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INTRODUCTION

Since the pioneering investigations by E. Zavoiskyl

R. L. Cummerow and D. Hallidayz, the phenomenon of electron spin

and by

resonance has been applied to a wide range of fields, varying

from the measurement of nuclear spins and magnetic moments to the
detection of microwave radiation from Saturn using the ruby ma-
ser3. The electron spin resonance technique has also been success-
fully applied to a variety of problems in radiation solid-state
physics. However, the research contributions have come from in-
vestigators working in different laboratories, and to our know-
ledge, no one has so far attempted to explore systematically the
usefulness of electron spin resonance as a tool for the study of
radiation effects, and, at the same time, to present the funda-

mentals to those who are not familiar with the technique.

The paper is presented in two parts, the first part dealing
with the fundamentals of the solid-state Zeeman effect, and the sec-
ond part concerned with the applications of the phenomenon to
certain select examples. We wish to emphasize that our paper is
not intended as a survey. Rather, examples which we felt would
most clearly illustrate the usefulness of electron spin resonance
as a research tool in radiation solid-state physics were selected

for detailed discussion.



Part A
THE SOLID-STATE ZEEMAN EFFECT¥*

In this section some fundamental concepts of spin resonance
are presented with intention to promote basic understanding rath-
er than to display completeness and details. It is well known
that the energy-level structure of an atomic system depends quite
sensitively upon the electric and magnetic fields present in the
system. Then, by inducing and observing appropriate transitions
between different levels, it should be possible to derive quanti-
tative information regarding the electrons and nuclei, as well
as the surroundings of the atoms. In spin resonance, the tran-
sitions between levels corresponding to different spin orienta-

tions are studied.

In order to make clear the relation of electron spin reso-
nance effects discussed in this paper with the more familiar op-
tical spectroscopy, consider the energy levels of a sodium atom.
The three lowest electron states are shown in Figure 1. The
well-known yellow lines of sodiu@, called the D-lines, result
from the transitions from the 2P3/2 and 2Pl/2 states to the
ground state 281/2. These are electric dipole transitions for
which the selection rules are AL'-:'!'-\ . Consider next the ef-
fect of a magnetic field. .Then, the levels will be split into
4, 2, and 2 levels for the P3/2, Pl/2' and 81/2 states, respec-
tively. Each of the sodium D-lines will split into a number of
components. However, these components are spaced closely togeth-

er so that precision measurement of the spacings would be very

*Contributed by C. Kikuchi and S. Yip.
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difficult to make. The usefulness of microwave spectroscopy
using electron spin resonance stems from the fact that it is
possible, under appropriate conditions, not only to make precis-
ion measurement of the splitting of the ground level in a mag-
netic field, but also at the same time to make precision measure-
ment of effects arising from the much smaller nuclear magnetic

moment and electric quadrupole moment.

I. The Spin Resonance Phenomenon. We first discuss qualitative-

ly the phenomenon of spin resonance. It will be seen that a
great deal of basic features can be understood on the basis of
elementary arguments. The actual problem is, of course, neces-

sarily complicated and requires rather lengthy discussions.

In order for spin resonance transitions to take place it is
clear that the system must have non-vanishing resultant spin ang-
ular momentum. That is to say, at least one electron in the sys-
tem has an unpaired spin. All diamagnetic substances with full,
closed shells in which pairing of electrons results in zero or-
bital and spin angular momenta therefore cannot be used in spin
resonance studies. Chemical binding in solids, such as ionic
or covalent, generally leaves no unpaired electrons in the struc-
ture, except when bonds are altered as in irradiation.4 Among
the substances with resultant spin angular momentum the group
that has been studied most extensively consists of the iron
group transition elements, i.e., Ti, V, Cr, Mn, Fe, Co, Ni, and
Cu; these atoms have partially filled inner 3d shells. The rea-

son for this is that electrons prefer the lower energy states of

—4-



the outer 4S shells, consequently at least one of the 3d elec-

trons is unpaired.

Under the influence of an externally applied magnetic field
the (2S + 1)-fold spin degeneracy is completely removed.* That is
to say, there will be 2S + 1 distinct energy levels where S is
the electronic spin, being 1/2 if only one electron is unpaired.
The process responsible for the splitting is simply the magnetic
dipole interaction *‘ﬂ_"_\ , where J}_:-a@_s_ is the magnetic mo-
ment of the electron. Here S is the spin operator, g and @S are
respectively the gyromagnetic ratio and Bohr magneton. The mag-
netic energies of the system are 8@‘-\M , where M is the projec-
tion of S along H, the axis of quantization, and can assume 2S+1
values from S to -S in integral steps. Physically, the spin ang-
ular momentum vector can be pictured as merely precessing about
H with angular frequency 9:3@“/“ ; 1ts projection along H can
have any one of the M values. When the system is in thermodynam-
ic equilibrium the probability that the spin vector will have a
given orientation is governed by the Boltzmann factor e—'E/hT '
where k is Boltzmann constant. Since E'—'"}_‘,'ﬂ , the state cor-
responding to -M therefore will have the greatest population

whereas that corresponding to M will have the least.

*In zero magnetic field spin degeneracy can be partially re-

moved by effects due to the crystalline electric field.



The magnetic field which causes the Zeeman splittings is a
steady D. C. field, and hence cannot induce any transitions. To
induce transitions, a microwave radiation is directed at the par-
amagnetic substance so that the incident, oscillating magnetic
field vector tﬁdﬁ is perpendicular to H. The effect of the os-
cillating field is seen by considering it as resolved into two
circularly polarized components, one of which precesses about H
in the same manner as S. When the frequency of \_'_\_l‘.k‘) is not
equal to 9 there is essentially no effect on S; however, when
resonance condition is achieved S and the circulating field both
precess with frequency 9 ; there then exists a coupling on S,
causing it to change its orientation, i.e., S makes a tran-
sition and assumes one of the other quantized positions with re-
spect to H. We will later show that this transition is given by
the selection rule AMM=¥i. The probability of transition be-
tween any two orientations (spin levels) is essentially the same;
however, on account of the difference in the population of dif-
ferent energy states the net effect is a transition to a higher
energy state of the system with corresponding absorption of mi-

Ccro-wave power.

Let us translate the above remarks into a physical experi-
ment as shown in Figure 2. The paramagnetic sample is located in
a cavity which is placed in a steady D. C. magnetic field genera-
ted by electromagnets so mounted that the direction as well as
the magnitude of the field can be varied. Experimentally, it is

much more convenient to hold the frequency of microwave radiation
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constant and vary the magnetic field in approaching a resonance
condition. Consequently, a sweeping device is used to change the
current producing the D. C. field. Although this field now be-
comes time-dependent it is nevertheless slowly varying when com-
pared to the microwave field, the magnetic component H'(t) is
still the sole factor in inducing transitions.* The constant
power from the oscillator and the change which takes place during
resonance, either reflected or transmitted, are measured by sili-
con diode detectors. A sharp dip is observed as spin transitions
are induced and power is absorbed by the sample. In general, for
a given S, there will be 25 + 1 lines in the spectrum whose
spacings as well as intensities will be different, giving rise

to what is called the fine structure.**The energy gained then
causes the sample temperature to increase via spin-lattice coup-

ling.

Thus far, we have neglected any magnetic property of the nu-~
cleus. It is known that some nuclei possess a resultant angular
momentum I, and an associated magnetic moment J"N.:aﬁeﬂl , where

‘a“ and @N=§(%3 (m, M are masses of electron and proton) are

nuclear gyromagnetic ratio and nuclear magneton. The presence of

*A small modulating field is often added to the D.C. field in
experiments. This can also be neglected in considering time-de-

pendent perturbations.

** As we will see, fine structure also arises as a result of

zero-field splittings due to second order spin-orbit coupling ef-

fects as well as spin-spin and crystalline field interactions.
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\ALN causes each electron spin level to have an additional de-
generacy of 2I + 1 corresponding to the same number of possible
nuclear orientations. Here I is the nuclear spin quantum number.
This degeneracy, however, is also removed under an external mag-
netic field due to the interaction —ﬁu' ‘i * Thus each elec-
tronic level is further split into 2I 4+ 1 levels. The axis of
quantization can still be taken to be along H so the magnetic
energies are 86*\“—8“%"““ , m being the projection of I along
H. As we will show later, the incident radiation gives rise to
two types of transitions governed by the selection rules, BM‘-'-t\

(Awm=06) ana Am=*| (AM‘-‘*O} . The second selection
rule allows transitions between levels with different nuclear
spin orientations. For these levels the energy separation is
relatively small and the population of any two neighboring levels
does not differ significantly. The intensity of nuclear transi-
tion lines, when observed, is therefore expected to be weak.
Nevertheless, such transitions can be detected by allowing two
resonance conditions to be simultaneously satisfied. An experi-
ment of this type is known as double resonance and is described

in the following.

We consider a paramagnetic sample, S = 1/2 and I = 1/2,
whose energy levels at a given H is shown in Figure 3, along with

a relative population of levels. It is to be expected that the

* Interaction between nuclear and electronic spins also re-

moves the degeneracy. This effect will be considered in later

discussions.
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line intensity is more enhanced the greater the difference in
population of the levels involved. The intensity of transition
o between levels (a) and (b) is ordinarily weak. But if at
the same time transition €> from (d) to (a) can be induced, then
the population of (a) will be greatly increased, resulting in a
more intense ® line. The experimental modification consists
of adding an RF field to the apparatus already shown in Figure 2.
The D. C. field is held at a value such that transition % takes
place corresponding to an oscillator frequency D'; however, the
rate of transition begins to decrease in time due to the buildup
in population of (a) and depletion of (d). Then the RF frequency
is varied until transition @O occurs. This process causes a
large decrease of population of (a) and results in a renewed ab-
sorption line corresponding to an increased @ transition rate.
Alternatively, a RF detector may be used which then measures the

sharp peak resulting from transitions between nuclear levels.

The electronic transition according to the selection rule
m=t\ (Nﬂi\'-"-o) is the transition ordinarily measured in electron
spin resonance. On account of nuclear spin each line is now
split into 2I + 1 equally spaced lines. This is seen from the
effective magnetic field, H + EN , that interacts with the elec-
tron magnetic moment. EN' the field due to the nucleus, can

have 2I + 1 equally spaced values corresponding to as many nuclear

-11-~



orientations.* The splitting produces 2I + 1 lines of equal in-
tensity, as probability of population is essentially the same for
all nuclear orientations at normal temperatures. Since the sepa-
ration of these lines is a nuclear effect and is small compared
to splittings among electronic levels, the lines will appear as

a group, constituting what is called the hyperfine structure.

It is seen that electron spin resonance gives a direct meas-
urement of the nuclear spin. Therefore, such measurements can be
used to identify different isotopes in an element. For example,
vanadium is essentially 100 per cent Vol with I = 7/2, so its
spectrum yields groups of eight lines. On the other hand, natu-
ral chromium consists of 90 per cent isotopes with I = 0 and about

53

9.5 per cent of Cr with I = 3/2. Its spectrum is a strong cen-

tral line, corresponding to the abundant isotopes, plus four much
weaker lines due to Cr53. The spectrum of an element used in

this manner is sometimes referred to as the paramagnetic resonance

signature.

