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The Fractal Theory of Central Place Geometry:
A Diophantine Analysis of Fractal Generators
for Arbitrary Lischian Numbers

W davelop wmaterdal to determing whethier or ot an arbifrary sumber is Lischiang
the procedure embadied i the theorems achicves the desined result more swiftly
than do preciows solulions to this problem. The comespondence between a partition
of the central place battice and o quadratic form permits the repid defemmination of
the daltice coordingtes of an arbdtrary Lischion number and of the exact shape of o
single fractal generator ueed lo form an entire central” place: hierarchy associeted
with an arbitrary Livehisn number, Central place Werarchios moy be generated
geometrically using o single shape applicd indtielly to o hevapon and sabzeguently,
sealed oppropdately, to resultant polyzons. Fractional dimensions of orhitrary
ceritral ploce Nivrorchiey, mensring thidr “spoce-filling” charcteristion, foliow
ntureally fronn thiz pereral procedsre,

The Diophantine equation, I = x* 4 xy + g wenerates the et of Lischian
mumnbers which correspond to the points of a toangobar latboe with integral
coordinates (Dacey 1964, 1965), To generate Lischian numbers: requires nicee
substitution for £ amd y; 1o determine whether or not an adsitary number, L, is
Laschian is more difficult, although the Diophantine eguation'is sobvable (Mardell
1989, The material below displays a technique, in Theorems 1, 2, amd 3, that
appears computationally more efficient than do eadier methods of determining
whether or not L s Lischian. Tt builds away from this Diophantine cquation to
fimdd other quodratic expressions, o Theorsm 4, that pencrate single lnes of
Léschian numbers in the thangolar Tattice, and uses these eguations bo eut across
the Diophantine equation ‘in order to determine the lattice coordinates of an
arbitrary Loschian number, Finally, with the power of Theorem 4 displayed in
attacking problems from . clussical central place theory, s Rindaniental rele in
determining the number of sdes in, and cxact shape of, a factal pencrator
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corresponding to an arbitrary L is examined in detail. It is in this contemporary
view of central place geometry, in which a single fractal generator applied to an
hexagonal initiator (and, when scaled appropriately, to subsequent teragons
[resultant polygons]) produces the entire hierarchy with correct cell-size and net
orientation, that Diophantos meets the fractal.

1. A CHARACTERIZATION OF LOSCHIAN NUMBERS

In 1975 John U. Marshall used number theory in an attempt to determine which
positive integers L are Loschian; that is, which positive integers can be represented
by the quadratic form Q(x, y) = x® + xy + y> His results involved examining the
prime factorization of L and noting that each prime 2 or of the form 6k — 1 must
occur to an even power for L to be Loschian. Marshall did not prove that each
such L is Léschian (it is), and in fact his results lead to a simpler algorithm if
primes are examined modulo 3 and if certain simple congruence considerations are
taken into account (Marshall 1975).

Derinrrion 1. (Birkhoff and MacLane 1960). Two integers x and y are said to
be congruent modulo a positive integer m if m is a divisor of x — y; i.e,, x and y
have the same remainder when divided by m. We write x = y(mod m).

Congruence modulo 3 is a particularly interesting case. For,

x = y = 2(mod3) implies xy = 1(mod3),
and

y = 1(mod3) implies xy = 1(mod3).

=
IIF

[Of course, x = O(mod 3) implies xy = O(mod 3).]
Note then that x® + xy + y* = 0 or 1(mod 3). For,

x = 0(mod3) implies x> + xy + y> = y*(mod3).

y = 0(mod 3) implies x? + xy + y? = x%(mod 3).
If neither of these is true,

x>+ xy + y® = 0(mod3) if x = y(mod 3)

(either 1 + 1 + 1 or 2 + 2 + 2) and

1(mod3) if x # y(mod3)

x4+ xy + y?
1+2+1).

Thus,
Lemwma 1. L is non-Léschian if L = 2(mod 3).

For example, L = 32759 is immediately shown to be non-Léschian, without
bothering with its prime factorization as L = 17 X 41 X 47.
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Lisaran 2. I 2 sccurs fo an odd power i the prime factorsation of L, then Lois
nerr-Lase i,

Proof. Let L = 2nk, k odd, and suppose L = x® + gy + y" Write L = 2% 4
gy 4yt = d e s+ 1), sand ¢ having no fBetors in commen. Then 57 + st
+ % jeadd (¥, ¢ odd implies 52 + 2t = % is the sum of 3 odds; one of 5.0 even
implies 5% % 5 4 1? ithe sumoof 2 evens and an o), Thus nois ceen, hecanse
each tme # oceurs 0s a factor of o, itoeonrs twice asa factar of 1

In fact, the same: condition will apply o any priing factor af f which i%
congruent b 2med 3E But some number: theory must be introduced st

DeFiarron: 2, An integer ¥ i gaid to be a guoadratic’ residue. medulo s if
= yfmod m) for some g {Niven and Fuckerman 19600

