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ABSTRACT

When the only data available for estimating the transition probabilities
of a Markov chain are state occupation frequencies (rather than interstate
transition frequencies), a least-squares estimation technique and an accompa-
nying hypothesis-testing methodology are proposed. This general hypothesis-
testing procedure is used to develop three tests for adequacy of the simple
stationary model. Null hypotheses of a zero-order process, stationarity, and
homogeneity are considered. The distributions of the test statistics are
investigated in a factorially designed Monte Carlo study. In general, it is
found that treating the test statistics as having F distributions with appro-
priate degrees of freedom under the null hypothesis of interest leads to
rejection proportions close to the desired levels. Additional Monte Carlo
results indicate favorable power of the proposed tests.
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1. INTRODUCTION

Many socioeconomic phenomena are most appropriately modeled by stochastic
processes; examples include population migration, consumer brand shift, firm
size change, voter preference behavior, and occupational mobility. A Markov
chain model is frequently chosen since it provides a simple and useful sto-
chastic framework. The usefulness of this type of modeling, however, has been
generally restricted by the difficulty (in the case of "micro" data) or
inability (in the case of "macro" data) to perform statistical inference
(e.g.» hypothesis tests) from the results. In this paper, we propose a general
methodology for devising hypothesis tests when only macro data (see below) are
available. This methodology is applied to the case of testing some of the
basic assumptions (first-order dependence, parameter stationarity, and entity
homogeneity) underlying the Markov chain model. Monte Carlo studies for these
three tests provide empirical support for the proposed methodology.

If data are available for individual interstate transitions ("micro"
data), suitable estimation techniques and hypothesis tests have long been
available. (See, for example, Anderson and Goodman [1957], Billingsley
[196la, 1961bl, and Kullback, Kupperman, and Ku [1962]. Further references to
papers dealing with specialized tests may be found in Lee, Judge, and Zellner
[1977].) Let N be the number of entities (i.e., individuals), and assume that
we can observe the sequence of states occupied by each entity at the discrete
time points t = 0,1, ...,T. Let Ny be the number of times any of the enti-
ties moves from state i to state j in any one-step transition. Then the
maximum=-1ikelihood estimator of the true (stationary) transition probability
Pyij is simply

R
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where the states are numbered 1,2,...,R. These estimators have been shown to
be consistent, asymptotically unbiased, and asymptotically normal. Further-
more, Anderson and Goodman (1957) developed 1ikelihood-ratio and chi-square
statistics for testing parameter stationarity, specified process order, and
specified transition probability values.

In many applications, however, such micro data cannot be obtained. Often,
one has access only to aggregate time-series "macro" data on state occupation
frequencies, n;(t) = the number of the N entities occupying state i at time t.
Thus, we do not observe individual movements from state to state, and know
only how many entities are present in each state at each time. Least-squares
(LS) estimators for the transition probabilities Pyj were proposed initially
by Miller (1952) and Madansky (1959) and refined and summarized by Lee, Judge,
and Zellner (1977) and MacRae (1977); see Section 2 for a brief discussion.
Bedall (1978) proposed chi-square tests for goodness of fit and for equality
of Markov chains, based on analogy to frequency table analysis techniques.

His Monte Carlo results indicated good performance for the latter hypothesis
test, and that a modification of his technique was suitable for the former
hypothesis test. However, sampling properties of the LS estimators are, in
general, unknown, and (other than Bedall's study) hypothesis-testing proce-
dures have not as yet been developed. Our purpose in this paper is to propose
a general hypothesis-testing framework based on analogy to linear regression
theory and to apply this framework to develop three specific tests aimed at
evaluating the adequacy of a simple Markov chain model in a given situation,
Validity and favorable power properties of these three tests are supported by
the results of a substantial Monte Carlo study.

In Section 2, we review the LS estimation procedure, give the general form
of our test statistics, and develop statistics for the three specific tests

mentioned above. Section 3 contains a discussion of a Monte Carlo study



designed to evaluate the performance of the statistics, and Section 4 presents
and discusses the empirical results. Finally, we draw some conclusions in

Section 5.