We have attempted to give a brief description of the spin
resonance phenomenon by using simple examples and elementary ar-
guments. While we believe that the illustration is instructive

it admittedly represents an oversimplification. For instance,

*Axis of quantization for nuclear spin is not necessarily a-
long the magnetic field; this is true only in the strong field
case. Ordinarily the field produced by electrons determines the

quantization axis.
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effects due to crystalline electric field and other perturbations,
which are ordinarily present, have been ignored. It is to be ex-
pected that consideration of these aspects leads to a consider-
ably more complicated problem; in fact, it has not been possible
to solve the general quantum mechanical problem in any rigorous
manner. However, there exist several useful approximation meth-

ods, some of which we shall now discuss in the following.

II. The Hamiltonian. We begin with a more rigorous examination

of the interactions involved in spin resonance. A fundamental and
instructive derivation of these interactions is given by Dirac's
theory of electrons. The Hamiltonian for a single electron in
electric and magnetic fields is first obtained. The interactions
of an atomic system placed in a crystalline electric field and
subjected to an external magnetic field can then be found by ap-
propriate specifications of fields and potentials and some ob-
vious generalizations.* This has been done in Appendix A. For-
tunately, the general Hamiltonian can be simplified since in spin
resonance we are primarily interested in the effects of crystal-
line forces and the magnetic behavior of electrons and nuclei.
Furthermore, we need to consider only the electrons in the un-
filled shell such as the 3d shell for the iron group transition

elements.

*Such a treatment necessarily cannot give any interaction

which does not include the electron. Interactions involving only

the nucleus must appear as additional effects; see Appendix B.
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The appropriate Hamiltonian can be exhibited as
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In obtaining (1) from our results in Appendix A we have neglected
relativistic correction terms and most of the electron-electron
interactions. We have also added the term ae“ and the second
term in 3e@ , the nuclear terms arising from external effects.”
The order in which the various contributions appear indicates
their relative importance so far as the orders of magnitude are

concerned.

The main term éeo in (1) is the familiar Hamiltonian of a
many-particle system with coulomb interactions. The resulting
energy level separation is of order 105 em~1 (L ev = 8,065 cm™1).
The interaction of electrons with crystalline electric field is
represented by V, the magnitude of which varies considerably.?>
In the case of iron group cyanides it can be greater than the
electrostatic interactions among electrons but less than the elec-
tron-nuclear term. In the case of iron group salts it assumes
the order given in (1), and in the case of rare earth salts it
is less important than the spin-orbit interaction. For our con-
sideration V is of order 103 - 10% cm~! whereas 3et$ gives rise
to spin-orbit splittings of order 102 em™ !, The magnetic inter-

actions among electrons are of order 1 cm~! and can be ignored

in general, but spin-spin effects aeﬁﬁa could be important in

*The two terms given in 'QQCQ have been derived in Appendix

B.
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6 :
crt¥, Mn*T, crtFt® % The primary effect of an external mag-

netic field is given by a’ee , the usual interaction with the
magnetic moments of the electrons. The resulting Zeeman split-
tings at normal field strength are of order 1 em™l. The remain-
ing terms in (1) describe interactions involving nuclear spin,
the dominant one being éev\ which represents interactions with
the magnetic field produced by the electrons. This effect causes
hyperfine splittings which are of order 1072 cm~l. It has been
shown in Appendix A that the last term is the sole contribution
of s-state electrons. On account of its sharply peaked behavior
it is often referred to as the contact interaction, and is respon-
sible for the s-electron effect. The direct interaction of the
external magnetic field with nuclear magnetic moment is given by
QQB‘ . The resulting splittings are of order 10-3 cm~L; al-
though this effect is sufficiently small to be negligible, never-
theless, it produces an asymmetry in the hyperfine structure al-
lowing certain signs to be determined.”® The two terms represent-
ing the interactions of nuclear electric quadrupole moment with
the electrons and crystalline field are given by A'QQ (See Appen-

dix B). Usually the effects are of order 104 em™l. 1In obtain-

*Note that the other electron-electron interactions such as
orbit-orbit and spin-other-orbit have been neglected. Although
they are of no interest in spin resonance, recent investigations
have shown that these effects disturb the Lande interval rule and

are of importance in many spectra; see Slater’/, p. 199.
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ing the expressions in J’QQ we have made use of the fact that co-
ordinate variables can be replaced by equivalent angular momentum
operators. The constant QI=E5€Q/L\.'[(2.1-\\X (az\l/;zz3° , where
Q is the quadrupole moment and the derivative is to be evaluated
at the center of mass of the nucleus, measures the strength of

the quadrupole interaction.

The above terms therefore constitute the essential interac-
tions encountered in spin resonance studies. Thus far, it has
not been possible to solve the general spin resonance problem ex-
cept by perturbation methods. However, these approximations,
which are seldom carried beyond second order, have been found to

give satisfactory correlation with experimental measurements.

In applying perturbation theory the unperturbed part is first

diagonalized using the self-consistent field method. The total

orbital angular momentum L = ::i-SLC and the total spin angu-
Y
lar momentum S = :Zi §§i form a resultant electronic angular
i

momentum J = L + S which causes each energy level, in the absence
of electric and magnetic perturbations, to have a degeneracy of
2J + 1. Next, the crystalline electric field is taken into ac-
count. In our case, the perturbation is sufficiently large to de-

couple L and S, thus My, and Mg, the quantum numbers of Ly and Sz,

become good quantum numbers.* (Physically the two angular momenta

*This corresponds to the strong field case, or LS coupling.

In other extreme cases energy levels are labelled by My, the

quantum number of Jy, corresponding to the weak field case (rare
earth salts), or jj coupling.
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precess separately about the axis of quantization, that of the
perturbing electric field.) Moreover, separations between the
M; levels are so large that transitions will be in the optical
region.* This implies that in spin resonance the separated M
levels can be considered isolated; in particular, only the lowest
level is of interest since the population of higher levels at
normal temperatures is negligible. The lowest level still con-
tains a degeneracy of 2S+1 due to spin. As we will see later,
some further splittings may occur on account of the symmetry in
the crystalline field. These splittings exist even in the ab-
sence of magnetic perturbation, hence they contribute to the so-

called zero-field splittings.

The remaining terms in (1) can be treated at the same time.
If we proceed to compute the matrix elements of these perturba-
tions with respect to the orbital states only, the result is
known as the spin Hamiltonian for it contains only spin operators.
Such a Hamiltonian explicitly displays the resonance properties
of the system and, when diagonalized, gives the energies arising
from the entire perturbation. For illustrative purpose we can

take the perturbations as

2 K=o+ (L)L ATS
-au%u‘l\-‘-:—"' QLY - T |

*Orbital degeneracy may not be completely removed. For ex-

ample, in the case of 3d electrons, cubic and tetragonal fields

still leave the highest level doubly degenerate.
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where we have neglected correlations among the electrons as
given by éeﬁﬁ, and electronic interaction with nuclear quadru-
pole moment.* It will be assumed that the orbital moment is quen-

ched, that is, the ground state is a singlet and the expectation

value of LZ is zero.

!
To first order the spin Hamiltonian corresponding to GQ is

! . 7> _ 1D
() aes=2@g\_.§_+kl;-§_-a"%“&1_+®Ll,--g \.
Terms containing L vanish because the components of L have zero

diagonal matrix elements in this approximation. Since M = Mg

and m = My are good quantum numbers in the unperturbed problem

the first order energies become
(4 EMW) = 284N+ AMM-—%NN\M + QM-S

We have seen earlier that H consists of two parts, of which the
timeédependent H'(t) is responsible for inducing transitions.
From perturbation theory it is known that transition probability
is proportional to the square modulus of matrix elements of
‘2@‘_'\.,¢’5§'—a“‘élﬁi¥>!_ The second term, being smaller by sev-
eral orders of magnitude, is customarily neglected so far as
transitions are concerned. The spih operator S conveniently sep-

arates into its components of which only S, and S, give non-van-

y
ishing matrix elements between states of different M,

*More general perturbations have been treated by Abragam and

Pryce6} see also Bleaney and Stevens®

-19-



I[z
) (MIS 5| M31Y = [seed)-mmziy] |

where S + = S+ i Sy. Therefore, the conventional electron spin
resonance experiments (ESR) are characterized by the selection
rule M‘-'t‘ (AM:O) . However, if transitions among different
nuclear spin states can be observed they are then governed by

the selection rule AM:. t‘ (L“""Q . With a given selection rule

the resonance condition can be readily exhibited using (4). For

instance,
MM - EM- M) = W = 280+ Aw

The spectrum will show a group of 2I + 1 lines, and from their

separation the hyperfine structure coupling constant A is de-

termined.

To second order in perturbation we need to compute the non-
diagonal matrix elements between ground state and all other
states. Here only terms in L are non-vanishing. The correction
to the energy eigenvalue involves the square modulus of these
matrix elements and therefore contains quadratic terms of the com-

ponents of H and S. Hence the spin-Hamiltonian becomes

Re= {'d;is‘-%-\ N )‘%{Y:'\Ai%\-\' %21\{3“ R’ﬁ leﬁ‘é’

+ArsginEee Ugy- Lm0}
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(6) éesl = i%_Dé_ + GH_ 6§‘ + ALS

PRRTHI T,

where D and g = 2 5:"" A&';\ are tensors. The term in ﬂ_-h-
H has been discarded since it represents a constant energy; con-
sequently it is of no interest. The first term in (6) describes
the effect due to spin-orbit coupling which causes zero magnetic
field splittings. We will see later that the crystalline field
also may produce zero field splittings. The next term gives a
generalized Zeeman splitting with possible anisotropy in the
spectroscopic splitting factor g arising from the mixture of
spin-orbit and magnetic field interactions.* In the presence of
a strong crystalline electric field it is seen that the effec-
tive perturbations and the resulting resonance properties of the
system become angular dependent. In a given calculation it will
then be necessary to determine a diagonal coordinate system (axis
of quantization) in terms of the angles specifying the external
magnetic field with respect to the crystal axes8/9. The spin-
Hamiltonian, in all cases, must exhibit the same symmetry as
that of the crystalline field. For instance, with axial sym-

metry

*This term is diagonal along H when g is isotropic; other-

wise it is diagonal along g-H.
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(7)

£ =Xos +@La“+xs rQAS T A ax

+ A-I.z e T A(lxgx*' 1536\ *aN%N‘l\.l

2
{ 1
+ CQ,I:&}__ _51*?\3
s .

We note that 8\\ and a_\. give the magnetic field splittings
when the field is parallel and perpendicular to the crystalline
axis. Similarly, A and A' measure the hyperfine splittings in
the parallel and perpendicular directions. The value of S to be
used in (7) is an "effective electronic spin", determined by the

condition that 2S + 1 is the degeneracy of the lowest level

(ground state), and may be different from the free ion value.

It is to be noted that, in principle, constants D, g, A,
and Q' may be computed for a given orbital. At the same time,
these parameters can be measured. Therefore, although the spin-
Hamiltonian is an expression obtained entirely from theoretical
considerations it is, nevertheless, a very useful tool relating

theory and experiment.

