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A New Branch and Bound Algorithm for Loading Problems

in Flexible Manufacturing Systems

Abstract

Loading problems in flexible manufacturing systems involve assigning operations for
selected part types and their associated tools to machines or machine groups. One of the
objectives might be to maximize the expected production rate (throughput) of the system.
Because of the difficulty in dealing with this objective directly, a commonly-used
surrogate objective is the "closeness" of the actual workload allocation to the continuous
workload allocation that maximizes throughput. We test several measures of closeness
and discuss correlations between these measures and throughput. Using the best
measure, we show how to modify an existing branch and bound algorithm which was
developed for the case of equal target workloads for all machine groups to accommodate
unequal target workloads. We also develop a new branch and bound algorithm which
can be used for both types of problems. The efficiency of the algorithm in finding
optimal solutions is achieved through the application of better branching rules and
improved dominance results. Computational results on randomly generated test

problems indicate that the new algorithm performs well.



1. Introduction

Closed queueing network (CQN) models are becoming a popular means of
estimating the production capacity of flexible manufacturing systems (FMSs) and
flexible assembly systems (FASs). Representing a FMS or FAS as a closed queueing
network permits a modeler to capture certain aspects of the routing flexibility that exists
in such systems without sacrificing the ability to estimate the production capacity
quickly and easily.

A CQN model requires as input a routing matrix and the workload (total
processing time demand per unit time) assigned to each machine group. A machine
group is composed of one or more machines that can perform the same operations at the
same speed. The routing matrix contains the probability that a job will move from one
machine group to each of the other machine groups, for all possible pairs of machine
groups. The routing matrix is easy to determine once it has been decided what
operations will be performed by each machine group, and it is these operation
assignments that determine the workload allocation.

A considerable amount of research has been done on the problem of allocating
workload among machine groups when the total workload can be divided in a
continuous fashion and without regard for the characteristics and capabilities of the
machines (e.g., Stecke and Morin 1985, Yao 1985, Shanthikumar and Stecke 1986, and
Yao and Kim 1987a,b). In real systems, operation assignments result in discrete
allocations of workloads to machine groups, and the number of operations that can be
assigned to each machine group is limited by the number of tools or components that can
be loaded onto the machine at one time. A number of FMSs now use automatic tool
changers, which significantly reduce the impact of tool magazine capacity constraints.

However, recent dicussions with several Fortune 50 companies indicate that some FMSs



and most FASs still face the difficulty of solving scheduling-related problems in view of
tool or component capacity constraints.

We develop a new procedure for assigning a given set of operations to machine
groups so as to maximize the production capacity (or throughput) of the system while
ensuring that tool or component limitations are satisfied. Most of the earlier work has
focused on the objective of balancing workloads under the assumption of identical
machines and equal machine groups. We consider a generalization of the problem in
which target workloads may differ across machine groups, which allows us to address
problems in which there are machine groups of different sizes. Papers that consider
other issues in this context include Dallery and Stecke (1990), Shanthikumar and Yao
(1987, 1988), and Stecke and Solberg (1981). Even for the restricted version of the
problem, existing optimization-based procedures are computationally-intensive. We
develop rules to eliminate dominated solutions so that larger problems can be solved
optimally.

The new procedure can be used in several different ways. First, it can be used as
a capacity planning tool to provide more accurate estimates of production capacity,
taking into account practical constraints. Since a typical FMS can manufacture a wide
variety of parts, the mix of parts is likely to change over both the short and long run.
Consequently, in order to obtain robust estimates, one actually needs to evaluate the
capacity of a system under many different assumptions about the mix (combinations
and relative proportions) of parts that might be processed simultaneously.

Secondly, it can be used to aid in the decision of which parts should be produced on
the FMS, and if there is more than one FMS, how to partition parts among them. (The
latter is in the spirit of group technology concepts.) The production capacity estir;lates
derived from the approach‘ can provide information about the compatibility (or

incompatibility) of parts with regard to utilization of equipment and tools.



Finally, in some situations, the procedure can be used to solve the short-term
problem of allocating operations and tools to machine groups for the imminent
production run. This is known in the literature as the FMS loading problem. Since the
CQN models that form the basis for the analysis are steady-state models, they are
applicable only when a constant mix of parts is produced for a long enough duration that
the system is in steady state for a substantial portion of that time. There are, however,
systems with common due dates for orders (e.g., once a week shipments) and relatively
short processing times (e.g., minutes), where steady-state approximations are realistic.

Most of the existing literature on this topic has focused on the short-term loading
aspect of this problem. Stecke (1983) formulates it as a nonlinear mixed integer
program and solves it through linearization techniques. A branch and bound algorithm
is developed by Berrada and Stecke (1986) for this formulation with the objective of
balancing the workloads. Also several heuristics are suggested by Stecke and Talbot
(1985) for various objectives. Following the approach of Stecke (1983), Ammons et al.
(1985) and Shanker and Tzen (1985) give formulations with bi-criterion objectives and
present heuristic procedures. Ammons et al. use the objective of balancing workloads
and minimizing workstation visits, while Shanker and Tzen use the objective of
balancing workloads among machining centers and meeting due dates. Lashkari et al.
(1987) also formulate the problem as a nonlinear mixed integer program for two
different objectives, minimizing transport load and minimizing refixturing activities.
Kusiak (1985) presents several models based on the generalized assignment problem
and on the generalized transportation problem, considering the cost of processing an
operation at a station.

