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ABSTRACT
Humans are “smart components” in a system, but cannot
be directly programmed to perform; rather, their auton-
omy must be respected as a design constraint and incen-
tives provided to induce desired behavior. Sometimes these
incentives are properly aligned, and the humans don’t repre-
sent a vulnerability. But often, a misalignment of incentives
causes a weakness in the system that can be exploited by
clever attackers. Incentive-centered design tools help us un-
derstand these problems, and provide design principles to
alleviate them. We describe incentive-centered design and
some tools it provides. We provide a number of examples
of security problems for which Incentive Centered Design
might be helpful. We elaborate with a general screening
model that offers strong design principles for a class of se-
curity problems.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; K.4.4 [Computers and Society]: Electronic Com-
merce—security ; K.6.5 [Management of Computing and
Information Systems]: Security and Protection

General Terms
design economics security

Keywords
incentives, design, economics, security, botnets, captcha,
spam

1. INTRODUCTION
People are the weakest link in security [2]. People write

their passwords on sticky notes on the screen. People don’t
patch their home systems and become botnet zombies. Peo-
ple choose whether to label a patch “critical” or just “recom-
mended.” These actions generally reflect motivated behavior
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in response to the configuration of incentives confronting in-
dividuals.1

Incentive centered design (ICD) is a research area with
the aim of designing systems that respect motivated behav-
iors, by providing incentives to induce human choices that
improve the effectiveness of the system. ICD proceeds from
rigorous mathematical modeling of strategic interactions be-
tween people (and their systems), to practical principles for
system and protocol design. ICD differs from other eco-
nomics of security work in its focus on providing concrete
design principles.

The design of technology systems can have a great in-
fluence over the incentives that people have to use those
systems. For example, in the early days of the commer-
cial Internet there was a debate over whether the Internet
should be application-blind, allowing anyone to put any-
thing on it, or application-aware like cable TV and online
services like AOL, with central authorities filtering content
[13]. ICD modeling explained why the technical architecture
of application-aware networks tends to limit the number of
information goods offered, and biases selection toward mass
market goods. This design issue is activated again in the
current “net neutrality” policy debate.

When describing how a system works we include humans
as smart, distributed and — crucially — autonomous com-
ponents, with their own information sets and motivations.
We draw primarily on microeconomics, game theory and
cognitive psychology to model incentives, individual responses
to them, and inter-individual strategic awareness and behav-
ior. Because humans are non-programmable components,
we often supplement mathematical and numerical model val-
idation methods with human subject experiments.2

Much ICD research has focused on two problems pivotal
to information security: getting the good stuff in and keep-
ing the bad stuff out. We describe some examples in Section
2. For instance, individuals often are not directly compen-
sated for the benefit their actions provide to others. Using
a worm-throttling technology [20] on the border of our net-

1The motivated behavior framing is more general than it
might seem at first blush. For example, security failures due
to underinformed users might be investigated as a problem
in a failure to provide incentives to be better informed. Not
every human action can be analyzed as a rational response
to incentives, but a surprising number yield usefully to this
framework.
2For example, one of the authors recently conducted an on-
line experiment in “getting good stuff in” to test multiple
theories of motivating public contributions to an online li-
brary[4].



work benefits others, but we may have little incentive to in-
stall it because it only aids others after a worm has already
penetrated my subnet. How can we design this technology
so administrators are motivated to use it? This is the prob-
lem of getting the good stuff in.

Keeping the bad stuff out is similar to pollution. It arises
when an individual does not bear the direct costs that her
actions impose on others. When a spy places spyware on my
machine, she uses CPU and bandwidth that degrade my use
of the machine and she imposes other costs by appropriating
my private information. The spy doesn’t take these costs
into account when choosing to distribute her wares. ICD
focuses attention on behavioral incentives to discover who
the polluters are (they don’t want to announce it!) and to
discourage their polluting activities.

It is not possible to usefully summarize the full range of
ICD models in a short paper. Instead, as in Section 3 we
provide a more detailed discussion of a principal-agent model
of screening, which can be applied to many hidden action
and hidden information problems. The principal/designer
sets terms and conditions for interaction with agents, who
have their own objectives, and whose conduct may help or
harm the principal. A successful screen provides incentives
for agents to reveal their differences, so the principal can
keep the bad stuff out.

2. INCENTIVE PROBLEMS IN SECURITY
Incentives issues are implicated in many information se-

curity problems. We describe a few illustrative problems
drawn from two interesting, but not exhaustive categories.