Exasree 1 Modulo , any integer is o quadratic’ residue (0% = 0, 17 = 1), Only
integers congroent to 0 or to Iimed 3% are, quadratic vesidees module 3, since
0 =), 17 = 1, 2% =4 = limod 3). Totegers congruent to 001, — 1{mad®) are
udleatic eesidues module 5 In geneeal, (p — 133 of the fimst (p — 1) positive
integers are guadratic resdues module p (Miven and Fuckerman 15960, MeCoy
105,

Derrmrror 3. IF i an odd prime, the Legendre symbol (a/p) = 10 2 sa
gudratic residive modoky: poamsd Tap) = = TE ais g ocaresidue modulo e For
example. {131 = 1oand (273) = — L Cleady (a/p) = (b/p} il a = bimod p),
(= pd = 1and (abpd = (apiCh Ay We state without proof two lemmas from
clementory number theory (Miven and Fuckerman HIG0; MeCov 1063,

L 3. (= 1/p) = (= 1F- 1

Lesnea 4. (headralic Reciprocity Law (Gawss) I pogoare odd primes, then

{pfgd=(g/pK— 1)tr o=,
With these lemmmes, we oy establish
Lesonea 8.0 0f pois o prime. > 3, (— 3p) = LAf and only o = Tomod 3).

Provf.

{#/3) (3 =1 e =R { Lz 4

L

(3/p)(~ 17178
(3400 = Tip) { Lerrna 3)
(=)

i

But, if p = I{modd), then (pA3) = (1/3) = 1;
ancd if po= E-{llmﬂﬂ-_] ; bhizn {]ul_.".ﬁ_:l = {‘.’,__.-"’3!! =— ]

M cours;, — 3 i guadrabic residee module 3, sinee =3 i congnoent 8o

O miod 3

Dgemerics 40 IF L =k, where koamd p have oo common facters (are
rebatively prime), then we sy p" exactly divides L and write p™||i..

5
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REMARK. Suppose L =x®+ xy + y® = d*(s> + st + t2), s and ¢ relatively
prime. Then, if p*"*||L, p is a divisor of s + st + 2 since p occurs as a divisor
of d? in even powers.

Tueorem 1. If p"*Y||L, p = 2(mod 3), then L is non-Loschian.

Proof. By Lemma 2, we may assume p is odd. Suppose L were Loschian, say
L=x*+axy+ y?=d*s®+st+t%). Then p is a divisor of s+ st + ¢% say
s + st +t? =kp. But then 45+ 4st + 4t2=4dkp or (2s + )2+ 3t2 =
O(mod p) or (2s + )% = — 3t%(mod p). Thus — 3 is a quadratic residue mod P,
which is impossible for p = 2(mod 3). Q.E.D.

Marshall obtained the equation (2s + )? + 3t% = 4kp in a slightly different
manner, involving the quadratic formula. Moreover, he stated that L was necessarily
Loschian if all the prime factors occurring to an odd power were either 3 or
congruent to 1(mod 3), since — 3 is a quadratic residue modulo such p. But the
preceding argument only establishes the necessity of the condition of Theorem 1,
not its sufficiency. Its sufficiency is established below, using the general theoretical
framework in which the necessity was proved.

DerFmnitioN 5. If Ax? + Bxy + Cy? is a quadratic form, then D = B2 — 4AC
is called its discriminant. (Note the similarity to the discriminant of high-school
algebra.) (Birkhoff and MacLane 1960). Thus, the form Q(x, y) = x® + xy + y?
has discriminant — 3.

TueoreM 2. If L is odd and square-fiee, then L is Loschian if and only if
— 3 is a quadratic residue of every prime factor of L.
Proof. Mordell (1969, pp. 423-24) establishes that quadratic forms Ax® + Bry
+ Cy® represent odd squarefree integers L if and only if B2 —4AC is a
quadratic residue of every prime factor of L.
Thus, square-free integers L are Loschian if and only if they contain no factors
congruent to 2(mod 3). Combining Theorems 1 and 2, we obtain

Tueorem 3. L is Lischian if and only if every prime factor which is
congruent to 2(mod 3) occurs to an even power in the prime factorization of L.

Proof. The “only if” portion of the theorem is of course Theorem 1. So we must
establish the ““if”" portion.
a) If L is square-free, this is established by Theorem 2.
b) If L = d? then L =d? + (d X 0) + 02
c) If L = d?k, where k is squarefree, then k = x® + xy + y2 for some x, y by
Theorem 2. Then L = (dx)* + (dx)(dy) + (dy)> Q.E.D.

Of course, Theorem 3 does not establish what the representation of a number L
is or whether the representation is unique (material in the next section will do so).
What it does is determine an easy method of testing whether a number is Loschian.
It is easy to check the criterion if a prime factorization is known. But when L is
non-Loschian, it can often be determined more quickly. For if L = 2(mod 3), it is
non-Loschian. Further, if p"||L, then L is non-Lschian if L/p" = 2(mod 3), since
any number congruent to 2(mod 3) must have some prime congruent to 2(mod 3)
occurring in its prime factorization.

