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PREFACE

To date, most of the work in digital computer theory has been
directed towards one of two ends. One of these ends has been the
specification of procedures for arriving at irredundant logical designs
of various types of automata. The other has been adefinition of the
logical capacity of automata structures in general. This has left the
study of the reliability of computing machines in a badly underdeveloped
state.

Until just recently, the study of methods for improving the
reliability of computers was largely confined to the development of
techniques for obtaining greater individual component reliabilities. The
type of results that have been obtained in this area are ideal as far as
the production of more reliable computers are concerned. Nevertheless,
a theory of reliability based on logical design criteria has a complemen-
tary value which it alone can provide. The reason for this is as follows:
It frequently happens for certain applications that more reliable com-
puters are needed then existing components can provide. In such cases
if satisfactory logical methods are not available to sufficiently improve
the computer's reliability, the designer must wait for further results
from physical research. And even after this, he might be told that
~ practical reliability ultimates have already been reached for usable
component types, which might be few in number to begin with, due to

stringent speed, power, and loading requirements. Hence, it is easy
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to conceive of cases where logical design methods of improving com-
puter reliabilities provide unique solutions to practical problems.

The study which follows pertains to one aspect of the practical
type of theory which is needed. It concerns methods of specifying the
design of idealized, logical nets such that the outputs of these nets are
correct provided no more than any set of k or fewer component failures
occur within them while the output of the net is being determined. The
failures can be either transient or permanent, and the upper bounds on
the associated probabilities are based on information which has appeared
in the literature on the reliabilities of typical present-day computer com-
ponents. The theory is nearly complete with respect to the definition of
k-correcting redundant net forms which are most economical in the sense
defined. The components which have been allowed are the familiar ""and, "
"or, ' and '"not" elements. They have been idealized to operate in dis-
crete time with either 1 or 0 units time delay.

Bibliographic references are given throughout the text by the
expression ''(n).'" '(n)" means consult the nth entry in the Bibliography.
All abbreviations and symbols found in the text, with the pages they first
appear on, are listed just before the Introduction.

The author wishes to express his gratitude to his committee
members, and Professor Scott, his chairman, in particular, for their
helpful remarks during his discussions of this work with them. As the

recipient of a Bell Telephone Laboratories Communications Fellowship
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from June, 1957, to February, 1958, he is indebted to that organi-
zation for financial support over the period of the grant. Some of the

work was also carried on at IBM Research Center in the summers of

1957 and 1958,

W. L. K.

Dept. of Elect. Eng.
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September, 1958
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INTRODUCTION

Thus far it seems that only few really notable works have ap-
peared in the literature on the subject of logical design methods for
improving reliability in digital computer nets, and only a small pro-
portion of these works have dealt with the problem at the component
level., Two outstanding ones that have are, '""Probabilistic Logic,"

(5) by von Neumann, and '""The Synthesis of Reliable Relay Circuits
Using Less Reliable Relays,' (14) by Moore and Shannon. Von Neu-
mann's principal result is that by carrying single bits of information
over large enough bundles of wires, one can synthesize arbitrarily
reliable stroke organs from large numbers of individual stroke com-
ponents. His technique also applies to several other kinds of unilateral
components. However, its greatest defect, as far as design engineers
are concerned, is the tremendous multiplication in equipment that ac-
companies its use.

Moore and Shannon show that by using special nets of relays in
place of individual components, nearly ideal relay characteristics can
be obtained. They use the bilateral property of their components to
excellent advantage in order to obtain results which, economically
speaking, are incomparably better than von Neumann's. Unfortunately,
however, all the relay-type components which are now in existence are
too slow to be of much use in modern computer construction.

A few special logical tricks have been worked out for improving



computer reliabilities at the component level in certain situations.
But the theory which supports them is so intuitive that is is impos-
sible to appraise them out of their original contexts. Consequently,
they are not composable into a unified procedure for obtaining max-
imum reliability as a function of computer cost and operating speed.
Hence, the art of computer design remains without a really applicable
theory for inserting component redundancy in digital computer nets

to make them more reliable.

The present study is a first attempt to remedy the situation.

It is based on a general set of idealized components which operate in
discrete time with zero or one unit time delays. The study concerns
methods of expanding the logical design of several types of irredundant
computer nets so that sets of k or fewer component failures within them
do not cause their outputs to be incorrect. Nets having this correcting
property are said to be k-degree failure correcting, or kc. It is shown
that in almost all cases of current interest, the k-degree failure cor-
recting improvement criterion is synonymous with that of probability

of net failure.

The second chapter defines a form which is probably most
economical for kc nets of the type that do not contain any feedback
loops within them. The third chapter derives a corresponding defi-
nition for memory nets. The fourth chapter defines 2 alternate forms

of over-all kc computer nets, one of which, in each particular case,



is probably most economical in the sense indicated. The second form
of Chapter 4 makes extensive use of the feedback principle. Various
logical nets in this form are forced to keep repeating their output
determinations until no failures occur to corrupt them. The fifth
chapter gives some results pertaining to most economical k-degree
failure detecting nets of the type that do not contain any feedback
loops in them. The last chapter contains a few comments on the

nature of the results obtained in the study.






CHAPTER 1

DEFINITION OF THE PROBLEM AND A CLARIFICATION OF OBJECTIVES

1.1 DEFINITION OF THE NET COMPONENTS

All of the logical operations that present-day digital computer
packages are capable of performing have the following characteristic
in common: They are easily expressible in terms of the three prop-
ositional calculus functionals "and,' "inclusive or,'" and "not.' This
set of functionals seems to be the most convenient one to use in ex-
pressing all the basic logical operations that have been implemented
in digital computers so far. Thus, a corresponding set of idealized
components has been chosen as part of the basis of the reliability
study of this text.

The graphic representation of the three component types is

given in Fig. 1. These components are binary in the sense that the

x! X1V.«.VXp

—(—)
/

X

8.) "not" b) "OI‘"

Figure 1. Representation of the Three Component Types.
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state of each of their input and output wires is always either 0 or 1.
The "or'" and '"and" cofnponents in Fig. lb) and c) respectively, can
have any finite number of inputs.‘ The output of the '"or''" component
is 1 if and only if one of the corresponding inputs is 1. The 'or"
function is written in Fig. 1b) as X) VX, Vee o VX The output of the

"and'" component is 1 if and only if all of the corresponding inputs are

x . The

1. The "and" function is written in Fig. lc) as X)Xy e X

output corresponding to a 1 or 0 input to the '""not'" component is 0 or 1
respectively. This relation is represented in Fig. la) by writing x' as
the negation of x.

In the study which follows, time is always discrete. That is,
the complete history of a net, which is composed of interconnected sets
of components of the type in Fig. 1, can be given for the interval from
time 0 to some time T time units later by listing the input and output
states of all the components in the net at the times 0,1,2,...,T. The
outputs of all the '"and'" and "'or'' components of the net are produced
one time unit after the corresponding inputs arrive. But the outputs of
all the '"not" compdnents are produced at the same instant that the
corresponding inputs are presented. That is, there is no delay associ-
ated with the '"not'" component. The reason for this is that with con-
ventional computer packages, the negation can usually be made available
as quickly as the assertion. The extra cost which is usually involved
is accounted for in the present theory by indicating negations with com=-

ponent operators.
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Associated with each component is a probability of failure,
denoted by e. e is the probability that a component fails transiently
or permanently at time t, or has failed permanently before t. A
component is said to fail transiently at time t if its output at that
time is incorrect with respect to the corresponding input. A com-
ponent is said to fail permanently at time t if its output at that time
is incorrect with respect to the corresponding input, and if this out-
put remains at the same state throughout all later time regardless
of the component's inputs. It is assumed that the probability of fail-
ure of each component in a net of interconnected components is inde~
pendent of the probabilities of failure of every other component in the
net,

Abstract permanent failures may correspond to physical
failures such as broken resistors and shorted tubes, since such fail-

ures cause the circuit packages in which they are located to completely

ignore their inputs after they occur. Abstract transient failures may
correspond to transient malfunctions in transistors, tubes, etc., which

occur after these elements have deteriorated enough to begin operating
marginally. Abstract transient and permanent failures are the only

types that are considered in this paper.

1.2. INTERCONNECTABILITY CONVENTIONS

Any finite number of the three types of components in Fig. 1

can be interconnected to form nets according to the following rules:
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No two ''not" components can be connected in series. The output wire
from any component can be split into a finite number of branch wires.
Each of these branch wires can be used as either an input to another
component or an output of the over-all net in which it is located. Output
wires of different components cannot normally be merged. However, in

Chapter 5 merging is permitted under certain special restrictions.

These restrictions are defined there.

All nets are assumed to be synchronous. This convention brings
the discrete time domains for all components common to the same net into
coincidence.

The cost of a net is defined as the number of component inputs con-

tained in the net. This cost criterion is justified to the extent that in many
cases it quite closely represents the cost of the physical equipment which
would be needed to physically realize the abstract net.

An irredundant net is one which realizes a given logical function,

or performs a given storage function, or both, with minimum cost. It will
be assumed hereafter that all nets which are ever presented for reliability
improvement are irredundant.

Every net must be either cyclic or noncyclic. A noncyclic net is

roughly one which does not contain any feedback paths in it. More pre-
cisely, it is defined as one which can be completely partitioned into n dis-

joint sets of components, called levels, as follows: The lst level consists
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of all those components which receive all their inputs from the inputs to

the over-all net. The jth level, j> 1, consists of all those components which
receive at least one input from the outputs of the j-1st level, and which
receive all their remaining inputs from the outputs of levels i,
i=3j-2,...,1, and the inputs to the over-all net. This completes

the definition by induction.

Next, a graded net is defined. Suppose there is given a noncyclic
net. Replace each of its ''not'' components by a wire which connects the
component's previous input and output wires. Then if the resulting net can
be completely partitioned into disjoint sets of components called stages as
follows, it is a graded net. The lst stage consists of all those components
which receive all their inputs from the inputs to the over-all net. The jth
stage, j> 1, consists of all those components which receive all their inputs
from outputs of components of the j-1st stage. This completes the definition.

Obviously, graded nets are special types of noncyclic nets. Here=
after for notational convenience, ''graded noncyclic nets" will be denoted
'"gnc-nets''; ''noncyclic nets', '"nc-nets'; and ''cyclic nets', ''c-nets'. Figs.

2,3, and 4 show examples of gnc-,nc-, and c-nets respectively.
! I

Inputs Outputs

Group 2 Group 3

Figure 2. A gnc-net.
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inputs 5
—®
>
N outputs
@ Y
9 10
Figure 3. A nc-net.
— Y ()
\
\J j&/
&
outputs

inputs

Figure 4. A c-net.

Note that if an input is presented to a gnc-net at time t, its corresponding
effect in the net can be traced by observing the outputs of the first stage
and associated ''not'" components at t+ 1, the 2nd stage and associated ''not"
components at t+ 2, etc. Also the effects of one input will occur on each
output wire at only one time instant. In general there are no corresponding

statements that can be made about nc~-and c-nets.

1.3 SOME FAILURE DEFINITIONS

Now define groups (of components) for gnc-and nc-nets as follows:
In a gnc-net, let the 18t stage and all the ''not'" components which have their

inputs or outputs connected to this stage comprise the 1st group. Let the jth
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group, j> 1, consist of the jth stage and all the '"not'"" components which

have their inputs coming from outputs of the jth stage. In gnc-nets, the
groups are disjoint. Fig. 2 shows groups for an exemplary gnc-net. In

a nc-net, first replace each ''not'" component by a wire connecting its
previous input and output wires. Then partition the resulting net into sets
(of components) as follows: The lst set consists of all components which
have at least one input from the inputs to the over-all net. The jth set,

j>1, consists of all components which have at least one input from the out-
puts of the j-18t set. Hence, in general, these sets are not disjoint. Now,
place the ''not" components back into the net as they were originally. Then
the 1st group consists of the 1st set and all the '""not'"' components which have
all their inputs or outputs connected to this set. The jth group, j>»1, con-
sists of the jth set and all the ''not" components which have their inputs
coming from outputs of the jth set. Thus, in Fig. 3, components 1,2,5,8,9,
and 10 make up group l; components 3, 6, and 7 group 2; component 4, group
3; and component 8, group 4.

Now a k-degree failure, hereafter denoted&f_, will be defined for

nc-nets. Suppose an input is presented to a nc-net at t. Then if the sum of
all the failures in group 1 at t+ 1, in group 2 at t+ 2,..., in the last group,
(say the nth group) at t+ n, is equal to k, a kf is said to have occurred with
respect to the input time, t.

A net is said to fail if it produces an incorrect output. An incorrect

output is one which is neither correct nor indicates that any failures occurred

during its determination.
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A nc-net is said to be a k-de&ree failure correcting noncyclic net, here-

after abbreviated a kc-net, if its output corresponding to an input at t is correct
according to a fixed criterion, provided no more than a kf (i.e., a 1f, 2f,..., orki)

occurs with respect to its input time, t. A nc-net is said to be a k-degree failure

detecting noncyclic net, hereafter abbreviated a kd net, if its output corresponding

to an input at t is either correct or positively indicates the occurrence of a jf,
0 <j€ k, according to a fixed criterion provided no more than a kf occurs with
respect to its input time t.

If a gnc-net is ke, it must be able to produce correct outputs even if k of
its components have permanently failed. On the other hand, there exist nc-,non
gnc-nets which have certain single components that can in themselves cause a kf

for any finite k. For example, in Fig. 3, component 8 can cause a 2f, since it
belongs to both groups 1 and 3.

1.4 OBJECT OF THE STUDY

Roughly speaking, the object of the following study is to define some logical
design procedures for improving the reliability of computer nets. More precisely,
the object is to: 1) define economical kc and kd nets from their irredundant
counterparts; 2) define economical memory nets that are failure correcting
in some compatible sense; and 3) use the net forms defined in 1) and 2) to define
two over-all designs of computer nets. Each of these designs is to be defined so
as to be decomposable into a memory subnet and a nc-subnet such that both subnets
are 'k correcting' in some satisfactory sense. One of the designs is to have maximum

equipment-domain redundancy and the other maximum time-domain redundancy.
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1.5 JUSTIFICATION OF THE OBJECT OF THE STUDY

The expressed object is partially justifiable from the point of view
that there are times when one would like a particular design which could
be manufactured with up to k bad components and still operate correctly.
For example: as components tend towards infinitesimal size, it might be
more feasible to assemble very large numbers of fairly unreliable com-
ponents to realize a logical function than to assemble a minimal number of
extremely reliable ones for the same purpose.