2.1 Getting the Good Stuff In

Home user defenses against botnets.
Botnets, or networks of hacked machines under the control

of a single attacker, have been used for a number of mali-
cious purposes [19], including distributed denial-of-service
attacks, and for sending spam and phishing emails. Botnets
are possible because a large portion of computer users do
not provide adequate security for their machines, either be-
cause they haven’t been sufficiently motivated to learn how,
or to care enough.

When a typical home user’s computer is compromised for
use in a botnet, he actually suffers very little; he possibly no-
tices some system instability and network unreliability, but
can easily attribute it to other external causes, such as nor-
mal variations in quality of service. He has little incentive to
prevent such compromises, or to fix them once discovered,
particularly since fixing the problem frequently involves rein-
stalling the operating system at great inconvenience. These
users do not directly bear the costs of the victims of these
botnet attacks, such as the downtime and lost sales for eBay.
This has characteristics of an ICD problem known as the pri-
vate provision of public goods, and earlier illustrated by the
administrators who aren’t motivated to install worm throt-
tles for the benefit of external networks. What can be done
to motivate individuals to contribute more effort and re-
sources to the public good?

Privacy-enhancing technologies.
Numerous technologies “enhance privacy” by providing

some level of anonymity. In general, these technologies work

by making it very difficult to tell which node of a large
set of nodes originated a communications. To work effec-
tively these systems require many traffic-relaying partici-
pants [8]. However, they suffer from a common incentive
problem: they rely on nodes being willing to forward anony-
mous messages on behalf of others. Forwarding costs band-
width and incurs risks, since anonymous communications
are often anonymous for a reason. The rational choice may
be to free-ride, using the system to send messages without
contributing to it by forwarding others’ messages, resulting
in underprovision of forwarding nodes.

A second problem relates to the size of the anonymity
network. If only one user is sending traffic, then it is not
difficult to figure out which user that traffic belongs to. Use
of the network creates a positive externality by increasing
the number of potential senders. However, few people ac-
tively use these networks, leaving the size of the ‘anonymity
set’ small, since they receive little benefit from using the
network when anonymity is not needed. What incentives
could encourage users to provide cover traffic?

Labeling vulnerabilities.
When announcing new vulnerabilities, vendors and secu-

rity providers sometimes label them (e.g., “critical”) and
suggest that users and system administrators use the label
to determine urgency and effort. This is a clear case of an
ICD problem known as hidden information [14]. The vendor
knows more about these vulnerabilities than the users do,
but in ICD we inquire into the credibility of the announced
labels. Reporting a critical vulnerability in software makes
the software look bad; reporting many critical vulnerabil-
ities is even worse. This bad PR is a cost borne by the
vendor but not the end users. There may be offsetting ben-
efits from honesty, but the trade-off implies that vendors
sometimes will underreport vulnerability severity.

Microsoft recently included the patch for an old vulnera-
bility in a security update without disclosing this fact [17].
Two weeks later Microsoft released an emergency alert to
install the patch because a dangerous worm exploit of this
bug was published, and many systems had not installed the
earlier under-labeled patch [16]. An ICD approach might
design a reputation service that provides vendors with suf-
ficient incentives to provide more informative vulnerability
labels.

Knowledge workers.
In any sizable organization, knowledge workers make daily

decisions that affect the security of the organization’s infor-
mation infrastructure. Does Bob leave his passwords on
a sticky note under the keyboard, or memorize it? Will
Alice just email the document instead of using the access-
controlled storage system?

Careful attention must be paid to incentives for knowledge
workers. Conflicts of interest between owners and employees
are known in the ICD literature as principal-agent problems
[14]. In this example there is a problem of hidden action: it
is costly or impossible for the organization to perfectly moni-
tor security compliance by employees. Much is known about
design for such problems. For example, since appropriate
security behavior is difficult to verify, incentives should be
applied to other observable actions (proxies) that are closely
linked with appropriate security behavior, with incentive in-
tensity positively correlated with the informativeness of the



proxies. However, when there are multiple types of hidden
action in which the organization has an interest (e.g., se-
curity compliance, mental effort, attendance to work rather
than personal communications, diligence, etc.) incentives
must be delicately balanced or the employee will favor some
activities over others. For example, if bonuses are more de-
pendent on timely project completion than on discovered
security failures, the employee may overinvest in expedience
at the expense of good security hygiene.3

2.2 Keeping the Bad Stuff Out

Spyware.
An installer program acts on behalf of the computer owner

to install desired software. However, the installer program
is also acting on behalf of its author, who may have different
incentives than the computer owner. The author may sur-
reptitiously include installation of undesired software such
as spyware, zombies, or keystroke loggers. Rogue installa-
tion is a hidden action problem: the actions of one party
(the installer) are not easy to observe. One typical design
response is to require a bond that can be seized if unwanted
behavior is discovered (an escrowed warranty, in essence), or
a mechanism that screens unwanted behavior by providing
incentives that induce legitimate installers to take actions
distinguishable from those who are illegitimate.

