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Abstract

An analysis is presented of the scattering by a resistive strip joined
to a metallic half plane. Three different solutions are developed, one of
which is exact and is based on the moment method/Green’s function
approach. The other two are approximations, one of which improves as
the resistive strip width decreases whereas the other does the same for
large strip widths. Using the moment method solution as a reference,
the accuracy of each approximation is examined and guidelines for
using them are developed. It is found that the validity ranges of
two approximations overlap, making them suitable for computing the
TM scattering of the configuration regardless of the strip’s width and
resistivity. |






1 Introduction

Resistive sheets or cards are often used on modern aircraft for controlling the
scattering by a variety of surface discontinuities including those associated
with apertures, leading and trailing edges, and antennas. For such applica-
tions the resistive sheet is placed in front of or around a metallic truncation
in a manner which depends on the shape of the metallic geometry and the
desired control. Perhaps the simplest among such configurations is a metallic
half plane loaded with a resistive strip extension as illustrated in Figure 1,
and the purpose of this paper is to present a rather thorough characterization
of the scattering by such a loaded half plane. Our aim is to derive simple and
efficient solutions not associated with extensive computational demands.

Three different solutions are presented and discussed from the point of
view of accuracy, efficiency and computational requirements. The first is
based on the moment method (MM)/Green'’s function approach and paral-
lels the solution given by Newman (1] for a dielectric strip in the presence of
a metallic half plane. Our solution, though, employs a different procedure for
the evaluation of the diagonal and non-diagonal impedance matrix elements,
and this is important in keeping the computational requirements to a min-
imum. Specifically, the integrand associated with the diagonal elements is
herein regularized differently leading to definite rather than infinite integrals.
Also, because the resistive strip extension and the metallic half plane occupy
the same plane, the resulting non-diagonal matrix elements can be expressed
in terms of definite integrals. Consequently, the impedance matrix fill time
is kept at a minimum.

The other two scattering solutions are approximations, one being valid
for small width resistive strip extensions whereas the other is a high fre-
quency solution. The small width approximation is obtained by noting that
for small width sheet extensions, the current amplitude can be analytically
described to within a constant. This constant is subsequently determined
by inserting the proposed analytical expression into the exact integral equa-
tion. The limitations of this approximation for determining the echowidth of
the subject configuration for different complex sheet resistivities and as the
width increases is discussed in the results section of the paper. There, we
present guidelines where this approximation is most accurate and suitable
for engineering calculations.

The high frequency solution for a single strip extension follows the formal



procedure outlined by Herman and Volakis in [2] and includes up to third
order diffraction contributions. However, the solution in [2] applies to an
isolated resistive strip whereas here the strip is joined with a metallic half
plane, requiring a different diffraction coefficient at this junction. Such a
diffraction coefficient is given in [3], and upon relating it to the diffraction
coefficient for the isolated resistive half plane, the higher order diffracted
fields for the subject configuration are obtained by making simple modifica-
tions of the results in [2]. The derived high frequency solution is validated
by comparison with the MM/Green’s function solution. Specifically, several
computations are presented which demonstrate the solution’s accuracy and
limitation as the width of the strip extension becomes smaller. The high
frequency solution for sheet extensions comprised of multiple resistive strips
is also discussed.

2 Integral equation formulation

Consider the plane wave

E; — ejko(zcos¢o+ysin¢o) (1)

which illuminates a metallic half plane whose front edge is loaded by a re-
sistive strip as shown in Figure 1. The metallic section of the half plane
occupies the z > 0 portion of the y = 0 plane, whereas the resistive strip
extends from z = —w to the edge of the metal (z = 0) also in the y = 0
plane.