The object is also justifiable in that it defines a conceptually simple
approach to the reliability problem for the type of computer nets under
consideration. That is, as the object has been stated, it gives the broad
problem some character. Of course before the present approach can be
accepted, it must be determined under what conditions the corresponding
objective is the same as the ultimate objective of the study: namely,that
of most economically decreasing the probabilities of failure of given nets.

As a first step in matching the two objectives, let us consider an
example. This example has been included to illustrate some aspects and
difficulties that are associated with a computation of the probability that
a net will fail. Fig. 5 shows a nc-net which will correctly give an output
of 1 at time t if either 1) xis 0 and yis 1 att-2, or 2) xis 1l andyis 0

at t-2. The probability that this net will give the correct output if 1) is
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true is

(1.5.1) (1-e)° [(1-e)2 + (1-€)(2e) + ez] + de(l-e)’ [(l-e)e] +

eZ(l-e) [(1--(5)‘z + e2

The first term in (1.5.1) is the probability that the components marked
3,4, and 5 in Fig. 5 will all operate correctly to produce the correct
output; the second term is the probability that one failure will occur
between 3 and 4, a single compensating failure will occur between 1 and
2, and 5 will operate correctly; and the third term is the probability that
two failures will occur among 3, 4, and 5 causing their incorrect affects
to cancel.

The probability that the net in Fig. 5 will give the correct output
if the 2) input is present is also given by (1.5.1). However with other
input conditions, different expressions are needed to define the probability
that the correct outputs will correspond. Hence, in order to calculate the
over-all probability that the net will fail at a particular time t, the following
must be done: The probability density function which describes the relative
frequency of occurrence of each possible input to the net must be made
available. Then the probability expression corresponding to (1. 5.1) for
each of the inputs must be multiplied into the probability density function,

and the result integrated over the range of inputs.
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1
X 2
&
v output
X & >
Y L

Figure 5. A nc-net.

From this it is apparent that to try to calculate the probability '"that a
general nc-net will fail'* as a function of the net's unknown input density
function is almost hopeless.

Therefore it seems imperative that the input density function of a
nc-net be assumed flat in calculating the net's probability of failure. Con-
sequently, from now on the true reliability measure of a nc-net will be
considered to be the following P measure: the P for a nc-net, N, is the
average probability that if an input, iJ , is presented to N at t, a kf, for
some k, will occur such that N's corresponding output is incorrect
according to a fixed criterion. Here, the average is taken over all Ij'
where each lj is assumed equally likely. If N has a P of 1, it is perfectly
unreliable, and if its P is 0, it is perfectly reliable. Note with respect
to this definition that even though the assumption of a flat input density
function is not a very good one for some cases, P does afford a fairly

decent measure of the confidence that one should have that the output of
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a net will be correct.

Now let us return to the problem of determining when the ideal
and stated objectives of the study are the same. It was stated that the
latter objective is useful in that it defines a conceptually simple approach
to the reliability problem. The ideal objective has been approximated by
defining a P measure to supplant the true reliability measure of a net.
The purpose of the approximation was to obtain a calculable measure of
reliability. Hence, at this point there are two precise questions which
must be answered: 1) What are the conditions which must hold in order
that adding components to an irredundant nc-net in order to make it kc
or kd, k>0, does not actually increase the P of the net? and 2) what are
the conditions which must hold in order that continuously increasing k in
most economically deriving kc and kd nets is the same as continuously
decreasing P in most economically deriving nets with lower P values?

To answer the first question, suppose a nc-net, N, with n inputs,
is given for reliability improvement. Denote by m the maximum degree
of failure which can occur in N. Then suppose that redundant components
are added to N to make it kc. Let this new nc-net be denoted by N'. Also
denote by m' the maximum degree of failure which can occur in N*.

Now the P of N is greater than e(l-e)™-1,  Denote this

quantity Py. The P of N' is less than or equal to (Clr(r;_'1 ekH(l-e)l’n"k‘1

1 !
+ Crl?+2 ek+2(l-e)m -k-2 + ... 4+ em'). Denote the
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quantity on the right side of the inequality by PNl . Then for N' to have a

1

smaller P than N, pN‘ <PN must hold. If m'<< e °, to a very good

approximation this condition becomes

m'  k+l m'=-k-1 m
(1.5.2) Ck+1e (1-e) < e(l-e)

This in turn is closely approximated by
t

m k
(1. 5. 3) C e <1.
k+1

m' k
Now since m'<< e'l, Then Ck+1e < (m'-1)m'e/2 <1. Thus (1.5.3)

can be replaced by
(1.5.4) (mf-1)m'e/2< 1.
This is approximately

(1.5.5) m'< (2 })

1/2

Now if (1.5.5) holds and m'€ £ e-l, the P of N is greater than the P of N'.
Thus, a very loose set of bounds are given in partial answer to

question 1) above by

Result I: If redundant components are added to an irredundant nc-net to make

it kc or kd, k >0, the P of the redundant net is less than the P of the irre-

dundant net to within a very good approximation at least if m'{ < e":l and

m'¢ (Zez'-l)l/2 are true, where m' is the maximum degree of failure that
can occur in the redundant net.

In order to answer the second question above, suppose a nc-net, N,
is presented for reliability improvement. As before, denote by m the
maximum degree of failure which can occur in N. Then suppose that redun-

dant components are added to N to make it kc, (or kd) for any k> 0. Further,

suppose that this addition is made with least possible cost, c(k).
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Denote the number of different such additions that might have been made
to form the new nc-net, N', as a(k). Also let m' represent the maximum
~degree of failure that can occur in N',

Now suppose a third nc-net, N'', is formed from N by adding to
N any amount of component redundancy in any manner to correct (or detect)
possible jf's, j> 0, such that 1) the total cost of the addition does not exceed
a(k), and 2) N'! is not one of the a(k), kc (or kd) derivatives of N alluded to
above. Let m!' denote the maximum degree of failure which can occur in
Nt

Now, the conditions that are asked for in the second question (regard-
less of whether failure correction or detection is the criterion) are those

which insure that the P of N', P,,,, is always less than or equal to the P of

N

€ P, holds in

N'', P__ . The conditions insuring that the inequality P Nt

N(l

N(

the general case are impossible to calculate. However a very loose set of
bounds on these conditions can be found as follows: Assume that m' and m'!
<< e—l. Then since Py is less than or equal to the probability

that any (k+i)f,i» 0, will occur in N!, and Pyt is greater than 1/Zn times

the proba.biiity that a single kf will occur in N'!, the inequality PN'/< PN”

can be approximated by

L5.6) oo etk Ko
« D e e
(1.5.0) ke1® S

which reduces to
m'! -1

(1.5.7) Ck+1<e 2

n

Thus, a very loose set of bounds are given in partial answer to

question 2) above by
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Result II: To within a very good approximation, continuously increasing k
in most economically deriving kc (or kd) nets is the same as continuously

decreasing P in most economically deriving nets with lower P values at

m' 1

~-l.n
k+l<e 2 are true.

least if m' and m''€€ el and C
A little more discussion on the very pessimistic bounds in Results
I and II is quite in order. First of all, consider the following example as an
illustration of how small e might be in practice. Suppose a single component
is located in a computer net which operates at the rate of 10-6 seconds
between discrete time instants (that is, suppose a one megacycle computer).
If this component is to be expected to operate correctly over a period of
about 100 hours with a probability greater than 0.9, its e must be less than
100 . Since general purpose computers are usually composed of upwards
of about 103 components, each of which is fairly critical to the operation of
the over-all machine, a practical upper bound on e might be something like

10"14 or 10_15.

Hence, suppose that e must be less than 10-15 and n (that is, the average

n for the various nets in the over-all computer) less than 11. Then

some palrs of m' and k which satisfy the

requirements in Result ] are given in Table I. Table 1 - Variance
of m' with k
Now a final remark regarding Result II: It
K m!
is obvious that on the average it will always cost 1 (1.4)(106)
2 (1. 8)(1043)
less to most economically add enough redundancy 3 (2.2)(107)

to a net to enable it to correct a kf than to enable
it to correct a (k+i)f, k,1>0. Thus, in almost all

cases, the approximating formula that was used in equation (1. 5. 6) to replace
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the inequality PN'i PN”' is outrageously pessimistic. This together with
Table I tend to justify the goodness of the kc and kd criteria for nc-nets.
Note that the possible periodicity of outputs of c-nets make it virtually
impossible to frame any manageable '"degree of failure' index corresponding
to the kf for nc-nets. Hence the nature of 2) and 3) in the expressed objective

of this study seems appropriate.

1.6 INTRODUCTION TO THE SOLUTION

This Section discusses some negative conclusions concerning the
solution of the kc and kd problem. Its purpose is to point out some prominent
defects of a few suggestions which have appeared from time to time in the
literature, at least insofar as these suggestions apply to the present study.

One suggestion that continues to appear is to put several computers
alongside each other and operate them in parallel. The intent is usually to
achieve a unit which is approximately kc. The method almost always involves
a comparison of the outputs of 2k+1 computers and a subsequent selection
of the majority output as the output of the unit. The biggest shortcoming of
any such scheme is that the final output is only as reliable as the selection
and final output equipment. In particular, if some subset of the set of com-
ponents just preceding the final output fail, just as many of the final outputs
will be incorrect. In other words, no single output state can be any more
reliable than the single component which produces it.

Recently it has also become popular to suppose that satisfactory

solutions to the k-degree failure correcting and detecting problem exist in
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the domain of coding theory. It must be remembered, however, that one
of the first premises of coding theory is that the terminals of a channel are
perfectly reliable. Since presumably there does not exist a physical com-
ponent which is perfectly reliable, classical coding theory as it stands does
not strictly apply to the kc and kd problems. Furthermore, the terminal
trouble cannot be circumvented by translating all the failure's probabilities
that are associated with channel termini into the error structure of the
channels themselves. For if it could, a method would have to exist for
designing perfectly reliable encoders and decoders from unreliable com-
ponents, which is impossible. Consequently the solution for this study is
not strictly contained in the domain of classical coding theory.

Finally, it is apparent that if reliable computers (as they are pres-
ently organized) are to be realized from unreliable components, the logic
in them must be deterministic in the large and statistical in the small. Here
'"large' and ''small" apply to time, space, or a mixture of both forms of

redundancy.






CHAPTER 2

kc NETS

2.1 INTRODUCTION

The purpose of this Chapter is to define a form for kc nets which
is probably most economical. This form is specified in terms of the cor-
responding irredundant net. It is shown that it will always give the correct
outputs even if it contains k permanently bad components. It is also shown
that the use of a certain type of time-domain redundancy is very undesirable

as a means of effecting kc nets.

2.2 MINIMUM OUTPUT REPRESENTATION

At the end of Ch apter 1 it was pointed out that kc nets, k>0, cannot

have only one wire per binary output channel. Here, a binary output channel
of a net, N, is a set of i wires leading from N, i>0, over which information
is transmitted at the rate of 1 bit every specified number of time instants.

Define an individual output from a net, N, to be 1 bit of information from N

over a binary output channel. A nc-net, N, is said to realize a logical function

f(xl. +++,%p) if N puts out 1 information bit, corresponding to each of N's
complete input sets, x;," -, Xp, telling the value of f(x;, -, x, )according to
a predetermined representation of the binary values of f, x;,** -, and x,. A

complete input set to N consists of all the variously timed information-bit in-

puts to N which act as variables in the production of 1 information-bit output of
N. Now this Section proceeds from the l-wire- output result of Chapter 1 with
LEMMA I. Suppose a binary-output-channel, nc-net, N, which realizes some
logical function, f, is given, and that kf's are permitted within N. Then N's

-23-
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output channel must have at least 2k+1 wires if N is kc and if it is ruled that
each of N's individual outputs must be observed at only one time instant.

PROOF: Suppose N's output channel has m wires. Since the rule for determining
the value of the individual outputs over this channel must be effectivel, the 2™
possible channel state configurations must be dichotomized. One of the resulting
pair of subsets of configurations must represent 0 and the other 1. If not, some
output configurations are equivocally 1 and 0. Since with each output any k of
the m output wires can be in the incorrect state, the subset of configurations
representing 1 must contain all of the 2™ members of the set which are dista,ntZ

less than k+1 from the 0f representation of 1. Similarly, with the 0-output sub-

set. This requires m> 2k, which proves the Lemma.

2.3 THE 2k+]1 FORM

The purpose of this Section is to define a form for economical
binary-output-channel, kc, nc-nets which must have their individual outputs
observed at only one time instant. Throughout the remainder of the Section,
all discussionswill he restricted to binary-output-channel, nc-nets which have
their individual outputs observed at only one time inatant.

Generally speaking, the nets that are developed in this study are most
applicable to the computer field. There, the outputs of nets realizing separate

logical functions either have to be used as inputs to other similar nets, or are

1. A fixed procedure which is invariant over all its variable values.

2. The distance between any 2 elements of the set of configurations is the number
of places in which the 2 configurations differ.



-25-

disposed of so that their effects can recur as inputs to the nets which produced
them. Thus, it shall be required in this Chapter that every binary output channel
from a kc net match each of its corresponding binary input channels in terms of
the number of wires in the channel, and the interpretation and poorest permissible
quality of the signal. The quality of an input or output of a net refers to the number
of places in which the corresponding signal is corrupted by the effects of failure.
Thus, the minimal input-output form for a kc net N(f) which realizes a logical

function f, in accordance with the restrictions imposed in this section, is shown

in Fig. 6.
1
Xl—[ 1
2k+1 —
Inputs . N(f) I Output
1 2k+1
Xn :
2k+1
Figure 6. Minimsl Input-Output form for s Realization of f.
There, each of N(f)'s inputs, Xpse e Xy, and its output must occur over at least

a (2k+1)-wire bundle. The correct state of each bundle at any time instant is
taken as the majority state among the 2k+1 individual wire states in the bundle.
Thus, a perfect bundle-state configuration consists of all 1's for a bundle state
of 1, and all 0's for a bundle state of 0.

Now a form for N(f) which is kc will be given, After it is explained, its
optimality properties will be stated and proved.