Before closing this section we turn briefly to the crystal-
line electric field. As two examples we consider fields with
axial and cubic symmetries. In the first éase, we would expect
a dependence of the form tﬂtzﬁ-f7eﬁ) where z-axis is taken to be
the axis of symmetry. The corresponding effect appears in the

2
spin-Hamiltonian as D‘_SZ—- §_.(§“3] . For the cubic case we would
3

-22-



expect the potential to contain coordinates in even powers of
X, ¥, z and cross terms, all of which must be symmetric in the
three variables. In the spin-Hamiltonian lowest order terms

constitute Si + S2 + S%, a constant. ©Next order terms are

Yy
Si + 8% + 5% and cross terms such as 82 S2 etc. The cross
Y Z X Y
terms, however, do not need to appear by virtue of the relation

(Si + S§ + S%)2 = Sé + Sé + Sg + (cross terms), where the left=
hand side is another constant. All higher orders can be reduced
in this manner so that a potential with cubic symmetry has the
form % (Si + Sg + Sg) . In Figure 4 we show the spectra for

S = 5/2 (Mnt*t, Fett™™). There will be 2 S + 1 spin levels, and
therefore 2 S absorption lines. It is noted that line separa-
tions are influenced by crystalline field symmetry whereas the

relative intensities, predicted by the matrix elements for S,

given in (5), remain unchanged.

The above discussions show that quantitative information on
the nucleus, electrons, and crystalline field can be obtained by
spin resonance experiments. In the following sections we will
show how the basic concepts can be extended to the study of ra-

diation effects in solids. A few applications will be considered.
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Part B

APPLICATION OF SPIN RESONANCE TECHNIQUES
TO THE STUDY OF RADIATION EFFECTS*

The purpose of this part of the discussion will be to show
how spin resonance technique can be used to obtain definitive
information about effects produced by nuclear radiations. Fur-
thermore, because the group to whom this is addressed consists
primarily of nuclear physicists, emphasis will be placed on those
aspects of magnetic resonance that have added to our knowledge
about the nucleus. The discussions will be kept as simple as
possible in order to stress the physical basis of magnetic
resonance. Some calculations will be made to illustrate the use
of Spin Hamiltonian, derived in Part I, in correlating the

experimental data.

The reason for the usefulness of electron spin resonance
stems from the fact that the electrons (for ESR) and the nuclei
(for NMR) located in a solid can be thought of as microscopic.

The energy of these electrons will be affected by the electric
field produced by the charged ions and the magnetic field produced
by the nuclei in the volume effectively occupied by the elec-
trons. These electrons may actually occupy an effective volume

which includes many atoms.

* Contributed by C. Kikuchi and S. H. Chen
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In order to show the usefulness of ESR in obtaining the kind
of information just mentioned, we shall discuss a few examples in
some detail which hopefully can illustrate and elaborate on the
fundamental principles discussed in Part A. The examples that
have been chosen are:

1) Vacancies in MgO due to Cr impurity.

2) Vacancy in MgO due to neutron irradiation.

3) Neutron cross section measurement by spin resonance.

4) ©Nuclear moments measurements.

5) Radiation solid-state chemistry.

It should be emphasized that this discussion is not intended
as a survey of the field. The above examples are chosen more or
less for the interest of nuclear physicists, and furthermore, as
we shall see, considerable emphasis will be put on the. work that

has been or is being carried out at The University of Michigan.

I. Nature of Crystal Structure and Defects in MgO

We shall now show how the theory developed in the preceding
section can be used to get definitive information about defects
produced in crystalline solids. For this purpose we shall take
MgO as an example. This material was picked for various reasons:

1) Simple crystal structure (like NaCl)

NaCl: a_ = 5.64 A°

o]

MgO: a, = 4.24 A°
2) Various impurities can be incorporated, such as V, Cr, Mn,

Fe, Co, Ni, Cu.
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3) Optical properties studies by Hansler and Segelken
(1960) 10,
4) Possibility of becoming maser material by neutron

irradiation.

MgO crystal is a single crystal with F.C.C. structure like
that of NaCl. Each Mg++ ion is surrounded by six O  ions located
along the crystal axes, forming an octahedral structure (see

Figure 5).

For such crystals, the absorption spectrum may be sorted into

+3 substitutional ions in three different

lines arising from Cr
electric field symmetries:

1) Cubic symmetry (Octahedral symmetry).

2) Axial symmetry in 100 direction (Tetragonal symmetry).

3) Axial symmetry in 110 direction (see Figure 6).

The formation of the above three symmetries may be pictured
as follows: A Cr'3 ion replaces a Mg++ site, forming a complete
cubic symmetry configuration. Owing to an extra charge in Cr+3,

a charge compensation has to occur in some way. It is conceivable
that this may be done by having a Mg++ vacancy somewhere in the
lattice site. Such vacancies, while overcompensating for the
single extra positive charge of the nearby Cr+3 ion with axial
symmetry, serve to help compensate for the many extra Cr+3 ions

in a purely cubic electric field. This mechanism supports the

+3

fact that experimentally a strong central line for Cr in a cubic

crystalline field is observed. The axial symmetry of cases (2)
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and (3) may be thought of as due to the Mg++ vacancies in sites

V1 and Vy respectively, in Figure 6.

The lines arising from symmetries (1) and (2) are well

identified in the paper by Wertz and Auzinsll. As an illustra-

tion of use of the Spin Hamiltonian, we shall calculate the number

and position of lines due to cubic and axial fields.

I-1. Chromium in Cubic Environment

The Cr*3 ion has an electron configuration of argon configur-
ation +3d3. According to Hunds' rule the ground state of this

configuration is a 4

F state. Furthermore, group theoretical
considerations show that the sevenfold orbital degeneracy will
be”removed in the cubic field, aﬁd the term splits into a singlet
and two triplets with the singlet lying lowest. Thus the ground
state responsible for the pafamagnetic resonance absorption acts
like a %S state with an effective spin S' = 3/2 in the Spin
Hamiltonian. The next highest triplet is separated by about

lO4 cm'l

so that the spin-orbit coupling does not remove the
fourfold spin degeneracy of the ground state. However, the ap-
plication of magnetic field will split this ground state into four
equally spaced levels (see Figure 7). This can be seen as
follows. For crystalline electric field of cubic symmetry, the

most general form of the Spin Hamiltonian, when S = 3/2, is given

by

& =@&-a-§+ LA BN T
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For our discussions, we shall assume that the tensors a and A
are both isotropic. Furthermore, since the nuclear spin I =0
for the isotopes Cr-50, -52, and -54, the Spin Hamiltonian for

the even isotopes of chromium is just
#-=-qens

so that

EM) = 6@\\)\

for \‘\ parallel to the Z-axis. The allowed transitions are the
ones for which AM“: t‘ , so that the absorption due to the

isotopes Cr-50, -52, and -54 is a single line at

Experimentally a strong line at 3338 gauss is seen for l)-"—q.,’Z,BO KMC.
This corresponds to a = 1.9797. Upon closer inspection, four

weak lines spaced about 18 gauss apart flank the central line.

These can be assigned to Cr-53, whose isotopic abundance is 9.5%.

Its nuclear spin is 3/2, so that the terms involving the nuclear
spin need to be taken into account. For the transitions AM:.'_\'_1

and Aw= o we obtain
Wy = %g,u\ + Awm

to the first order approximation. Here, I = 3/2, so m can have
values 3/2, 1/2, =1/2, -3/2. Therefore, instead of one strong
central line, we observe four lines with one-fortieth intensity,

equally spaced with spacing -—é-§— = 17.85 gauss (see
Figure 8).
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(crt++ +

I-2. Chromium in Axial Environment associated with qu

vacahcy Or type Vl)

As was seen in the last section, the characteristic spectrum
+ . . . . . . .
of Cr3 in a cubic field consists of a group of isotroric lines,
a strong one due to the even isotopes and four weak ones due to

Cr53. On the other hand, if the Cr3+

ion is paired with a vacancy
so that the crystalline environment is lower than cubic symmetry,
the absorption spectrum will no longer be isotropic. For the

even chromium isotopes paired with a vacancy along the Z-axis, the

appropriate Hamiltonian is given by

- gest +ols- ¥

. , _ , g2 _ S(s)
which is obtained by adding an axial term N € ?g to
the one for cubic field but neglecting the terms involving nuclear
interactions. On the other hand, with vacancies along the X-

and Y-axes, the Spin Hamiltonians are given by

R, =gest+ DL

or

=6(3>§_":i + DI.%:!-%S*‘)] |

d

The spectra due to these defects when the magnetic field H is

along the Z-axis can be calculated as follows:
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(i) Z-type
From Hamiltonian Hl

gQ‘..:a%Hser D(s}%) ; =2

E(M) = gBHM + DOME $)

ED = gend)+ D = gatines)
B(2) =gpHE)-D =gBEH-p"
El3) =6€*\(‘l33“b = 8Bl--0)
BL2) = geDro = getiues)

with AM = t1, we get three lines (see Figure 9)

: W :
= gDy —= H = a8 2D
%

\!\Q =a§(k\z+ o) —=H,= ‘."%_
ge

hy =a§(l-\5—2b’) -——’—i-\s—.—_?__.{-QD/

The three lines were actually found at

Hl=1555, H2=333O, H3=5105 gauss

therefore,

4D = H3 - Hl = 5105 - 1555 = 3550 gauss

so D' = 887 gauss.
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The g-value can be found from

__2h
°®

g = ZMD

6650@

The intensity of the lines M —s= M - 1 is proportional to

H + H

1 3 6650 gauss

1.9782

|s(s + 1) - mm - 1) ,

M= 3/2: 15/4 - 3/4

il
w

1]
N

M= 1/2: 15/4 + 1/2

(ii) X (or Y) - type

From Hamiltonian (2) Aezza%i-\$z+ D ‘_St_. %(S'H) ]
R,= geuss + OLESS- )
= geHset BIpE S+ OR S50 |
use the identity
T = S ESFSSY
\ \ 2
”EL$+S_+ %_%_‘_\ =3 [ S(S-\-‘)-— SZ -X
- 5155

Hence

Haogease 2P R
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From the secular determinant (see Figure 10) we get two secular

equations
(1) (P.Z—-\--\ia@!-\-EX_%-%a@A-E):%S

o (B-% §H~E)(—92—_+ 3126@\-4:_) =%Dz.
Then, from (1) we get

E=D\:‘%*—'\S\+X+X"} ) K=a§§-

Similarly from (2), we get

E = D[Z‘it\‘)\—x+x’: S

Therefore, we have four energy levels

= D(X - 2
El D(.2_+Ql X + x%)

E4 = D(—g —‘Q 1 + x + X

from which we get three unequally spaced lines. It is easily

shown that the Hamiltonian of the Y-type

= eHS+ b(s"a-— SO

gives exactly the same four energy levels. Therefore, X-type
and Y-type lines coincide. This is also evident from the

symmetry considerations.
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In the actual experiment, these lines are found at
Hl = 2480, H2 = 3145, H3 = 4200 gauss

In the set-up that H \\ Z-axis, the microwave field Hy is,

say \\ to X-axis (see Figure 11). Then, by 90° rotation of the
sample ( X == X, y —= z, z —e= y) around this microwave
field, one can actually observe that the lines Hy, H2, and

H, will respectively interchange places with one each of Hy,

3

Hé, and H' lines. This angular variation of the positions of

lines can also assure the crystalline field is axial.

40 -
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II. Oxvgen Vacancies Produced by Neutron Irradiation

We shall show next how defects produced by Mg0 by neutron
irradiation are 0 vacancies with trapped electrons. The moti-
vation for the search of F-centers in Mg0 stems from the studies
of F-centers in alkali halides. In 1949, C, A. Hutchison12 ob-
served the paramagnetic absorption spectrum of F-centers in LiF
produced by neutron irradiation. Later, the theoretical inter-
pretation of the results was provided by Kittel and his stu-
dentsl3, and the correctness of the interpretation has been es-
tablished beyond doubt by the so-called ENDOR technique developed

14, 15
by G. Feher .