ExampLE 2. L = 2691 is non-Léschian, since 3%|2691 = 9 x 299, and 299 =
2(mod 3). Marshall’'s method required factoring 2691 = 3% x 13 x 23,

ExamprLe 3. L = 131336 is not Loschian. Since 2|6, 4(36, 8|336, but 16 is not a
divisor of 1336, 2°%||L. (Recall that N is divisible by 2* if and only if its last k digits
are.)
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Exasere 4 L= 17545 Lischian, since L= 5% % 7, and 5 ocours booan: even
power in L. Bul M = 125 = 59 not Lischian, noris A = 345 = 5 x 72

Exanieir- 3, L = B5 s non-Loschian, even thoush 55 = Wmod 33, sinee L=
5o 17, and both 5 and 17 are congrosnt o miod 3.

Exasrre 6 HFI‘.'H‘E'-:-UI.L"I.U.-I.'II1 of & I11II'.I'Ihd.'!' is ok uniguee. For esample, 489.=

TP+ M+ 0E=52+{5x3)+ 3%

Thus, the theorems shove give s method quicker than Marshall's in determining
whether or not o given pumber i Lischian. In the worst coses, a complete
factorization is necessary, but often only a few factors need be examined, The
following facts about products of Lischion nombers follow immediately from
Theorer 3.

Cororiary Lo (Mashall 1975)  IF L, L are Laschian, so (s Ll

Conorany 2, (Marshall 1575) I_f.f.l s Lisrhion, L, non-Lischion, then 'r"l"!‘;
ix mon-Laschian.

Conovnsy 3, I Ly and L, are son-Laschdon, L, s Livehian if and only if
whenener g = E{mml 31 eecury fo an odd power in the prisie foclorzation of
L, el Ly, then it pceurs to an odd powr in the prime foactorization of the
ather. {Hamhall afwerved Ll the product of two non-Laschian membsers inight

or mighl mol be Losehian, but did not give the abiwe conditions.}

The centrality of the prime 3 in determining whether or oot o number s
Lamchinn i now quite clear. Perhaps this i 8 consequence of the underlving
triangular fattice of points.

2. DETERMINING A REPRESENTATION FOR ARRITHEARY

Suppose that a coondinate systemn is introduced into the trangelar attice and
that the Eattice poiaks are coordinatized with referenee be these axes. The manner
in which coordinatization takes place is such that the positive gasis is inclined at
an angle of G0 degress with respeel to the positive x-axis. When each axis is
endowed with the osual Eunclidean meetrie, it follows that the fipe ¢ = y is inclined
at an angle of 30 degrees o the positive T-axis, Figure | shows one-sixth ol this
lattice and shows labels for lattice points Iving i the 1/1260-portinon of te bdtee
lying hetween x = g and the yaxis. The pamllel rys comanating from lattice points
on the geaxis serve to partition the set of lattice points; note that the soales along
the y-axis and the line © = y are different, s that (1, 1) is farther from (0, 09 than
i i 1 (Figure 1,

In Fignre 2, the coordinates of each lattice pofnt in Fisore 1 are osed a5 o and ¥
values in the Diephantine equation =% + 2y + 1% to peneeate the Lischian numbess
corresponding to cach lattice point. These generated valwes are displaved in Figure
2 helow the distinguished points asdigned coordinates in Figure 1,

Thee gpeacdratic’ expressions below the parallel ravs in Fimive 2 are the ones that
generate exactly the setof Lischifan valwes along the cormesponding mvs (proven in
Theorem 4, helaw), For example, the quadratic expression 3x° + 81 + 4 generates
the second row (above x = gh of Toschion mombers: F 2= 0, the value of the
qualratics expresaon is 4 if x = 1, the corresponding wvalue iz 13 6 x = 2, the
cortesponding value is 25; and so forth. Cleardy, these are identical (o the values
genentbad by the THophantine cquation x° + xy + o® along that line. Becane we
now have two distinet quadratic: equations generating the same values, this new
seuation may be used 10 cul across the Didphantine equation in order to establish
what the representation of a number L iz amd whether or nol thal sepresentation is
urpicpee Tas’ sl below,
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Fro. 1 Caordinatization-of 9 Trimwgalar Lagtice, The seds is inchined al amn aogle of B0 degrees ta
e a-mais, ae] the ne g o= & melined ol an anele af S degrees b e gasds

Tugenys 4. The [ischion nembers, L, lping mrly single one of the
paevatlel rags An Figures. % and 3 ore generaled by sebslibaling son-negative
integral volues into o quadsetic expression of the form 3x® + 3hs + 17,
ihene b =010 'llll:/-ﬂl'.rtrrﬂb' ther neenher of units in the ydirection the ray iz
Iransialal fron-x = g

Proof, Suppose b=k that ix, suppose that mn acbitmry horizontal nay is
translated & unlts from the Hne y = x. Let the ordersd pair {2y, ) denote the
coordinates of o Taltice poinl oo this ey