We are interested in computing the scattered field from this configuration
due to the excitation (1). A convenient way for accomplishing this is to
employ the MM/Green’s function approach also employed by Newman (1],
who considered the scattering of a dielectric cylinder in the presence of a
metallic half plane. Based on this procedure, the presence of the half plane is
accounted for by introducing the Green’s function of the metallic half plane,
thus eliminating a need to explicitly introduce and compute the currents
excited on that portion of the half plane. The problem then reduces to that
of determining the resistive strip currents. The associated integral equation
for the strip currents can be found by imposing the boundary condition

E, = Zy Re(z) J,(z) —w<z<0, y=0. (2)



In this, E, denotes the total field, J,(z) is the strip current, Z, is the free
space intrinsic impedance and R.(z) is the normalized resistivity profile of
the strip.

The total field E, is comprised of three contributions. They include the
unperturbed incident field (1), the field scattered by the metallic half plane
in isolation (EMF) and that caused by the radiation of the strip currents in
the presence of the metallic half plane. From [5,6] we have that

Ei(p,¢) + EX¥(p,6) = E¥(p,4,60)
et $—¢
= ¢4 7 [Fc(—\/%cos 5 0)
- F, (—\/fl'/r_p cos _(b_-;_qﬁg)] (3)

in which (p,#) denote the usual cylindrical coordinates of the observation
point and F,.(z) is Clemmow’s transition function (7]

F(z)= % /oo e~ dr. (4)

z

It satisfies the identity

F(2)+ F(-2) = ﬁe:imejzz, (5)

which can be used to recover the incident and reflected fields from (3).
When the argument of F.(z) is positive (and real) we may relate it to the
Kouyoumjian-Pathak [8] transition function Fi,(2) via the relation

Fi(l2) = %}—l—) Q

Thus, by invoking (5) the computation of F(z) amounts to evaluating the
Kouyoumjian-Pathak transition function, which is well documented.

To find the field generated by the strip current in the presence of the
metallic half plane we first consider that radiated by a line source of unit
amplitude. This is the Green’s function of the configuration and with the
source in the y = 0 plane it is given by [5,6]

—JkoR
(pa ¢’ - Lp \/m (7)
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where

R = o+ X" +2px cosg, (8)
o _kpx . ¢
p = 2 p+x’+Rsm2 9)
and
X' = | (10)

denotes the distance of the line source from the half plane edge. The field
radiated by the strip current can now be expressed as

0
EY(p,8) = ko [ Ji()Gilp, 45" da’ (11)
with the total field given by
E.=E +E + B = ¥ + EY. (12)

Substituting this into (2) yields the integral equation
0
Yo E(p =, bo, 6= 7) = Rule) L(a) + ik [ J(&') Gl ') ds’ (13

-w

where Gg(z;2') = Gg(p = |z| = x, ¢ = m;2') and Yo = 7. The solution of
this integral equation is considered in the next section.

3 Integral equation solution

One of the simplest procedures for discretizing the integral equation (13) is
to employ point matching with pulse-basis expansion functions. Using N
subdomains for discretizing the strip extension and testing at the center of
each of these yields the standard system

[Zmn][']n] = [Vm] (14)

In this, J, denotes the amplitude of the nth pulse centered at z, = —w +
nA/2 withn =1,2,...,N and A being the width of the subdomain. Also,

Vi =V(zm) = Yo EF(p = |2m|, o, ¢ =) (15)
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and the impedance matrix elements are formally given by

_ Re(xm) + Zmﬂ. m=n
7 = ikl)-/xn+A/2 , _JkoRm(z,)/ e du (17)
21 Jra-A)2 -p \/u2 + 2ko R (2')

with R, (2') = |xm — X'| and

{\/ kX' Xm > X'
vV K::OXm Xm<x

For m # n the matrix elements Zmn can be readily evaluated numerically.
However, when m = n, R,,(z') vanishes making the integrand singular over
the range of integration. This makes it necessary for an analytical treatment
of the integral and the standard approach is to isolate the singularity in some
integrand which can be evaluated analytically. Newman [1] chose a certain
procedure based on this principle but his final non-singular integrals involved
infinite limits making their evaluation time-consuming and cumbersome.