2, TRANSITION PROBABILITY ESTIMATORS AND TEST STATISTICS

In this section we review the LS estimation of the matrix of transition
probabilities from macro data and establish a general procedure for
constructing test statistics for a wide class of null hypotheses. The proce-
dure is used to form test statistics for three hypotheses related to adequacy

of the stationary discrete-time Markov chain model.
2.1 Constrained LS Estimation

As in Section 1, let the state space be {1,2,...,R}, the time instants of
observation be 0,1,...,T (so that each entity experiences'T transitions), and
N be the number of entities. For each state i and each time instant t, let

ni(t) = the number of entities in state i at time t,
and
y;{t) = ny(t)/N = the proportion of entities in state i at time t.

Suppose that the true transition probability matrix P has (i,j)th element Pyje

Define
y = Ly (Dseeany (Mreeisypay (Wseerypa (MY,
p = (Pll"'"pRl’""pl,R-1’°"’pR,R-1)"
X* = a T xR matrix with (t+1,1)th element y,(t)
for t = 0y.ee»T=1, and i = 1,...,R, and
X = a T(R-1) x R(R-1) block-diagonal matrix with R-1 copies of x*

along the diagonal.
Let 7,(t) be the true probability (under the assumed stationary Markov chain
model) that an entity will occupy state i at time t, and let

m(t) = [ﬂl(t)’”z(t)p..-o”R(t)].



One of the basic properties of the model is the recursion

n(t) = n(t-1) P.
As y;(t) is an unbiased estimator of m;(t), we would expect that XE should
approximate ye The (constrained) LS estimator of ] is thus the solution E to
the quadratic programming (QP) problem

min (y = Xp)' (y = Xp)

P
subject to
R-1
pyj 20 for all i and j, and 2 pij £ 1 for all 1.
j=1

Since the sum of each row of a transition probability matrix must equal 1, we
take
R-1
Pir =1 - j=1pij‘

Thus, the last column of P was omitted from the above formulation. The above
QP problem may be solved by a simplex-1ike pivotal algorithm, such as Lemke's
(1968). It has been shown (see Kelton [1981]) that this QP approach yields
estimates which are usually identical to those obtained from a more compli-

cated algorithm due to MacRae (1977) for which consistency properties have

been established.
2.2 General Test Statistic Construction

Following Chow (1960), Fisher (1970), and Theil (1971), the idea in test-
ing a desired null hypothesis Hy on the underlying Markov model is to compare
an "unrestricted" sum of squared residuals SSR; to the sum of squared resid-
uals SSRp from a QP problem which forces the restrictions required by Hy. The
methods of computing SSR, and SSRp depend on the particular Hy of interest;
three examples appear in Section 2.3.

The general formula for the test statistic is



(SSRR - SSRu)/q
Fq;v = !
SSRu/V

where

the number of (additional) restrictions imposed by Hg,

L0
1]

and

<
]

the degrees of freedom (number of independent observations minus
number of parameters estimated) in the unrestricted QP problem.

We propose that Fq,v be treated as having an F distribution with (q,v) degrees
of freedom (d.f.), under Hy. However, we are violating many assumptions
necessary for this to be true, e.g., that y - XE is a vector of uncorrelated,
homoscedastic, normally distributed error terms. Thus, we investigated in a

Monte Carlo study the actual distribution of F_ ; see Sections 3 and 4.

(SFA4

2.3 Test Statistics for Some Specific Null Hypotheses

First, we test the null hypothesis that all rows of the transition proba-
bility matrix are identical: i.e.,
Ho: Pij = Py for all i.
This implies that the process is zero-order; i.e., Sy is independent of S;_;,
where S; is the state of the system at time t. Also, the distribution of St
for each t > 1 would be the same as the steady-state distribution, under H.
The test distinguishes between independence and some dependence (memory), but

cannot be used to establish the length of memory of the process.

