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A BRANCH AND BOUND APPROACH FOR THE LOADING PROBLEM IN

FLEXIBLE MANUFACTURING SYSTEMS : AN UNBALANCING CASE

Abstract

Loading problems in flexible manufacturing systems involve assigning operations and
tools to machines or machine groups for part types that have been selected to be processed
simultaneously. There are several objectives for the loading problems, one of which is to
maximize expected production of the system. In this Vpaper, we test several objective
functions and discuss correlations between these functions and the expected production.
Using a selected objective function from the test, we give a branch and bound approach for
the loading problem with the objective of unbalancing workloads. This objective is known to
aid in maximizing system throughput when the number of machines in each group varies.

Computational results are reported.



1. Introduction

A flexible manufacturing system (FMS) is an automated batch manufacturing
system consisting of numerically controlled machines capable of performing multiple
functions, and linked together with a material handling system, all controlled by a
computer system. The aim of an FMS is to achieve the efficiency of automated high-
volume mass production while retaining the flexibility of low-volume job shop production.

The system setup problem (see Kiran and Tansel 1986), a part of which is
addressed in this paper, is one of several problems that must be solved before production
begins, to best utilize FMSs. The subproblems to be solved in this problem are: selecting a
subset of part types for immediate and simultaneous production; partitioning machines into
groups; allocating operations and tools to machine groups; and determining the numbers of
pallets and fixtures and allocating them to part types. This paper focuses on the third
subproblem, called the FMS loading problem.

The FMS loading problem is to assign the operations of the selected part types and
the tools needed for these operations to machines or machine groups subject to tool
magazine capacity constraints according to some loading objective. Some research has
been done on the FMS loading problem. Stecke (1983) formulates it as a nonlinear mixed
integer program and solves it through linearization techniques. A branch and bound
algorithm is developed by Berrada and Stecke (1986) for this formulation with the
objective of balancing the workloads. Ammons et al. (1985) and Shanker and Tzen (1985
give different formulations and present heuristic procedures. Also the loading problem 1s
studied together with other FMS-related problems in other research [ Greene and
Sadowski (1986), Rajagopalan (1986), and Stecke (1986) ].

A commonly used objective of the loading problem is balancing workloads of
machines. This objective can help to maximize system throughput or expected production
[Stecke and Morin (1985) and Stecke and Solberg (1985)] as well as to minimize in-process

inventories [Shanthikumar and Stecke (1986)]. Moreover, Raman et al. (1986) report that



balanced workloads are desirable from the perspective of due-date based scheduling
measures as indicated by simulation experiments.

However, balancing cannot always guarantee the maximum throughput. When
machines are pooled into groups — machines in a group are identically tooled and therefore
can process the same operations — and the group sizes (numbers of machines) are
different, expected production can be maximized by a particular unbalanced assignment of
workload per machine. Stecke and Solberg (1985) prove that pooling increases system
throughput and that it can be further improved by having unbalanced rather than
balanced partitions of machines into groups. Also, using simulation studies, Stecke and
Kim (1987) show that unbalancing gives higher system utilization and shorter makespan.
This makes the loading problem with the‘ objective of unbalancing important. Here the
term unbalancing means achieving ideal workloads for a grouping which maximizes the
expected production.

Our objective for the loading problem is to maximize system throughput, which can
be achieved by balancing or unbalancing workloads. There may be several measures of
workload balance or unbalance which can be used as an objective function for the problem.
In this paper, we test these measures of workload (un)balance and discuss their
correlations with system throughput. Also we give a branch and bound procedure for
workload unbalancing. This procedure is a simple modification of the branch and bound

algorithm for workload balancing given in Berrada and Stecke (1986).

2. Measures of Workload Balance or Unbalance

There is no known unified measure of workload (un)balance for the loading
problems. Instead, several different functions of workloads can be used to measure
balance or deviation of assigned workloads from ideal (objective) workloads. This may be a

reason that Ammons et al. (1985), Shanker and Tzen (1985), and Berrada and Stecke



(1986) use different objective functions for the same objective, balancing workloads.

Since balancing or unbalancing itself can hardly be a direct measure of performance
of an FMS, it may not be a final objective of the loading problem. As noted earlier, our
objective is to maximize expected production of the system. Since this objective is hard to
deal with directly, workload balancing or unbalancing is used as an objective. Herein
comes the need for the study of the relationship between the expected production and
measures of (un)balance. In this paper, we test twelve objective functions as measures of
(un)balance which can be handled relatively easily in the loading problems. The following
are the measures of (un)balance tested. These are all to be minimized for our objective. X !
and IX y denote actual load and ideal load for machine group [ (not per machine),

respectively.