The form is shown in Fig. 7. In order to facilitate its explanation, first

of all assume that all its components are perfectly reliable. Then after the

explanation using this assumption is completed, the components' unreliabilities

will be recognized and the effects observed.
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Column I shows the inputs to N(f). In column II, the corresponding
input states are resolved and regenerated. This is done for each input
variable as follows: Each (k+1)-wire subset of the (2k+1)-wire input bundle

2k+1
is fed into an "and'' component. Then the C resulting '"and" outputs are

ktl
fed into an "or'' component. So the output of the "or' is 1 if and only if the
input bundle state is 1. 2k more copies of the resolver net just described are
added to produce a 2k+1 wire bundle, each wire of which is 1 att+ 2 if and
only if the state of the corresponding input bundle is 1 at t. Such a resolver
is indicated schematically for x; in Fig. 7. Column II in the Figure is meant
to contain a (2k+1)-wire-output resolver net for every one of the input variables.

Now suppose the function which N(f) realizes is irredundantly realized

with delay d by the F-net shown in Fig. 8. Then 2k+1 of these F-nets are used

Inputs . F — Qutput

Figure 8. An Irredundant Realization of f.

in column III of Fig. 7 as shown. The ith wire, i=l, ..., 2k+1, of each

regenerated input bundle, Xps+--,X, shown at the right in column II is fed into
the ith F-net in column III. The output of N(f) consists of the outputs of the
2k+1 F-nets. Each wire in this output is 1 at t+2+d if and only if f(x1 yeens xn)

is 1 for the SRR ,xn bundle state values sent into N(f) at t.
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Now recognize the component unreliabilities in N(f) by allowing kf's
in the net. It is immediate that if a kf occurs with respect to t in N(f), or in
fact if N(f) contains any set of k or fewer bad components, at least a majority
of the output wires of N(f) will have the correct state at t+2+d. . For the nets
producing each of the 2k+1 output wire states of N(f) are disjoint. For example
the net which produces the ith output of N(f) is shown in Fig. 9. The wires
marked ”xji” in the Figure are the ith wires of the regenerated Xj input bundle.
F, is the ith F-net, and {; the ith output wire of N(f).

As for the cost of N(f), it needn't be as great as the form in Fig. 7 shows.
For, the resolving function realized in column II of the Figure can be realized

much more economically than is shown there. This can be done by using many

levels of '"and'' components instead of just one. Hereafter, a 2k+1 form(or 2k+1l

derivative of N) refers to a net which has the form shown in Fig. 7 except

that its resolving function is realized most economically instead of as shown there.

2.4 THE OPTIMALITY PROPERTIES OF THE 2k+1 FORM FOR BINARY-
OUTPUT-CHANNEL kc NETS

A Lemma will now be stated as a first step in deriving the optimality
properties of the 2k+1 form defined in 2. 3.
LEMMA II: Given a 2k+1 wire binary-output-channel, kc, nc-net, N, which
must have its individual outputs observed at only one time instant and which

realizes the logical function f from perfectly reliable inputs1

, N must cost at
least as much as 2k+1 separate, irredundant realizations of f.

PROOF: Number N's 2k+1 output wires from 1 to 2k+1 in some arbitrary order.

Then let Ni and Nj be the subnets of N which respectively contain all the

1. Note that this is an exception to the requirement placed early in Section 2. 3
that all kc nets' outputs match their corresponding inputs.
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Figure 9. The Net Which Produces the ith Output of N(f).

components in N whose outputs can possibly ever influence (for at least one
complete input set) the state of N's ith and jth output wires. Now suppose Ni
and Nj overlap: that is, suppose they contain a set, C, of components which
are common to both Ni and Nj. Then since N is nc, at least one of these com-
ponents, say cl, must produce outputs which cannot later affect the outputs

of any of the other components in C. Remove cl from both Ni and Nj. Also
remove all the rest of the components in Ni and Nj respectively that are there-
by cut off from the outputs of the residual Ni and Nj subnets. (obviously cl could
not have originally produced Ni's or Nj's outputs). Now denote the output
variable which cl produced, y. Then if Ni's and Nj's complete input sets are
labeled xl, X, the outputs of the residual Ni and Nj subnets are value
representations of f(y,x),---,%,) and fj(y,xl, """, x,) respectively. By a

well known theorem of the propositional calculus, fi can be written as

Y- 8i1(%) * o Xg)VY'- Bip(xy, * 0 Xp) and £ as y- gy (x], - - Xn)vy'- gjp(x, ¢ ¢ s %n)
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Since both fi and fj must equal {, g, = g1 and g;5 _ & Also, by hypothesis

j2’
g;1 $ g, 0Ty could not possibly affect Ni's output. Hence for some complete
input set to N for which g1 $ g2 Ni's and Nj's outputs both depend upon the
value of y. For this input to N, if only cl fails, two of N's output wires are
put in the wrong state. Hence a kf could cause N to give an incorrect output.
But this contradicts a premise of the Lemma. So Ni and Nj must be disjoint for
alli ¢ j. The Lemma follows immediately from this.
From Lemma II, the next step is

LEMMA III: Given any irredundant binary-output-channel nc-net, N, which
realizes the logical function f, its 2k+1 derivative, N, is a most economical
@k+ D-wire output channel kc realization of f, at least if it is required that all
of N's individual outputs be observed at only one time instant.
PROOF: By Lemma II a 2k+1 wire output kc net which realizes f from N's
input variables must cost at least 2k+1 times as much as N. Now if N's kc
derivative is to have its outputs match its inputs, each input variable must
be presented to the over-all net over at least 2k+1 wires. This means that
the inputs to the derivative must have their states resolved in a set of resolving
nets. This resolving function, and N's function, are entirely independent both
from the logical and cost-of-realization points of view (the last stage of any
resolver realization here must be an '"or'", and all previous stages '"and's'!).
Thus the resolving nets are entirely separate parts of the over-all derivative.

Now each input must be resolved at least 2k+1 times or it can be incor-
rectly interpreted, as a result of a kf, to the part of the over-all net which

realizes f from the resolved input variables. Hence the Lemma by the def-

inition of a 2k+1 form.
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Now suppose that N in Lemma II is not required to have only 2k+1 wires in
its binary output channel. Does the assertion of the Lemma still hold? At
present the author has not yet been able to prove either that it does or does
not. It seems from the information which is available in the statement of the
Lemma that the only proof that could ever be constructed along this line is
a counter example. The reason is as follows: Let N of Lemma II have q, q»
2k+1, instead of 2k+1 wires in its binary output channel. Then it is easy to
show that k components can be selected in N such that a majority of N's output
wires can each have their states dependent upon one of these component's out-
puts for some input to N. The trouble is that it cannot be proved that a majority
of N's output wires can all have their states dependent upon the k components'
outputs for the same input to N. This fact has caused all the presently tried
arguments for a proof of the generalized Lemma II to break down. (As suggestive
as this might seem for the construction of a counter example, it has not lent
any real support in this di rection as yet.)

One important fact relating to the situation above is that as q increases,
the cost of resolving grows rapidly. In fact, the resolving function must be an
"or'" function of Ca.’ q-variable "and'" functions. So as q grows larger than

Ul
2k+1, the cost of realizing the resolving function goes up roughly combinator-

ially. With this in mind, the following strong conjecture is made.

CONJECTURE I: Lemma III holds even if the condition that the kc derivative

have only 2k+1 output wires is removed. (Hereafter whenever it is desired

to premise the truth of Conjecture I in the statement of a theorem, lemma,

result, or conjecture, and asterisk (*) will be placed after the word

" i 1
theorem', "lemma', ''result'", or conjecture" respectively.

Now let us consider the possibility of reducing the cost of deriving the kc

form of N in Lemma III by substituting time-domain redundancy for equipment-
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domain redundancy. Since there can be no feedback loops in a nc-net, time-
domain redundancy can be utilized at this point in only one way. That is by
letting each state quantity which is involved be represented by an ordered
sequence of 0's and 1's instead of just a single 0 or 1. The reason why in
genera:l this cannot lead to a satisfactory solution to the kc problem is illustrated
by the following heuristic example: Suppose three different gnc-nets are given,
and that each 0 or 1 state quantity involved in their operation is represented by
a sequence of 2k+1 ordered 0's and 1's. Let the state represented by each of
these sequences be the same as the majority state (0 or 1) of the sequence.

Denote the 3 gnc-nets S., S , and S_ respectively, and let them be as shown in

1" 72 3

Fig. 10. Allow kf's to occur in each of Sl' SZ' and S3. Then consider an output

Output

Figure 10. Three gnc-nets,

sequence that might correspond to the following quadruple of input sequences,

each of length 2k+1, which start at t: xlsl,. PN ¥ lel,.. . 1 x381, R

a.ndx4:1,....1. The outputs of S, and Sz starting at t+ 1 might be k+1, 1's

1
followed by k, 0's. S3 might fail from t+2 to t+k+2, so its outputs might be k,

0's, followed by 1, 1, followed by another k,0's. Thus S3's output could be put
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badly in error by failures occurring at different stages in the over-all gnc-net
at noncorresponding time instants.

This example heuristically illustrates why time and equipment domain
redundancies cannot in general be interchanged in nc-nets which are to be used
in over-all compufer nets. Time expansions of any length do not insure that
output sequences from a nc-net will be of as high a quality as the corresponding
input sequences. Thus, there follows
LEMMX*IV: (In the notation of Lemma III) Given N, N is a most economical kc
realization of f, provided the quality of such a realization's individual outputs
is required to be at least as good as that required of any of the realization's
inputs.

The last part of this Section concerns a question regarding the general
specification of the F subnet in the 2k+1 form of failure correcting net. The
question is: given a large irredundant, binary-output-channel nc-net, N, which
realizes the logical function f,how should N be subdivided into F subnets in order
that the over-all 2k+1 type failure correcting derivative will be the most econ-

omical onelrealizing a certain P? Hereafter, use failure-correcting derivative

of an irredundant net, N, (which includes kc derivative, etc.) only to refer to a

net which has the failure-correcting properties specified, and which realizes the
same logical functionsand/or memory functionsas N.

This question can be fairly satisfactorily answered in principle if it is
assumed that each subdivision of N is equally critical as far as the correct
operation of N is concerned. Begin by letting N‘l be the 2k+1 derivative of N
such that N1 is kc and N;'s F subnets are identical to N. Let m,; denote the

maximum degree of failure in Nl' Then let N, be specified as follows: partition

*¥% and 1. Assuming Conjecture ] to be true.
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N in some arbitrary way into S disjoint subnets F,F,, ..., Fg, of as nearly
equal size as possible. Then form 2q+l type qc derivatives of each F; for
some q in the range k/s< q<{k. Finally, interconnect these derivatives into an
over-all net, N, such that N,'s output function is the same as N;'s. Denote by
m) the maximum degree of failure in Nj.

Now the question above becomes: is the P of Nj, PNI' times the cost

of N},C, generally less than the P of N, PNZ’ times the cost of N, C,?

Let e be small and approximate PN1 by CI:}I ektl, Also, if Pli\IZ denotes the

P of the qc derivative of F;j in Np, approximate PN2 by 1 -izr 1(l-Pli\IZ), or in
M2 .qtl :
other words, quHe . Let cs be the cost of N. Then approximate C; by

2q+l

(2k+1)( (k+2) (C2Kt)n + cs) and C, by (2g+1) ( (g+2) (CCY)

! !
41 Jn' + c)s, n'n.

Then the above question becomes, does
mj

k+l

m2

(2.4.1) Py C;=(C X" 9) (2k+1) ((k+2)(cil:1)n + cs) <PN2 C, = sC

(zqr)(a+2)C T} ) ntee)s

-1
hold ? Quite apparently, for e{10 2, which was seen in Chapter 1 to be a good
practical assumption, this equation generally holds. Thus,

RESULT IIl: Given a large, irredundant, binary-output-channel nc-net, N,

which realizes the logical function f, it is generally best in practical cases to
derive N's kc derivative, N, by letting N's F subnets be identical copies of N,
rather than first subdividing N and deriving N's failure correcting derivative

by interconnecting qc derivatives, k/séq(k, of each subdivision of N.

1. It will be seen below that the following approximations do not materially
a ffect the essential point of the analysis.
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Note that Result III, when taken in the light of Lemma IV, amounts to
a resubstantiation of the practical equivalence of the kc and P criteria that was
asserted in Chapter 1.

2.5 THE OPTIMALITY PROPERTIES OF THE 2k+1 FORM FOR MULTI-
OUTPUT-CHANNEL kc NETS.

The purpose of this Section is to extiend Lemma IV to pertain to multi-

output-channel as well as binary-output-channel kc nets. A multi-output

channel net is one which has a set of i wires leading from it, i»0, over which

information can be transmitted at the rate of m bits, m>»1l, each time instant.

(From here on, regard an individual output of a net N as 1 bit of information

from N.) The first step is to recognize that, for general r»1, and allowing kf's,
it does not take at least r(2k+1) wires in parallel to represent r bits of infor-
mation coming out of a net at one time. This fact is immediate to coding
theorists. Hence an example to illustrate it will suffice here. If k and r are
equal to 2, r(2k+1)=10. But the following 8-wire code has 4 points each of which
is distant1 at least 2k+1, or 5, from the other 3 points, making the code ke?:
(11111111), (11000000), (00111000),(00000111). The extension of the argument
for kc codes to kc nets is obvious.

One point of this Section is that, while it i8 possible to use fewer than
(2k+1) wires to represent an instantaneous r-bit output of a net, it is prob-
ably uneconomical to do so. This is best explained by presenting the general
argument from an example.

Let N be a nc-net which is presented for reliability improvement, where

N has two inputs, x; and x,, two outputs, y,; and Yo and cost c. Then the

1. See the footnote in Section 2.2 for a definition of distance.
2. That is, k-error correcting in the usual coding sense.
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2k+1 derivative of N, for k=l, is shown in Fig. 11. Its cost is 54+3c. Note
that as long as each individual output of an over-all kc net is produced over

a binary channel, each of the net's output channels must contain at least 2k+1

X - Inputs

Y - Outputs
X X5 N 1o
l ——
— Y
—}x
Xl N ._Yl

Xg{__ __—]-Yg

Figure 11. A 2k+1 derivative, k=1, of N.

wires. Note also that in this case, by Lemmas* I to IV, each individual output
must be derived in a set of subnets that costs at least as much as 2k+1 sep-
arate irredundant realizations of the same output function and the corresponding
2k+1 type input resolvers (it is assumed here that the poorest permissible in-
put and output signal qualities are the same). Hence

THEOREMX* I: Given any irredundant nc-net, N, which realizes the set of m

logical functions, ", m31, its 2k+1 derivative is a most economical kc real-
ization of PV if it is required that this derivative produce each of its individual
outputs over binary channels. In fact this derivative can correct the effects of
any set of k or fewer permanent component failures which might occur within it.
These assertions are true provided it is assumed that all the input and output
channels of the derivative must match in terms of the number of wires in the

channels, and the interpretation and required qualities of the signals they carry.