In order to implement this test and to calculate Fq,v’ we let

the sum of squared residuals from the QP problem detailed in

SSRU
Section 2.1,

(R-1)2,

£0
"



SSRp = the sum of squared residuals from a QP problem, QP(1), similar
to that of Section 2.1, but with p and X replaced by

p(l) (pI; pzyoo-) pR_l)' and

X*(1)

(1, 1reour Y,
respectively, and X(1) defined to be block-diagonal on X*(lh
and
v = T(R-1) = R(R-1).
To illustrate how B(l) and X*(1) were found, note first that E(l) simply
contains the parameters to be estimated, under Hy. Next, since
R
yi(t) = 1,
i=1
we have (under Hj) that yj(t) has expectation Py Thus, we would expect that
X(l)E(l) should approximate Y. Hence, the LS estimator of B(l) is the solu-
tion to QP(1):

min [y = X(1)p(1)I'Ly = X(1)p(1)]
p(l) ~ - = -

subject to P; 2 0 and églpj L 1.
j=1

The restriction that Pij = Py for all i is thus embedded in QP(l). (Note that
only R-1 transition probabilities are estimated in the restricted model.)
Under the conditions for the standard general linear model (which we do not
meet here), Lemma 2.3 of Fisher (1970) would imply that Fq,v has an F distri-
bution with (g,v) d.f., under Hy. Our Monte Carlo study below investigates
the actual null distribution of Fq’v in our case.

Second, we test the null hypothesis that the transition probabilities are
stationary over time:

Hp: p1j(e) = pij(f) for all 1,j,

where e refers to the "early" time instants t = 1,2,...,T/2, and f refers to

the Mater" time instants t = T/2+l,...,T. The Markov chain observation



period s divided into two equal-length subperiods, and transition probabili-
ties are estimated for each subperiod; this is the "unrestricted" model in
this case. For the later time instants, the proportions at "time t=0" are
actually the observed proportions at time T/2. (The proposed approach is also
easily extended to test equality of transition probabilities across multiple
subperiods.)
In this case, let
SSRy = SSRj(e) + SSR,(f), where SSRj(e) is the sum of squared
resy duals from the QP problem detailed in Section 2.1 for t =
Ly0sT/2, and where SSR;(f) is the sum of squared residuals
from the QP problem detailed in Section 2.1 for t =
T/2+1)occ’T’

q = R(R-1),

the sum of squared residuals from the QP problem of Section

SSRy
2'1 fOF‘ t = 1)2’...’Tv

and
v = T(R-1) = 2R(R-1);
Fq.v is defined as before.

Finally, we test the null hypothesis that one group of entities has the
same transition probabilities as a second group (again, the problem can be
generalized to multiple groups): 1i.e.

Hp: pij(g) = pij(h) for all i,j,
where g and h refer to two distinct groups of entities. This is the homoge-
neity assumption which requires that all individuals follow the same Markov
chain, Let N(g) and N(h) be the number of entities in group g and group h,
respectively. (N(g) + N(h) = N,) If

nj(t.g) = the number of group-g entities in state i at time t

and

n;(tsh) = the number of group-h entities in state i at time t,

then y;(t,g) = n,;(t,g)/N(g) and y;(t,h) = n,;(t,h)/N(h) are entity proportions



in state 1 at time t for groups g and h, respectively. The "unrestricted"
model (as for the stationarity test above) consists of two transition-
probability estimations, one for group g and one for group h.

Here,

SSRy = SSRy(g) + SSRy(h), where SSR;(g) is the sum of squared
res?dua1s from the QP problem detailed in Section 2.1 with the
N(g) entities of group g, and where SSR;(h) is the sum of
squared residuals from Section 2.1's QP with the N(h) entities
of group h,

q = R(R'l)’