Using the Diophantine couation Lo i{,ummh e T,ﬁ-w}h i mmber, L associated
with (x,, o), it Follows that Ly = af + xon = g The point {x,, 5, ) Tes on the
line parulic] 1o the s durm-hh:] by'x = x, (Figure 3). Eabel the intersection paint
of # = x, with y = x as the ardered pair (2, g} Thus, 2, = 5, Further, 25 = 4,
sinoe (L, 0y ) les on g =x. Finally, ¢, = g, + k=2, + &, since the spacing
between parallel mavs is one unit. {This also follows [rom the spuring between linecs
parallel to the ;,-:a.t'.ls for then u; = kxy.) Therefore, L = 58 + 206, + 1) 4
(xy + K =522 4 3k, + k% Since thie choloe for & was arbitrary, the resuft
Follows: I = 31- =3+ hE

The following example shows how' fooase Theorem 4 bo determine the Bovle
corfesponding  to. an arbitrary Loschian pumber, Suppose that it has heen
determined that the number 397 & Lischign. Express 397 ac 3x° -+ 30 + 57, for
some b To do so, cxamine values of b from 0 o [(207)07%] = 19, When 397 =
Grf® o ahw + b5 0 Tollows that any admissible valoe of b omust be such it
T — B¥is divisible by 3 Thus, Tuble 1 deows candidate vidnes fon' frin the first
calumn and eliminates froon consideration, in the second column, those fof which
(397 — L%y s mat divisible by 30 O those not E‘1i.|‘|'.|l|'|EI|.'L'd. only Bevalucs that
produce 4 guadratic equation such that D% = (3% — 12659 a8 an integer
are-possille. These are shown i the thivd coluron of Table 1, In thizeas & =1
produces the only possitibe solution, This, L= 397 lies along the pavallel Hiee

-1



39 63 93

@ ® *o— 3x2+9x+9;b=3;1):.27
28 49 76 5
-8 —e @ 3x +6x+4;b=2; D=-12
. G.] w 3x7+3x+1;b=1;D=-3
@ dx +3x+1;b=1; D=-
27 48 5
L 2 9— 3x";b=0; D=0

Fic. 2. Loschian Numbers Recorded below Lattice Points from Figure 1. Material associated with quadratic forms generating each line of values is
recorded to the right of the line.
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(3,k+3) {xk,yk)
By
(1,4) (2,5) 4+~
&
(1,3) (2,4) (3,5)
—8 & *—
(2,3) (3,4)
— & e ——
(2,2) (3,3)

R

* L

Fic. 3. Generalized Coordinatization of a Triangular Lattice in the 30-degree Wedge between the Line y = x and the y-Axis (k rows are labeled); to
accompany the proof of Theorem 4.
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TABLE I
Algrestb Lo Exerimine Laktice Position and Coardinates Applied 1o L =307
BT — A0 (LR
Is wil lidsgers o 1T e
il Mo
1 Ties (AT S = Eh
2 Vs HTRLE W
i )
4 Yex (715 M
3 Yes I’":H-H“]I .-'.ﬂ; Mg
3 Vs (G52 Ny
T Yes GIT R Na
4 s dsTala wy,
] s
10 s GBI e
il Tos L E ]
12 Mo =
13 Yis I_]E-.'ﬁ_:l_' % Mo
14 Vi (ALTEE Mo
%] Mo
I Yes EEELE N
L7 e LEEITIE. M
14 B .
1% Vg (B N

displaced one unit in the pdivection from « =y By Theoren 4, the equation
417 + 3x + | generates the entire set of Lischian numbers slong this line.

To find the coordinates of the lattice poinl that gives rise to the Laschion
number L= 5357, wolve simultaneausly the system

397 = eV BE 1

2av

e TR Y

Thus, x= 11 and y = 12. There are no other lattice points that give rise to the
Laschian nuember 387 beeause there are no other integrl solutions in the. third
column of Table 1,

Consider instead the aomber I = 489, Table 2 shows: condicite values for B L
the first eolumn and eliminates from consbderation, in the second column, those for
which (4% — b3 iz not divisible by 3. OF those: bwo fovalees, b =2 and & = 7.
produce integral values for Y% in the thied column, Thus, 1 = 49 lies along the
parallel line displaced two wnits from » =y as well as along the parallel line
displaced T vnils from x = 4. By Theorem 4, the equations 32 + fx 4 4 and
da® 4 dlx + 49 generate Lischinn numbers long these lines.

sty

FABLE 2
Algorthey to Thelermine Lattice Fotitinn asl Socedinale Anpied to [ = 35

I fl@ = T Iy 2
b AR e an g
i Mo :
L Lot (EER s M
Z s (0 - 2y
1 N ;
4 i SN W
5 Ve LN Ka
H e ;
7 s GAL = 3]
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To find the coordinates of the lattice points that give rise to these Loschian
numbers, solve simultaneously the systems of equations

49 = 3x% + 6x + 4

49=x2+xy+y2} yielding x = 3,y = 5

and

49 = 3x2% + 21x + 49

49 = 2% + 1y + y? } yielding x = 0,y = 7.

There are no other distinct lattice points (up to symmetric pairs such as (7,0),
(— 7,0)) that give rise to the Léschian number 49 because there are no other
integral solutions in the third column of Table 2.