An F-center, according to the presently accepted model, is a
negative ion vacancy with trapped electrons. These electrons have
some unusual properties because they do not experience central at-
tractive forces as do electrons associated with a definite nucle-
us. Because of the absence of a central attractive force, the
electron tends to spend much of its time in the periphery of the
vacancy, and in particular, the electron charge density near

and at the surrounding positive ions is quite appreciable.

II-1 Number of 0~ Vacancies

Mg0 crystals were subjected to neutron irradiation ranging
from 1 to 3 x lO19 (nvt) ;s the resultant F-center ESR spectra
showed that 1.4 x 1019 cm—3 F-centers were produced, correspond-
ing to one F-center produced for every 5.7 incident neutrons.

The concentration 1.4 x lO19 cm™3 was obtained by comparing the
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area under the integral asorption curve of the irradiated sam-
ple with another sample containing a known concentration of para-

magnetic free radicals.

ITI-2 Identification of Center

24

For even isotopes Mg and Mg26 (total abundance 89.9%)
I = 0. Therefore in the Spin Hamiltonian, there is only the
one Zeeman term, i.e.
H = ggﬁ ]
giving the strong line at k\) = géH
The observed H corresponds to g = 2.0023 T 0.0001, nearly equal
to that of free electron value. This indicates that the signal
is from an electron trapped in 0¥ vacancy. The other evidence
is the existence of hyperfine multiplets. Since the 10.11%
Mg25 isotope has a non-vanishing nuclear moment, (I = 5/2, as

a consequence of observation of six hyperfine components), one

should expect to see hyperfine structures.

Among all Mg++ octahedra, some should contain one or two

Mg++ ions. From isotopic abundance data, it is not difficult to

show that there are octahedra
(i) of only Mg?4 and Mg26....... AP X A
(i) having one Mg22. .. .. iiiiiieneeneennnnnnnen..36%

(1ii) having two Mg2d . .. ... i'ierennennnn. 10%

25

A center with one Mg in the octahedron can be described

by the following Spin Hamiltonian (only the nuclear-electron in-

teraction part)l6,
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R-gaisraler JEale- DTS, - 1),

where the second and third term represent isotropic and aniso-

tropic magnetic interaction of an F-center electron with the Mg25
nucleus, and z-axis is taken to be the axis of symmetry.

0= 'S \\\)(Mgs)\z

Further

2
3088 -1
b= E!I-t?—Q Q?‘F: > (\P: nuclear moment of Mg25)

and gt position vector of the F-center electron measured from

25

the Mg nucleus as the origin.

QF: angle between electron position vector rn and the sym-

metry axis.

Now if a strong magnetic field H is applied making angle 6
with the symmetry axis, then we can take the direction of the
field as the axis of quantization. Thus, to the first order

perturbation approximation

ELM,\M\:a%\&M + MM + b DS B- AYmM
In ESR absorption, we have AM=%4, Adm=o0

W = gBH + La+b(awde-1)Im .

Experimentally we observe six lines corresponding to I = 5/2.
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The separation between each line is the same and is equal to
2
d=a+ b(3wia-1),

If now the applied field H is to be perpendicular to E;Od& di-
rection, we will observe three sets of hyperfine sextet corres-
ponding to one Mg25 nucleus located along'[lodl,'{OlO} and [OOl}
axes respectively. As we rotate the sample around [1001 axis
(a) Sextet due to Case (l) will remain unchanged in the posi-

tion with the line separation given by
2 o
d=0a+b(3wsq -1) =a-b

(b) Sextet due to Cases (2) and (3) will change positions

with the spacing between lines given by

d= a+|o(56.o:é——‘\)

where 6 is the angle H makes with [0011 and [0101 directions

respectively (see Figure 12).

From these observations, Wertz et. al.17 were able to deduce
=l 00 aauss s --- o. auss |

3@ de

This angular dependence also supports the model in which an F-
center is a trapped electron with one of the octahedral positions
occupied by an Mg25 ion. The ten hyperfine components arising

from two Mg25 ions occupying sites in the same octahedron are also

found by Wertz.
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II-3 Discussion of s—-electron Wave Function

Let us see how we can use the above information to get some
information about the spread of electron wave function. For
this let us focus our attention on the isotropic part, which has

25

its origin in the s-electron wave function at the Mg nucleus.

The experimental value for a/g@ = 4 gauss gives

A=gRULS) = 2042 DWIKG = T.h2xi5 " e
But since

_ \M\\\)(Ma> (The wave function is

evaluated at the point
of nucleus. )

M= aﬂ%&lx (O34 Y5050 )Lg\ AR x16 2 evas/ amss

1=3

\\\)(\%5)(.'-'—‘ 0.275 XIQZLL Q\M—3

On the other hand

= 2. _
\\\)(\%\'}\ =171 x 10 Cms
Free

Hence

Therefore

co——

l\\I(Md)\ ez

From this figure we can roughly picture the length of

\\\)(k_%s r

time the center electron spends in the position of an Mg25 nu-
cleus. The above figure shows that the F-center electron is

quite localized in the vacancy. It spends only about 1/62 of

-47-~



25

its time in the vicinity of the Mg nucleus in comparison to the

s-electron in a free Mg™™ ion.

III. Neutron Cross Section Measurement by Spin Resonance

This example is chosen to illustrate that several nuclear
parameters can be determined by ESR. They are:

155 and Gd157;

(1) Magnetic moments of Gd
(2) Isotope abundance of odd isotopes;

(3) Neutron cross sections.

IIT-1 Ratio of Magnetic Moment

Both GAl%® and Gd®7 have I = 3/2. This was obtained by
Speck18 from optical hyperfine structure of gadolinium enriched
in the isotopes Gd155 and Gdl57. Since gadolinium in ThO2
crystal (F.C.C. structure) has a ground state of 887/2, an s-state

ion, the hyperfine coupling constant A is given by

A= %W&NENG 1b|*

where \N;‘:a“%“x namely, nuclear moment\N‘GCA for atoms with

identical electronic configuration.

In Section I-2, it is shown that the spacing of each hyper-
fine multiplet is equal to A. Therefore, by measuring the cor-
responding hyperfine spacing of two Gd isotopes, Low and Shal-

tiel19 obtained the ratio of its nuclear moments.
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III-2 Isotopic Abundance

For the measurement of nuclear parameters, a single crystal
of ThO2 containing less than 0.01% of natural gadolinium is used.
Investigations indicate that the gadolinium atoms occupy thorium
substitutional sites, surrounded by oxygen ions that produce a

cubic crystalline electric field. The overall splitting of the

7/2 ground state of cattt is about 0.1755 cm'l, so that at

low magnetic fields, transitions corresponding to M= +3, +4,

and 5 can be observed with fairly large intensities. The line
widths of these low-field transitions are found to be less than

1 gauss along the [}dﬂ crystal directions, so that the complete

hfs. spectrum of the odd isotopes 155 and 157 could be obtained.

This property was used to measure the abundance and the

cross section of the gadolinium isotopes.

By carefully measuring the amplitude and the integrated
intensity of the two outer pairs of the hyperfine structure com-
ponents of cald> ana cal®7, and that of the central line which
corresponds to the even isotopes, Low et al.l® were able to de-
termine the abundance of the Gdl55, Gal37 and combined even iso-
topes (see Figure 13). The result is listed in the following
table where it is compared with the mass spectrographic data

from Collins et al.20 (see Figure 14).

-49-



Even

157 155 155 157
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SR M-S
(Low & Shaltiel)'® (Collins)2°
Gd '3 15.05% 15. 1%
Gd 15.5% 15.7%
Even isotopes 65.45% 69.2%
FIG 14

ISOTOPIC ABUNDANCE OF NATURAL Gd
MEASURED BY SPIN RESONANCE TECHNIQUE AND MASS SPECTROGRAPH
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III-3 Neutron Capture Cross Section

It has been pointed out that the large neutron capture cross
section of Gd is due to the odd isotopes, i.e. Gals> and Gd157.
Furthermore, the cross sections of isotope 155 and 157 are also
expected to be quite different. Therefore, by neutron irradia-
tion of the sample (ThO,) containing natural Gd, and then by the
measurement of the isotopic abundance of 155 and 157, one should
be able to find out the ratio of their neutron capture cross sec-
tions. In doing this, the following assumptions must be made:

(1) The neutron cross section of the even isotopes is
negligible. (Experimental evidence seems to indicate
that the even isotopes contribute at most about 1000b,
to the total cross section of 46,000b.)

(2) The fission products of Th contribute a negligible
amount to the Gd present in the sample.

(3) The neutron bombardment does not remove preferentially
various Gd isotopes from the cubic lattice sites.

(4) The !, @ and K‘ radiation do not cause transmutation

of Gd isotopes.

The abundance of Gd155 and Gdl57 was measured before and af-
ter four weeks of bombardment in the Harwell pile (Thermal flux:
5 x 108 n/cm?, Fast flux: 9 x 1017n/cm , sample size: 0.3 cm3),

the result was:

Before After
Ggls> 15.05 + 0.2% 12.7 £ 0.25%
cat>’ 15.5 =+ 0.2% 10.4 = 0.3 %
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Since the sample is small (

cald3 anda eald? is given by

~4N = ab

0.3 cm3), the law of depletion for

neutron flux

O = neutron cross section of either cals>
or Gd157
N = concentration of either Gdls5 or Gdls7
in no. of atoms/cm3 in the sample.
Then
S sS
&g = W _©
\
Ny
(Y ST
g = W N ©
=3
so that ST "y ¢ T
S 1
—ee = Q“\ N Cd>/.“ (k§X = &M.(\st/hmu>)== 2.23%
\) =)
W INFR/Nwy | W Osefi2m
Using @ (Gd) = 46,000 = 2000 barns
Low et al. got © (157) = 210,000b.
G (155) = 88,700 b.
in comparison with Collins20 et al. and Hughes2l value
Collins et al.20 Hughes21

q(157)
T (155)

209,000 b.

87,200 b.

160,000 = 60,000 b.

70,000 = 20,000 b.
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Whereas a direct measurement by Jowith et al.22 gives
§(157) = 238,500 * 2000 b.
Q(155)

55,800 * 600 b.

IV Nuclear Spins, Magnetic Dipole Moments, and Electric Quadru-

pole Moments of Certain Iron Group Nuclides

From the foregoing discussions, it is clear that the elec-
tron spin resonance is an important tool for the measurement of
nuclear spins and moments. The phenomenon of hyperfine structure
in solids was discovered first by Penrose and by Ingram23. The
systematic investigations of this effect, and the subsequent
measurement of spins and moments of odd-proton-odd-neutron nu-
clides, were made by B. Bleaney24 and his collaborators at Ox-
ford. Many of the initial measurements served to confirm earlier
optical hfs. measurements or to remove the uncertainties of the
experimental results. We shall not discuss these measurements.
Rather we shall focus our attention on those nuclides whose nu-
clear parameters would be difficult to measure by optical tech-
niques, again to emphasize the power of the ESR method. We
shall first discuss the nuclear spin and magnetic moment measure-
ments, and consider a new technique that is currently being devel-

oped to measure the electric quadrupole moments of nuclei.