Spam.
Spam (and its siblings spim, splog, spit, etc.) exhibits

a classic hidden information problem: before a message is
read, the sender knows much more about its likely value to
the recipient than does the recipient herself. The incentives
of spammers encourage them to hide relevant information
from the recipient whether or not the email is spam to try
to get through the technological and human filters.

While commercial spam is not a traditional security prob-
lem, it is closely related due to the adversarial relationship
between spammers and email users. Further, much spam
carries security-threatening payloads: phishing and viruses
are two examples. In the latter case, the email channel is
just one more back door access to system resources, so spam
can have more than a passing resemblance to hacking prob-
lems.

3. SCREENING
One problem of keeping bad stuff out arises when someone

has a resource and wants some users to have access to that
resource, but has difficulty discerning good from bad users.
The users know if they are “good” or “bad” (their type), so
this is a problem of hidden information. This scenario char-
acterizes phishing and spam, with good users being normal
email senders and bad users as spammers or phishers. It also
covers many other situations, e.g., are all automatic software
installs and updates beneficial, or do some contain spyware?
Or, are users attempting to login authorized (good) or un-
wanted hackers (bad)?

Proof-of-work techniques from cryptography have been
proposed to keep bad users from having access to various re-
sources; for example, there is a stream of literature propos-
ing and debating proof-of-work schemes to prevent spam-

3The theory does not stop at these qualitative characteriza-
tions, but guides measurement and quantitative design.

mers from putting unwanted email in user inboxes. To illus-
trate the analytical approach to incentive-centered design,
we here propose a canonical model of screening to differen-
tiate between good and bad users, and derive some of the
design principles that are conditions for a successful proof-
of-work screen. Subsequently we show how these design
principles are at the core of the debate in the proof-of-work
anti-spam debate. In our proposed research we will likewise
analytically derive design constraints that guide our design
of effective mechanisms to improve home computer security.

In simple terms, a proof of work is a question such that
there is a known lower bound on the amount of work (e.g.,
CPU cycles) necessary to answer it correctly. We now sketch
a model of how a proof of work could be designed to distin-
guish between desirable and undesirable users. Suppose a
person, Principal, has a networked computer or other similar
resource. Two types of users, whom we call Good and Bad,
have requested access to this resource. Principal cannot di-
rectly distinguish between them before granting access. He
wants to provide access only to Good. To screen (differenti-
ate) between them, he asks both to perform a task such as
providing the correct answer to the proof-of-work question.
This task is an effective screen if it induces Bad to act dif-
ferently than Good. Once Principal can tell the difference,
he can restrict or refuse access to Bad. We now characterize
the incentive properties that such a task must have to be
effective.

More formally, let there be two user types, Good and Bad,
indexed by θG and θB , with θG > θB . To gain access, Prin-
cipal requires User θ to perform a task measured in units of
intensity t ∈ [0,∞]. The task could, for example, be some
arbitrary but verifiable computation that requires CPU cy-
cles (a “proof of work”); in other applications it could be
a cash payment or the provision of a password. The inten-
sity t could represent the amount of work required. If User
accesses the resource, Principal receives some benefit that
can be represented by a function r(θi, t) with rθ > 0, rt ≥ 0
(subscripts denote partial derivatives). Benefit r represents
an aggregate of all value the Principal gains from access by
User. For example, User might make a cash payment for ac-
cess, or the task performed may be productive work valued
by Principal (rt > 0).4 How much Principal benefits from
User’s work may depend on whether User is Good or Bad
(θi), and Principal may accrue other benefits from User’s
presence, also captured in r (for example, User may be an
employee who does productive work once admitted to the
resource); we assume that principal’s benefit is increasing in
the quality of the user (θ), meaning that Principal receives
more benefit from Good users than Bad users. If we wish it
is straightforward to accommodate the possibility of purely
harmful users, by specifying that Bads who perform no task
provide Principal with negative benefit r(θB , 0) < 0.