Herewith, we employ a different approach for isolating and treating the
singularity and this results in a more efficient and simpler evaluation of Zonm -
We begin by rewriting Zmm as

_ : Tatl/2 ~j[u?+koRm(z')] _ -
ton= 2 [oree ([ s ti]
21 Jza-a)2 -2 \Ju? + 2koRn(z')

where

\/p + 2koRnm(z') + p
\ﬁ) + 2ko R (2') —

/—p \/u2 + 2k0 J ' (19)

Using (9), the integral I,(z') can be further simplified to read

NN EN,e

In(a) NoEWie (20)




and its expected logarithmic singularity is now apparent. This is, of course,
an integrable singularity. In particular, we have

z,.+A/2 (zn—-4/2) ~,
/ Vdz' = +2 / In
.z',.-A/2 (zn+A/2)

m+X
Xm’X

e

where Xm = /Xm = \/|Zm| and X’ = /X = y/|2’|. The last integral can be

readily evaluated analytically and on doing so, Zmm can be rewritten as
. ko [ peatar p (e-il+hoRm@N_ 1) dy -
7 1% / dz' / (e Jdu Lz (21)
21 |Jzn-a/2 -p \/u2 + 2ko Ry (2')

with Cm given by
~ - Xm + X3) (X7 = Xm)
mm = m 21n |i(§ ~m ~m =
b = () 0 R ) (R — K1)
— (v*)?In Xm‘*‘Xm]_ _21n[%f-n_gm]
(xm) lxm s (Xm)"In | Z2—==

Consistent with our notation, ¥ = \/|z, £ A/2|.

A numerical evaluation of Z,, can now be readily performed and in
particular we found that a four point Gaussian quadrature was sufficient for
each line integral in (21) and (17).

Once J,(z) is determined, the far gone scattered field is given by

Ei(p— 00,6) = E;" (p — 00,) + E(p = 00,9). (23)
Since Fip(z — o0) = 1 from (3), (5) and (6) we find that
e* ¢ 2sin % sin 952&

VP /2mky cos ¢ + cos do

_ e_jkopcos(¢+¢0) U(7r —_ ¢ - ¢0)

(24)
with U(z) being the unit step function. Thus the second term of this expres-
sion simply represents the reflected field from the metallic half plane. For
the far zone evaluation of EJ" we note that

e—jko(p+x’ cos®) i /2kox'sin %

GE(p — 00, ¢, -T,) = —m— ozisin £ e'j"2 d'U., (25)
—1/ 0X' sSin )

7

E¥P(p - 00,9) =



which on using the definition (4) can be written as

F, (—2 kox' sin g) - F, (2 kox'sin g)] .

(26)
Substituting this into (13) we can express the far zone scattered field from
the subject configuration as

—jkop S i 8o fo
E(p,4) = e~ I%ko et 2s1n2,s1n2
VP | V2rko cos ¢ + cos do

Y
+ 2T \/:[w JZ(x )6

. - . P '
-[Fc (+ 2kox’sm§ = F. | —\/2kox s1n§ dz'. (27)

In this, we have excluded the contribution of the reflected /specular half plane
field which is of interest only for bistatic computations.

e_jkop e_.’kox'

\/ﬁ 2T v 2](30

GE(P — 00, ¢; :E,) =

4 Approximate solution for narrow strip ex-
tension

When the width of the resistive strip extension is small, it is possible to
represent the current density J,(z) with a simple analytical function. From
the edge condition, it is already known that at £ = —w the current reaches
some finite value provided R, # 0, whereas at z = 0 it can be shown to go
to zero as \/x. This is verified in Figure 2 where we plot the modulus of
J.(z) as a function of z for different values of R, and two incidence angles
(o = 60° and 130°) as obtained from a solution of (13). It is rather obvious
from the curves in Figure 2 that for w < A and R, # 0, the edge condition
at £ = 0 controls the current density’s amplitude behavior over the entire
width of the strip extension. That is, |J,(z)| ~ Ao\/X, Where A is a real
constant. However, the phase of J,(z), although it can be taken as constant
for small R, it is in general a quadratic function of x whose coefficients are
unfortunately a function of R..
Based on the above argument, J,(z) can be expressed as