A. Nuclear Spins and Magnetic Dipole Moments

1. 0dd-0dd Nuclei.

The following table summarizes the results obtained by the

ESR method:
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Nuclide T I (Exp) Proton Shell Neutron Shell

23VSO 4 x 1014 yr 6 7/2 7/2(Co59)
(.25% abundant)

55Mn56 2.58 hr 3 5/2 1/2(Fe37)

47C0%®  77.34 4 7/2 3/2(cr33)

,7C0%8  71.3d 1 or 2 7/2 1/2(Fe>7)

270000 5,24y 5 7/2 3/2(cr>3)

In the last three columns, the experimentally observed values of
the spins, the odd proton and odd neutron shells are indicated.
For example, for Mn56, the 25 proton shell of Mn>> has spin 5/2,
and the 31 neutron shell of Fe®’ has spin 1/2. We observe that
the nuclear spins of these nuclides are the sums or 1 less than
the sum, of the spins of the odd nuclear shells. This is a part
of a rule first enunciated by Nordheim?®. The exception is C058,

for which the spin is closer to the difference of the spins of

the proton and neutron shells.

The ratio of the magnetic moment to that of the stable iso-
tope can be obtained by taking the ratio of the hfs. coupling con-
stant A, For example, Kikuchi26, Sivertz, and Cohen measured the

hfs. splittings of vo1 and v50 and obtained the value
A (vBI) = 0.3792 4+ 0.0008

Strictly speaking, this value is not the ratio of the mag-
netic moments, because the hfs. coupling constant depends also
upon the value of the wave function within the nucleus. The

ratio of the nuclear magnetic moments has been obtained by Walchli
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and Morgan27 to be -
InY)
Grv™

It may be of interest to re-measure the parameter A and Ey\

= 0.3T7q074- % 0.60001 7 .

to determine the hfs. anomaly.

2. 0dd Neutron Nuclei

Nuclide Abundance I \}xﬂ
cro3 9.55% 3/2 ~0.4735
Fe>’ 2.17% 1/2 +0.0903
Nib1 1.25% 3/2 0.30

3. 0dd Proton Nuclei (Radioactive)

Nuclide T 1/2 I \)lﬂ
v49 330 7/2 = 4.46
Mn>3 2 x 10° 7/2 = 5.050
co°’ 270 7/2 = 4.65

4, Nuclei of Non-paramagnetic Ions

In the examples discussed so far, the electron-nuclear inter-
actions were brought about by the unpaired electrons of the
paramagnetic ions. We shall discuss here the magnetic moment de-

termination of Aul97

» which is normally non-paramagnetic, but
which exhibits hfs. when paired with a chromium in the silicon
lattice. From the standpoint of solid-state physics, this method

is of interest because it shows how the Cr and Au impurities are
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paired.

When Cr and Au are both introduced into Si by diffusion at
about 1300°C, observations indicate that the following processes
take place: the Au finds substitutional sites in the lattice,
while Cr remains in interstitial sites at the diffusion tempera-
tures. As the sample is cooled, the Cr atoms move into inter-
stitial positions adjacent to, and in, the [lli‘ directions from

the substitutional Au atoms and form the Au-Cr pairs.

The experimental observations are consistent with the
(Cr-Au) pair being neutral and having a total electron spin of
3/2. The axial field arising from the pairing can be described
by the DS% in the Spin-Hamiltonian, with D = 6.7 cm~1. By means

of double resonance experiments, Woodbury and Ludwig45 found
Q1
8“Lk“ V=16.0459 + 0.000>
Wk T=32
\QT 03T ¥ o.cooll wum
Mutha 3""8\1%&\1 =*0 = ‘

in agreement with the atomic beam value of
1q1
JAu Ty = +o. W2t £ o.0oilh um,

28
reported by Fricke, Penselin and Rechnagel .

61 57

5. Nuclear Moments of Ni and Fe

The importance of the ESR technique to nuclear physics stems

from the fact that it is possible to make measurements of spins
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and moments of nuclei having low abundance and small nuclear mag-
netic moments. Examples of these are Nib1 (1.25% and Fe>/ (2.17%),
both of which are odd neutron nuclei. The nucleus Ni®l will be
discussed first, in order to emphasize the need of future pre-
cision measurement, and then Fe57, in order to show how abso-

lute measurements of nuclear moments can be made by the ENDOR
technique. Of course, as is well known, the last nucleus is im-

portant in the Mossbauer effect.

The nuclear spin of Nibl

as shown to be 3/2 by Woodbury and
Ludwig29 from the ESR spectrum of Ni-doped germanium. Samples
were prepared by plating 5 to 10 mg of Ni enriched in Ni 61 to
about 83% onto an arsenic-doped germanium crystal of dimensions
3 x 3 x 12 mm3. The nickel was then diffused into germanium by
heating to 850°C for seventy-five minutes. The Ni atoms were
then in Ni~ state (with S' = %). The arsenic atoms were intro-
duced to control the concentration of Ni~. The maximum concen-
tration of Ni in the crystal was 7 x 1015 Ni/cm3. Since the

S' = %, there was only one resonant transition (M=-L=$M = %

for each N site, with accompanying 4 hf equal intensity lines

(at T = 21°K), indicating the I = 3/2, and the separation between

adjacent components is found to be 10.5 gauss.

Since no other isotope of known magnetic moment is availa-
ble, it is not possible to determine the Ni6l magnhetic moment from
the hfs. coupling constant. However, Orton, Auzins, and Wertz30

have indicated how an estimate of the magnetic moment can be made.
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These investigators succeeded in detecting the ESR spectrum
of Ni®l in unenriched nickel occurring as an impurity (Nit2) in

MgO. The hfs. coupling constant was found to be
ol - A
AN = (R3tol)xio o

which is comparable to the value found in germanium.

To obtain an estimate of the magnetic moment, the above hfs.

+1

coupling constant was compared to that of Co™— which is isoelec-

tronic with Nitt (3d%). The spectrum of Cot in MgO was observed
at 779K, following x-irradiation of sample containing Co++. The
spectrum of co™™ is characterized by g = 4.278 and A = 97.8 x

1074 em~l. For Co*, on the other hand, g = 2.1728 and A (C059)

(54.0 = 0.2) x 10—4cm—l- Now both Ni*t and Co™free ions have a
ground term of 3F and under the perturbation of cubic crystalline
field, this 3F term splits into three levels with the orbital
singlet level 3F2 lying lowest3?. In this orbital singlet ground
state, if one carried out the usual non-degenerate perturbation
calculation for the electron-nuclear magnetic interaction, one
can show6 that to the first order, the hyperfine coupling con-
stant A is approximately zero. However, due to the configuration-
al interaction, a small amount of configuration 3%5P“5d3‘-\-$
might be admixed into the original configuration 352'5P(°34%,
The existence of unpaired s-electrons in the admixed configura-

tion then can contribute through the Fermi contact term to the

hyperfine coupling constant A, which is given by6
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A= - Mi“ MK

-3
where (' Y is the average over the radial part of the 3—(\ or -

bital and K is the measure of degree of admixed configuration

3s3p°a4bls .

-3
46 £ound that the product {V¥ YK

Abragam, Horowitz and Pryce
is approximately constant (variation é 20%) and is about -3
atomic unit for the divalent iron group ions V++, Mn++, cottand
cutt. Therefore, to the first order approximation, we can regard

-3
(¢ Y K to be roughly constant. Thus,

G\ . \
NN S O T T3 R %

AT(_C}“)* = T \msﬂ <y Klsq sito
. <A A\ 2 894
with T = Iz' 1 = > and \PN = '-\-.105“ .

J

(R 3 «
\}XN‘.“'\ ) = 6.34 14? >k] ~ 0.31 wwm,
4y ]

Recently, Heine47 and Wood and Pratt48 proposed another
mechanism which is equivalent to the above-mentioned Abragam-
Horowitz-Pryce configurational mixing mechanism to explain the
existence of this anomalous s-electron effect in the observed
hyperfine coupling constant. The mechanism is essentially to
take into account the exchange interaction of the unpaired 3d-—

electrons with the inner core paired s-electrons. On account of
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the difference in the exchange interaction between two electrons
with parallel and antiparallel spins the resultant is the net
polarization of inner core s-electrons which in turn contribute
to the observed hyperfine constant A through the Fermi contact
term in the Hamiltonian. In this way, the first principle calcu-
lation of (\‘-3)\( is possible; the result for Nit* in a cubic
crystalline field is given by Watson and Freeman®?. The quan-

tity calculated is % which is related to <Y—3)\< by

He =-3%%

with % =-~3.27 odowic. it

2.8 25 -3
e 3 2 - = —— = LU XIo em
3K = (_83_’2.( = 2.8 au. ( .2‘lx|8q)b

el

N

- -
= ¥.3xI10 ! =\.(oE>X|b|q evas

-19
‘ ! I.Ab‘ 3o X LD x 16 = O.1] M.
‘}ku \ .—2@@4@-3“(— 2x092T x(6 20 5,05xt32¢x(.llloxt§5

This compares reasonably with spectroscopic measurement \JKN\'\:O'?‘S M.

by Kesslerso.

As mentioned earlier, some of these uncertainties can be
avoided by means of the double resonance technique, which was

57

used to measure the nuclear parameters of Fe~ in silicon.

The resolved ESR hyperfine spectrum for Fe®’ was obtained
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first by Ludwig, Woodbury and Carlson3l. These investigators dif-

fused several milligrams of iron, enriched in Fe57 to 84.1%, into
a silicon crystal of dimensions 3 x 3 x 1omm3. The sample was
held at 1200°C for about twenty-four hours. At 10°K, s spec-
trum of two lines with

2.0699
6.984 x 1074 em™t

It

g

|2l

was observed. To make a precision determination of the magnetic
moment, Ludwig and Woodbury32 carried out an ENDOR experiment.
At these low temperatures, earlier investigations had indicated
that the ion is in the form Feo, so that S = 1. Since I = 1/2,

the energy level diagram is as shown in Figure 15.

Because silicon has cubic structure, the three electron Zee-
man levels are equally spaced. The splitting of each electron
level into two levels is due to the nuclear hyperfine interac-
tion. The separations of these levels according to perturbation

calculation is given by

o Mlzw-1)+ SEHY-M 2
= | A - g - R |
For D:: 14,115.4 Mc/sec at H = 4868.6 gauss, resonances

were observed at £ = 20.943 * 0.6925 Mc/sec for M = %1 levels

and at 0.7096 Mc/sec for the level M = 0, *1, it is possible to

determine from above expression both the sign and magnitude of
a;{ .. From these frequencies, after making certain correc-

tions, Ludwig and Woodbury32 obtained the wvalue
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{
aN= +0.\Ro ¥ 0.0013 (6" is the cowedred vale 0(- 6\13

so that

\}AN(F:T‘) = 0.0903 ¥ 0.c00T WM.

B. Electric Quadrupole Moment

Experimental work on the nuclear quadrupole measurements by
the ESR method is somewhat scanty at the moment. An example is
the work by Terhune, Lambe, Kikuchi and Baker33, on the quadru-
pole moment of cr53. More recently, Eisinger, Blumberg, and
Geschwind34 have attempted to use similar techniques for the
measurement of the Cu®3 and cu®> quadrupole moments. At present,
very little definitive information is known about the quadrupole
moments of iron group nuclei, so that the double resonance tech-

nique to be described here may be a potentially important tool.