Cl = max, (Xl - le)

C2

max, (IXI - Xl)

C3 Cl + C2
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By C1, the maximum workload among the groups is to be minimized, while the
minimum workload is to be maximized by C2. C4 is the maximum deviation of actual
workload from the ideal workload and is equal to the maximum of C1 and C2. C5 is the
sum of the deviations and C6 is the sum of squared deviations. C7 through C12 are the
counterparts of C1 through C6 with the reciprocal of the ideal workload as a weighting
factor for each group. Note that the measures C7 through C12 are equivalent to the
measures C1 through C6 for the objective of balancing workloads in our test.

To compare these measures, fifty sets of system configurations were tested for both
balancing and unbalancing objectives. A configuration defines the number of machine
groups (ranging from 3 to 7) and the number of machines in each group (ranging from 1 to
6). Each set consists of fifty problems with randomly generated actual loads for machine
groups. To calculate the expected production for a given configuration and workload
assignment, the closed queueing network (CQN) model of Stecke and Solberg (1985) was
used. For each set, the ideal loads and their expected production were calculated with the
CQN model, and the values of the measures of (un)balance and the expected production
were also calculated from the randomly generated workloads of the fifty problems.

We calculated the coefficient of correlation between the values of the measures and
the expected production for each set and tested differences among these coefficients. The
results are shown in Tables 1 and 2. Table 1 shows means and standard deviations of the
correlation coefficients of the fifty sets. Table 2 shows the results of paired t test for the
difference of the correlations for different measures.

For the balancing case, C1 significantly dominates others. This justifies the
objective function of the formulation of Berrada and Stecke (1986), minimizing the
maximum workload. For the unbalancing case, however, C1 does not work very well.
Instead, C7 (the maximum ratio of overload to the ideal load among the machine groups)
works well in this case. C9, whose value is the sum of C7 and C8, also works well, but

this can be considered to be from the effect of C7. In the next section, C7 will be used in



Table 1. Correlation coefficients (r) of the measures with the expected production

Unbalancing Balancing
Measure ' Standard Standard
Mean Deviation Mean Deviation
C1 -.813 .104 -.979 .009
C2 -.750 .092 —.546 .152
C3 —.840 .081 —.946 .020
C4 -.811 .083 -.919 .041
C5 -.853 .060 —-.892 .054
C6 -.793 .070 -.925 .030
C7 —-.945 .028
C8 -.288 173
C9 -.938 .024
C10 -.916 .033
C11 -.917 .031
C12 -.897 .038

Table 2. Test results for difference of the correlation coefficients ( Paired t test )

Objective Results
Balancing C1>>C3>>C6=C4>>C5>>C2
Unbalancing C7>C9>>Cl1=Cl10>>C12>>C5h

>C3>>C1l=C4>>C6>>C2>>C8

> > : statistically different at significance level of .01
> : statistically different at significance level of .05
= : not statistically different at significance level of .05

the objective function of the loading problem in which group sizes are different.

3. Branch and bound approach for the unbalancing case

Since only the objective of this branch and bound approach is different from that of

Berrada and Stecke (1986), we use a similar formulation for the problem. We follow the



notation of Stecke (1983) for the formulation, which is:

I set of operations, I = {i|i=1,b}

L set of machine groups, L = {l|Il=1,-M}

p, processing time of operation i on one of the machines in machine
group [

di number of slots required in a tool magazine by operation

t, capacity of the tool magazine of the machines in machine group [

wp number of slots saved when the operations in subset B C I are

assigned to the same machine group

a, relative production ratio at which operation i will be produced
IX ] (relative) ideal workload per group of machine group !
X, decision variable ( 1 if operation i is assigned to machine group

l, 0 otherwise).

As specified in the previous section, our objective of the loading problem with
different sizes of machine groups is to miniinize the measure C7. Let 6 be an upper bound

on C7. Then the problem is to find {xil |i=1,-b, 1=1,M} to:

Problem (UB)

Minimize 6

b
subjectto ( L a.p,x, —IX )/le <6, l=1,-M
i=1 il l 0
b b +1
Sdx,+ (-1 $ow, Nz, <t, I=1,-M
=1 p=2 /B/=p I€EB 2
M
s x, = 1, i=1,-,b
=1 (3
x,=0orl, for all i and [ Y
il



Note that problem (UB) is identical to the problem (P) of Berrada and Stecke (1986)
except constraint (1). The tool magazine capacity constraints (with provision for tools
shared by operations) are reflected in (2). The operation assignment constraints appear in
(3).

Constraint (1) can be rewritten as

b Py
Ya —x, -1 <6, =1, M.

i=1" IX, u

If we let q,=p,/1X, andy=6+ 1, then the constraint is identical to

b
.2 a,q,x, < 7, =1, M.
=1 (5)

By this substitution the problem (UB) is equivalent to :

Problem (B)
Minimize ¥

subject to  (5), (2), (3), and (4).

Since problem (B) is identical to the problem (P) of Berrada and Stecke (1986), their
branch and bound algorithm can be used for the problems with the unbalancing objective
through simple transformation of data. As the numbers of constraints and variables do
not change, complexities of the two problems (balancing and unbalancing) can be

considered equal.