Crucial to the use of proof of work to distinguish between
Good and Bad is that performing the task is costly to User;
we denote the effort cost by α(t, θ), which depends on the
intensity of task required. The cost of effort may be dif-
ferent for Good and Bad types (in fact, for proof of work
to succeed, this must be true, and the difference in cost of
effort must obey an inequality constraint, characterized be-
low). When access is granted, User receives a benefit of s

4In some applications, the task is dissipative, (rt = 0), with
its only purpose being the role it plays in distinguishing
between Good and Bad users.



provided by Principal.5

Principal’s problem is to choose the resource transfer pro-
vided to Users who gain access, and the intensity of the task
required to obtain access, to maximize the system payoff to
Principal. We can characterize this as defining one or more
contracts that specify (s, t): “if you perform task t you will
be granted access worth s.” To analyze the implications of
this model for designing a successful proof-of-work test, we
start by considering the benchmark case in which Principal
knows in advance each User’s type. If so, then Principal
can assign different contracts to Good and Bad users (since
their type is known in advance): {(sB , tB), (sG, tG)}. For
example, Bad might be granted fewer resources (low sB) or
be required to provide substantial work in return (high tB).
A truly undesirable user (e.g., a malicious hacker) could be
denied access altogether (benefit s = 0).

In practice the user type is not known in advance by
Principal. Principal’s contracts offer benefit si to anyone
who performs task ti. Contract (si, ti) is targeted at type
i, though other types may choose it. By offering an appro-
priate choice of contracts (determined below) Principal may
be able to screen Users so they, acting in self-interest, self-
select by type into different contracts, thus revealing their
type.6 Users self-select by choosing which task ti to per-
form, receiving benefit si when they successfully perform it.
Determining these contracts is our design goal. Fortunately,
by the surprising and elegant Revelation Principle [15], we
can, without loss of generality, restrict the set of possible
contracts over which we search to those for which User finds
it in her interest (incentive-compatible) to truthfully reveal
her type.7

Principal chooses the menu of contracts to maximize his
total benefit subject to constraints (such as a budget con-
straint on the screening process). If λ is the fraction of users
expected to be Good (estimated, say, from past experience),
Principal designs contracts to maximize his benefit by solv-

5For simplicity we assume that a transfer worth s units of
value to Principal is also worth s units to a user, such as
would be true for a money payment. The value transfer
can be a cash payment, but may also include resource usage
such as CPU cycles. It is straightforward to modify the
analysis so that a transfer that costs Principal s is worth
some monotonic function f(s) to User.
6Contracts may be implicit; it is not necessary that they be
formal. We overload the use of i to index contract choices as
well as user types because at an optimum the Principal will
offer at most one contract per type, and the each contract
will be designed to appeal to a specific user type.
7The Revelation Principle states that for any set of con-
tracts under which a rational agent is not truthful, there
exists another set of contracts under which a rational agent
wants to report honestly, and the payoffs in all states of
the world are the same as in the first set of contracts. The
intuition is straightforward: for whatever map agents are
using to transform their true type into an announced type
in the mechanism that does not induce truthtelling, imagine
a different mechanism which applies that map as the agents
were using before to transform truthful inputs into dishon-
est inputs, and then assigns the outcomes they would have
gotten for those dishonest inputs in the original mechanism.
This means that restricting our search to contracts where
users honestly reveal their type does not limit the possible
outcomes.

ing

max
{(sB ,tB),(sG,tG)}

λ[r(θG, tG)− sG]+

(1− λ)[r(θB , tB)− sB ] (SCREEN)

s.t. sB − α(tB , θB) ≥ u0 (1)

sG − α(tG, θG) ≥ u0 (2)

sG − α(tG, θG) ≥ sB − α(tB , θG) (3)

sB − α(tB , θB) ≥ sG − α(tG, θB). (4)

(1) and (2) are Participation Constraints (PC): a user must
receive at least u0 from obtaining access to Principal’s re-
source, or will choose not to participate (attempt access), for
some u0 determined by the user’s other opportunities. (3)
and (4) are Incentive Compatibility (IC) constraints: The
payoff from truthfully revealing type must be greater than
the payoff from dissembling to obtain the other type’s treat-
ment. The Revelation Principle allows us to impose the IC
constraints to reduce the search space for an optimal solu-
tion.