The electron nuclear double resonance (ENDOR) technique de-
14, 15
veloped by Feher permits direct measurement of transitions
between hfs. levels in the ESR spectra. One can measure values

of the interaction parameters with a much greater degree of pre-

cision than through observation of hfs. in ESR spectra.

The theory underlying this technique can, perhaps, be under-

stood by reference to the following energy level diagram of crttt

in ruby (see Figure 16). When the magnetic field is along the
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crystal C-axis, the magnetic field dependence of the 4 Zeeman
levels for S = 3/2 is given by the two pairs of diverging straight
lines. These lines, however, give the energy level of the even-
even isotopes of Cr. Only chromium contains about 9.55% Cr53, for
which the nuclear I is 3/2, so that for electrons associated

with such nuclei, each of the electron spin levels consists of

a group of four levels spaced closely together, as indicated by
the curly brackets (in Figure 16). The spacings of the hfs.
levels depend upon the electron nuclear spin-spin interaction,
upon the second order effects arising from the proximity of the
electron levels, and also upon the electron-nuclear quadrupole

moment interaction.

The spacings of these hfs. levels are measured directly by
first applying a saturating microwave as indicated by the double
arrow in the diagram. Then, holding the microwave frequency and
the magnetic field constant, a second frequency in the r.f.
range is applied. Figure 17 gives the schematic of the cavity
used for the experiments. The horizontal rectangular piece
represents the cavity in which the ruby crystal is placed. The
crystal is oriented so that it is accurately parallel to the
maghetic field. The saturating microwave power is introduced
into the cavity by means of a stainless guide, which is an exten-
sion of a conventional ESR spectrometer. The auxiliary r.f.
power is applied by means of a loop of wire wound around the cry-

stal. The next figure gives the experimental results that were
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ENERGY LEVELS FOR Cr3* IN AI;03 AT 6=0°
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obtained. We note that the resonance absorption frequencies for
the hyperfine transitions of the M = *# 1/2 groups are near 25
Mc/sec, and those for * 3/2 are approximately three times or
near 75 Mc/sec. There is, however, marked variations in the
structure of the triplets. These differences stem from second

order effects, and nuclear quadrupole interaction.

The quadrupole coupling constant Q , which is evaluated
from the experimental spectrum, is related to the quadrupole

moment by

2
CQ‘== 3e® oV
B3(21-4) 92’50

By means of nuclear quadrupolé resonance experiments or by
the double resonance experiment described here, it is possible to

obtain the corresponding quantity for A127

in the sapphire lat-
tice. In addition, the absolute value of the a127 quadrupole
moment is known from atomic beam measurements. If these results

are collected together, -
T
(SE) ot e M. she
2
() & W Gy she

Q(C-V's‘s) = - 0.0

For paramagnetic ions ih?solidsg’the gradient of the elec-

tric field at the nuclei contains a contribution from the dis-
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torted electron cloud and from the crystalline electric field.
However, in the case of the Cr+++ ion, the electronic g value is
almost isotropic and, according to Abragam and Pryce6, the elec-
tronic contribution to the electric field gradient is negligible.
Thus, as a first approximation, the electric field gradients at
both the A127 and cr53 nuclei are associated with the same cry-
stalline electric field. The ratio of the field gradients at
the two nuclear sites would then be equal to the ratio of anti-
shielding factor (4-—Xq,) for the two ions. For Al this fac-

+++

tor is about 3.59, and for Cr it is estimated to be about 6.

These results then give

Q(C_ys_s) = —0.0D barn

for the electric gquadrupole moment.

While the accuracy of this determination of Q for cro3 is
quite limited, this method appears promising for obtaining quad-
rupole moments of the ion group elements, many of which have not
yet been measured. Studies of systems, such as vanadium in
which ions of several different valence states can be observed,

would be of particular importance in reducing many of the uncer-

tainties.

V. Applications to Solid-State Chemistry

In the magnetic moment measurement of Ni6l

, it was pointed
out that the unusual valence state Co* was produced in Mg0 by

means of x-irradiation. A variety of investigations of this type
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have been carried out in different laboratories. For example,

11

Wertz and Auzins noted that the Cr3+ signal in Mg0 is reduced

upon x-irradiation, while that of Fe3+

increases. These changes
in the ESR spectrum intensities are not due to atomic displace-
ments, because the original intensity can be restored readily

by heat treatment. These changes are due to transfer of elec-

trons from one center to another.

These observations then, suggest that it might be possible
to develop ESR as an analytical tool to determine changes in oxi-
dation states brought about by x-rays and other high energy
radiations. As these ionizing radiations proceed through the
crystalline lattice, a cloud of electron dust is set up, and
the electrons can become trapped at metastable centers. As a

result, rather unusual valence states can be produced.

A good example for discussion is vanadium sapphire, inves-
tigated by Lambe and Kikuchi3®. The vanadium in this material
is identified by means of the characteristicv8 hfs. (V5l, 99.75%,
I = 7/2) lines. The specific valence state is then determined
from the angular dependence, and the temperature dependence of
the vanadium spectrum. The vanadium in sapphire occurs as a
chemical impurity occupying the Al substitutional sites. Since
aluminum is A13% we can expect the normal valence state of vana-

3

dium to be V3. ‘That this is the case can be readily verified

by experiment.
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The electron spin of V+3

is 1 so that in an axial crystal-
line electric field splits the ground state into a singlet

(M = 0) and a doublet (M = *1), separated by about 10 cm~1l. Be-
cause the separation is large, at microwave frequencies, only tran-
sitions between the M = *1 levels are observed. By making measure-
ments at liquid HeI and liquid HeII temperatureé, it can be

readily verified that the states M = *1 lie above the level

M = 0. The spectrum is strongly angle dependent, and the hfs.

components are about 110 gauss apart.

In addition to the V'3

spectrum that can be seen only at
low temperatures, it is possible to observe, under high gain, a
set of 8 isotropic lines having component separations of about

140 gauss. This spectrum has been assigned to V%t (s' = 1/2).

If the vanadium sapphire crystal is subjected to ionizing
radiation, a spectrum is de&eloped that can be readily ascribed
to V2+. This assignment follows from the fact that there are three
groups of eight lines, with hfs. separation of about 88 gauss.

The V2+ centers can be destroyed upon heating at temperatures
of about 700°C. The electrons responsible for the changes in
the vanadium oxidation state is still a puzzle. Apparently the

electrons do not come from the other wvanadiums, because the in-

tensity of the V4t lines does not increase with x-irradiation.

This investigation suggested the study of vanadium in several

2+

crystalline materials. The properties of the VO radicals ori-
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*
ented in a Tutton salt are being investigated and these results
are being used to obtain information about V02t on organic resins

and in glasses.

In passing, we should like to point out that wvanadium sapphire
is an excellent material to show students certain basic ideas
about quantum mechanics. As has been pointed out, the hfs. can
be studied and the effects produced by ionizing radiation can be
investigated. The Spin Hamiltonian is simple enough so that a
student can learn how to make calculations in a very short

length of time.

Also, vanadium sapphire can be used to demonstrate vividly
the effects of perturbing energy levels crossing over. For ex-
ample, Figure 18 shows the spectrum obtained at high magnetic
field when the magnetic field is along the crystal c-axis.

There are eight lines, characteristic of vol. This set of lines
is due to the transitions M = 1/2 == 3/2. The two electron
levels are sufficiently removed from other electron levels so that
the effects of perturbation are small, and the hfs. lines there-

fore are of almost equal intensities and equal spacings.

If we go to a slightly lower magnetic field, we should ex-
pect to see the lines due to the transitions M = -1/2 =3 1/2.

Normally, we would have expected this set to consist of eight

*R. Borcherts, G. Wepfer, and C. Kikuchi, to be published.
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lines. The experimentally observed spectrum near 9, 400 Mc/sec
is shown in Figure 19. The spectrum is very complex. The reason
for the complex spectrum is easy to see upon inspection of the
energy level diagram (see Figure 20). We note that here we are
making observations on transitions where the electron levels
M = 1/2 and 3/2 would cross over for I = 0. The manner in which
the energy levels interact in this vicinity is shown in Figure
21. The reality of the effects of cross-over can be made clearer
by taking the spectrum at K-band frequencies. At this frequency
MQ S} 2D so that the spectrum consists of three groups of

eight lines, as shown in Figure 22.

The effects of ionizing radiation on vanadium can be shown
also by the following method. If powders of oxides of cubic
crystals, such as Mg0 and Ca0 are melted with VOClz, dried, and
fired, at first no evidence of vanadium is obtained. However, if
the powder sample is subjected to x-irradiation, the eight lines

characteristic of vanadium are obtained.

It should be noted that these electron transfer processes
can be brought about by optical radiation. The first obser-
vation of this was made by Lambe and Kikuchi3®. In this experi-
ment, a single crystél of CdS containing a small concentration of
Fe was placed in the cavity at 4.29K, and the crystal was illumi-
nated through a hole on the side of the cavity. When the crys-

tal is illuminated with green light, a spectrum which can be

3+
identified as due to Fe is obtained. If the crystal is then
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illuminated with red light, the signal disappears.

The interpretation that has been given is as follows: Felt
is present in CdS as an impurity. Its spin resonance is not
observed, possibly being too broad. When free electrons and
holes are produced by the green radiation, the Fe2+ traps a
hole and becomes Fe3+, which is readily observed because it is
in the s-state. The electrons must be trapped elsewhere. The
action of the two micron infra-red radiation is then to restore
the electron back to the Fe ' converting it to Fe2t. The two
micron light may release an electron from some other trap or may
move it from the valence band into the Fe3%. A similar effect in

ZnS:Gd has been observed by R. S. Title37.

The above examples demonstrate the usefulness of electron
spin resonance. No doubt many more applications will be found
that will provide us with an insight into the microscopic effects

produced by radiations.
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APPENDIX A

A HAMILTONIAN FOR ELECTRONS

In this appendix we obtain a Hamiltonian for electrons in
an atom. We follow Slater's approach in applying Dirac's theory
to a single electron moving in electric and magnetic fields7.
Generalizations can then be made to take into account the effects
due to the nucleus and other electrons, as well as external per-
turbations. Nuclear motion will be ignored, although, if de-

sired, reduced electronic mass can be used.