* Assuming Conjecture I to be true.
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Now, to continue the example begun above, suppose N's kc derivative
need not produce each of its individual outputs over binary channels. Then
if it is desired, the 6-wire x-inputs and y-outputs of N's lc derivative can be

reduced to 5-wire bundles by using the lc input- output code shown in Table 2.

Using this code, the 25 possible state configurations of the input and outpt

bundles must be partitioned into 4 disjoint Table 2. A lc code
X, X,
sets, where every member of each set or 5-wire code
Yl 'Y, points
representssome configuration of xy, X,, Or
Yy Yo Thus, the 32 possible 5-wire state 11 11111
10 00010
configurations can be partitioned into 4 sets 01 11000
00 00101

of 8 members each as shown in Table 3. There,

each of the 4 groups of code points contains at

Table 3. A 5-wire output code

. xl,x2 or y1,Y;
5-wire code

points 11 10 01 00
I;‘g::;iﬁi:: 11111 00010 11000 00101
. oot 11110 00011 11001 00100
‘;;:epzierft-ec 11101 00000 11010 00111
11011 00110 11100 00001

10111 01010 10000 01101

01111 10010 01000 10101

10011 01011 01001 01110

10001 1 10110 01100 10100

—

least all points distant 1 from the perfect code point of the group. Now any
5-wire input-output, lc derivative of N, N# say, must contain the following: 5
realizations of 5 separate functions of the (5) input variables to N#. Each of

these realizations must map the input sets for which its corresponding output
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is to be 1 onto 1, and the remaining input sets onto 0. The realizations may not
necessarily be disjoint, but no 1f can be allowed to cause two of their outputs to
be incorrect.

Upon reviewing Table 3, one is struck with the realization that in general,
at least,a majority resolver can always be much less costly to realize than any
of the non-threshold (threshold being p out of q) types of resolvers. The reason
is, first, that if kc input-output coding .is used in an n-variable input kc net, at
least q complete input resolutions are required, where q is the minimum number
of places in an n-information-place, kc code. (Of course if kc input-output
coding is not used and all input and output channels are binary, threshold type
resolving must be used and each input variable must be resolved at least 2k+1
times.) These resolutions must be such that no kf is able to cause more than
any k of the resolutions to be incorrect. For otherwise a kf might cause a net's
input to be misinterpreted and an incorrect output to be produced. Now each

k
single resolution here must be the realization of an "or'" function of % C;
q-input variable "and'" functions. Thus, on the basis of the known simplicity of
the majority type resolutién for 2k+1 wire binary channels, the following con-

jecture is made:

CONJECTURE II: Theorem I holds with the condition that "it is required that

this derivative produce each of its individual outputs over binary channels' removed.

(Hereafter whenever it is desired to premise the truth of Conjecture II in the

statement of a theorem, lemma, result, or conjecture, a double asterisk (**)

will be P_l_aced after the word '"theorem!, "lemma}', ""result'", or’conjecture"

respectively.




CHAPTER 3

MEMORY NETS

3.1 INTRODUCTION:

This Chapter presents the solution to the second problem of the study:
namely, the problem of defining a most economical form of memory net which
is compatible in some failure-correcting sense with the kc nets of Chapter 2.
Since memory nets must be cyclic, the kf and kc notions cannot strictly apply

here until all closed loops are cut. Using this approach, a form of memory

net is developed which is probably most economical. The development
includes: the listing of some independent necessity conditions; the corres-
ponding specification of a most economical net for storing at least 1 bit;

and finally the specification of an economical form of multi-bit memory net.

3.2 SOME NECESSITY CONDITIONS AND THE 1-BIT MEMORY NET

It will hereafter be assumed that whatever type of memory net is developed,
it will have to be controlled through components which can fail both transiently
and permanently. Thus, the effects of different transient failures in these con-
trolling components could accumulate in the memory nets, if permitted to,
and eventually produce an incorrect memory state. Consequently, if reliable
long-term storage service is to be obtained from a net, that net must frequently
regenerate its own storage state. It will be able to do this only if it contains a
feedback loop.

The type of feedback which is required here is illustrated in the irredundant

memory net, N, shown in Fig. 12. This net,(which is not intended to be kc in any

-39-



-Lo-

approximate sense) operates as follows: a l can be stored in N at t by pre-

senting a 1 on at least one of the Sl’ *++,5, "set! inputs of N at t, and by having

f-&\ 1 Output

Figure 12. An Irredundant 1-Bit Memory Net.

0's present on all of N's Ty, T, T, reset! inputs at t. This 1 then circulates
around N's feedback loop until a properly timed 1 on one of the reset inputs of

N destroys it. The timing must be such that the ""and" component input coming
from the reset branch of N is 0 just as the circulating 1 arrives at the other "and"
input. Note that even though N is irredundant for a 1 bit capacity, it can actually
stbre 2 bits due to its 2-unit loop delay.

Now a derivative of N will be described which is approximately kc. To
develop this dekrivative, first of all cut the feedback loop in Fig. 12 at any point,
"a'" say, and thereby obtain a nc-net. This nc-net's most economical kc der-
ivative is the corresponding 2k+1 form, which will be denoted N throughout the
remainder of the Chapter. A memory element, E, capable of storing at least
1 bit can be made by feeding N's output back as a "set" input. The result is
shown in Fig. 13 (except that for convenience the input resolving subnet shown
there is not most economical). In the Figure the vyt and ''v,'' compon-
ents perform the functions of both the normal resolver stage 'or's',
and the input ""or's' of E's logical subnets. Here each of E's logical
subnets is of the form shown in Fig. 12 except that it does not have a

feedback loop as shown there. Note that for generality in Fig. 13, none of E's
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input-variable bundle sizes is shown as 2k+1. The only restriction placed on
these sizes is that they all be at least as great as k+1. |

E's properties are as follows: E has a loop delay of d»1 units, enabling
it to store d bits of information. Hence E must be used on a modulo d time scale,
with corresponding set and reset input times coinciding. The nc-net, N, from E's
inputs to E's output is kc. In fact this net can correct the effects of any set of k
or fewer permanent component failures which might occur within it. E can be set
or reset by the 2k+1 type kc nets of Chapter 2. In this case WisttaWp,up, LU

m

are all 2k+1. Finally, E is the most economical form of net that can reliably and

indefinitely store at least 1 bit while: 1) allowing kf's to occur within any of its

unclosed loops; and 2) allowing its set and reset signals to come through nets where

transient type kf's are permitted. With regard to 1) above, in general in this study,

an unclosed loop in a net will refer to any set of components in that net which were

previously interconnected so as to include one or more feedback loops, but which
since have been disconnected in a particular way at least enough to break up all

these loops.

The assertion containing 1) and 2) above requires a brief argument. It is
immediate that if a stored bit is represented by a parallel configuration in a
channel, at least 2k+1 wires are necessary in that channel. For no net
with fewer than 2k+1 wires in its storage channel can guarantee meeting
its input quality requirements at its output. And this is necessary by the part
of this Section on state-regeneration requirements. Since it is assumed that
the Wy and u, are not variables here, the truth of Conjecture I for this

case is obvious and the assertion is proved.
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3.3 MULTI-BIT MEMORY NETS AND THE FINAL THEOREM.

It was conjectured in Chapter 2 that although it is possible to use fewer
than r(2k+1) wires to represent an instantaneous r-bit output of a net, it is
not most economical to do so. The reason lay in the relatively low cost of the
majority type of resolving subnet with respect to the costs of other types.

The essential:points of the example and argument in Chapter 2 apply even
more drgmatically to multi-bit memory nets. Hence very probably it is not
most econpmical to store r bits in one channel, r>1, by making use of
corrective coding techniques.

It is apparent from the previous Section then that if Conjecture II is true,
the most economical way of storing r +d bits1 and allowing 1) and 2) at the end
of the previous Section, 30, is by inserting r "or" components in series in each
wire of the feedback loop of the 2k+1 type memory element described in that
Section. Let any memory element of this form be denoted an M element.

Then there follows

THEOREM#**II: Given a net, N, which consists of an array of - -b/@'%-cb]dis joint

elementsZ

, each of which is an M, element, N is the most economical net which
can reliably and indefinitely store b bits while: 1) allowing kf's to occur within any
of its unclosed loops, 2) allowing its set and reset signals to come through nets
where transient type kf's are permitted; and 3) not allowing any bit to be inaccess-
ible at its output for any more than r+d consecutive time instants. The Theorem
assumes that: 1) the b memory locations are placed among the M,'s in N to take

full advantage of any coincidence which might be present among the locations!'

""'set'" and "reset'" input variables; and 2) there is no necessity, after every

1. Where ""d'" is as on the previous page.
** Assuming Conjecture II to be true,
2. "[a]" is the greatest integer less than or equal to a.
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rearrangement of locations, of isolating inputs to one memory location
from those to another location in the same Mr of N. If there is, enough
more elements must be added to N to meet this necessity. In general,
this may dictate the use of different r's in the various Mr‘s in .order to
minimize the over-all cost.

A memory location in a memory, M, is a time-ordered set of

geometric positions in M where 1 bit is kept in storage. Thus, one of the
d memory locations in an M_ element, r=0, is at the outputs of the ele-

r
ment's ''or' components at t, its '"'set-reset' ""and'' components at t+l,

its first level resolver subnet '"and'" components at t+2, etc.



CHAPTER 4

OVER-ALL FAILURE-CORRECTING COMPUTER NETS,

4.1 INTRODUCTION

The results that have been obtained thus far are summarized in Theorems
I and II and Conjecture II. These results specify definitions for memory and
nc-nets which are kc in the senses indicated and which are probably most econ-
omical for their failure correcting properties. At this point then, the next thing
is to specify how to make over-all failure-correcting computer nets from the
types of nets that have been discussed thus far.

In the present Chapter, two such general forms are developed — and both
from an outline which is composed of a nc-subnet and a memory subnet. The
reason for developing the two forms from this two-subnet outline is twofold:
First of all, the outline enables a set of rather strong economy claims to be just-
ified for the two forms on the basis of the results in Chapters 2 and 3. Secondly,
the outline furnishes a fairly good analytical model of present-day computers.

In the first form, the two subnets are constructed in accordance with the
failure-correcting derivative nets defined by Theorems I and II respectively.

The second form is characterized by having its nc-subnet realized with
fewer than 2k+1 disjoint copies of its corresponding irredundant net. In this
sense it differs greatly from previously preferred failure corre;ting nets. Its
memory subnet, however, is constructed in accordance with Theorem II.

An alternative variation of the second form is described which has akd
nc-subnet instead of a kc one. The variation is the result of an attempt to shift
from pure equipment-domain redundancy to maximum time-domain redundancy.

The method in this variation is to arrange for each output of the kd net to be

~45-



“L6-

ignored unless it contains purely correct information. The possibility of having
k permanent failures in the kd net is allowed for by including reserve nets which
are switched into operation from standby locations.

The Chapter shows that in every case, one of the variations of either the
first or the second general form referred to above is the most economical k-degree

failure-correcting form for an over-all computer net of the two-subnet outline.

4.2 THE TWO~SUBNET OUTLINE

The purpose of this Section is to define the two-subnet computer outline
mentioned in Section 4.1. The outline is shown schematically in Fig. 14 below.

There, M is the net's memory subnet and NC its complementary nc-subnet. Each

of these subnets is constructed in accordance with the equipment allowances made
earlier in the study. The directed lines into and out of the M and NC blocks
represent information channels, none of which is in general binary. In fact, the
channel capacities (in bits) from NC to M and from M to NC are in general equal
to twice the number and the number respectively of separate memory elements in
M. The 2-to-1 ratio here is due to memory elements having both set and reset

inputs.

Input NC == Qutput

Figure 14, An over-all Computer Representation.



-b7-

Now designate the whole net in Fig. 14 N*. Also denote by Ij the jth input

to NC; Sj the state of M at the arrival of Ij; and Oj’ N*'s output from NC corres-

ponding to Ij and Sj' Here the state of M refers to the configuration of stored values

in the memory locations of M.
Now the sequence of operations in N* is as follows: Suppose M is in state
Sy and Iy arrives. Then NC produces O0 and alters M's state to S;. NextI, arrives,
and O, is produced and M's state goes to S,. And so on.
In general, in the over-all sequence of operations in N¥, several of the Ij
are required to be vacuous. When a vacuous input, say Ij’ is required, the pre-
ceding change in M from Sj-l to Sj is sufficient to cause the production of Oj and
So in effect, each S

the accompanying change from S j to S, controls by its

j+l° j

state whether or not a next input, I,, is to be requested or not. A request for

J
another input by M, as indicated by the state of M, corresponds to the carrying

out of a ''read" instruction in an ordinary computer. It is assumed that NC operates
on S f at each time instant in such a way that all the successive Sj are as desired.
This type of operation can be achieved by using ordinary sequential net design
principles. In fact, by these same principles, N* may be designed so that its M
block is just a straight connection of wire bundles from NC's output back to its input.

Finally, assume N* is irredundant for a net having its properties; and hereafter say

that any net which is constructed in the general form of N* is of the form of N*.

Quite apparently N* is as general a computer representation as any com-
pletely finite Turing machine, T (that is,one having a finite tape and finite numbers
of internal state and tape symbols). For the position of T's tape, its data, and its

state can all be represented in M; and NC can be designed so its operations on M
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represent the sequence of operations in the machine proper.

4.3 THE OVER-ALL 2k+ 1 FORM OF COMPUTER.

The purpose of this Section is to describe one variation of a form of
over-all failure-correcting computer net. This form, the first of two such to
be specified in this Chapter, is characterized by being constructed in accordance
with the kc derivatives defined by Theorems I and II. Two variations of it follow
in this and the next Section.

The first variation follows quickly from Theorems I and II and the com-
puter outline defined in relation to Fig. 14: This variation is of the form of N*.
Its M net is entirely composed of Mr type memory elements, and its NC net is
a 2k + 1 type nc-net.