We have not specified yet α(t, θ), the cost of performing
a task with intensity t for user type θ. α(t, θ) is determined
by the choice of the task, and understanding its required
properties is critical. Suppose α satisfies the following con-
ditions:

αt(t, θ) > 0, for t > 0 (5)

αtt(t, θ) > 0 (6)

αθ(t, θ) < 0 (7)

αtθ(t, θ) < 0, for t > 0. (8)

We show below that these constraints produce an effective
screen that will cause users to truthfully reveal their types.
The first two conditions ensure the cost of performing the
task is convex. Convexity means that task cost is increasing
in t and at an increasing rate. This condition is sufficient
though not necessary for the main results below, as it guar-
antees that sufficiently difficult tasks can be created. The
third condition is that for any given level of screen t, the
screen costs more for the Bad than Good users.8 The final
condition is a single-crossing property we use below.

We provide intuition for the constraints in the screening
problem with an illustration from a familiar security solu-
tion that is closely related to proof-of-work: passwords. By
seeing the conditions required for passwords to be effective
as screens, we can better understand the design constraints
on proof-of-work screening systems. For this illustration, we
measure the intensity (t) of the password task by the number
of bits that must be correctly provided. For simplicity we
assume that someone who does not know the password uses
a direct search or guessing attack to obtain a valid password.

Multi-bit passwords satisfy the convexity requirement (5),
(6): the number of possible passwords, and thus the guess-
ing cost, is exponential in the number of bits. Providing a
valid multi-bit password costs much less for Good (condi-
tion (7)) because Good created or was told the correct pass-
word in advance and must merely retrieve it from storage,

8In our setup, it is easy to think of αθ(t, θ) = αG(t)−αB(t),
the difference between the cost for Good and Bad types for
a given intensity t. 7 states that this difference is positive,
and 8 states it is increasing as t increases. This notation was
chosen to easily generalize to more than two types of Users.



whereas Bad must use costly resources to guess it, includ-
ing perhaps nontrivial timeout waits after making multiple
incorrect guesses. The single-crossing property (8) requires
here that the incremental cost from increasing task inten-
sity (requiring longer passwords) is higher for Bad than for
Good: the password storage and retrieval cost for Good is
approximately linear, but the guessing cost for Bad is ap-
proximately exponential.

It is not surprising that passwords often work as screens
— they are a well-known technique. Rather, we have used
them to illustrate the mapping between some familiar prop-
erties that make for good password systems, and the ab-
stract design constraints identified by incentive-centered de-
sign theory. Constructively, we now show that these design
constraints are sufficient for a proof-of-work system to ef-
fectively screen out Bad users; such systems are not already
widely deployed (as are password systems), nor is their effec-
tiveness for screening universally accepted. After we formal-
ize the design results that follow from the model above, we
show that the debate on proof-of-work for spam is a debate
about whether it is possible to design a proof-of-work system
that satisfies the incentive-centered design constraints, and
how that might be done. We propose to use these princi-
ples to guide our incentive-centered design of home security
mechanisms.

Define ui to be the total net benefit (utility) to a User
of type i, ui = s − α(t, θi). Solving Principal’s problem
(SCREEN) yields several illuminating results:

Result 1. Utility for Bad is minimal: uB = u0.

Result 2. Good gets a net gain from participating: uG >
u0.

Result 3. Good users receive more value from access (sG >
sB) but perform a harder task (tG > tB).

Results 1 and 2 are straightforward to prove; see, e.g., [9].
Result 2 has the following interpretation: Good owns valu-
able property — his knowledge that he is a Good type —
and must be paid an information rent by Principal for the
use of this property; the rent is uG − u0 > 0. Result 1 is a
corollary: since everyone who doesn’t prove they are Good
is Bad, there is no reason to provide Bad with extra surplus
to reveal her type.9

We demonstrate Result 3 with Figure 1. The curves s −
α(t, θ) = u are indifference loci (user utility is a constant for
all (s, t) combinations on the locus), with utility increasing
to the northwest (more s, less t yields higher utility). First
consider the curve s − α(t, θB) = u0 (the indifference locus
for Bad); since uB = sB − α(tB , θB) = u0 from Result 1,
we know that (sB , tB) lies somewhere on this locus. Now
construct Good’s locus through (sB , tB); by (8) there is a

9We have formulated the problem as if Bad can provide
some positive value to Principal, albeit less than Good. If
Bad types provide strictly negative utility to Principal (they
are always malicious) no matter the amount of task t they
perform (r(θB , t) < 0 ∀ t), then we could easily reformulate
the problem with a non-participation constraint to replace
(1) and a change in the Principal’s objective function to cor-
rectly account for non-participation by successfully screened
Bad types. The results above would be the same, and thus
for discussion we assume that Bad types who are indiffer-
ent about participating (uB = u0) merely go away without
attempting entry if the screen would be effective.