J.(z) = A(z) /X = Aoy/x €10 Farxtao), (28)
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where a, and Ap are real constants. Obviously, there is no standard scheme
for determining the constants a, rigorously. Moreover, an attempt to do
so will introduce substantial complication, thus defeating our goal to obtain
an explicit approximation for the current on the small width strip extension.
Instead, we will proceed to solve the integral equation (13) on the assumption
that A(z) is a complex constant. This leads to the equation

YoE®(p = x, ¢o, ¢ =)

A = R A +Iw 29)
where
2kox e~ +kolx=x'l)
I(x; dudy’
{/ \/—/ \ﬁt2+2ko|x Xl
V2kox =it +kolx=x'])
+ dudy'y (30)
/ \/—‘/ \[ + 2ko|x = X/| }

and we have chosen to explicitly show the dependence of A on x = |z|. Asex-
pected, the computed values of A will be different depending on which testing
point is chosen. We found that by testing at x = ¥ (i.e. at the middle of the
strip extension), the resulting approximation for J,(z) yields sufficiently ac-
curate echowidths when w < % 0 However an 1mproved approximation which
remains valid for strip widths larger than & can be attained by enforcing

10

(29) at three different points. Choosing the test points x = ¥,% and 2 and

using the values of I(x;w) from the plots in Figure 4 we can easily deterrnme
A (H), A (%) and A (37“’) These imply the subsequent approximations

B R
L) ()w)]
RO A B

where 1(x) denotes the phase of A(x) and we can set Ay = lA (%)I The
accuracy of the echowidths which result from the current approximation (29)
in conjunction with (31)-(33) is undoubtedly a function of the resistivity and
the strip extension’s width w. It will be quantitatively examined later.

Q

a

~—~
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5 High frequency solution for single strip
extensions

When the width of the resistive strip extension is large with respect to the
wavelength and of constant resistivity R., a third order high frequency so-
lution can be employed. This conjecture is directly drawn from a similar
high frequency analysis pertaining to an isolated resistive strip [2]. We shall
therefore develop a high frequency analysis for the pertinent configuration
which accounts for contributions up to and including third order diffraction
mechanisms. This analysis will parallel that given in [2] for the isolated re-
sistive strip with the exception that a different diffraction coefficient must
be employed for the metal-resistive junction labeled as @), in Figure 4. The
pertinent diffraction coeflicient for this junction can be extracted from that
given by Uzgoren, etc. [3] which applies to an impedance-resistive sheet junc-
tion (setting the impedance to zero yields the desired coefficient). On the
basis of the solution in [2] and the known diffraction coefficient for the resis-
tive half plane we find that the first order far zone diffracted fields for the
pertinent scatterer are

. —Jkp

F2(p, 8) = [Dr(6, 6uin) + Dl o p)e-shovteossteos)] %,p— (31)

where i
v €T Ky (é;n) Ki(do;n)
Dl(¢a ¢oﬂl) - \/QW_’CO COS¢+COS ¢0 (35)
and
L . ¢ . o
Dy (¢, ¢o;n) = —2nsin g sin g Dy(7 — ¢, ™ — ¢o; 7). (36)

Referring to Figure 4, the last are the diffraction coefficients associated with
the junctions at (); and @2, respectively, and K (¢;7n) denotes the Weiner-
Hopf split function defined in (5) of [2] with = 2R..