SSRp = the sum of squared residuals from a QP problem, QP(3), similar
to that of Section 2.1, but with y and X replaced by

y(3) = (y; t yo | «e. 1 yp_y)'s where

Z.j = [yj(l,g),...,yj (T,g),yj(l;h),...,yJ(T,h)]

for j = 1,...,R-1, and
X¥(3) = a 2T x R matrix with, for i = l,...,R, (t+1,1)th
e]ement yE(t.g) for t = 0,...,T=1, and y,;(t-T,h) for
T"l,

respectively, and X(3) defined to be block-diagonal on x*(3),
and
= 2T(R-1) = 2R(R-1),

F is defined as before.
QsV

3. EXPERIMENTAL PROCEDURES AND DESIGN

The test statistics defined in Section 2 would have F distributions with
(gsv) d.f., under their respective Ho'ss 1f the assumptions for the general
linear regression model held. Since several of these assumptions will, in
general, be violated, we undertook an extensive Monte Carlo study to determine
whether this F distributional assumption can be made in practice. In this
section, we describe the data generation, the criteria used in evaluating the

proposed tests, and the experimental design.



For each of the three null hypotheses considered, values for R, N, T,
7(0), and P were specified as called for by an experimental design discussed
below; for a validity investigation, these process parameters and the data
generation must conform to the requirements of the Hy under consideration.
Given this underlying process structure, N independent realizations (i.e.,
entities) were generated by first generating the initial state, Sp» according
to the probabilities in 7(0). S; was then generated according to the
probabilities in row S5 of P; S, was generated according to row §, of P, etc.
The proportions y1(t) were tallied as the data generation progressed. The
random-number generator used is the multiplicative congruential generator
developed by Lewis, Goodman, and Miller (1969) in the FORTRAN implementation
of Schrage (1979). A11 data generated across design points and different null
hypotheses were made independent by using nonoverlapping random number
streams.

Rather than specifying the underlying process parameters in a few combina-
tions and levels chosen essentially arbitrarily, we view R, N, T, #(0), and P
as five factors in an experimental design context. In this way, we can
examine the effects of these factors on the performance of the tests in an
organized fashion. For each null hypothesis, we chose two levels for each of
the five factors (see Section 4 for the particular values), and used them in
16 combinations called for by a resolution V, 2571 fractional factorial
design. The design was constructed by writing a full 2% factorial design in
the first four factors, and taking the level (sign) for P to be the positive
product of the signs of the levels of the other four factors (see Box, Hunter,
and Hunter [1978]). For each of the 16 design points, 200 independent
replications of the entire estimation and testing procedure were made,
resulting in 200 independent observations on the test statistic F

gsv*

We selected a number of criteria to evaluate the performance of the tests
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proposed. The 200 test statistic values were used in chi-square x2) and
Kolmogorov=Smirnov (KS) goodness-of-fit tests in comparison with the F distri-
bution with (q,v) d.f. Since robustness of these tests more importantly
depends on upper-tail properties, we computed the percentage of the 200 values
which fell above the upper 10%, 5% and 1% critical values of the F distribu-
tion with (q,v) d.f. Finally, we noted the absolute differences between these
observed rejection percentages and their corresponding "desired" values.

These criteria are the "responses" for the experimental designs.

In addition to our designed robustness experiments, we evaluated the power
of the three hypothesis tests, at various degrees of departure from the
respective null hypotheses, at the mean values (see below) of four of the
design parameters: i.e., T = 38, N =300, »(0) = (0.52, 0.18, 0.15, 0.15), and
P's elements averaged over their "=" and "+" values in the validity
experiments. Power functions were estimated for both state space sizes (R = 2
and R = 4) with respect to a multinomial logit parameterization (see MacRae
[(19771).

This parameterization sets

R;l
Pij = exp 0” / (1 +m:1exp Oim) 2
for i =1l,...,Rand j = 1,...,R-1.