single crossing and the slope is less. Since αθ < 0, by (7),
sB−α(tB , θG) = u1 > u0 (Good receives some surplus utility
from choosing contract (sB , tB).) By (4), (sG, tG) lies to the
southeast of the B locus s− α(t, θB) = u0. By (3), (sG, tG)
lies to the northwest of s − α(t, θG) = u1. Thus, (sG, tG)
must lie in the shaded area, and Result 3 obtains.10

s

t

sB

tB

s-α(t,θB)=u0

s-α(t,θG)=u1>u0

(sG,tG)

Figure 1: Screening good from bad

Assumptions (5)–(8) represent properties of the task that
ensure that screening will work, and hence are principles for
the design of such tasks. One of the most important design
principles is not a result, but assumption (8): the incremen-
tal cost of performing the screening task must be lower for
Good than Bad types (the analogous principle holds for a
continuum of types). This ensures that for a given payoff,
a Good type will reveal himself by a greater willingness to
perform the task. If the task is equally difficult for both
Good and Bad types (not satisfying (8)), then it will not
differentiate users. This design principle is only sufficient to
ensure such contracts exist; the specifics for a given screen
still must be found.

Applications to CAPTCHAs.
We illustrate the design relevance of Results 2-3 and as-

sumption (8) by sketching their application to another “keep
the bad stuff out” problem. Challenge-response systems
such as CAPTCHAs are intended to prevent automated
agents from hijacking various online resources [21]. To get
agents to reveal their type as human or bot, the task solv-
ing cost must be higher for the bot (presumably in CPU or
programming time). Once revealed, the bot is denied ac-
cess (sB = 0), and its owner gets only the value from its
next best alternative activity, u0. Thus bots usually don’t
attempt to crack CAPTCHAs, satisfying Result 3 that the
Good types exert more effort on the screening task (or, as
with passwords, we could interpret t as the number of cor-
rect bits provided, which will be lower for bots if faced with
an effective CAPTCHA screen).

Of course, Bad types are motivated to find ways to make
the incremental solving cost similar to Good’s cost (violat-
ing (8)). The development of CAPTCHA’s has resulted in

10For our password example, the task t is to provide correct
bits; when a password system works, Good provides more
bits than does Bad, consistent with Result 3.



improvements in computer vision algorithms[3]. To combat
this, many people have come up with interesting variations
that increase the cost differential between humans and com-
puters at this task. For example, KittenAuth11 asks humans
to pick pictures of kittens out of a large set of pictures of
many similar animals. Sound-based CAPTCHA’s have also
been used12 as an accessible alternative to images.

Of course, the real goal of CAPTCHA’s is not to keep bots
out, but to keep out the malicious users who use bots to au-
tomate their interests. These people have found a creative
way to provide their bots with CAPTCHA solving capabili-
ties – outsource the CAPTCHA-solving task to humans. For
example, when a bot is faced with a CAPTCHA, it might
place that CAPTCHA onto the entrance page for a porn
site, and the next visitor to that site solves the CAPTCHA
for the bot, in exchange for (otherwise free or price-reduced)
entrance to the porn site.13 This strategy greatly reduces
the relative cost to bots of solving CAPTCHAs (violating
(8)), and is largely immune to technological advances in
CAPTCHAs. The cost now depends on the difficulty of
getting porn viewers to solve the CAPTCHA, and is out of
the control of the CAPTCHA designer.

Applications to proof-of-work systems.
The ongoing literature on proof-of-work systems to block

spam email are a nice example of incentive-centered design
theory. In particular, although the authors do not seem to
have been aware of this, the disagreements in the anti-spam
proof-of-work literature have revolved around the problems
of satisfying the screening design constraints.

Dwork and Naor [6] proposed a challenge-response ap-
proach to spam reduction; Gabber et al. [7] described a
proof-of-work implementation that (implicitly) illustrates screen-
ing theory. Senders must perform CPU-cycle-burning tasks
to obtain a valid (personal) address for a recipient. The
screening task may be more costly for spammers (condition
7) because market competition requires them to run servers
at full capacity, so a CPU task for every valid email address
becomes prohibitive. Good agents are presumed to have suf-
ficient idle cycles. Gabber et al. [7] magnify this important
cost differential by allowing recipients to repudiate valid in-
coming email addresses if a single spam enters that channel,
so spammers incur the CPU cost to obtain a new address
for nearly every message sent, while good senders only need
to pay for a good address one time.