The geometric characterization of the central place lattice as a set of integral
lattice points lying along a set of lines parallel to x = y permitted the algebraic
determination, in Theorem 4, of a quadratic form, 3x2 4+ 3bx + b> that generated
exactly the set of lattice points along any single line. When this Theorem was
applied to the Diophantine equation L = x® + xy + y* it was a simple matter to
determine the lattice coordinates of an arbitrary Loschian number and to assess
whether or not these coordinates were unique.

3. FRACTAL GENERATION OF CENTRAL PLACE HIERARCHIES

Central place hierarchies may be generated geometrically using a single shape
applied initially to a hexagon and subsequently, scaled appropriately, to resultant
polygons. S. Arlinghaus has shown this previously (1985); to motivate the reader, a
brief description of how the K = 4 hierarchy is generated is repeated here. Beyond
that, Theorem 4 is used to show how the actual shape of a fractal generator, that
will generate correctly an entire central place hierarchy with hexagonal cells of the
correct size at each level and with correct orientation of the layers of hexagonal
nets, may be determined for any Loschian number.

ExampLE. When the generator shaped like a half-hexagon is applied to each side
of an initial hexagon (Figure 4a), alternately inside and outside that hexagon, and
when the generated material is highlighted and the initial sides removed, a second
polygonal figure (a first “teragon”) emerges (Figure 4b). When the hexagons
suggested by the boundary are completed in the natural way, these hexagonal cells
are of the correct size, so that when they are superimposed on the initial hexagon
(aligning O, U, and V), adjacent levels of the K = 4 central place hierarchy are
generated (the orientation of the nets is also correct). When this procedure is
repeated (Figure 4c), successive levels of the K = 4 central place hierarchy are also
correctly generated (S. Arlinghaus 1985). When this iteration is carried out
ad infinitum, Mandelbrot’s formula for calculating fractional dimension yields a
value of 1.5849625 for this “space-filling” process (Mandelbrot 1977, 1983).

Arlinghaus’s 1985 paper explains how to generate central place hierarchies for
K=3 K=4, K=7 K =12, K =13, and K = 19; when the correct generator
is selected, it yields, through simple application to an initial hexagon, and to
subsequent teragons, the entire hierarchy associated with each Léschian
number—with cells of the correct size relative to one another at each level of the
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fractal
generator fractal
generator
v o ETL
u v 3 ",
u u
a b c

F1c. 4. Fractal Generator for the K = 4 Hierarchy: A, Initiator; B. First Teragon; and C. Second
Teragon. The dotted lines within the teragons suggest self-similarity characteristics. When the teragons
are stacked, at point 0, onto the initiator (through geometric translation), two layers in the K =4
central place hierarchy are evident, as should be the iterative procedure to generate the entire hierarchy.

hierarchy, and with the correct orientation of superimposed hexagonal nets. This
earlier paper contains a conjecture that K-values associated with lattice points lying
along parallel lines in the underlying triangular central place lattice have generator
shapes clearly related to each other. Further, it suggests that sets of three parallel
lines within that lattice serve as a base for suggesting generator types for all other
triples of parallel lines (S. Arlinghaus 1985). A line joining lattice points which all
generate K = 3 type hierarchies (with respect to orientation of stacked nets of
hexagonal cells) is type T,; one of type K = 4 is type T,; and, one of type K = 7 is
of type T,.

The point of such a conjecture is to investigate whether there is a general
procedure which, when one is given an arbitrary Loschian number, will guarantee
a correct selection of a single generator to be applied to an hexagonal initiator,
yielding a central place hierarchy of stacked nets of correct cell sizes and orientation.
Theorem 4, and the values of the discriminant for the associated quadratic forms,
permit this.

4. THE APPLICATION OF THEOREM 4 TO CENTRAL PLACE FRACTALS

The Number of Sides in a Set of Fractal Generators

Figure 5 shows that the number of sides in a fractal generator increases directly
with the size of the Léschian number. Examination of the column in Figure 5,
“Number, n, of sides in a generator,” reveals a numerical pattern, proceeding
downward from the column top, of the form (2,3,3), (6,7,7), (10,11,11),
(14,15, 15), (18,19,19),...,(n,n + 1, n + 1). The first entry in each ordered
triple lies along a line of Figure 5 in which L (and b) are congruent to O(mod 3).

To find the number of sides, n, for a single generator that produces the entire
central place hierarchy suited to L, with L congruent to O(mod 3) along the y-axis,
use the following procedure. Divide the b-value by 3; denote the quotient as
i = b/3. (Dividing by 3 counts triples and moves the calculation to a T;line each
time.) Then, n = 2 + 4, as demonstrated in Table 3. (The appearance of the “2”
in the first summand reflects the presence of a twosided generator in the case
b = 0; the “4” in the second summand comes from the fact that every fourth
horizontal line is of the same T-type.)
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TABLE 3

Numerical Determination of Generator Size for Selected Values
n b . j—b_/S n=32+4xj
2 0 0 29=9+4x0
6 3 T 6=244x1
10 6 2 10=2+4x2
14 9 &} 14=2+4 %3

2 4 18=2+4 x4

18

T

To find the number of sides, n + 1, for a single generator that produces the
entire central place hierarchy suited to L, when L is congruent to 1(mod 3) along
the y-axis, use the following procedure. Apply the procedure of the preceding
paragraph to the greatest Loschian number along the y-axis that is less than L and
is congruent to O(mod 3). This produces a value, n. The number of sides in the
generator suited to producing the hierarchy for L congruent to 1(mod 3) is then
n + 1. To understand how to draw this fractal generator of (n + 1) sides, consider
whether j = b/3 is odd or even.