It is known that the energy of an electron moving under the
influence of external fields is given by the relativistic ex-
pression

2
A)=o

)

2 2 4 0
(A1) (B+re@)-mc - (p+2
where Q . A are the scalar and vector potentials, and mo,g are
the rest mass and linear momentum of the electron. Here the
energy is represented by the Hamiltonian function ﬁb . Tran-
sition to a quantum mechanical expression is achieved by the
usual replacements, R*"Lﬁg R E — "'lﬁy_ . However, in
order to admit wave solutions having time dependence of the form
exp ( —iﬁ'b /'ﬁ ) it is necessary that the equation contains

only first-order time derivative. For this reason, Dirac chose,

instead of the normal Schrodinger equation,
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-1
(a-2) { (H+e)C' & o_(-(E+—Q€1§_)+ @MOC.}\\) =0,
which also exhibits the space-time symmetry familiar in relativi-
ty. The dimensionless quantities ;“_ ' @ are independent of
time and coordinates because in the absence of fields the
Hamiltonian must describe a free particle. Therefore, they

commute with a , Q . P, A,

It is clear that we can also derive a relativistic Schro-

dinger equation from (1),
x’f\gﬂé ={(_MC +(P+ Mc } - qu\\)

(A-3)
={Moc+ JV—— m4+-- —eQK\\'

where N = ("W\V_'\' %5) , and as in (1), € represents the mag-
nitude of the electronic charge. If (2) is a correct descrip-
tion of the electron then it is reasonable to expect its solu-
tion to satisfy (3). In this manner 9‘_ and @ can be deter-

mined through the requirements
2 2 .
O(L = @ = | , \= ‘,2,5

(A-4) Eo(wb(} (_b(“@} t

where []{. denotes anticommutator. These conditions cannot be
satisfied by ordinary numbers, but if the quantities are treated

as matrices then it can be shown that4l
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(A-5) o (c;: i) ) @z &%} "Dﬁ )

where 01 are the well-known Pauli matrices and ﬁ. is a unit
matrix of rank 1. This result means that (2) becomes a matrix

equation and that \\J is now a four component column vector,
o €r Wil W |

=0
(A-6) ¥ N )
3 \ Z, € O \\)3
]‘I‘*“\.:Nz —ES O e- q14
=\
where et= (E—*'\' QQ)C pd W\(,C . Since the determinant formed

by coefficients of wﬁ must vanish we obtain equation (1) with
é’% =8 . E) appears quadratically so there are two energy

eigenvalues, one positive and the other negative; it can be

shown that there are two linearly independent solutions (2

sets of ‘\it ) corresponding to each choice of the energy.¥*

For electrons we choose the positive energy and eliminate
\\)‘ and \\)2. after rewriting (6) as four equations. The two re-
maining equations containing 0)3 and \\}u_ can be reduced by operat-
ing 3\1( on all functions depending upon positions. After some

manipulation, each of the two equations is found to be a com-

* Negative energy corresponds to positions.
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.7
ponent of the equation .

(P+§-A§ dic'(y-a
(a-7) i —=— _+ 59 - <4
2mb(Eted)lc”  amy(ehed)

_ ehe® E-| (P+ LAV LB+ L N)xa Voo ,
[2m+ (E'veq)c?]* ~I Pl - _l

where E' = S-‘Moé, the potentials are assumed to be time-indepen-
dent, and Q’ is a two-component column vector. The Hamiltonian
given by equation (7) represents the energies of a single elec-
tron moving in electric and magnetic fields. We shall next speci-
fy the wvarious fields and potentials, and thus introduce electro-
static and magnetic interactions arising from the presence of
other electrons in the atom and the nucleus. At the same time,
the Hamiltonian can be generalized to describe an arbitrary num-

ber of electrons.

Consider a many-electron ion in which the positions of the
nucleus and the jth electron are specified by E and r . At
any electron the magnetic field is the sum of effects due to the
orbital motion of the electron, the magnetic moments of the
nucleus and other electrons. For this electron the scalar poten-
tial will consist of Coulomb interactions with the nucleus and
other electrons. If the ion is placed in a crystalline lattice

then the neighboring oppositely-charged ions produce an exter-

nal field which must be included. Consequently, the interaction
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energies of the jth electron becomes

=g Ered)c* [ P4 2 2P (A Ayt A
() ) \ 1 < '
+ IHW
U

HEAY + ok 5.+ (4,,+
e : o AEE TR
Q(Qexb \E:jr‘] Z‘Q ¢ V‘\\e \ ~ ielf [zmoc.HE‘.{-ed(‘\c ]

Wi g, & o= ej_ e e |

=exy \R- V'\

LR EAYL LR EAYXS,
e e \XX

where rft\—th and ﬂex\i represents the external magnetic field.
In this expression nuclear-electron and electron-electron terms
are denoted by subscripts N and jk respectively, the primed
summation symbol implies that terms with k = j are to be omitted.
The scalar potential, as we have written, is not quite correct
because of retardation effects and the fact that electrons are in
motion. However, the necessary modification does not effectively
alter the Hamiltonian for our purposes so we shall neglect the
corrections. The total Hamiltonian can therefore be written as

a sum of 3&- if one is careful not to double count the terms in-

volving electron-electron interactions. This remark will be made
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explicit in the following.

From classical electromagnetic theory it is known that the
vector potential and magnetic field at the jth electron due to

the presence of the kth electron are given by

[ -3
(-9) ﬁﬂ\e— Ik"ik T ALK %@ )

-3 -3 -5
(A-10) Ho=Qxt W "y S CE
{R —k ‘\z \k =R \R + \\e -'\\D fi )
d
where Jj and &k are the current density and magnetic moment of
e
the kth electron. In the quantum description, 1=‘- - ﬁ—C.E-
<)

—-BF _&h _
and M_ @_ ., Where @_moc' is the Bohr magneton. For the nu
cleus with angular momentum I the associated magnetic moment }LN
is %N%NI’ where g and @N are nuclear gyromagnetic ratio and

nuclear magneton respectively. Equations (9) and (10) can then

be used to give &“ and B—N‘ .

For convenience, we shall represent the terms in each cur-
ly bracket in (8) by (ﬂ'\i, i=1,2,3. To a good approximation
the denominator in (363‘\1 can be replaced by Qmo' Since the
leading term, the kinetic energy, is the largest term in the
Hamiltonian we can obtain a better approximation by expanding its

. . 2
denominator in powers of c7,

2 , a2 P, -1
2m+ (.4 ef. P.
R e R
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where the second term clearly represents the relativistic correc-

tion to the kinetic energy. Hence

2

(GQ\\ _%_ + e8 n BalTxY \P\ (mcv\)

(A-12) +a E“%‘}ﬁ”@'!“\ - (1 G}Y I_\_eo‘ '—-ex&

! <
— %2_ Ez(gi-g‘g(ﬁ\%@ 3 &( X \h\ P‘-\—(G' X YETY 3 \\z

| -he; Q‘Q\(zr\k\ N sﬁw\-_\QL \@(2%) ‘1

N nraz B! Ph o,

where we have assumed that the nucleus is sufficiently close to
the origin as compared to the electrons so that \B_-!‘,\\ ~ V'& '
and terms of order NR have been neglected. It is seen that
terms contained in the k-summation represent electron-electron
‘magnetic interactions; they are symmetric in the indices and
therefore constitute the total contribution to the Hamiltonian

from the jkth pair. When summing over all electrons to obtain

the total Hamiltonian we must multiply these terms by a factor
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of 1/2 to avoid double counting. The nuclear-electron interac-

tions in (12) can be rearranged as:
(A-13) 28»:%\\\@;'\(!-'\' E'QY‘ ¥ 3% (s\ OY\ X

with W‘ Q& “ ‘ Terms in the bracket may be regarded
as the effectlve magnetlc field at the nucleus produced by the

jth electron.

Electrostatic energies are given (ae)z The various electric-
multipole interactions can be displayed by expanding the nu-
clear electron Coulomb term in inverse powers of rj. Keeping

=5 we obtain

2! 4
(A-14) (%;\\2: - eQI\ = —ef 4+ 0 Z v"lz
~2¢ Evg‘ + PR 4 i?s(!i-e_?- V‘zxzzk( zv;y' 1.

The three terms arising from the expansion correspond to the

terms up to rj

ordinary Coulomb, dipole, and quadrupole interactions respec-
tively. From parity consideration it is readily seen that the

nucleus has no dipole moment and so the second term must vanish.

The terms in G*%»a are effects involving the electric field

Ej. We note that the electron-electron contribution is not sym-

metric in j and k, thus in the total Hamiltonian we need to add
a similar term interchanging j with k . It was seen earlier

J

arising from nuclear-electron interaction can be treated as a

that R - Ej may be taken to be r: such that the electric field
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central field. Since we are already dealing with a small con-
tribution to the Hamiltonian we may neglect most terms in Aj

in comparison with gj. The only vector potential we will retain
is AN. because the inclusion of this term leads to a nuclear-elec-
tron coupling due only to the S-state electrons (&1-0) for
which the nuclear-electron interactions in c“w 1'vanlsh. To

illustrate this remark let us write

i € (BHiPxg. (Pxq. ) >
), =~ S (GHEXE) s BBz

- 62 e (P-\-tP\XG)\r e )

(A-15)

é—f_‘[mocwe% e&-)c"zj'z\‘-:-\?- (A, X G‘.) ;

s L

where we have replaced the denominator by 5HM° except in the
last term for which we assume ‘E 'E\! .* This last approxi-
mation is usually valid since nuclear electron effects generally

dominate.

The reason for retaining the full denominator in the nuclear
term in (15) can be seen when we consider the fact that ultimate-
ly the quantity of interest is an averaged Hamiltonian. Using

the vector identities the operators become,

* The term proportional to 51 . AN therefore vanishes.
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\ ~N\ Xg)) = 28"€’N -r\x(xw\

=23N\3"X ER AR AR X
Wy

The small nuclear magnetic moment enables us to apply perturba-

tion theory. Therefore, to first order we will be interested in

the diagonal matrix elements of(jQ) in the representation which

diagonalizes %_.-(qx*'sa the square of jth electronic angular

momentum, and (\\ , one of its components. Applying the

Wigner-Eckert theorem we obtain

g_\.(h“.\xg.\\ = 26“%'“ (1 'Aﬂ\b{ﬁv szl aéj-i‘ﬂ Uﬁ'g(i.ﬂ)

(A-16)

= ‘Z%N @“ \L 5&\&%"@'\" “zﬁvg“\{ KMY 1;

where we have used the relation

(h)eey= LRy + isAkey/,

valid for spin 1/2 particles.*

* To prove this we merely consider the commutation relations,

e [SC,S{] +IS( ,SX]_‘_ = ie‘iilas‘?/?— + ﬁ-gll\ /L\. = S‘.Sg
AR =ie. MBS, /[, + ANR.
S\ \S\Es\ lQﬂ ¢ \ kl/z ﬁ' ( \/u‘
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The above result indicates that in taking spatial average of
the last term in (15) we need to evaluate the integral

ﬁé"«s\?wﬁ 1+ (' equ)amdS | dr

(A-17)

For small r E (r) and Q (r) behave like r~2 and r~t respec-
tively while the radial part of the wave function R (r) varies
like P . Hence the integrand is finite but the entire term is
small in comparison with the other nuclear term. The contri-
bution is then customarily neglected in the Hamiltonian. When
&-’-"0 the integrand diverges unless the full denominator is
retained (singularity in E is removed by Qz ), the integral is

now finite and large; in fact one can show that the function

2

fw= %} L1+ (EheQyamgy™ |
has properties similar to those of the Dirac delta function7.
Away from the origin the denominator is essentially unity. Now
QEQ‘) represents the force acting on the jth electron so
the integral of -&U‘) gives the ratio of electronic energy to
'Z\MOC_.Z , this is of order Kev/Mev. Near the origin
%L"} is essentially M.C_.z which is relatively large.

Furthermore, with B = — CC}_\%

_ ©
f= U+ ke | | ol ~ 1
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We conclude that the last term in (15) is significant only for
the S-state electrons. On account of its unique spatial property

the contribution to the Hamiltonian usually appears in the form

“‘%N%N@ SCY\ &'S;§§(3Y’)-‘ By a similar argument, (13)becomes
2%N%N€’Q&'\'\“§,'*5‘_V}‘\‘\‘\'\\] ~1 , which vanishes for S-state

electron. These two terms constitute the magnetic interactions
between an electron and the nucleus and give rise to the so~called
hyperfine structure. In comparison to electron-electron inter-
actions, in particular the spin-orbit coupling which leads to
what is called fine structure in the energy spectrum, the nu-
clear electron terms are smaller by at least three orders of

magnitude.