NC's operation into M is so as to produce the proper sequence of states
in M. The r's of the Mr‘s in M and the delays in NC are such that the arrivals
of information (from M) at NC and (from NC) at M are timed to permit this proper
sequence. The correct timing of information signals into NC and M can be accom-
plished by using single-input ""or'' components to produce delays where they are
needed. To illustrate how this may be done, two examples follow. In these
examples, for simplicity, assume that all Ij are vacuous, and that no 0j are pro-
duced until the end of the computation. The generalization to cases where these
special conditions do not hold will be immediate after the examples have been pre-
sented.

The first example, a net of the type of the first variation defined above, has
an r of 0 in all of its M, type memory elements. Thus, the content of each of its

memory locations is available at its M net output every dth time insta.nt]: Now in

1. Using the notation of Theorem II.
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general, in order for the example's NC net to determine its M subnet's j+ 1 st
state from this subnet's jth state, NC must have access to the stored contents of
all of M's memory locations. One way to insure this is to store only 1 bit in each
of M's memory elements. Then all the stored bits can be synchronized to appéar
simultaneously at M's output every dth time instant. M's output can be made

all 0's at each d-1 successive intervening time instants, bundle-state 1's can be
regarded as the only positive outputs from M and NC. (This is convenient, since
only 1's can set or reset M, type memory elements anyway). Finally, NC can be
designed so that it will not produce a positive output unless the corresponding input
is something other than all 0's. With these provisions, at least the timing from M
into NC can be taken care of.

Now in order that NC's outputs can be stored in M with the proper timing,
the delay from every input time at NC to each of NC's corresponding individual
output times can be made ds for some 8> 0. With such an arrangement, all of
NC's outputs must go into the proper third of the memory locations in M. Any
extra delays that are needed at NC's normal output points to effect the ds delay
characteristic can be instrumented by series connections of single-input 'or"
components.

The remainder of the design of this example follows from the principles
of sequential net design. For these principles can be used to insure correct
operation of the over-all net regardiess of different s delay factors which might
be associated with the various individual outputs of NC. The Ij inputs can be pre-
sented to the over-all net either at each time instant, or at every dth time instant
along with the outputs of M. The Oj outputs of the over-all net of course can be

produced at any time.
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The second example which is given to illustrate a possible timing arrange-
ment for the first variation above has only one M element in its M block; so in
this case r is8 maximized for one element. Now as above, in general, NC must
have access to the stored contents of all of M's memory locations in order to
determine each of the successive outputs from NC to M. In this example there
are r+d memory locations, and the contents of each of them is available over
M's binary output channel exactly once during any interval of r + 4 time units
duration. All the outputs of M from ttot+r+ d, for any t, can be presented to
NC's computing subnet, NCT, at t+ r + 2d-1 by using the scheme shown in Fig. 15,

The two delay subnets and the NCT subnet shown in the Figure constitute
one of the F subnets of the over-all net's NC part. The memory-output state
resolver for the F subnets is in the block adjacent to M as indicated. The com-
puting logic of the over-all net's NC part is contained in the NCT block. The
outputs of this NCT block are fed into a delay net, and from there into the set and
reset control nets of M. A second similar type delay net is located between NCT's
input and the M-output state resolver. The C block will be explained later. Only
1's are regarded as positive outputs from M and NCT.

To return to the operatian of this example, the effect of the two delay
nets in Fig, 15 is: M's resolved outputs are produced d-1 time instants
after the corresponding outputs of M are issued. The first delay net serves to
line up each of M's complete set of r + d outputs in time so as to present them
simultaneously to NCT. NCT puts out all its outputs & time units after the corre-
sponding inputs. It is required thats equal j(r+d)-d, for some j> 0. In general,

extra ''or'' components must be used as delay elements in NCT in order to achieve
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this. To continue, NCT's outputs are redistributed in time so as to be stored
in the proper locations in M. This is insured since the delay around the loop in
Fig. 1518 (j+2)(r+d)-d, j> 0; and the delay in each of the 2k+1 '"resolver-net-
and -component' chains from M's input to M's output is d,

The only thing that prevents the s&heme in Fig. 15 from working as has
been explained thus far is that M's successive outputs (being the contents of M's
successive memory locations) appear on each of the NCT nets' input wires at
successive time instants. This must be eliminated by having synchronized clock
signals sent into the NCT nets every (j+2)(r+d)-d time instants such that these
nets produce positive outputs corresponding only to their inputs at clock times.
Such clock signals can be obtained most economically by feeding the outputs of
the C net shown in Fig. 16 into the NCT nets. C has only one circulating 1, and
this is timed to arrive at the NCT nets' inputs d-1 time units after the contents
of M's first memory location is put out of M, C is considered as a part of M
because of its feedback loop.

Now of course in special cases, it is expected that several of the 'or's"
in Fig. 15 can be eliminated without affecting the relative timing. But discounting
this possibility, the state of M changes only every (j+2)(r+d) time instants.

In Fig. 15 NCT is designed to produce the proper sequence in M, and
inputs and outputs are normally fed into and out of NCT. This completes the
discussion of the ;econd example.

In general where the maximum r can be very large, there are a wide range
of timing arrangements that can be used in the first variation of the over-all

2k+1 form of computer net being discussed in this Section. 1 However, all of

1 This includes, e.g., those arrangements based on utilizations of additive group
generator concepts for additive groups of integers modulo primes.
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these ways lead to a form of over-all net which, operationally speaking, can be
thought of as follows: It is of the form of N*. All its memory states are avail-
able to NC at every instant; so NC alters these states (with delay >0 from NC's
input to any of its corresponding outputs) in proper sequence. Now because of

the universality of this conceptual model, define CN* to be a net form which is

constructed as explained in the second paragraph of this Section and without any
particular timing arrangement specified.

At this point the subject of economy is considered. In general the direct
effects of the outputs of an N* net's NC net have to be usable later on as inputs to
N*'s NC net from N*'s M net. Thus, the 2k+1 form of Theore*r?l I is the most
economical type of kc net that can be used to independently realize the NC part of
N*. Theorgfn II specifies a most economical type of memory net that can 1) correct

any kf's that might ever occur in any of its unclosed loops, and 2) be controlled

2k+1 type

1 1

__®_ ... _®_ resolver \

. ‘| net ) .

: ' Ok+1
{

I
Delay = (jJ+2)(r+4d) -4 A

Output

2k+1

Figure 16, The C Net of Figure 15,

** Assuming Conjecture II to be true.
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through nets in which transient type kf's can occur. Hence this type of realiza-
tion of N*'s M net is the most economical one which has the failure-correcting
properties mentioned.
Note that all of the extra costs that are involved in the interconnecting
of the realizations of NC and M specified by Theorems I and Il arise from one
trouble. That is the incompatibility which must always be present between the
modes of operation of an nc and memory net. For any time is an appropriate input or
output time for a nc-net, but memory locations are accessible only periodically.
The important point at this juncture, however, is that the form of M which has
been chosen is the most economical one for any possible pattern of storage cycle
lengths}
Now Theort;n I refers to independent k¢ nets, but not necessarily to
kc nets which feed into memory nets. Hence, since the cost of a most economical
memory netlincreases rapidly with the size of its set and reset input bundles,
any economy clsim on CN* has to carry a condition which recognizes this. Note
finally that the operation pattern of CN* which has been specified does not use
any time-domain redundancy in the inter-operation of its NC and M parts.

The above is the argument for

K
THEOREM III: CN* is a most economical form of over-all computer

net, 1) which is of the form of N*; 2) which is kc in its NC part; 3) which can a)
correct any kf's that might ever occur in any of the unclosed loops in its M part,
andb) be controlled through nets in which transient type kf's are allowed to
occur; 4) which has NC-to~-M communication channels of 2k+]l or more wires

per-bit capacity; and 5) which does not use any form of time-domain redundancy.

*% and 1. Assuming Conjecture II to be true.
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CN* also has the property that it can correct the effects of any set of k or fewer

permanent component failures which might occur within it.

4.4 THE SECOND VARIATION OF THE OVER-ALL 2k+ 1 FORM OF COMPUTER NET

The second variation of the first over-all failure-correcting computer
form of this Chapter will now be developed. Let there be given any irredundant

computer Net, N. Define a cycle of N as follows: a set, A, of components, in N

constitutes a cycle of N provided the output of each component in A is fed into the
input of exactly one other component in A. An example of a cycle is shown in

Fig. 17. In general the cycles of N are not disjoint.

. .
. .
. .
P —-—
3
.
. . .
K . .

Figure 17. Exemple of a Cycle.
Now break at least enough wires in N, according to some scheme for

keeping the number of these breaks near a ninimum, so that there are no cycles
left in the resulting net. Denote this result Nnc. Now Nnc has some component
input and output leads dangling at the break points as a result of the breaks.
Relabel these leads respectively as additional input and output leads of Nnc. Then
Nnc is a well-defined Nc-net. Form the 2k+1, kc derivative of Nnc as specified
in Theorem I. Then connect together those of Nnc's (2k +1) -wire, input and output
variable bundles that correspond to leads which were originally broken in N,

Then the resulfs bundle interconnection is identical to the interconnection of single

leads in the original N. Denote this result Nl.
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Now in each of the loops in Nl which correspond to a cycle in N, there
are one or more bundle-state resolver subnets. Each of these subnets has a
delay of 2. Thus, in order to get Nl to operate in the same over-all manner as
N, it is in general necessary to insert some delays in some of the loops of Nl.
This ig always possible. For if nothing better can be done, d-1 delays can always
be used at all component inputs which do not come from resolver subnets. This
will compensate for the delays in all the resolver subnets.

Denote by N2 the most economical alteration of N1 which has all its
loop delays properly fixed with respect to each other. Now if in realizing N2,
the break points were chosen so as to minimize the cost of N2 (the number of

bundle-state resolvers in N1 is highly important here), let the corresponding

form of N2 be denoted CN#.

The Section is summarized in

THEOREM IV: Given any irredundant computer net, N, CN# is a form

of failure-correcting derivative 1) which has the same general organization as
N, 2) which can correct any kf's that might ever occur in any of its enclosed loops
and 3) which does not operate with any form of time-domain redundancy. CN# also
has the property that it can correct the effects of any set of k or fewer perma-

nent component failures which might occur within it.

%k
CONJECTURE QII: Given any irredundant computer net, N, CN# is the

most economical form of failure-correcting derivative of N 1) which can

correct any kf's that might ever occur in any of its unclosed loops

** Assuming Conjecture II to be true.



-57-

(or which can correct the effects of any set of k or fewer permanent component
failures which can occur within it), and 2) which does not operate with any form

of time-domain redundancy.

REMARK: This conjecture is essentially based upon the belief that there
do not exist any more economical over-all computer organizations than cNtis,
There may in fact be a completely unknown concept for computing with nets in
which kf's are permitted to occur. And this concept may be more economical
to realize than the one employed in CN#. However, granted the nonexistence of
such a concept, Theorerr*{g I and II, and factors similar to those mentioned just

*%k
before the statement of Theorem III, tend to lead one to the above Conjecture.

4.5 THE SECOND FORM OF FAILURE-CORRECTING COMPUTER NET

The remainder of this chapter describes the second form of over-all
failure-correcting computer net that was mentioned in Section 4.1.

There are two variations of this form, just as there were the CN# and
cN? variations of the over-all 2k+ 1 form. Again, the form is constructed in the
form of N*, It is developed below in such a way as to show that one of its
variations probably operates with maximum time-domain redundancy.

Both of the variations have the following constructional features in
common: They are of the form of N*. Their M nets are entirely composed of
the M, type memory elements given in Theorem II. Their NC nets contain k+1
disjoint copies of their own corresponding irredundant realizations. The NC

nets' individual outputs to their respective M nets are all sent over (k+l)- wire



-58-

binary channels. The ith wire in each channel from NC to M, 0€i€k+1, comes
from the corresponding binary channel of the ith irredundant realization in NC.
The general scheme is shown in Fig. 18'excepting that NC's input state resolver
nets are most economical with delay d instead of as shown in the Figure. In Fig.

18, the F nets are the irredundant realizations corresponding to the over-all NC

net shown. The Yo i=l, ..., n, outputs of NC are fed into M, and the yi, i=n+l,
., n+s, outputs of NC produce the 0j outputs of the over-all net. Since the
inputs are presented to M on (kt+l)-wire bundles, all the Mr elements of M
have w_l's and ui's equal to k+l. Thus, only homogeneous l's can represent
a bundle state of 1 on a bundle leading from NC to M. The outputs of M into
NC are given over (2k+l)-wire binary channels. The states represented over
these channels are resolved at NC's input, and then re-represented over
(k+l)-wire binary channels, From there, the resolved inputs are combined

with the IJ. inputs, and the result is fed into the k+l F nets as shown,

To continue, the NC nets of both variations of the second form of failure-
correcting computer net operate into their respective M nets on the same sequential
principle as was discussed for CN*., The timing problem that arises out of
interconnecting the M and NC nets in Fig. 18 is the same as before with CN*.

Hence it will not be further discussed here. Rather, the form in Fig. 18 will be
considered to operate in the same manner that the operational model of CN* operated.

It is conjectured, in the light of Theorem**II, that a more economical N*
form than the one shown in Fig. 18 could not possibly 1) at least detect kf's in
its NC part, and 2) correct any kf's that might ever occur in any unclosed loop
in its M part. The gybgtantiation of this conjecture rests on the same principles
that are contained in the proofs of Lemmas II and III and Theorem I. The proof
of it however is blocked by the kd analog to the situation that blocked the proofs
of Conjectures I and II.

*% Assuming the truth of Conjecture II.
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The next thing is to determine if the form in Fig. 18 is sufficiently general.
Suppose at some time t, z of NC's individual outputs into M ought to be 1's,
but only u of them actually are, for some uz, because of a kf in NC. Note
here that since unanimous 1's have to be present on a bundle out of NC to

produce any effect in M, z-u may be as great as k. Assume for the remainder

of this Chapter that only jf's, j4k, are allowed in nc-nets and unclosed loops

of over-all computer nets. Then u of M's stored quantities are respecified

at t+d by the u correct inputs to M, but the other z-u quantities remain as
before. Now if the form in Fig. 18 is permitted to continue operating in
this manner, permanent mistakes will in general occur. So, some set of

arrangements must be included to eliminate the possibility, B, of incorrect

information from NC's being permanently registered in M. Two such sets of

arrangements will be discussed below. The net containing the first set will be

denoted DN*, and that containing the second, DN#.