1. Suppose j is even.

a. When the discriminant D, of the quadratic expression that generates the
parallel line of lattice points including L, is congruent to 1(mod4), the
corresponding fractal generator is asymmetric with respect to the perpendicular
bisector of the initiator side.

b. When D is congruent to O(mod 4), the fractal generator is bilaterally symmetric
with respect to the perpendicular bisector of the initiator side.

2. Suppose j is odd.

a. When D is congruent to 1(mod 4), the fractal generator is bilaterally symmetric
with respect to the perpendicular bisector of the initiator side.

b. When D is congruent to O(mod4), the fractal generator is asymmetric with
respect to the perpendicular bisector of the initiator side.

The following examples demonstrate this idea.

1. If L = 36, so that L is congruent to O(mod 3), the corresponding quadratic
expression is 3x% + 18x + 36; since 18 = 3b, it follows that b = 6. Therefore,
j=6/3=2so that n =2 + 4j = 10. Thus, the central place fractal generator
corresponding to L = 36 has 10 sides.

2. If L = 64, so that L is congruent to 1(mod 3), the corresponding quadratic
expression is 3x% + 24x + 64. The greatest Lischian number along the y-axis that
is less than 64 = 82, and is a multiple of 3, is the number 36 = 62, so that b = 6.
Thus (using Table 3), the number of sides in a fractal generator for the L. = 64
hierarchy is 10 + 1 = 11. Further, because j = 2 is even and because the associated
value of D is congruent to O(mod 4), the generator is bilaterally symmetric with
respect to the initiator side.

Thus, it is possible to ascertain the number of sides for a central place fractal
generator, for any value of L along the y-axis in Figure 2, using only numerical
properties of the number L and associated algebraic forms. This procedure for
determining quadratic expressions corresponding to arbitrary values of L is based
on viewing L as being both of the form x* + xy + y? and 3x? + 3bx + b2

The Shape of a Set of Fractal Generators

The previous subsection displayed empirical evidence in Figure 5 to suggest a
general method for determining the number of sides in a fractal generator used to
generate a central place hierarchy. Figure 5 may also be used to suggest the
following construction in order to provide a systematic strategy for choosing the
generator shape of the initial (y-axis) entry in each horizontal line of Figure 2.
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Fic. 6. Fractal Generators: A. L = 36; B. L = 49; and C. L = 64. Dashed lines show an edge of the
hexagonal initiator; solid lines show the edge of the fractal generator. The top of the L = 36 generator is
[n/2] = [10,/2] = 5 edges from the initiator base; the top of the L = 49 generator is [n/2] = [11/2]
= 5 edges from the initiator base; and the top of the L = 64 generator is [(n/2) + 1] = [(11/2) + 1]
= 6 edges from the initiator base,

Construction 1

Given a Lgschian number L > 1 (otherwise, the generator is a degenerate form),
along the y-axis in Figure 2.

1. Suppose L is congruent to O(mod 3) (Figure 6a).

Use a lattice of regular unit hexagons. Using the procedure of the previous
section, determine n, the number of sides in a generator. Then, beginning at the
right-hand side of an edge of a possible initiator, trace along three sides of a single
unit hexagon (numbered 1, 2, 3 in Figure 6a), and continue moving toward the left,
upward along steps in the hexagonal lattice, until about half the sides, [n /2], have
been exhausted. (The symbol, [n/2], represents the greatest integer less than or
equal to n/2.) Then, descend along hexagonal steps until the left-hand end-point of
the initiator edge has been reached. Figure 6a displays this idea for L. = 36, and
n = 10 (values are from Figure 5).

2. Suppose L is congruent to 1{mod 3), and suppose that

a) j is even and that D is congruent to 1(mod 4), or, that j is odd and that D is
congruent to O(mod4) (Figure 6b).

The procedure for shaping the generator is identical to that in (1) above, except
that the last step on the left will touch the initiator edge. Thus, the final segment of
the generator will be incident with a segment of an initiator edge, as shown in
Figure 6b. Clearly, it is not symmetric with respect to the perpendicular bisector of
the initiator edge. Here, L = 49, n = 11.

b) j is even and that D is congruent to O(mod 4), or, that j is odd and that D is
congruent to 1(mod 4) (Figure 6c¢).

The procedure for shaping the generator involves calculating the number, n, of
sides required and arranging them symmetrically, with respect to the perpendicular
bisector of an initiator edge, as in Figure 6¢, which displays the case L = 64,
n = 11. In this case the top step has the value [(n/2) + 1].