It is most interesting to note that the diffraction coefficient associated
with the metal-resistive junction at @ as given in (36) differs from the resis-
tive half plane diffraction coefficient D, (¢, ¢o;7) only by a simple factor and
this fact can be exploited in deriving the multiply diffracted fields by simply
modifying those given in [2] for the isolated resistive strip. In particular, we

10



find that the sum of the second order diffracted fields emanating from @,
and @), is given by

Eg2(Pa ) = —2n|sin %S Dy (7 — ¢, ¢0;n)e—jkowcos¢o

: —7kow cos e—jkp
+ sin % Dy (¢, ™ — dosn)e ko ¢

VP

where Dy;(a, 8;7) is the double diffraction coefficient defined in (52) of [2]
and includes possible surface wave contributions.
In a similar manner, the sum of the third order diffracted fields emanating

from @, and @, were found to be

(37)

Eg3(p’ ¢) = _277 D121(¢, ¢0; n)e—jkOW(Cos¢+cos ¢0)

—jkp
\/ﬁ

in which Dy, is the triple diffraction coefficient given by (62) of [2] with
the factor e=7%°/ /P removed. We again remark that Di21(¢, ¢o; ) includes
possible surface wave effects present on the resistive strip extension.

The total diffracted field includes the contributions of all diffraction mech-
anisms and is thus given by the sum

EXp,$) = E4(p,$) + ES(p, ¢) + E&(p, 6). (39)

This should be compared to the scattered field (27) pertinent to the integral
equation solution.

— 27 sin g sin $o Dygi(m — @, ™ — ¢o;1) (38)

2

6 High Frequency Solution for Multiple Strip
Extensions

To develop a high frequency solution for a resistive sheet extension comprised
of more than one strip of uniform resistivity, it is necessary to consider a more
general solution than that described in the previous section. In particular,
it is necessary to modify the first, second and third order diffracted field ex-
pressions given for the single strip extension and must also add contributions

11



from additional mechanisms. The different types of diffraction mechanisms
(up to third order) which must be considered are illustrated in Figure 5. The
first order diffraction coefficient from two abutting resistive half planes has
been derived in [4] and by using the parameters defined in Figure 5(a) we
can write it as

D1(¢, do; m1sm2) = (1 — m2) K (7 — d5m1) Ky (7 — do; M) D1(9, do;72) (40)

where D; (@, do;n2) is defined in (35) and as before 7; is equal to twice the
resistivity of the pertinent strip. Since

Ky(r — 6;0) = v2sin (”;"5) (41)

(40) is seen to reduce to (36) when n; = 0 and the angles are referenced with
respect to the metallic face as is the case with (36).

The doubly diffracted field associated with the mechanism illustrated
in Figure 5(b) can be derived by following the procedure described in [2].
However, because D;(¢, ¢o;n1,72) differs from the diffraction coefficient of
the isolated resistive half plane only by a certain factor (non-vanishing when
¢ = 0), the contribution of the double diffraction mechanism illustrated in
Figure 5(b) can be easily related to that of the isolated resistive strip treated
in [2]. In particular we find that

Dar(¢2, 0;m,m2,m3) = {[(m = m2) Ky (m5m) Ky (7 — do;m)] (42)
[(13 = n2) K4 (7 — ¢2;13) Ky (7;03)]} Dar( 2, do; 72)

where D2y (¢2, ¢o; 12) is the double diffraction coefficient for the isolated strip
appearing in (37). Since

K+ (¢5n— 00) = -\}—,_, (43)

it can be readily shown that

Da1(¢2, do;m — 00,m2,m3 = 00) = Da1(d2, $o; 72)-

The diffraction coefficient associated with the triple diffraction mechanism
shown in Figure 5(c) can be also related to the corresponding one for the
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isolated resistive strip. Specifically, we find that

Di1(8, do;m,m25m3) = [(m — m2) Ko (m3m) Ky (7 — do;m)]
(73 = m2) K4 (75 m3) Ky (75 m3)] (44)
[(m1 — m2) K4 (7 = ¢3m) Ky (75m1)] D121 (@, do; m2)

where D121(@, ¢o;n2) denotes the same diffraction coefficient appearing in
(38). As expected, on using (43) we find that

D121(¢, Po; M — 00,72,M3 — 00) = Dm(fﬁ, bo; 772)-

The triple diffraction mechanism illustrated in Figure 5(d) does not relate
to any of the mechanisms existing on a single strip. Also, the procedure given
in [2] is not applicable for the derivation of the diffracted field associated with
this mechanism. The primary reason for this is the vanishing diffraction
coefficient at @), which requires that a double spectral integral is formulated
and evaluated via the steepest descent method. This is beyond the scope of
the present study and will be considered in the future. Thus, in computing
the diffracted field from the two-strip configuration in Figure 6, we will only
consider the contributions of the mechanisms shown in Figures 5(a)-(c).