The form of DN* is essentially the same as that shown in Fig, 18. The
only difference is that DN*'s NC outputs are encoded in a k-error-correcting
code so that M will receive the correct information regardless of whether kf's
occur in NC and M or not. The details of the scheme are as follows: Suppose
at some timet, the state of M is altered from S¢_] to S;. Then NC interprets
St-l at t-1 to be memory information state Ay_], and St at t to be memory

information state A;. A memory information state is the information interpreta-

tion of the memory state. The explanation of the relationship between the 5
and Aj reads thus: The A, represent the proper sequence of information states

in the M block of DN*, (with respect to some initial state AD of M). The §; are
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altered in sequence by NC so that NC interprets them as the successive A;. Thus
all the Si states which occur when DN* operates without any failures must have

memory-state-point neighborhoods about them consisting of at least all the state

points distantl less than or equal to k from them. And all the points in each such
neighborhood must be interpreted by NC as the corresponding A;. For only
bundle-state 1's out of NC can cause changes in M, and for every output of NC
there exist kf's such that k of the bundle states which ought to be 1's are not.
Consequently, NC must be able to alter any memory state point in A, _,'s
memory-state-point neighborhood to at least some point in At's memory-state-
point neighborhood. This of course is possible to arrange from the familiar
encoding and decoding concepts of classical coding theory. For the situation
here is identical to the one there if the M net and connections are thought of as
‘a noisy channel, and NC is regarded as a perfect decoder-encoder unit (that is,
its failure structure is transferred to the channel).

DN* suggests a whole class of forms which generalize on its scheme
of operation. Each member is the same as DN* except that the wi's and ui's
of its M, 's range in general from k+1 to 2k. Evidently, the operation pattern of
these forms is described by the above discussion if the neighborhood radii2
there are decreased from k/1 to - E—k/ﬂ, e, - [-k/k_] as k +1 there is

increased from k+1 to k42, *« ¢ «, k+k=2k. For with (k+i)-wire bundles leading

1. See the end of Chapter 2, a footnote defining distance.

2. A neighborhood radius is 1/2 the maximum distance between any two points
in a state point neighborhood.
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from NC to M, each bundle state is correct at least for all (i-1) f's in NC; and

(i-1) equals 1, 2,...,k as k+l is increased from k+l to 2k. Denote the general-

ized form of net representing the above class of forms, D*Nx,

Note that the NC part of D*N* is effectively kc, and that its failure-
correcting redundancy is still in the equipment domain. The scheme of operation
of D*N* is conjectured to represent the most economical meet**, within the
general form of D*N*, with the requirement for the elimination of B. This con-
jecture is made provided the elimination must be accomplished with a kc, NC net.

At this point, from Theorem**III there follows

CONJECTURE** IV: Theorem**IIl holds with "CN*'" replaced by "Either CN*

or D¥N*''| and with 4) deleted.

Before moving on into the discussion of the DN¥ form, note the general ex-
tra costs incurred in altering DN* to D*N* to eliminate B. They include the costs
of extra Mr elements, and Ai resolving and output encoding nets in NC. On the
other hand, D*N* is cheaper than the over-all 2k+1 form, CN*, 1) at the inputs
to M, and 2) to a certain extent, because it only has (k+l)-fold duplication in its
NC part. 1) is because the w;'s and y;'s of the M,'s of D*N* are all less than 2k+l.

Evidently, the neighborhood idea used in D*N* is one version of the idea
that was dismissed at the end of Chapter 2 for isolated kc nets. It is not dropped
here because NC's output must feed into a memory net, which adds a condition
that was not present in Chapter 2. Still another version of the idea at the end of
Chapter 2 which has been dismissed here, however, entails single resolutions of

M's complete memory states instead of separate resolutions of each of M's Mr

states.

** Assuming Conjecture Il to be true.
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4.6 THE DN# VARIATION OF THE SECOND FORM OF COMPUTER NET, AS

ARRANGED FOR TRANSIENT TYPE FAILURES

This Section discusses the second set of arrangements that can be
added to the general form in Fig. 18 to eliminate B. The first set, incorporated above
into D*N*, and this set, employed below in DN# and D#N#,, seem to exhaust all the

really promising possibilities.
First of all, DN" is developed in the present Section to cover the case

where only transient type failures are allowed. The essential feature of this

case with regard to the satisfactory operation of DN# is the assurance it gives
that DN*'s NC net will not produce failure-corrupted outputs infinitely many
time instants in succession. In the next Section, the general case where either
perrhanent or transient type failures are allowed is considered; and with this
consideration DN# is increased to another form, D#N#, to compensate for the
change in failure structure.

Allowing only transient type failures for the remainder of this Section
then, consider the following restriction on the operation of the form in Fig. 18,
Suppose the NC part of that form were only permitted to alter the M part's state
by 1 bit at a time; and that each successive alteration of M's state had to be
successfully completed in order for M to specify its next state. With this
requirement, if a jf, j€k, occurs to corrupt an NC output, all of NC's correspond-
ing output bundle states are interpreted by M as ('s. Hence there is no
change in M's state, and NC's next attempt at altering the state of M merely
constitutes a repetition of the previous attempt. In this manner, successive
re-attempts continue until one of them is successful, and then NC begins its

attempt to cause the next regular state change in M.
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Such a pattern of operation is easy to instrument in the form of Fig. 18.
Unfortunately, however, the result is extremely uneconomical if its operation is
arranged so as to make it sufficient to represent a general purpose computer (or,
abstractly speaking, a completely finite Turing machine ).

The reason is as follows: a general purpose computer must be able to
carry out sets of instructions(perform mathematical functions) on arbitrary sets
of data (variables). Now, suppose A is to be added to B in the above form where
A and B are binary representations of natural number quantities. Then the first
sum bit that NC specifies to M may be either a 1 or a 0, depending upon the
values of A and B. In one of these cases, the sum bit specification does not
change the state of M, since the memory location where the bit is sent must be
in either the 1 or O state before its arrival. But if there is no change in the
state of M, the over-all net reaches an equilibrium state and therefore cannot
further compute. The only way out of this difficulty, which does not require
the single-bit computing concept to be discarded or the basic form of the net to
be altered, is to let all of NC's outputs change the memory state in the same
direction: that is, always change 0's to 1's or vice versa. Then the locations
in M where NC's output 1's are stored must be used to register successive
resultaduring computations. But if this scheme is used, the number of 1's stored
in M monotonically increases with time. This requires that a huge number of memory
locations be available in M. Otherwise the over-all is not able to perform

general types of programs —especially those involving slosly converging iterative

1. See the end of Section 4.2
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routines. Thus it is apparent without further investigation that the above form
would cost at least more than either D*N* or CN* for the same amount of general
computing ability. Since the point of this Section is to derive a form which at
least might be more economical than D*N* and CN*, the above form will not be
discussed further.

If the single-bit computing concept is to be salvaged with any prospects
of economy, the form in Fig. 18 must be altered at least as follows: There must
be an arrangement for NC to put out successive single bits to M such that these
successions amount to the production of q-bit outputs from NC to M, q >1. This

requires M to be partitioned into disjoint nets, Ml,..., Mq and successive of the

single bits to be sent into the different Mi in sequence. In order to achieve this,
after (or with), each successful 1-bit transmission from NC to Mi, the state of
some one of M's memory locations must be reliably changed in order to indicate
that the next bit from NC to M must go to M(i+ 1), or Ml if imq. Special locations
in M must be reserved for these changes, for it was seen earlier that computation
bits from NC to M may not always produce changes in M's state.

Consider the case where q®2. The schematic of a net which is sufficient
for this case is shown in Fig. 19. The notation in Fig. 19 is consistent with that
in Fig. 18, and in anticipation of its adequacy the over-all net form in Fig. 19

is denoted DN#. M, in the Figure is an Mr element with r=0. It is in Mo that

the indicator location mentioned above is contained. Mo's set inputs consists of
all the set and reset inputs of all the memory elements in M1; and its reset inputs

consist of all the set and reset inputs of all the memory elements in M2.
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The relative timing among the memory locations in Fig. 19 is
arranged as follows: When the state of Mo directs NC's operation into M1,
NC s subsequent 1-bit output changes Mo's state so that the resulting Mo state
directs NC into M2. Then NC's next output resets Mo to its previous state,
causing NC to work into M1 again. This pattern of operation is continued until
the net finishes the computation it is performing. At any point, if a jf, j€k,
occurs to cause one of NC’s outputs to be spoiled, successive re-attempts are
made to produce that output until one is successful before Mo's state is changed.
Since the outputs of M are continuously fed into NC, the following
timing problem might arise in DN#: The delays from NC's input to several of
its outputs might vary so much that successive bits from one output might persist
long after bits from the next couple of outputs had been produced. To illustrate
this with an example, suppose NC is a gnc-net, and that the delay from NC's
input to y; is 100 time units,while that to Y2+ **° Yy, isonly 5 time units. Then
after the first successful bit out of Yl to M1 occurs, it may take up to 99 more
time instants to clear NC of the effects of those inputs from M which produced the

Y, output. For M's outputs are continuously fed into NC. Now NC's next output,

say from y, to M2, may be produced without any failure. If so, as soon asy
, 2

stops putting out 1's, the continued outputs from Yy set Mo to 1 again whether
NC's next output to M1 is correctly produced or not. Thus a permanent
mistake might occur at this point.
From the example, it is apparent that a very general way of solving
the problem here is to make the delay from NC's inputs to all of its outputs the same.

Hence the general form in Fig. 19 remains as what is desired for q =2. Note that
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M cannot be vacuous in this form as it can in CN¥ and D*N*,

The only additional point here is that, somehow, it must be known when
Ij inputs to pN* have been correctly stored. There are many ways of reliably
doing this. The simplest way is to bitwise store all binary word inputs to DN¥ at
one set of locations in M as follows: Run all the set and reset inputs to those
locations into a 2k 4! type ''or'. Then as each bit from DN# Ys input is correctly
stored, the majority output of the ""or'' net switches from 0 to 1 for one time
instant. This switch constitutes a reliable signal to the outside world that the
last bit was properly stored, and that the next bit can be presented for storage.
The detailed sequence for carrying out a ''store' order in DN# is not taken up
until later.

Now a heuristic will be given to show that the form in Fig. 19 is sufficient
to represent any completely finite Turing machine. It will be shown that DN# can
perform any arbitrary sequence of combinational functions (instructions) on
arbitrary sets of arithmetic variables (data). It will be assumed that all func-
tional and variable values are represented by binary sequences.

Let the ordered sequence of instructions pn* is to carry out be successively
stored in memory locations 1, ° * *, 2 in M1, Also reserve “E"logzz]

memory locations in Ml to store a count configuration between § andz -1

inclusive. Denote these latter locations the instruction counter, or IC. Let

the state of IC specify at each point which of the z instructions NC is to work on.
Arrange to have all the successive count representations in IC from 0 to z -1
differ by only 1 binary digitl,

Let the data and instruction word lengths in pn* be denoted by w. Let

M2 contain ~ E log, (w+1)] memory locations to store a count configuration

1. This counting scheme is the classical "Grey Code' scheme.
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between Q and w inclusive. Denote these locations the digit counter, or DC.

Arrange NC so that at any point in a computation, if the state of DC represents
a number j, where 0¢j<w, the jth binary digit of the function value NC is com-
puting is the next one to be sent to M1. Let all the successive count representa-
tions in DC from ©to w differ by only 1 binary digit.

Then, after the starting mode of DN# has been completed (the reading
in of its data, etc.) the first instruction stored in M1 can be carried out as follows:
First the states of IC and DC are 1, and the state of Mo is 0. Then NC observes
the first instruction, which is a binary representation of the form: f, Ll, *°°,
Ls, I{s+1). This representation means ''perform operation f on the variable
values at the sets of memory locations Ll, ***, Ls, and store the result at the set
of memory locations I{s+1)". Herethe Limay be any of the sets of variable
value memory locations in Ml. As soon as NC is able to correctly transmit the
lst bit of f's value to LI, Mo's state is changed to indicate this. NC then
changes the state of DC to represent 2. Next, NC sends the second digit of f's
value to Ll. After this it counts up one more in DC. Then NC sends f's third

digit to Ll. This pattern of operation is continued until the w th digit of f's value

is sent to Ll. Then the count state of DC is returned to 0. (If —L-logz (wﬂ)]

_#J.ogz (w+1), this must be done in successive steps. These steps can be
arranged by having NC produce 1's to only the set-input side of M0 when the
count state of DC is greater than w.) After this the count state of IC is increased
to 2. Then by increasing the count state of DC to 1, the operation cycle begun

above is complete. So the operation sequence of DN# repeats until all z instructions
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in Ml have been carried out, and the results of the computation have been read out
on the Oj output wires.
Now another word about the starting mode in DN# is in order. This mode
can be taken care of by fixing an initial set of wire states for DN# to start from,
and wiring in enough store instructions to enable it to resume operation from a pro-
grammed set of instructions.
The above completes the sufficiency demonstration for DN#. It seems probable
that all the features that have been given DN# are necessary for an economical
and sufficiently general N* net not having a k¢ NC part (as in CN* and D*N*)l. In

fact DN#

is the result of an attempt to realize a failure-correcting N* form which

#
has a maximum amount of redundancy in the time domain. Now the fact that DN 's
memory is only partitioned into 2 parts does not constitute an economic restriction.

For if g>2, each set and reset input of every element in Ml, , Mq must still
go to at least one NC —output~ indicator memory location, such as in M0 of DN#.
But these extra memory locations can just as well be put in M1, and all the

Mi's but one lumped into one memory and redesignated Ml. Hence, including M,

in M because of the closed loop it contains, we have

%k
CONJECTURE** V: Theorem III holds with "CN*'' replaced by '"Either CN* D#*Nx%

or DN#”;Z) replaced by the condition'which allows kf's to occur in its NC part
without a permanent mistake's ever occurring'; 4) deleted; and 5) replaced by
the condition 'in which only transient type failures ever occur.'