Figure 7 shows the first teragons that result from applying each of these
generators to an hexagonal initiator. When the small hexagons are filled in, in the
natural manner within the boundary suggested by the first teragon, and when this
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Fig. 7. First Teragons: A. L =36; B. L = 49; and C. L = 64. Dashed lines show the hexagonal
initiator; solid lines show the first teragon boundary; dotted lines show hexagonal cells to verify count,

filled-in teragon is superimposed on the hexagonal initiator, two adjacent levels
with hexagonal nets of correct cell size and net orientation emerge for each
Loschian number. Nets of successively finer cell size may be generated through
iteration of the process.

Within Construction 1, central place nets derived from Léschian numbers
congruent to O(mod 3), or from Loéschian numbers congruent to 1(mod3) whose
quadratic generating expression has discriminant congruent to O(mod 4) for j even
and congruent to 1(mod 4) for j odd, are such that the generator does not cross its
corresponding initiator side, although it is anchored to it at endpoints. Those with
Loschian numbers congruent to 1(mod 3) whose quadratic generating expression
has discriminant congruent to 1(mod 4) for j even and congruent to O(mod 4) for j
odd, are such that the corresponding fractal generator crosses, or is incident with
some portion of, its corresponding initiator side at positions other than the
endpoints. This is abstractly parallel to the use of the discriminant of a quadratic
equation to measure the number of crossings of the x-axis made by the parabola
representing that quadratic equation.

5. THE NUMBER OF SIDES IN, AND THE SHAPE OF. A FRACTAL CGENERATOR FOR
ARBITRARY L

The previous material permits the determination of fractal generators for Loschian
numbers L lying on the y-axis in Figure 2. Given a Loschian number L’ such that
L' does not lie on the y-axis in Figure 2, number-theoretic material exists to
determine, swiftly, the quadratic equation generating the lattice points of the line
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L=8g L=21 L=39 L=63 L=93
/_/_\ /_/_/_\ /_/_/_/_\ iy
L=4 L=13 L=28 L=49 L=1786
_/_/_ J—J_/— I/JI b=1
L2,
L=1 L=7 L=19 L=37 L=61
/_/_/_ /_/_/_F b=0
I —~
L=0 1.=3 L=12 L=27 L=48

Fic. 8. Central Place Fractal Generator Shapes, L Arbitrary.

containing L’, parallel to y = x (section 2). The number of lattice-point positions
separating L’ from the y-axis entry along the appropriate line parallel to y = x will
determine completely the generator for the central place hierarchy associated with
L’, given that the number of sides in, and the shape of, this leading entry is known
(section 4). Figure 8 shows generators for all of the positions labeled in Figure 2.

The pattern here is straightforward; add two edges, to form a step at the left of
the generator, for each position that L' is removed from the leading entry on the
y-axis along a line parallel to y = x. The basic generator structure remains the
same across any line parallel to y = x, representing number-theoretic stability;
the increase in number of sides corresponds to the idea of geometric translation of
shape across a line parallel to y = x. Figure 9 shows generators applied to
hexagonal initiators (producing first teragons), associated with the first three
Loschian numbers lying along the line corresponding to b = 3; recursive use of
each of these generators, scaled to fit teragon sides, would yield complete central
place hierarchies for L =9, L = 21, L = 39.

Thus, a single fractal generator that will produce an entire central place
hierarchy when applied originally to an hexagonal initiator, and recursively to
teragons, may be completely determined for an arbitrary Léschian number. What
remains is to determine the position of the initiator relative to the lattice of unit
hexagons.

6. THE POSITION OF THE INITIATOR

The partition of the triangular lattice into sets of lines parallel to y = x also
yields information concerning the position of the initiator relative to an underlying
lattice of unit hexagons centered on the triangular lattice. Léschian numbers

L4
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Fic. 9. First Teragons: A. L =9; B. L =21; and C. L = 39. Dashed lines show the hexagonal
initiator; solid lines show the first teragon boundary; dotted lines show hexagonal cells to verify count,

congruent to O(mod3) produce hexagonal initiators and teragons centered at
intersection points of the lattice of unit hexagons. Lischian numbers congruent to
1(mod 3) produce hexagonal initiators and teragons centered at the center of a unit
hexagon. This fact, used together with the generator-shaping procedure permits
rapid placement of central place initiators and generators on graph paper.

7. FRACTALAND —NEW DIMENSIONS IN CENTRAL PLACE GEOMETRY
Fractional Dimensions of Arbitrary Central Place Hierarchies

When any one of the types of generators described above is applied successively,
first to the sides of a suitable hexagonal initiator, and then (appropriately scaled) to
the sides of subsequent teragons, an entire central place hierarchy emerges as
overlays of hexagonal nets oriented with respect to one another, and with relative
scaling of cell size, suited to the positions and sizes dictated by the Léschian
number. Previous work has shown that different central place hierarchies “fill”
different amounts of space. The general procedure described above for determining
generators for arbitrary Loschian numbers permits the rapid determination of the
fractional dimension, F, of an arbitrary central place hierarchy (with infinite
iteration in generator application) using Mandelbrot’s formula:

F = (logn)/(log(L)"?). (1)

In (1), n is the number of sides in a generator and L is the Loschian number, as
above (Mandelbrot 1983; S. Arlinghaus 1985). Table 4 shows fractional dimensions
for the Loschian numbers displayed in Figure 2; it is organized according to the set
of parallel lines of Figure 2, characterized by the b-values of those parallel lines.
The initial (nontrivial) values for n were taken from Figure 5, and subsequent
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TABLE 4

bvalue; Lischian Number L; Number, n, of sides in a/gcnemror
F, fractional dimension, F = (log n)/(log(1.)"/?)