Thus, the null hypothesis of zero-order dependence requires elj = 62J = e =
GRJ’ for j = 1,...sR=1, To allow deviation from Hy, we set 6,y = 61, + 0,
where & varied from -3 to +3. (When 6 = 0, the null hypothesis is true.)
Results are presented in Section 4, For the stationarity and homogeneity
tests, the null hypotheses require, in turn, that 61j(e) = 91J(f) and Gij(g) =
eij(h)’ for i = 1,...oRy and j = 1,...oR=1. In these two cases, for R = 2, we
estimated a power surface by allowing 617(f) =0, (e) + 8, and 6,1(f) =6, (e)

+ 8, (in the case of stationarity) and 6,;(h) = 6;,(g) + 5, and 6, (h) =



11

051(g) + 6, (in the case of homogeneity) and Tetting 5, and §, vary from -2 to
+2. ForR =4, we simply Tet 0,1(f) = 657(e) +§ and f,1(h) = G,1(g) + § for
stationarity and homogeneity, respectively, allowing § to vary from -3 to +3.
This departure from Hy involves only one of the four rows of P(f) and P(h),
maintaining Hy for the other three rows; this should yield a worst case (Tower
bound) for power. Again, results are presented in Section 4. For further

power results from a factorially designed study, see Kelton and Kelton (1983).
4, EMPIRICAL RESULTS

In this section we present the results of the Monte Carlo studies
described in Section 3. For the validity investigations, the choices for the
levels of the factors were made taking into account our experience with use of
these models in practice. The "=" and "+" levels for R are 2 and 4,
respectively, for each of the three null hypotheses. Except for the null
hypothesis of stationarity, the "=" and "+" levels for T are 25 and 50; since
T should be even for the stationarity Hy, we use 26 for the "-" level for T in
this test., For N, we take 100 and 500 as the "=" and "+" Jevels,
respectively. Since 7(0) and P may depend on the Hy under consideration,
their values will be given as we discuss each test; generally, we attempt to
use one of the values of P to indicate reluctance to change states (i.e.,
large diagonal elements), and the other value to exhibit somewhat greater
mobility. For each test, we give a table of means (over the 16 design points)
and main effects estimates for each of our nine responses. For the x2
goodness-of-fit test, we report the p-value (probability of obtaining a value

2 2

of X© at least as large as the one observed) as well as the x“ value itself;

20 equiprobable intervals were used for each x2 test. For the KS test we
report the adjusted test statistic D! = Dn[(n)o'5 +0.12 + 0.11/(m0:31,
this

developed by Stephens (1974), instead of the usual KS statistic, D;
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allows the use of his very compact tables of critical values. Also, for each

test, we report power results for a number of alternative hypotheses.
4,1 First-Order Dependence

The two levels for 7 (0) here were taken to be the discrete uniform distri-
bution on {1,2,...,R} at the "-" level, and a distribution degenerate on state
1 for the "+" Jevel. Since this Hy requires that each row of P be the same,
we need specify only a single row. For the "-" level, we took this row to be
uniform, and the "+" level row was taken as (0.79, 0.21) when R = 2 and (0.79,
0.11, 0.05, 0.05) when R = 4,

Table 1 contains, for each response, the overall mean and the main effects
of the factors; Cy5, Cg» and C; denote the observed rejection percentages for
the (desired) 10%, 5%, and 1% levels, respectively. The average p-value of
xz, 0.34, indicates generally good agreement between Fq,v and the F distribu-
tion. For some factor combinations, however, the overall fit is not good (see
Kelton and Kelton [1982b]). 7 of 16 values are significant at the 0.10 level;
6 of 16 values of D' are significant at the 0.10 level. A 90% confidence
interval fails to cover the target rejection percentage in 14 out of 48 cases.
The average observed rejection proportions, 7.7%, 4.2%, and 1.0%, are mildly
conservative, but are quite close to the desired levels. The absolute
deviations of the C.'s further indicate good performance of the proposed test;
for example, the average deviation for a 5% test is 1.3 percentage points. We
feel that these rejection proportions are the most relevant criteria for
judging the proposed testing procedure, and their closeness to the desired
levels in this case is encouraging.