Taking the origin (phase reference) of the geometry to be at ()3 we find
that the contribution of all first order diffraction mechanisms is

elkop

Egl(Pa d’) = {D1(¢, Po; 00, 7,2) e~ ko (w2 +ws)(cos $+cos éo)

N

+ Dl(¢) bo; N2, 173) e—jkows(cos¢+cos o)
+ D1(4, do; n3, 0)} (45)

where D (¢, ¢o;m,n2) is the coefficient defined in (40). For the doubly
diffracted fields we have

ejkop

N

E;iZ(p? ¢) = {Dz](ﬂ' -_ ¢, ¢0; 00, N2, 773) e-jkol(w2+wa)cos¢o+w3 cos ¢)

+ DQ]((ﬁ,ﬂ' _ ¢0;'I]3,T’2, OO) e—jko[wa cos ¢+ (w2+w3 ) cos do)
+ D21(7(' - ¢’ ¢0; M2, M3, 0) e—jkows cosdo
+ D21(¢’ﬂ' - ¢0;0a773,772) e—jkows C°5¢} (46)
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representing the contribution of the two double diffraction mechanisms on
each strip. Finally, the triply diffracted field associated with pairs of adjacent
edges is given by

ejkop

N

Eja(P, ¢) = {D121(¢, d)o; 00, N2, 7]3) e‘jko(w2+wa)(cos¢+cos ¢o0)

+ Dinn(m — ¢, — o3 13, 72, 00) e 0w (cosdreosdo)
+ D121(¢, Bo; 02, M3, 0) ¢~ kows (cos ¢+cos ¢o)
+ Din(7 = 6,7 = 60;0,15,72)} (47)

with Djg; as defined in (44).
As in the previous section, the total diffracted field (up to and including
third order contributions) is obtained from (39).

7 Results and Validation

A first step before the presentation of any results is the validation of the
moment method solution described in Section 3. Once validated, this solution
could then serve as a reference for evaluating the accuracy and limitations of
the small width and high frequency approximations.

Our moment method solution was validated by comparison with data
from an alternate simulation which avoided use of the half plane Green’s
function. In this simulation, the metallic half plane was modeled by a long
strip (suppression card) whose resistivity profile is illustrated in Figure 7.
As seen, the left portion of the strip is metallic whereas its right side is
resistive with its resistivity increasing quadratically until it reaches 60Z at
the rear termination of the strip. This profile was carefully selected through
an examination of its pulse response and was found to sufficiently suppress
scattering contributions from the strip’s rear edge. Consequently, it permits
a simulation of the metallic half plane except perhaps for observation and
incidence angles near its surface. Comparisons of results generated via the
moment method solution described in Section 3 and that associated with the
suppression card are illustrated in Figure 8. These represent a sample among
the numerous comparisons involving a variety of resistive strip extensions.
As seen, the moment method solution using the half plane Green’s function
is in good agreement with the data based on the suppression card model.
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Any minor differences can be attributed to undesired contributions from
the tapered side of the suppression card. Needless to mention, our moment
method solution based on the half plane Green’s function was usually more
than 20 times faster than that based on the suppression card.