4. Computational results

For the test of applicability of the branch and bound algorithm of Berrada and



Stecke to the unbalancing case, forty two problems were run on an IBM3090-400 with an
optimizing compiler for FORTRAN using the code provided by them. The problems with
the objective of balancing were from Berrada and Stecke. (The other thirteen problems
which appeared in their paper were not available.) The unbalancing problems are identical
to those of balancing except that the group sizes are different. In the computer code, a
subroutine was added for calculating the ideal workloads of groups for the given group
sizes.

Computational results are shown in Table 3. CPU times are compared for the two
cases, balancing and unbalancing. To compare the expected production of the two cases,
the expected production was calculated from the solution of the algorithm with the CQN
model.

The CPU times for the unbalancing case are slightly longer than those for the
balancing case. However, it cannot be concluded that these resulted from the objective,
unbalancing, since the two objectives give the exactly same formulation and the only
difference is that of data. (For different data, the results may be different.)

Advantage of unbalancing .can be seen from the expected production of the two
cases. The expected production for the unbalancing case is higher than that for the
balancing case for all the problems except three (problems 10, 32, and 37). These
exceptions may have resulted from lumpiness of the processing times of operations, which
prohibits actual workloads from being close enough to the ideal workloads for the groups
with unbalanced sizes.

The computational results are encouraging. The objective of workload unbalancing
is not only solvable in reasonable time by the already-existing algorithm for workload
balancing, but also more favorable from the aspect of increasing production capability of
the system when the number of groups is small (less than ten). With a larger number of

machine groups, it appears that balancing workloads provides excellent performance.



Table 3. Computational results of the two branch and bound approaches

Balancing Unbalancing
Problem Number Number
Number of of Expected CPU time| Expected CPU time
Groups Operations | Production = (seconds) | Production (seconds)

1 4 12 .823 .039 .833 .020

2 4 12 172 .159 .845 .018

3 4 12 .796 .015 .821 .029

4 4 12 .768 .039 .817 075

5 5 10 L7158 .035 172 .024

6 5 10 .790 .037 .803 .062

7 5 12 747 .163 .7155 .213

8 5 12 716 .200 .7185 .128

9 5 14 793 222 .809 .909
10 5 14 .788 .287 .783 1.910
11 6 12 707 .035 .760 .046
12 6 12 .762 .029 776 .081
13 6 14 .709 .030 .788 .059
14 6 14 .730 .068 .745 .299
15 7 10 714 .090 L7117 .651
16 7 12 702 .028 .702 .030
17 7 12 L7125 .074 .726 .192
18 8 12 .665 .026 .675 011
19 8 14 627 .086 .688 .208
20 8 14 .643 111 .696 448
21 8 15 .687 .195 .687 .407
22 9 15 .621 .020 .657 .058
23 9 15 .621 .022 .643 .078
24 9 20 .656 .060 .683 .432
25 9 20 .706 .067 718 .331
26 10 20 .666 .403 .668 .848
27 10 20 .666 .445 .680 1.119
28 10 25 .688 2.167 .690 2.359
29 11 20 .651 .485 .667 .696
30 11 20 .651 .298 .651 1.279
31 11 24 .651 1.467 .662 2.157
32 11 30 .665 2.581 .664 4.302
33 11 30 .657 1.987 .664 4.172
34 12 20 .607 1.065 .635 .669
35 12 20 .607 1.071 .610 .607
36 12 35 .639 481 643 4.607
37 12 35 .639 4.601 .637 7.604
38 13 36 614 5.208 .616 5.815
39 13 36 .614 5.266 .616 6.249
40 14 35 .585 3.973 .589 3.545
41 15 30 .569 1.993 574 1.537
42 15 40 .623 7.814 .629 8.152

All the problems were run on an IBM3090-400.



5. Concluding remarks

The FMS loading problem was considered in this paper. Workload balancing or
unbalancing is used as an intermediate objective to maximize the expected production.
Several measures of balance or unbalance were tested for problem formulation and
solution. The test revealed that among the tested measures, minimizing the maximum
workload (C1) is the best for balancing and minimizing the maximum ratio of actual load
to the ideal load for a group (C7) is the best for unbalancing.

For the objective function of minimizing C7, a branch and bound approach was
presented. With a simple data transformation, an existing branch and bound algorithm for
workload balancing can be used directly for our unbalancing objective. The computational
results showed that CPU time was reasonable for the objective of unbalancing workloads
as well. Moreover, the solutions for unbalancing gave higher system throughputs than
those for balancing, which is consistent with other research. The differences are most
pronounced when the number of machine groups is less than ten. For larger numbers of
machine groups, balancing workloads provides excellent results as well.

Our approach provides more flexibility in optimally solving the FMS loading
problems, especially for the cases in which balanced group sizes cannot be obtained and the

maximum possible system throughput is sought through unbalanced group sizes.
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