L=9 L=21 L=39 L= 63 L=
n==6 n=2=58 n =10 n=12 n=14..
F = 1631 F = 1.367 F=1.857 F = 1200 F = 1165
b=2 L=4 L=13 L =28 L =49 Lyi= B i
n=3 n=>5 n=7 n=19 o= 11000
F= 1585 F =1.255 F= 1168 F=1128 F = 1107
bl=1 L=1 L=1 L=19 L =37 Li=81.1 ...
n=23 n=75 n=7 =9 ...,
F=1129 F=1093 F=1078 F= 1069
b=0: L=0 L=3 L=12 =297 L.=48. ..,
n=2 n=4 n==606 n==8 ...,
F=1262 F=11186 F = 1087 F=1074 .

values for n, along any single horizontal line, were determined from Figure 8 by
adding 2 to the previous value in the horizontal line. The values for F decrease
from left to right along each line, reflecting the wider spacing between rival
centers, on which hexagonal nets were based. A closer look at Table 4 brings to
light some interesting numerical facts: the central place nets associated with
L = 49 and L = 7 have the same fractional dimension, and therefore “fill” the
same amount of space, although the pattern of net orientation is not the same,
since the former is a T, type hierarchy, while the latter is a T-type hierarchy. This
is obvious algebraically, since

Il

(1o )/ (10(3))) = (2010 7)) /(2(10g(3)""?))

(log 72) /(log(3'/2)°) = (log49)/(log(9)"?), (2)

but it is not obvious geometrically. The implications of this, when applied for
example to transportation planning, might suggest the algebraic equivalence of two
routing patterns (positioned along netlines), in penetrating the underlying
population, leaving open the geometric freedom to choose one or the other routing
pattern based on outside factors such as degree of route curviness or efficiency of
administration of route repairs (Arlinghaus and Nystuen 1985, 1986). The
appropriateness of employing fractal geometry in urban planning is documented in
the work of Batty (1985) and Batty and Longley (1985).

Further, within the set of T, -type hierarchies, the higher the b-value, the larger
the value for F; this reflects the increasing complexity in pattern arising from using
generators with larger numbers of edges. A number of questions remain open.

1. Within a triple of consecutive b-values, such as b=0, b=1, b = 2, the
relative rates of decrease in F across lines parallel to y = x differ according to
T-type hierarchy. What sort of formula might characterize these differences, and
what are the implications of this formula for the geographic and economic
components of spatial planning associated with each T-type hierarchy?

2. What, if they exist, are the lower bounds for the sequence of F-values across
each line parallel to y = x? What, if it exists, is the greatest lower bound for the set
of sequences associated with the set of all b-values, O(mod 3) [or 1(mod 3) when D
is congruent to O(mod 4), or 1(mod 3) when D is congruent to 1{mod 4) for each of
j even and j odd]?

3. Reading sequences of column entries within, say, T-type hierarchies, such as
1.262, 1.367, ..., what is the upper bound of this sequence? Again, one can ask a
set of related questions, involving least upper bounds and the like, with an eye
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toward using elements of the theory of measure and integration with central place
hierarchies.

4. With bounding criteria that reflect the capability of nets to fill space, extend
the transportation planning idea referred to above (or other suitable ideas) across
the entire spectrum (an infinite set) of possible hierarchies.

§. DIRECTIONS FOR FURTHER RESEARCH

Given an arbitrary Léschian number, L, the discussion above provides a
systematic strategy for characterizing a single generator that, when applied
recursively to an hexagonal initiator and higher level teragons, generates the entire
geometry of the central place hierarchy associated with L. It does so by presenting
methods to count the number of sides in the generator, and to shape the
arrangement of these sides to yield appropriate results. Information concerning
initiator position is a corollary to these procedures permitting complete, and
relatively easy, determination of generator shape. Once a generator has been
determined, then Mandelbrot’s formula for fractional dimension applies easily to
any central place hierarchy.

These procedures, however, are all “existence” procedures. The issue of
uniqueness may be dealt with at two levels. First, any Loschian number that can be
derived from multiple lattice points might have more than one fractal generator
emerge using the procedure above. Existing results, used in conjunction with
Construction 1 and associated material, completely solve this issue. Second, there
might be other constructions that yield different schema for producing central-place
fractal generators. This notion is mainly of theoretical interest and is unsolved, as
are other open questions surrounding patterns in sequences of fractional dimension.
For the purpose of empirical application, however, the theoretical questions
surrounding the creation of an arbitrary central place hierarchy using fractals, and
of determining its fractional dimension, are fully resolved.
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