Dwork et al. [5] and Abadi et al. [1] introduce a different
class of functions that are limited by memory speed rather
than CPU speed. Differences in the price/performance ra-
tio of commercially available systems are smaller for these
functions. This prevents spammers from overcoming the
cost differential through strategic hardware purchases.

However, Laurie and Clayton [10] argue (again, implic-
itly), that this proof-of-work mechanism will fail because it
does not satisfy the design constraints for successful screen-
ing. In particular, directly related to the focus of our re-
search, they argue that the availability of botnets sufficiently
lowers the cost of sending spam that a sufficiently costly

11http://www.thepcspy.com/kittenauth, Retrieved on
May 8, 2007

12http://www.captcha.net/captchas/sounds/, Retrieved
on May 8, 2007

13http://www.boingboing.net/2004/01/27/solving_and_
creating.html, Retrieved on May 8, 2007

proof-of-work computation would be high enough to also
discourage good users from sending mail. Liu and Camp
[11] responded by proposing a new design that combines a
reputation system with proof-of-work. The reputation sys-
tem effectively implements a form of “price” discrimination,
restoring the necessary screening condition that spammers
pay a higher proof-of-work cost than do desirable users.

One of us proposed a related mechanism to fight unso-
licited communication using repudiable cash bonds as the
screen [12]. The proof-of-work is monetary: senders put
t in escrow; recipients can claim the bond or let it revert
to sender. The bond cost is higher to bad types if they
face a higher probability that the recipient will claim the
bond; presumably recipients will not always claim bonds
from good types because they want future communications
from the good types. We show that such a system could
make sending spam arbitrarily costly.

Extending the model.
The useful applicability of a model usually depends on the

extent to which the assumptions in the model are reasonably
consistent with real-world conditions. One advantage of a
formal model such as we present above is the opportunity to
vary the assumptions and analyze the effect on the model’s
predictions. We illustrate this for the application of the
model to CAPTCHA tests of the sort discussed above.

Above we assumed that the Principal gets a value from at-
tracting Good users. For example, a content web site earns
advertising revenues from attracting the attention of desir-
able users. We also assumed that the value to Good users of
gaining access had to be at least u0 or they would go else-
where, and that the value to Bad users of not participating
was the same. This latter assumption may seem implau-
sible for many applications. For example, if a content site
faces competitors, Good users may have quite attractive al-
ternatives, and thus have a rather high value from going
somewhere else instead; let’s call this value u. Bad users,
on the other hand, might not need to get much value from
access to prefer access to this site more than non-access. For
example, a spam advertiser may already have exhausted all
more valuable advertising channels, and thus will be happy
to get access to this site (say, to post spam in user comment
entries) even if the value gained is small. Suppose the Bad
users gain from access need only be u < u for the Bad user
to “participate” (wish to gain access). The question then
arises: do the design guidelines for a proof-of-work system
to keep out bad users change when the different user types
have reservation values that differ, u < u?

Let us call the gap ∆ ≡ u − u. The answer depends on
the magnitude of ∆ (which is reassuring: the design results
are not so fragile that they change for small differences).
When ∆ gets large enough, however, we start to face a prob-
lem calling for a solution known as countervailing incentives.
This result has useful implications for applied problems.

To see how the design results change, we employ a change
of variables from the definition of user payoffs: let uG =
sG − α(tG, θG) be the net payoff to the Good type, and
uB = sB − α(tB , θB) be the net payoff to the Bad type.
Then we can rewrite the incentive constraints ((3) and (4))
in terms of the relationship between uG and uB :

uG ≥ uB + α(tB , θB)− α(tB , θG) (9)

uB ≥ uG − [α(tG, θG)− α(tG, θG)]. (10)

http://www.thepcspy.com/kittenauth
http://www.captcha.net/captchas/sounds/
http://www.boingboing.net/2004/01/27/solving_and_creating.html
http://www.boingboing.net/2004/01/27/solving_and_creating.html


The new reservation utilities causes the participation con-
straints ((1) and (2)) to become

uB ≥ u (11)

uG ≥ u. (12)

We had from before (when ∆ = 0) that uB = u (11), so it
must be true from (10, 11 and 12) that

∆ ≤ [α(tG, θB)− α(tG, θB)].