The main effects in Table 1 and the two-way interactions not reported here

(see Kelton and Kelton [1982b] for details) indicate that R appears to be the

most important single factor affecting the overall fit, with the larger number



Table 1. Means and Main Effects for Testing First-Order Dependence

Main Effects

Response Means R T N m (0) P
x2 43,36 47,73 -5.63 -22.,53 4,28 45,58
p-va]ge 0.34 -0.32 -0.14 0.27 0.02 -0.21
of X
D! 1.50 1.61 -0.30 -0.26 0.15 1.06
Ci0 7.66 -0.19 1.69 -0.56 -1.31 0.19
Cg 4,16 0.56 1.31 -0.19 -0.81 -0.56
Cy 1.03 0.31 0.44 0.06 -0.56 -0.19

1Co-101 2,78 -0.44 -1.06 -0.06 1.69 0.44
{Cg=51 1.34 -0.06 -1.06 -0.31 0.56 0.06

ICy-11 0.41 0.31 0.19 -0.19 -0.31 -0.19
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of states (R = 4) worsening the fit. Also, a better fit is obtained if the
rows of P are uniform, as opposed to having a large probability of being in a
particular state. Furthermore, a large positive interaction between R and P
is consistent with their main effects. These three effects also appeared to
be significant from a normal probability plot.

The rejection proportions, however, do not appear to be affected as much
by any main effect or interaction. A probability plot of the effects on
ICS-SI did not indicate any obviously significant effect. It appears that
there is some tendency for a larger value of T to lead to better rejection
proportions; thus, it may be advisable to obtain longer time records for the
observations, if possible.

Table 2 shows the rejection percentages, each obtained from 200
experimental replications, for different values of § (violations of Hy). For
both R = 2 and R = 4, the power function behaves as expected (is unbiased),
with power's rising with the extent of violation of Hy. For R = 2, power
reaches 100% when § = -2 or =3, rising again to 74% (10% test level) when § =
+3. Note that when § = 0, type I error probabilities are obtained which do
not differ greatly from the mean values in Table 1. As one would expect
intuitively, a larger state space (R = 4) produces lower power results
overall, with a high rejection percentage of 54.5 (at the 10% level). Recall,
however, that our departure from Hy in the case of R = 4 is only for row 2;

higher power would be obtained for departures involving other rows as well.
4,2 Parameter Stationarity

In this case the "-" level for #(0) is a uniform distribution, and the "+"
level is (0,79, 0.21) when R = 2, and (0.79, 0.11, 0,05, 0.05) when R = 4,

When R = 2, the "=" and "+" levels for P are



Table 2. Rejection Percentages for Power of Test for First-Order

Dependence

R = 2: Level of Test R =4: Level of Test

5 10% 5% 1% 10% 5% 1%
-3 100,00 100.00 100.00 50.00 37.00 21.00
-2 100.00 100.00 100.00 38,00 25,50 12,00
-1 47,50 34,50 9.00 18,50 12.00 4,00
0 8.50 2.50 1.00 10.00 4,50 1.50
+1 37.50 24,00 7.50 16,00 11.50 5.00
+2 61.50 51,50 30.00 42,00 30,00 14.00
+3 74,00 65,50 40.00 54,50 42,50 22.50

15
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0.8 0.2] and 0.6 0.4
0.2 0.8 0.5 0.5

respectively. When R = 4, the "-" and "+" levels for P are

0.8 0.2 0.0 0.0 0.5 0.2 0.2 0.1

0.1 0.8 0.1 0.0/ and (0.2 0.6 0,1 0.1

0.0 0.1 0.8 0.1 0.1 0.1 0.7 0.1

0.0 0.0 0.2 0.8 0.1 0.2 0.2 0.5
respectively.

From Table 3 (which follows the same format as Table 1), the x? test
yields an average p-value of 0.40, indicating a good overall fit; Further, x2
was significant at the 0.10 Tevel in only 3 out of 16 cases, and the KS
statistic was significant in 7 cases. The average observed rejection
percentages, 9.9%, 5.5%, and 1.2%, are very close to the desired values.
Individual rejection percentages differed from the target values at the 0.10
level of significance in only 8 out of 48 cases. Again, in Table 3, the
absolute deviations IC.-rl are 1.9, 1.5, and 0.7 percentage points, further
indicating reasonable rejection probability performance. Thus, this test for
stationarity appears to be quite well-behaved with respect to size.