Having demonstrated the validity of our MM solution described in Sec-
tion 3, we now proceed to examine the accuracy and limitations associated
with our approximate small width and high frequency solutions. To do so we
concentrated on a single strip extension (see Figure 4) and examined each
solution as a function of the strip’s width for different values of the resis-
tivity R.. Comparisons of data from the two approximate solutions with
those based on the MM are illustrated in Figure 9 for ¢ = ¢y = 120° and in
Figure 10 for ¢ = ¢o = 180°. Each of these figures displays six backscatter
echowidth curves plotted as a function of the strip’s width and correspond-
ing to different resistivities chosen to span a wide range of values from small
and real to large and complex. An obvious and expected observation from
these comparisons is that the small width approximation predicts the correct
echowidth for w < A whereas the high frequency solution does the same for
large w.

Additional echowidth curves as a function of angle are given in Figures
11-13 corresponding to strip extensions of different widths and resistivities.
Again for w = 0.1\ (see Figure 11) the small width approximation is seen to
be in excellent agreement with the exact solution regardless of the value of R,
even when Im(R.) > 0, in which case the resistive strip supports a surface
wave. Also, as demonstrated in Figure 12, when w = 0.5 the high frequency
solution is identical to the exact for real or complex strip resistivities, even
when these are chosen to support surface waves. The curves in Figure 13
provide us with additional confidence that the high frequency solution can
be used for widths as small as A/10.

As can be expected, the small width approximation improves with de-
creasing w whereas the high frequency solution becomes more accurate as
the width of the extension increases. However, it is apparent from the above
comparisons that the resistivity of the extension plays some role in the accu-
racy of each approximation. This is particularly so for edge-on incidence and
backscatter observations, a situation which is most demanding for both ap-
proximations. For most cases the small width approximation can be used for
w < A/5 whereas the high frequency solution can be used down to w = A/10.
An exception to this is the case of near edge-on incidence and backscatter
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observation and only for certain values of R.. As illustrated in the echowidth
comparisons displayed in Figure 10, when the magnitude of R, is near 0.5,
the high frequency approximation breaks down when the width is less than
0.3). Also, for very small values of R, the small width approximation cannot
be stretched beyond A\/10 due to the different behavior of the strip current
for those values of R,. Fortunately, though, we found that in those cases the
validity of one of the approximations can be extended to permit an overlap.
Thus, in general, the two approximations are sufficient for characterizing the
scattering of all uniform resistive strip extensions regardless of width, inci-
dence angle and associated resistivity. Needless to mention, the CPU time
associated with these approximations is trivial.

For sheet extensions comprised of strips having different resistivities, the
high frequency solution can be employed in a straightforward manner but
may prove tedious (not necessarily time-consuming) when more than three
strips are involved. In contrast the implementation of the MM /Green’s func-
tion solution remains unchanged, and this solution is thus best suited for
extensions having arbitrary resistivity profiles. An example illustrating a
comparison between the two-strip extension high frequency solution with
the exact MM /Green’s function solution is shown in Figure 14. We remark
that the given high frequency solution for the two-strip extension is not valid
for ¢o > 160° unless additional higher order terms are added as discussed in
Section 6.
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Figure 1. Geometry of the metallic half plane with a resistive sheet extension.
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Figure 2. Magnitude of the numerically computed (exact) current distribution

on the HP strip extension for different resistivities. (a) ¢o = 60°;
(b) ¢o = 130°.
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(a) Real part; (b) imaginary part.



Figure 4. Illustration of the first order diffraction mechanisms.
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Figure 5: Diffraction mechanisms associated with extension comprised of multiple resistive

strips: (a) single diffraction; (b) double diffraction; (c) triple diffraction; (d) triple
diffraction involving three junctions.



Figure 6. Illustration of a resistive sheet extension to the metallic
half plane comprised of two constant resistivity strips.
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Figure 8. Comparison of backscatter echowidth patterns computed via the mo-
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Green’s function. (a) Edge-on incidence echowidth plotted as a func-
tion of frequency for a strip having R, = 0.5. (b) Echowidth as a
function of angle for 1) strip having R, = 0.5.
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Figure 11. Comparison of backscatter echowidths as computed by the small width
approximation and the moment method. The configuration is a single
strip extension of width A/10 and each of the four curves corresponds
to a different value of R.. All curves are plotted as a function of angle.
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