At this point it is felt that some final remarks should be made concerning

1) the cost of DN#, and 2) the list of instructions that its NC block might be

*% and 1. Assuming Conjecture II to be true.
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designed to perform. With regard to 2) the following list of instructions is

both sufficient and very economical to realize in NCl: 1) S, L1, L2: store

the contents of memory location Ll at memory location LL2Z. Here, LI can be the
input and L2 the output of DN#; 2) A, L1, L2: add the contents of L1l to those

of L2 and store the results in L3; 3) C, Ll, L2: take the 2's complement of

the contents of L1 and store the results in LL2. This instruction together with

2) enables NC to subtract; and 4) C, L1, N: change the state count of IC to N

if the contents in Ll are 0. Otherwise do nothing. This instruction permits
DN# to perform iterative type programs without having each single instruction
that it carries out stored in a different memory location.

Now consider the cost of DN#. It may be compared in a qualitative sense
to that of CN# and D*N*, since all of these forms can use essentially the same
general schemes for computing. The extra cost of DN# over that of the form in
Fig. 18 comes from Mo , DC, and the extra subnet that is needed in NC to enable
it to work with Mo and DC. DN#'s saving over the cost of CN* is the same as
was mentioned for D¥N*, On the other hand, DN# has none of the extra costs
that were mentioned for D*N* over the form in Fig,. 18.

The following conjecture is known to be true for fairly small k and for
NC nets of fairly few input variables. The proofs that are available for these
special cases will not be given because of their lengths. However, tﬁe conjecture

below seems just short of obvious from them.

l1.. The argument for this assertion is not given here because of its inherent length.
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. . #
CONJECTURE VL Conjecture **V is true with "Either CN*, D*N*, or DN "

replaced by "DN#",

#

4.7 THE D#N VARIATION OF THE SECOND FORM OF COMPUTER NET, AS

ARRANGED FOR TRANSIENT AND PERMANENT TYPE FAILURES,

The purpose of this Section is to extend DN# in some economical
fashion 1) so that it can correct kf's in its NC part even if permanent type failures
are allowed, and 2) so that the result is neither CN* nor D*¥N*, Here, 2) is in
the interest of exhausting the set of forms which are possibly most economical.

The following is apparent if DN# is to be extended to a form, D#N#, in
accord with 1) and 2) above. p*nt must have at least k disjoint standby copies of
the subnet, call it Sj, between D#N#'s NC net inputs and the ith wire in each of
its output bundles. Here i is not specified since all the Si are identical anyway.
These subnets must be switched into operation in the event of permanent failures
in any of the Sj, and the corresponding S, must be cut out. If the latter is not
done, eventually (2k +1)-wire bundles will have to be fed into M., And then the
whole saving of the (less than 2k+1)-wire bundle input to M arrangement will be
gone. To continue then, in order to be safe, provisions must be made for D#N#'s
correct operation regardless of which k of the set of k +1 Si's and k standby S; nets
fail. Finally, if a standby net is mistakenly switched in for an S; which contains
only transient failures, the mistake must not be allowed to persist through all later
time. Since transient failures can occur in the same component indefinitely many
times in succession,this requires a periodic (with either failures or time) and com-

plete switch-in, cut-out pattern for the S;'s.

** Assuming Conjecture II to be true.
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When a failure occurs in DN# to corrupt an NC output, there is no effect
produced to indicate this. Consequently, if standby nets are to be switched in for
Si's which fail, either a reliable clock-controlled (i.e., time basis) failure
indicator must be available, or else the switch-ins and cut-outs must occur in a
regular periodic (with time) sequence regardless of whether failures occur or
not. For any other means of obtaining a reliable failure indication must employ
straight failure-correcting logic in NC, perhaps of the type found in CN* or
D*N*, But this simply extends DN# to one of these forms, and so is not what is

wanted here.

—e
Mo
MI
| Nc
M2 Oj ouTPUTS
I] INPUTS
SN

Figure 20. DF N .
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Fig. 20 shows the schematic of an over-all extension of DN# which just
meets the requirements specified above. The single lines between the blocks in
Fig. 20 are merely to indicate corresponding communication channels. Also, with
one exception, the notation in Fig. 20 is identical to that used for DN# wherever
the same symbols are used. The exception is NC. NC in Fig. 20 differs from

NC in Fig. 19, only 1) by having k standby S,'s to switch into operation if some of

the original S;'s fail, and 2) by having a subnet to admit NC's outputs to come from
only the (k+1) subnet of S;'s and standby S;'s that SN's output specifies. The
particular arrangements in NC which realize this admission remain unspecified,
but it will be assumed that they are most economical. The specifications that

are given for the SN block in Fig. 20 are as follows: SN has u different outputs

that it can transmit to NC, and each time instant its output to NC is one of these.
SN's outputs are periodic, and exhaust all u possibilities every period. Since
SN's output to NC determines which set of standby Si's are to be switched in for

which set of original S;'s, u must be at least as great as all such switching

3 * - 3 . 13 k kfl k
possibilities. This number is Z ) (C ) (C ) which is easily derived by
i= i i

considering the switch-in sequence shown in the right hand column of Table4.
In the Table? the rows in the left hand column list in order the i's of the
successive sets of Si's to be cut out when the set of standby S;'s (also indicated
by their i's) in the right hand column is switched in. To continue with SN's
specifications, all of its outputs are synchronized with the outputs of M and M,
as follows: they reach NC's input at times which enable them to specify which

of the 2k +1 S;'s and standby S;'s in NC are to produce the corresponding set of
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TABLE 4. The cut-out and switch-in sequence of the S;'s in D#N#

Cut-out sets Corresponding
Switch-in sets
each row
contains 1, 2, s ktl 1
all singles 1, 2, « .., kel 2
. all
singles
1, 2, . . ., k+l k
each row (1, 2), (1, 3), ° * n, (k, k+1) (1, 2)
contains . . all
all pairs . . doubles
(1, 2), (1, 3), * ° .)(2»3s..., k+H) (k -1, k)
each
row con-
tains all (1, 2, ', k), ""(2,3'°"k+l)
k-tuples




outputs from NC to M. The minimum duration between output changes in SN
is also restricted by similar timing considerations. Finally, SN is a most
economical net which operates reliably in accordance with the above specifica-
tionslo

With the above provisions, D#N# operates as required. For provided
there are no more than k permanent failures in NC at least once every one of
SN's periods,there will be a set of k+1 S;'s and standby 5,'s that attempt to pro-
duce a l-bit output from NC to M with a non-zero probability of success. Hence,
as the number of SN's periods grows large, the probability that NC will produce
a 1-bit output to M approaches 1.

The extra cost of D#N# over that of DN# comes from SN and the extra
subnets in NC. Apparently, from above, when permanent type failures are allowed
these costs are all necessary. The big saving in the cost of D#N# over that of

CN* and D*N* follow from the cost discussions at the end of Sections 4.5 and 4.6.

%K
CONJECTURE#** VII: Theorem III holds with '""CN*'' replaced by ""Either CN¥*,

#1
D*N*, or D#N ; 2) replaced by the condition "which allows kf's to occur in its NC

part without a permanent mistake's ever occurring'; and 4) and 5) deleted.

#, D#N# may easily be extended so

As a last remark with regard to D#N
that the output of SN changes only if a failure occurs to corrupt an NC output.
With such an arrangement, and if the switching sequence in NC is as given in Table 4,,

6N's output can be used as an indication of which of the original Si nets have

failed. The arrangement can be achieved quite easily roughly as follows:

1. With respect to the use of the word 'reliably'' here, recall the underlined assump-

tion given after the explanation of Fig. 18.
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1) let SN be a CN* or D*N* type cyclic, Grey-code, bidirectional counter;

2) add a clock, C, of the form shown in Fig. 16 which a) puts out a 1 to SN to
reliably increase its count state every t instants (t greater than all closed loop
delays in the over-all net) and b) starts a logical performance in NC at these same
instants; 3) effectively pass all the inputs to M, through a 2k+1 "or' by tapping

off My's tWo ''or'' groups and let the output be fed into SN to reliably decrease

its count state by 1 if NC puts out a 1-bit output to M. Then when trials are
unsuccessful in NC, SN's count state is permanently increased by 1, otherwise
not. Since SN is cyclic, when its count state gets to u, its next state will be 0.
This insures that no switch-ins for transient failures will ever persist throughout

all later time.






CHAPTER 5

kd NETS

5.1 INTRODUCTION

Up to this point, only failure-correcting types of nets have been considered.
Hence it is of interest to have something formulated with regard to kd netsl.

The purpose of this Chapter is to consider ways of obtaining economical

kd derivatives of irredundant nc-nets. A kd derivative of an irredundant

nc-net, N, is a kd net which realizes the same function as N. The problem of
this Chapter stated more precisely then is: given any nc-net, N, which realizes
the set of functions, F, from the input scheme, S, what is N's most economical
kd derivative which also realizes f from S. Here, '"input scheme!' refers to the
manner of presenting variable-value inputs to N. For example, N's input
variables might be represented over different numbers of wires and/or by binary
sequences, etc. |

With the net formation allowances that were made in Chapter 1, the prob-
lem as stated is presently rather closed. For, apparently, when redundancy in-
sertion is restricted to the equipment domain, k+1 disjoint realizations of N
constitute a very economical kd derivative of N. In fact, this derivative seems to
be most economical in the sense indicated, but as yet the author has been unable
to prove it for cases where more than k+1 output wires are permitted. When only
time-domain redundancy is allowed, binary sequences of the type discussed in

Section 2.4 are used in N. The spectrum of possibilities that lie in between the

1. See the definition of a '"kd net' in Section 1. 3.
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above two redundancy-type extremes follow immediately by proportionately mixing
the forms of redundancy found in them.

While the above schemes are acceptable, they are not really satisfactory
in many respects. For example, for some applications it might be that the O,
output channels of the forms in Chapter 4 were only allowed to be transmitted over
m-wire channels, m< k+1. In such cases it would be necessary to know what
additional net-formation admissibilities were needed to enable kd outputs to be
produced over (m< k +1)-wire channels. This question is considered at the beginning

of the next Section.

5.2 DOMINANT AND RECESSIVE LOGIC

There remains only one uninvestigated class of net formations for cases
where only unilateral components are allowed. The distinguishing characteristic of
this class is defined by the following adjunction to the component interconnectability
rules given in Chapter. 1: Let it be permissible to merge the output wires of n
different components into a single wire, for any finite n? 0. Let this wire be in the
0 or 1 state according as all of the merged wires are in the 0 state or at least one
of them is in the 1 state respectively. Functionally, a merger point behaves as a
perfectly reliable "or' component, except that there is no delay associated with

its operation. Denote any net which contains such a merger a dominant and recessive

1
logical net, or DRL net

The merging rule just defined is not of only academic interest: For a
physical correspondent to an abstract merger point can be realized as a solder

joint in an electronic digital computer. In this case the 1 state corresponds to

1. The dominance of the 1 state and the recessiveness of the 0 state are responsible
for the terminology.
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ground and the 0 state to non-zero potential. From such a point of view, the
perfect reliability ascribed to merger points seems justified. For if computer-
circuit solder joints are well-formed, they almost never fail unless they are
subjected to very severe environmental conditions. And in these cases, special
wiring techniques can often be found to insure that they are sufficiently reliable
to justify the assumption.

On the other hand, physical realizations of abstract mergers might cause
some difficult loading problems. For example, the circuits in the basic logic
packages of most electronic computers would have to be redesigned if mergers
were permitted. Thus, in order to cut down on the number of mergers, the

following arbitrary restriction will govern their use from here on: mergers will

only be permitted at the outputs of nets which have fewer than 2k+1 wires in their

binary output channels. It can easily be shown that this does not constitute any

restriction on the set of realizable output characteristics of allowable nets.

5.3 THE USE OF THE MERGER TO PRODUCE kd NETS

At this point, the problem of specifying kd nets from their corresponding

irredundant realizations is reconsidered. Until it is stated otherwise, only

equipment-domain redundancy will be allowed for failure-detecting means. The

use of the merger allowance with respect to the kd net problem is best illustrated
with an example. Fig. 21 shows an irredundant realization of the function
f(x,y) =x'-yvx.y'. Let the example problem be to find a 3d net which also

realizes f(x,y) and has only 2 wires in its binary output channel.
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X
y &
f(x,y)
X &
y

Figure 21. A nc-net.

Now consider the net and net input scheme shown in Fig. 22. Throughout
the remainder of the Chapter assume that all net input schemes are similar to

the one shown there. That is, in every case, assume that all the net's input

variables and their negations are perfectly reliably presented to the net over

separate wires. The justification for this assumption will be given later on.

| fixy)

,,

Figure 22. A Merged Output Net.
The states of the net in Fig. 22 at points '"a'' are 1 at time t-1 if x is 0
and y is 1 at t-2, and if no more than two failures occur among the components
cl, cz, and <, at t-1. Also, the states of the net at points '"b'" are 1 at t-1 if x

is 1 and y is 0 at t-2, and if no more than two failures occur among the components

C4» Cg» and c6 at t-1.
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Similarly, if either xis 1 and y is 0, or xis 0 and y is 1 at t-2, and no
more than any combination of two component failures occur in the net from t-1 to
t, the output of the net, labeled £* (x,y), is 1 att. Thus the net's output must be
1 at least at all those times when it ought to be provided no more than a 2f occurs.

However, the output state of the net in Fig. 22 can still be 1 at some time
t when it ought not to be if a single component failure occurs at the first level at
t-1 or the second level at t. Now by the formulation of the problem, only one more
output wire can be added to the present net to make it 3d. This can be accom-
plished by adding a merged output realization of f'(x,y) as shown in Fig. 23.

The net there has the following characteristics: If both its output wires are 1,
nothing is known about the corresponding input. However, it is known that at

least a 1f occurred in the half of the net which ought to have produced the 0 output.
X Xy y

*
f (x,y)

=
' (x,y)

Figure 23. A 3d, 2-Output-Wire Realization of f (x,y).
If both of the net's output wires are 0, again nothing is known about the correspond-
ing input, but it is known that at least a 3f occurred in the half of the net which
ought to have produced the 1 output. Finally, if one of the net's outputs wires is

0 and the other 1, the state of the f* wire must represent the correct state of
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f(x,y) at least if no more than a 3f occurred in the over-all net during the deter-
mination of the output. Hence the net in Fig. 23 is a 3d derivative of its corres-
ponding irredundant form. Note also that it is always 2c in the side which produces
the 1 output.