A probability plot of the main effects and two-way interactions for the
overall fit statistics did not indicate that any were clearly significant,
although large R again appears to worsen the overall fit. Also, it appears
that large R causes the rejection percentages to deviate somewhat more from
their respective target values.

The power values in Tables 4 and 5 were obtained from 100 independent
replications and show quite high power (100% in many cases). These results
are encouraging since even small one- or two-parameter departures from HO

elicit high rejection levels. Again, power behaves generally as expected,

with Tow rejection percentages obtained when Hj is true.



able 3. Means and Main Effects

for Testing Parameter Stationarity

Main Effects

Response  Means R T N m (0) P
XZ 22.70 9.25 -3.25 5.75 6.15 -0.10
p-va]ge 0.40 -0.33 0.04 -0.12 -0.15 -0.19
of X
D! 1.28 0.38 0.00 0.19 0.41 -0.12
Ci0 9.94 -0.13 0.13 -0.50 -0.50 -2.13
Co 5.53 -0.06 -0.06 -0.94 0.44 -1.06
C; 1.16 0.31 -0.19 -0.19 0.31 -1.19
(Cqo-101 1.88 0.50 -0.25 0.13 0.13 -1.25
1Cc-51 1.53 0.19 -0.31 -0.44 0.19 0.19
1C;-11 0.66 0.31 0.06 0.06 -0.44 -0.44

17



Table 4. Rejection Percentageg for Power of Test for Parameter
Stationarity (R = 2)

81
-2 -1 0 ) +2

100.00 100.00 100.00 100.00 57.00
-2 100.00 100.00 100.00 100.00 40,00
100.00 100.00 100.00 97.00 16.00

100.00 100.00 100,00 30,00 100.00
-1 100,00 100.00 100.00 20.00 100.00
100.00 100.00 100.00 2,00 100.00

100.00 100.00 10,00 100.00 100.00
0 100.00 100.00 3.00 100.00 100.00
100.00 100.00 0.00 100.00 100.00

100.00 50.00 100,00 100.00 100.00
+1 100.00 37.00 100.00 100.00 100.00
100.00 17.00 100.00 100.00 100.00

98.00 100.00 100,00 100,00 100.00
+2 93.00 100.00 100.00 100.00 100.00
88.00 100.00 100.00 100.00 100.00

* Values are ordered for 10%, 5%, and 1% test levels, respectively.



Table 5. Rejection Percentages for Power of Test for Parameter

Stationarity (R = 4)

Level of Test

5 10% 5% 1%
-3 100.00 100.00 99.00
-2 100,00 100.00 93.00
-1 87.00 77.00 58.00
0 8.00 5.00 1.00
+1 100.00 100,00 98.00
+2 100.00 100.00 100.00
+3 100.00 100.00 100.00
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4,3 Entity Homogeneity

The levels for m(0) and P in this case are exactly the same as for the
parameter stationarity test in Section 4.2. From Table 6, the average overall
fit is again reasonably good (X2 was significant at the 0.10 level in 4 of 16
cases, and the KS statistic was significant in 5 cases.) 90% confidence
interval coverage for target rejection percentages was not obtained in 12 out
of 48 cases. The average rejection percentages, 12.3%, 7.1%, and 1.8%, are
slightly higher than desired, but are still quite close. The values of lCr-rI
indicate that the rejection percentages are, on average, within a few
percentage points of the target values.

Again, the proposed tests behave better when the state space is smaller,
and there is some evidence that a P matrix consistent with higher mobility
leads to better test performance; these remarks are true both for the overall
goodness-of-fit tests and for the rejection percentages. Furthermore, the
main effects of T and N on the values of lCr-rl indicate the advisability of
having longer time records and a larger sample of entities, if possible.

