositions B1-B5 into (B.1) to obtain the following more

efficient and stable computational form. Defining d,7, g,, and G, as in Proposition B3, let

8= @(=n) - (= = ov/am/a)(1 = Gp-1(d))

and, for 7 = =1, let
d
I(r) = / ®(—n + 7t/ ¢/(m = 1)) gm—1(c) de.
0

Then

P(Co)+8+1-F | i nO)=1(+1) ifa<0

Fy,(a) = | P(C4) + P(Cs) if a=0 (B.9)
P(Cs) =B+ P(C)+P(Cs) - F | s ,(-8)-I(-1) ifa>0

(Evaluating the a < 0 case or the a > 0 case at a = 0 leads to P(Cy) + P(C3), so that Fy, is
continuous.) These results have been implemented and confirmed by simulations consisting of 1000
observations on A; in each of some 24 cases of particular parameter combinations; close agreement
was noted. The noncentral t CDF F,, was evaluated by the methods of Owen (1963), and the
integral I(r) was evaluated by IMSL subroutine DCADRE. (DCADRE was also used to evaluate
the integral appearing in Owen's formula for computation of F,,,.)

To obtain the PDF f4, of A2, we differentiate Fy, from (B.9) with respect to a. The P(Cy)’s
do not depend on a, but 3, Fm—l,n()?—a)(it)’ and I(x1) do depend on a. For a < 0 the expression
3 - I(+1) appears in Fy,(a), while for a > 0 the expression 8 — I(-1) appears. The derivative with

respect to a in either of these cases is

(Vam/a') (=1 - ay/nm/o") (1 - Gm_1<a2nm(m - 1)/(t20'2)>> . (B.10)

Thus, it remains to differentiate F with respect to a, which appears as a parameter

m- l,n(i:i—a)(zt)
of the noncentrality parameter. The derivative of the noncentral ¢t CDF F, ¢(z) with respect to £
is given in Owen (1963), and this is evaluated at v = m — 1,£ = n(X" - a), and z = %t as the case

may be; using the chain rule we multiply this by

0 — —
5—{;77(X' - a) = /nm/d',
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and subtract the result from (B.10) to obtain finally

/nm /nm. . o /nm 0
fay(0) = X220 (=n = aX20) (1= Gy (aum(m = 1)/ (B0™))) - Y22
(02 g

o 3 me1a(F-q) (51

taking +tif a < 0 and —tif a > 0.
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Table 1. Expectations of Qut-of-Control Points X oec.

3.09 2.32 1.93 1.68 1.51 1,39 1,29 1.21 1,15 1,09
3.36 2.42 2,01 1,76 1.60 1.48 1,39 1,32 1,27 1.22
3.44 2,51 2,12 1.0 1.76 1.67 1,61 1.57 1.55 1,53

3.53 2.64 2.30 2.14 2,06 2.03 2.01 2.00 .00 2.00

[ 18]
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Figure 1. Contours of (4)).
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Figure 2. Contours of ¢(4,) for o = 0.10, 6 = 1.00.
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Figure 3. Contours of B(Az) for a =0.10, & = 1.00.
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Figure 4. Contours of the Probability that As Overadjusts for a = 0.10, § = 0.5
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Figure 5. Plots of B(A2) as Functions of n with nm Fixed, for a = 0.10, § =1.00.