Now that the general idea of using mergers to construct kd nets has been

introduced, it will be generalized. First of all, define a kf* net to be one which

has only 1 output wire, where that wire comes from a merger of k irredundant
realizations of f (xl, ...,%X ). (It is assumed in this definition that the input scheme
n

is always the same as the one defined above for the present Chapter). Then we

have
LEMMA V: The minimal costs of equi-delay f¥ and f'* nets are equal.
This is most easily seen as follows: Let there be given a realization of f(xl, ce ,xn)

which has minimal cost for some delay d. Then this realization can be represented

yaeoX

uniquely, without thought to time delays, by an expression in the variables X n

and the functionals ''v'', '". ", and "'", Also, sets of parentheses must be used
in the expression to point off its distribution. Now suppose terms of the form

(x1 V... vxi)' and/or (x1 e xj)' are contained in this expression. Then these

v...vx".)

terms can just as well be written in the form (x‘l. «o. .x' ) and (x' j
i

1

respectively. But by the assumed availability of x; and x'i inputs to the net, for
all i, the net defined by substituting in the expression the forms (x‘1 R 4

1

x.)!

for the forms (x1 V... vx;)' and the forms (x'l V... vx'j) for the forms (x1 BERRR

is a more economical delay-d realization of f than the given one. Also its timing
characteristics are the same as the given one's because '"'not'' components have

zero delay. But this contradicts the hypothesis, so no terms of the form'(xlv. . vxj)'



x)' can be contained in f.

or(xl..... f

By an easy extension of this argument, it can be concluded that in general
no negated parentheses can be contained in the original expression. Consequently,
no '"not" components can be contained in an irredundant realization of f or in the
corresponding f¥ net. From this result, and the argument which supports it, it
is apparent that a delay-d f' net is defined from the representative expression for
a minimal cost f net by substituting primes of variables for variables and vice
versa, and "and'" functions for ''or' ones and vice versa. Thus by symmetry,
the minimal costs of f and f' nets of delay d are the same. Hence also the minimal
costs of equi-delay * and f'* nets are the same.

Before the main results of this Chapter can be stated, some more definitions

must be given. Define a kf*f'*net to be one which has only 2 output wires, where

one comes from a kf* net and the other from a kf'* net. Let 3‘repre sent the set

of binary functions on binary variables fl (xll, e ,xnl), ey fs (xls s e e xns ).

Then let a k& * P'* net be one which has s pairs of output wires where the ith pair

comes from a kf ¥ f',* net, i=l,««« , 8, and such that the over-all net is a most
i i
economical one which has this property

5.4 SOME RESULTS ON MOST ECONOMICAL kd NETS.

The purpose of this Section is to dévelop some results pertaining to most
economical, m-wire-output, kd nets, m=2, ..., 2k. The first result covers the
case for m=2, and the second and third results cover the cases for m > 2. All the

discussions of this Section assume the following: the merger is admissible, the

input scheme is as underlined in the previous Section, and only equipment-domain

redundancy is allowed.
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THEOREM V¢ Let there be given any irredundant nc-net, N, which

realizes the s functions 3‘ Then the corresponding k?‘*@‘* net, k>0, is the
most economical kd derivative of N from which each individual output is produced
separately over not more than 2 wires. If the cost of N is ¢, the cost of kP Pk
is 2kc.

REMARK: Note that by past definitions, the following is immediate: each
individual output must come from a kd realization of one of the functions

£ (x1 veeea X ), i=l,..., 8, and the binary output channel over which it comes
i : s
i 1

must transmit at the rate of 1 bit per time instant.

PROOF: First of all, it is known from the last Section in Chapter 1 that
kd nets cannot produce individual outputs over single wires. Hence 2 wires are
necessary.

Now each wire in any 2-wire binary output channel can go to an incorrect
state in at least one direction (i.e. from 1 to 0 or from 0 to 1) for some 1f. This
is true whether the wires come from mergers or not. Consequently, only 10 and
01 can be used as perfect 1,0 configurations over 2-wire binary output channels
which come from kd nets. For to illustrate what might happen if these perfect 1,
0 configurations did not differ in both places, consider the following example:
Suppose the configurations 01 and 11 were used as the correct representations of
0 and 1 respectively over a 2-wire binary output channel. Then there would be
some 1f which could either change 11 to 0l or 01 to 11, and thereby cause an
incorrect output to be produced over the channel. Hence the corresponding net
could not be kd. Thus the above means that in any 2-wire, binary-output channel

which comes for a kd net producing its fi output over that channel, one wire of the
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channel must come from u merged realizations of f;, u> 0, and the other wire
must come from z merged realizations of f'i, z> 0.

Now a net of the type asked for must be designed so that if 1 wire in one
of its binary output channels is in the incorrect state, the other cannot be provided
no more than a jf, j’( k, occurs while the output was being determined. For there
is always a 1f that can cause any output wire to go to the incorrect state. And if
both wires are in the incorrect state, an incorrect output must be produced
(assuming the results of the previous paragraph).

At this point, Theorem VIII can be concluded by using the results of the
previous two paragraphs , the output characteristics of k 2% "%, an argument
which is essentially the same as the one that was used to prove LLemma II, and the
proof of Lemma V in that order.

Now, to move on to the case where m > 2, consider an m-wire, binary-
output channel, C, which comes from a kd net, D, where D produces its f.l output
over C. Let cl and c2 be arbitrarily chosen bundle-state configurations of C which
respectively represent correct (i.e., 0f) 0 and 1 outputs from D over C. Then,
as in the proof of the previous Theorem, each wire in C can always go to an
incorrect state in at least one direction for some 1f in D. However, it must not
be possible for cl to go to c2, or vice versa, as a result of a jf, jf k, in D.

Since generalizations on the level of those in Theorem VIII are hard to
perceive for m> 2, let the following example be used to feel some of them out.
Suppose m=6 and k=8 in D above. Then it might be that each of the first 3 of C's
wires come from 2 merged realizations of fi’ and each of the last 3 of them came

from 2 merged realizations of f'i. If this is the case, ¢cl1=000111 and c2=111000
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are satisfactory choices for cl and c2 For then if {f; correctly equals 1, cl can-
not go to c2 for any jf, jZ 8; and if fi correctly equals 0, c2 cannot go to cl for
any jf, j’28.

In order to discuss one of the alternative forms of D which is equally

satisfactory, make the following definitions: Let g; ,. ., g¢ be binary functions

of the n, binary variables x; ,.. ,x_ . Then define g; [} 8; to be a binary function
1 i

of these n, variables such that its value is 1 only wherever both g; and gj are 1.

Also define g;V gj to be a binary function of the n, variables such that its value is

1 only if either or both of g;'s and gj's values are 1. Now let C's 18t wire come
fcom 4 merged realizations of fi\) gy its 2nd wire come from 4 merged realizations
of fiU g, its 3rd wire come from 4 merged realizations of fiu gy its 4th wire
come from 4 merged realizations of {'; | 84 its 5th wire come from 4 merged
realizations of f'iU gg and its 6th wire come from 4 merged realizations of

f'iUg6. Further, let g; " g ;= 0 for all igt j and i, j=zl, 2,3. Also let giﬂ gj=0

for all i#j and i, j=4,5,6. QFinally, assume that fiﬂ g = 0 for j=l, 2, 3; f'iﬂ gJ- = 0

for j = 4, 5, 6; fi\JgIU g,V g, =1; 1.V g4V g;Vg, = 1 and that none of the g; are

3

1 and if no jf's

zero. Then if fi correctly equals 1 for some complete input to D
occur, j> 0, all of the f;Y g wires are 1 and one of the f'iu g; wires is 1. On the
other hand, if f‘i = 1 instead, all of the f'iU 8; wires are 1 and one of the fiU g
wires is 1. Now if fi is correctly 1, no jf, j€ 8 can cause both one of the f'iUgi
wires to go to 0 and two of the three fiU g wires to go to 0. Similarly for f'i sub-
stituted for fi in this statement. Thus a kd criterion for interpreting the outputs

of C in this example is: if two of the f.3) g; wires are 0, £;=0; if two of the {'.\J g
i

wires are (, fi: 1; and otherwise the output is indeterminate. The advantage of

1. See the definition at the beginning of Chapter 2.
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the scheme of this example over the first one above arises when fi and f'i are
very costly to realize but most of the fiu g and f‘iu g; are not at all so.

The two examples just given furnish heuristic proof that a tremendous
number of formal possibilities exist for m > 2; and that in general it is not at all
apparent which possibility is most economical.

At this point, the essential features of the above discussion are formulated
in more general terms. The formulation concerns the realization of most
economical kd nets which must have all their individual outputs produced sepa-

rately over m-wire channels. Let S, be the set of (f 0 configurations of C, S

1 2

the set of 0f 1 configuration of C, and S3 the set of indeterminate configurations
of C. If D is most economical, these three sets are exhaustive. Then the wires
of C must come from a sufficient number of merged and/or unmerged realizations
of functions of the type fiu gj and f'iu gj’ for arbitrarily selected gj's, so that
no jf, j( k, can send a member of S1 to a member of S,, and vice versa. Thus,
if fi is correctly 1, at least enough fi ng type wires of C must remain 1 so that
the interpretation of C's output configuration cannot be 0. Similarly with f'i, £y g; 0
and 1 respectively. Now if m> k, then k+1 disjoint realizations of fi (with one of
the output wires split the required number of times) can be used instead of the
fiu gj, f'iU gj pairs scheme. The most economical kd realization of D is the one
which is most economically realized in accord with the above set of conditions.
The next consideration is whether or not m-wire binary -output-channel
DRL nets can be made kc for any greater k than non-DRL nets. Let the notation

of the previous paragraphs be used. Then suppose that C had [m/ZJ of its wires

coming from merged and/or unmerged realizations of fi and the other m- [m/Z] of
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its wires coming from merged and/or unmerged realizations of f'i. Suppose
further that the wires of C come from a sufficient number of merged realizations
of fi and f'i so that the following is true: 1) if fi is correctly 1, there are always
fewer fi than f‘i wires in the 0 state at least if no more than a ( Lm/ 2} -1) f occurs;
and 2) if fi is correctly 0, there are always fewer f'i than fi wires in the 0 state
at least if no more than a ( Lm/ ZJ -1)f occurs. Evidently 1) and 2) are possible
without any merging at all. Now with the above provisions, D's fi output over C
is ( [m/ 2] -1)c by regarding fi as either 0 or 1, depending upon whether fewer
f'i or fi wires of C respectively are 0,

Apparently there is no way of merging realizations into wires of C so
that D's fi output over C can be made jc, j>( [m/Z] -1). For every merged
output can always fail in 1 direction as a result of some 1f. Hence at best, a 1f
can cause each of at least [m/ 2] wires in C to fail for at least one correct fi state.
And the remaining wires of C can be made to fail for a 1f when the other fi state
is the correct one. Thus under any dichotomy of wire-state-configuration repre-
sentations of 1 and 0 in C, no more than all ([m/ZJ -1) f's can be corrected by

C's output coding. But m disjoint realizations of fi are( [m/Z]-l)c by Lemma I.

Thus, m-wire binary-output-channel DRL nets cannot be made kc for any greater k

than non-DRL nets.

But DRL nets can be made kd as well as (Im/ 21 -1)c whereas non-DRL nets

cannot, The kd addition is accomplished by appending to 1) and 2) above the

following: 3) if fi is correctly 1, there are never more fi than f'i wires in the 0
state at least if no more than a kf occurs; and 4) if fi is correctly 0, there are

never more f'i than fi wires in the 0 state at least if no more than a kf occurs.
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3) implies that if all the f'i wires are incorrect, then none of the fi wires can be
incorrect. So each fi wire in C must come from a merger of k-(m-[m/ Z])-l rea-
lizations of fi' Similarly, by 4), each f'i wire in C must come from a merger of
k- [m/Z] +1 realizations of f'i.

The final points of this Section follow: 1) By their nature, memory nets
cannot be simply kd. Hence the study of the present Chapter cannot be extended
in that direction; 2) Note that none of the kd DRL nets discussed in this Chapter
have greater time delays than their irredundant counterparts; 3) time-domain
redundancy can be used in DRL nets to obtain greater kd and k¢ characteristics
just as was discussed in Chapter 2: that is, by using binary sequences for inputs
instead of single 1's and 0's; 4) the input scheme used in this Section is justifiable
to the extent that a) k2™ 2'* nets produce outputs that either match it or are
indeterminate, and 6) such inputs are usually about as easy to get as simple variable
inputs, so because DRL nets are quite adapted to them they were used; and
5) Note that none af the results of this Chapter apply to the transmission of b bits,
b >1, over the same m~-wire channel., All channels that were considered were

binary.






CHAPTER 6

SOME FINAL REMARKS

Essentially, this study is concerned with nets that are composed of very
reliable unilateral components. The fact that '"and'", '"or", and ''not'" component-
types were selected at the outset to base particular results upon is somewhat
incidental. For the same general development would have followed from any
sufficient set of unilateral components.

The major defect of the '"k'' theory that has been developed in this study
is that it is of dubious value for relatively low component reliabilities, say e
greater than .001l. The thought behind using the k-degree failure criterion was
to add more character to the extremely general problem of decreasing the prob-
ability of failure of logical nets. Unfortunately, only an extremely loose set of
condition bounds could be obtained for matching the ''k'' criteria with the ideal
probability criterion. Thus, the theory is only known to be completely relevant
for components and net sizes which are currently in the range of engineering
practicality.

It should be noted that information-theoretic or other criteria could just
as well have been used to measure reliability as the "k' criteria. However none
of them were because of the contra-intuitive nature of some of the first results
they led to.

Although the theory was developed for synchronous nets, in principle it
applies almost equally well to asynchronous ones. In fact only one change is
required in the theory to make its whole development strictly applicable to

asynchronous nets. This is that the set of admissible failure types be restricted
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so as to prevent nets' outputs from racing back and forth between 1 and 0
representations before settling.

An important feature of the net forms that have been developed in this
study is that there are no '"'randomizing'" subnets in them. Thus, wire bundle
sizes are not required to be large enough to assure that their permutations will
have good statistical properties. This allows more practical amounts of redundancy
to be used in making given nets more reliable.

Finally, it should be re-emphasized that if majority organs had been
available for use in the input-state resolver stages of 2k+1 nets, the principal
cost of these nets would have been vastly reduced. In fact, it would have been
reduced to little more than 2k+1 times the cost of the corresponding irredundant

forms.
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