The estimated power percentages in Tables 7 and 8, again obtained from 100
replications, are even higher than those presented in Tables 4 and 5. The
good power properties of the testing methodology are evidenced by the high

power observed at all deviations from Hy.
5. CONCLUSIONS

The empirical application of stochastic processes has been inhibited by
the lack of statistical inference techniques when aggregate frequency data
alone are available. In this paper, we have developed a framework for
devising suitable test statistics and distributions for examining various null

hypotheses of interest, and have applied this framework to three specific



Table 6. Means and Main Effects for Testing Entity Homogeneity

Main Effects

Response  Means R T N 7 (0) P
x 2 28,55 16,10  =7.70 0.25 8.15 -16.70
p-valye  0.29  -0.23 0.12  0.15 0.07 0.26
of X
D! 1,12 0.38 -0.28  0.11 0.41  =0.62
Cyg 12.31 0.50 -1.38 -1.38  -0.50 =-2.38
Co 7.13 1.13  -0.63 -0.88  =-0.25 =-2,13
o 1.78  0.56 0.31 -0.56 =0.19  -1.31
ICp-101  2.56  -0.00 -1.38  -1.38 0.00 -1.88
1C5-5 | 2.25 0.88  =0.88  =0.63 0.00 -1.88
1C,-11 1.03 0.56 -0.19 -0.06 =0.19  -0.81
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Table 7. Rejection Percentaggs for Power of Test for Entity
Homogeneity (R =

51
-2 -1 0 1 +2

100,00 100,00 100.00 100.00 93.00
-2 100.00 100,00 100.00 100.00 87.00
100,00 100.00 100.00 100.00 75.00

100,00 100,00 100.00 58.00 100.00
-1 100.00 100,00 -100.00 42.00 100.00
100.00 100,00 100.00 19.00 100.00

100.00 100.00 10.00 100.00 100.00
0 100.00 100.00 6.00 100.00 100.00
100,00 100.00 1.00 100,00 100.00

100.00 82,00 100.00 100.00 100.00
+1 100.00 68.00 100.00 100.00 100.00
100.00 39.00 100.00 100.00 100.00

100.00 100.00 100.00 100.00 100.00
+2 100.00 100.00 100.00 100.00 100.00
99,00 100.00 100.00 100.00 100.00

* Values are ordered for 10%, 5%, and 1% test levels, respectively.



Table 8. Rejection Percentages for Power of Test for Entity

Homogeneity (R = 4)

Level of Test

5 10% 5% 1%
-3 100.00 100,00 100.00
-2 100.00 100,00 100.00
-1 95,00 91.00 78.00

0 13.00 7.00 2.00
+1 100.00 100.00 100.00
+2 100.00 100,00 100.00
+3 100.00 100.00 100.00
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hypotheses for assessing the adequacy of a simple stationary Markov chain
model. For a given problem, if these three null hypotheses cannot be rejected
at some chosen level of significance, a Markov chain model could presumably be
used for this process along with its predictive capability and its associated
steady-state distribution. If the stationarity assumption is rejected, a
nonstationary Markov process would be a more appropriate model. (For an
application of a nonstationary Markov process to the brewing industry, see
Kelton and Kelton [1982al.)

The Monte Carlo studies that we carried out for the three null hypotheses
considered here indicate that treating the test statistics as having an F
distribution with the appropriate d.f. under HO leads to tests having rejec-
tion probabilities which are quite close to the desired levels. Thus, we
would anticipate that, in most applications, the tests would be valid. The
experimental design of our Monte Carlo studies suggests that, among those
factors which might be under the control of the investigator, enhanced test
validity can be expected if the state space is kept small. There is also some
evidence that long time records and large samples of entities would be desir-
able. In any case, however, the tests generally appear to be quite robust.
Furthermore, the results of this study (as well as those of Kelton and Kelton
[1983]) indicate that the three hypothesis tests are fairly powerful against
various alternative hypotheses.

Additional research might include development and evaluation of more
specialized tests which could be of interest in various applications. We are
currently investigating the application of the general techniques of this

paper to some particular hypothesis tests of a more specialized nature.
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