Evaluated at the previously optimal level of proof-of-work,
tG, the right-hand side is a constant. Thus, if ∆ remains
small, the previous proof holds. If ∆ gets large enough, the
inequality (4) will not be satisfied. This happens when the
net value offered to a Good type to induce her to visit the
site becomes high enough. The Bad type becomes willing
to do the work necessary to appear like (and get the same
access as) a Good type. Technically, the Bad type’s incentive
compatibility constraint is not satisfied. To implement a
successful proof-of-work screen when ∆ is large enough, it is
necessary (according to (8)) to increase the amount of work

required by the Good user (tG′
> tG). For example, if a

password system is in use, the site must require harder to
break passwords. If the content site is using CAPTCHAs
the test must be made more burdensome.

The problem takes another twist if ∆ gets even larger. We
do not present the formal derivation here, but if ∆ > ∆CI

(where ∆CI is a threshold determined by the parameters of
the problem), further raising the test tG is no longer effi-
cient. At this point it actually becomes worthwhile to allow
Bad users to get some positive value from gaining access,
uB = sB − α(tB , θB) > u, contrary to the earlier result (uB

minimal). The intuition is useful for applications. When
competing to attract Good users against desirable alterna-
tives (u high), rather than make the entry screen even more
burdensome, which degrades access value to Good users, it
makes sense to let Bad users in (so they gain some value)
but to give them a less valuable experience. For example,
a CAPTCHA might be breakable by persistent spammers,
but when they get in, they are permitted only low value
resources (e.g., when comment spam is discovered, it is re-
moved, so the value to the spammer is positive but small).
This countervailing incentives result helps us understand
why, even though we know it is possible to set up screens
that keep out even the most aggressive spammers, most re-
source providers do not do so: the burden on Good users
would be so high that they also would not participate.

4. DISCUSSION
Traditional information security generally deals with keep-

ing the bad stuff out. It has been fairly successful at keep-
ing hackers, viruses, and worms at bay. Many of the design
principles that the ICD literature describes as necessary to
keep bad stuff out are intuitively understood by the people
who develop security technologies. Password systems are an
example of technology that got this right, and as a conse-
quence, are — if correctly used — effective at separating
legitimate users from attackers. The same principles can be
applied to develop new or improved solutions for both new
and old problems.

Even when technical security systems are effective at keep-
ing the bad stuff out, they may fail to get the good stuff in.
Passwords again are a good example: they often fail because

users are insufficiently motivated to use strong passwords
that prevent password guessing attacks. Incentive-centered
design can create systems that motivate users to provide de-
sired security effort. Indeed, incentive-centered design, as an
alternative to technological “hardening”, may be especially
effective in those applications involving agents who are not
malicious, but merely undermotivated, since it is not their
objective to thwart the system. Non-malicious agents may
be more robustly responsive to incentives.

Incentive mechanisms to get the good stuff in are similar
to those of the screening example above. However, there
are some important differences that make this a novel prob-
lem. Most of the screening mechanisms listed above function
by introducing artificial costs into the system (such as per-
forming the task at intensity t). These costs are not borne
equally by all — that is what makes them effective. Such
costs are wasteful but necessary to induce people to reveal
private information about their type. On the other hand,
problems with getting the good stuff in will not be aided
by additional artificial costs. People have the choice to opt
out of using the system, and additional costs will just cause
fewer people to use it.

Some form of positive benefit must be introduced, but in
such a way that participants only receive benefits if they
provide enough positive work. Once good example of such
an inducement comes from the work of Luis von Ahn. For
example, von Ahn and Dabbish [22] developed a game in
which randomly matched users try to agree on words to de-
scribe an image. These words then are good descriptions of
the image, which can then be used for search or other pur-
poses. User contributions are incentivized through the game
aspect — users experience fun from playing, thus motivat-
ing them to contribute further. Google has adopted this
technology in their Google Image Labeler.14

Another form of benefit can be shared work. Cloudmark
[18] is an email spam filtering solution that works by having
users report spam messages. Cloudmark can then aggregate
all of these reports and, using a reputation system, label
similar messages as spam in clients’ mailboxes. The work
of identifying spam is being done by individual Cloudmark
subscribers. Each person does a minimal amount of work,
and then can benefit from the work of everyone else. This
system of sharing the work provides an incentive for users to
participate, as participating allows a user to also reap the
benefits of the community’s work. Shared work provides
community value, which in turn provides the incentive to
undertake the work.
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