We now combine the three (967\\ and sum over all electrons

to exhibit the total Hamiltonian as

2 2 r 2 2 oy -3
R = &E‘__ Ze +z %: — e+ 22@@&@‘.\;
M %k ik

! 2-P 31
L . .
4 2@?2 Kf T { (S P (S Y B L)
2 -5
A — 3G
. . . 3 -
S AR [T

. 3
~ {5 (X B+ 5 xR} (2§ 1
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\-‘(\gﬂ\ >

2 2

i
R Ze [ =5-R ey

Eg“%l

_\_(zg l__mx _\?\/M —-% = _\/’6\ .

In (18) we have derived a general expression of the Hamilto-
nian for electrons in an atom. Obviously, any attempt to apply
the entire Hamiltonian in a specific problem will be a difficult
and tedious task. It is fortunate that for the purpose of dis-
cussing electron spin resonance only part of the Hamiltonian will

be needed.
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APPENDIX B

NUCLEAR QUADRUPOLE INTERACTIONS

In Appendix A a general Hamiltonian for the electrons of an
atomic system has been derived. When the system under considera-
tion is subjected to solid state forces and external magnetic
fields the description of all the interactions present necessari-
ly has to include effects not involving the electrons. Two
such effects of interest in spin resonance studies are the inter-
action of the nuclear electric quadrupole moment with the cry-
stalline field and the nuclear magnetic dipole interaction with
the magnetic field. While the latter interaction is well
known and can be written down at once it is perhaps instructive

to consider a brief derivation of the quadrupole interaction?2-

Then general interaction between the nucleus, atomic number
Z and mass number A, and a crystalline field which gives rise to
an electrostatic potential V(x) can be written as

= | PN A
R | Ny ax

(B-1)

3
where Q(EBAX. is the amount of nuclear charge in elemental
volume d3x about ‘ﬁ and integration is over the nucleus. We
next expand V (x) about the nuclear center of mass and obtain as

the first two leading terms
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(5-2) f =ZeN, + 22N+
NC © L\

' 2
where Q‘-‘ESY;X‘-R(‘_)& and V{i:(a%\‘;)‘bo. The first term in the
expansion represents the interaction energy of the nucleus
treated as a point charge. Since it cannot lead to information
regarding nuclear size, shape, or orientation we shall neglect
it in subsequent discussions. The next non-vanishing term is

the quadrupole interaction to be denoted as égqx; K

Ultimately we will be interested in matrix elements of GQGK‘,
where in quantum description, the charge density 9(§) is to be
?ov“\— 5(!\_"\_‘*2) . It is known

thatagqcis small compared to separation among nuclear energy

regarded as an operator

levels so that only the ground state needs to be considered.

This implies that the total nuclear angular momentum will be a
constant of motion and all matrix elements will be of the form
(1“\&QQ\I“<> , where m is the magnetic quantum number de-
noting the projection of nuclear spirt!;zalong the axis of quanti-

zation. Consequently,

(B-3) 41“‘\3%@:_\1’“}7— "1 \I" AIN\Q"-A‘\'S.MW >

* It can be shown from parity considerations that the nucleus has
no electric dipole or octupole moments. The next order interac-
tion not shown in eq. (2) will be that involving the hexadecapole

moment.
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where

In this expression EI_(&U"'J!‘A» is the nuclear wave function

where }&i is the position of the ith nucleon.

In order to obtain the matrix elements of Q;ﬂ we make use
of a theorem which states that the corresponding matrix elements
of all traceless, second-rank, symmetric tensors are proportional.*
The second-rank, symmetric tensor CD \ is not traceless; however,

it can be written as

‘\ ,. _ g..z th ‘

where CQR has zero trace. The second term is independent of
nuclear orientation; it is of no interest in the present dis-

cussion and will therefore be neglected. Hence we obtain

<1“'\\Q \1‘\(>"" 41““@('\1&“')/ 2,

(B-4) 4 = c{m|3 (1;1§+'1§I;§- Xzsi" \w Y

where we have used nuclear spin I to construct a second-rank,
symmetric, and traceless tensor whose matrix elements are well
known. To determine the proportionality constant ¢ we define

the nuclear quadrupole moment Q as

* For proof not using group theoretical arguments see Ramsey43;

otherwise see Wigner44.
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I

and so

C eQ
(B-5) T(21-1)

With the foregoing results the part of quadrupole interaction
of interest is now written as
2
Q5 V| 30311 - TSy,
(B-6) Qc 61(9.3:\) Ly \ \

where equality is understood to be in the sense of matrix ele-

ments of constant I. The equation can be further reduced by
choosing a set of principal axes for the crystalline field, ie.,
a coordinate system in which Vix is diagnol.

Thus

e
éQQ(,:: 21(21-0) ¢ Vﬁ X‘( ’

(B-6)
since V satisfies Laplace's equation. Now if the electric field

gradient has axial symmetry,* VXX =av,., = =~ (%) Vy,

e R = =2 3T )

ac e

>
If the electric field gradient has spherical or cubic symmetry,

then 3%(}(:'-'0
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This expression is directly derivable from eq. (6) without approx-
imation if one is only interested in diagonal matrix elements

(m =m').

We may use the same method in rewriting the electrostatic
interaction of nuclear quadrupole moment with the electrons.
The matrix elements of this interaction which has been given in

Appendix A is

o) ConEglowy=- %2\ \E\3 &2\3&@\;5 <) O\ TMY

Replacing the nuclear coordinates by appropriate spin components,
we find again in the sense of equivalent matrix elements for

constant I,

ec A2 _2, .3
(B-7) éeQ‘E::.- 371-13(1‘!“'}1 &v\ ,

the constant ¢ is determined as before.
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APPENDIX C
ANGULAR VARIATION OF THE FINE STRUCTURE
COMPONENTS IN AXIAL FIELD
As seen in II-1, the general Spin Hamiltonian in the case of

axial symmetric field can be written as
. 2 _ (st
(c-1) 3%:@§_8‘_'\_+D‘_$z 3 x

where the electron-nuclear interaction is omitted. This
Hamiltonian applies in the case of I = O, as the example for the
even isotope of Cr+3 in MgO with a Mg++ vacancy in [00‘}
direction (Z-axis here is taken to be the axis of symmetry). With

the inclusion of the second term in ae , the ESR lines will show

the so-called fine structure. The quantity is in general a
tensor with three principal values 8*.‘ , %a and 311 . In
the strong field case when @\6‘&\ )}D , 1t is convenient to

rotate the coordinate axis so that the first term is diagonal.
This can be done by taking the direction of 8";‘_ as the new Z-

axis. The procedure is as follows:

As seen in Figure 23, let H and g°H make angles (0)¥ ) and

(°f¥ ). with respect to the coordinate axis (crystal axis). We

then have

“X== F\sﬂnébcnsﬁv
H& = H sivoswmy
}\? = ¥\ .Y -
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FIG 23
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(%- ‘Dx-‘ \%’&\s'mgus-\i = 8“\'\‘ = axX'r\ sl sy
(%&\a = \8-\_\_\4\&64& = a%Aa = a%\-\ sing sind
(a. ﬁ\z = \a.mu{é =622A2 = 822\-\@&9

(C-2)

From (2) we have
\a- By = Hl[atxﬁ»:ec.&\! x agasnlesuﬂ’ * a,:a“‘zﬂ
=W (a’;xeﬁszg\’ ¥ 823'3@2% sing + 8:2“";38

Let , . 2 2
2 2 ° 2 —
= ws\Y & Sw 3 - azz
(c-3) a.l. _—— 8‘5‘6 ¥ 6‘\
and

2 2 .2 2 (_gg?'
(c-4) % = axs‘”‘e + 6\\ 8
We obtain

e qe( = »\‘az o 1g8)= g .

Further, from (2) and (5), we also obtain relations between

angles.
(C-6) 8 = -(%—J’.S&AB S WS f = -‘%—\Lcasa
- . . - a .
(c-7) sy = %?“W > smy = _a-z{b&mﬁf .
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Now in axial field with Z as axis of symmetry,
mmetry Jo ™ Jy

Jo= Ty~ &

Also from (7), \\’=\\’ that is, OZ- ) \.'\_. and 6\3 lie

hence from (3)

on the same plane, therefore we might as well take this plane to
be the X-Z plane ( w = 0) and rotate the coordinate system around

’
Y-axis for an angle § so that a‘i is the new # axis, then

€§.'(a"ﬁ§= @SZ-\E"E\.\ = éa*\sz' )

i.e. the first term is diagonal. Now consider the effect of this

rotation on the second term in the Hamiltonian,
Dig‘ %(&\‘\ X
F4

The matrix for the rotation can be easily written down in terms

of e as (see Figure 24).

X (X
d1=R®|Y)| 5 R®={ o 1 o
z] 4 \& ~sinl o b

Since S transforms like a coordinate under rotation,

= "S\MQS&, + me Szl

——

or using relation (6) between angle 6 and e )

= - 3—is:uasx, T LR

d
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FIG 24
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= —GS + bSZ"J where &= %LS‘“G b 8"1%\'

_ -a$, ;

Therefore:
2
< - GS, —Ab( S35, 5,50 * © S,

or

Je- S| = D|d qlo(Sz&,-\-SK,St\-k-bg %‘S*QX

Our Hamiltonian now becomes

39-_-@(6&\3; DS, - ab(S,848S)+ 65, - T |

3

For a given S, we can always solve this exactly by setting up
matrix for the second term using eigen functions of the first,
and then diagonalize it. However, this is unnecessarily comp-
licated by large value of S, and in usual experiment éa\'\ )}D

so we can treat the second term as a perturbation. Bleaney38,

39

Low™", and Buckmaster40, have given an expression for this, but

here we will show the result to the first order which is suf-

ficient in usual experiments.

Since

5 u}s +S +SS r SSy)

ASS
X X # z(sars-»* S8+ 5,5 +55,)
The second term in the Hamiltonian becomes
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{4 S+S WESS+SS DS SHSS AR +SS,)
A 'zbsz, ;scsml

In calculating (\A\ \Nf) , the first and third terms do not

contribute, but

(M\%_-z (SS+S)IMY = a \'_S(SH)"MzX

(C-10)

MBSy, MY = M

Therefore the energy for given M is

EM) = @at\Nw { R SEH)-M [+ 26M - 3—5(54:\)%

-@%HM + { ﬁ-)smei&&\)ﬂhz(%_‘)%w\ ..s(g\\)k

= @6‘*“ + [y %—j ms%—\}[w\_. %@smx
E)- £k = B4+ D53 (ﬁa“&g& 11

or for strong field transition hM=t‘

) W) = BgH + bm—%ﬂs(ﬁa&)" wn -1

(c-11) H = Ho— DIQM“%>15(%L§Q€Q— 13
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where D p

HzL D=E“
=3 1

From (1l1) we see that the fine structure lines are equally

separated with separation
D[s( Iy o2 - \S

Therefore, all the fine structure lines will collapse into one

single line at the angle

3(‘%%%6-1 =0

& = s L

(‘(\\\

%, \3 a) '

Experimentally, this is a good test for correctness of the Hamil-
tonian (1) and also a good way to measure a“ and hence 3-\_ af-

ter % has been obtained from the position of the single line

at €§==€§°
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