Another goal of the loading problem concerns the life of cutting tools. Carrie and
Perera (1986) show, using a simulation of a particular FMS, that the number of tool
changes due to product variety is small compared to those due to tool wear. Sarin and

Chen (1987) give a mixed integer program formulation for the objective of minimizing



total machining costs associated with cutting tools and machine usage under the
assumption that these costs depend upon the tool-machine combination. Tool life is
considered as a constraint in the formulation.

The loading problem is combined with other problems in other research. Greene
and Sadowski (1986) use several objective functions such as minimizing makespan,
minimizing mean flow time, and minimizing mean lateness in their formulations of
the FMS loading and scheduling problems. Since the numbers of variables and
constraints are very large, computational experiments were not performed.
Rajagopalan (1986) formulates the loading problem together with the part type selection
and the production ratio problems as a mixed integer linear program. The part type
selection problem is to choose a subset of part types for immediate and simultaneous
production, and the production ratio problem is to determine the number of parts of each
type circulating in the system. (See Stecke 1983 and Kiran and Tansel 1986 for details.)
He gives heuristic algorithms and related computational results. Stecke (1986) presents
a hierarchical approach for the loading problem and the machine grouping problem
(partitioning machine into groups, where the groups differ only in their tooling).

In the next section, we evaluate surrogate objectives and show how an existing
branch and bound algorithm for the workload balancing objective can be used to solve
the loading problem with unequal workload targets. In the following section, we develop
dominance properties for use within a new branch and bound algorithm. Section 4 gives
computational results for the existing and new branch and bound approaches. Section‘5

contains a summary and concluding remarks.

2. Objectives and Formulations

Stecke and Solberg (1985) have shown that there is a unique continuous workload

allocation that maximizes the production capacity (or throughput) of a system, also



referred to as ideal workloads. When two or more machine groups are identical both in
size and machine capabilities, it is optimal to divide the relevant work among them
equally, which they call balancing. On the other hand, when there are unequal size
groups of otherwise identical machines, it is better to assign larger workloads per
machine to larger groups to take advantage of the effects of pooling. They refer to the
process of doing this optimally as unbalancing.

There is no universally accepted measure of workload (un)balance for loading
problems where the operations assignments are discrete. Since the true optimization
problem is a non-convex integer programming problem (because the throughput function
is not convex), researchers have found it more convenient to use surrogate objectives.
For example, Ammons et al. (1985), Shanker and Tzen (1985), and Berrada and Stecke
(1986) use different surrogate objective functions for the same stated objective of
balancing workloads. Ammons et al. try to minimize a function (denoted as f(*) in
their paper) of the maximum deviation from the ideal workloads, and Shanker and
Tzen have the objective of minimizing the weighted sum of overloads and underloads of
the machines, while Berrada and Stecke use the objective of minimizing the maximum
workload among the machine groups. While it is clear that the objective should be that
of achieving a workload allocation "as close as possible" to the ideal workloads, "as
close as possible” can be defined in many different ways, and we are not aware of any
systematic studies of surrogate objectives.

In the Appendix, we investigate twelve objective functions as measures of
(un)balance. It is useful to point out that because of the combinatorial nature of the
problem, most objective functions lead to problems with similar computation
requirements. . Hence, the reason for studying surrogate objectives is not to reduce

computing time, per se, but to find a simple objective that gives consistently good results

across a wide variety of system parameters. We found that max, (X, -IX; )/ IX,,



where X, and IX; denote the actual load and ideal load for machine group ! (not per

machine), respectively, outperformed the other objective functions.

Given this objective, an existing branch and bound (B&B) algorithm proposed by

Berrada and Stecke (1986) for the case of balancing workloads can be modified to

accommodate the unbalancing objective for situations in which the processing time of

an operation is the same for all machine groups. Note that if the processing times

differ across machine groups, the total workload, and consequently also the IX;s, cannot

be determined independently of the operation assignments. Let § be an upper bound on

max, (X;-IX; )/ IX;. Then the problem is to find {x; | i=1,~b, I=1,~ M) to:

Problem (UB)
Minimize o

b
subjectto (Y a; pyxy -IX;)/1X; < 6, I=1,~M
i=1

b b

Z di X * Z (_1)(p+1) 2 wg Miepxy <4, I=1, M
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x; =0orl, forall iand [
where
I set of operations, I={ili=1,--b)
L set of machine groups, L=(Il11=12-- M)
B asubset of I

p;  processing time of operation i
d; number of slots required in a tool magazine by operation i

t;  capacity of the tool magazine of the machines in machine group [

(1)

(2)

3)
(4)

wp number of slots saved when the operations in subset B I are assigned to the

same machine group

a; relative production ratio at which operation i will be produced

IX; (relative) ideal workload of machine group [



x;; decision variable (1 if operation i is assigned to machine group I, 0 otherwise).
This problem (UB) is identical to the problem in Berrada and Stecke except for
constraint (1), which can be rewritten as
b pi
igi ai Xl xil -1< 5, l=1,"’,M

Ifwelet gq; = and ¥y =6 + 1, then the constraint is identical to

b
1x,

b
‘21 a; gy xy Sy I=1,M (5)
=

With this substitution, the problem becomes:

Problem (BUB)

Minimize §
subjectto  (2), (3), (4), and (5).

It is important to note that the Berrada-Stecke algorithm is an ¢-optimal algorithm,
and one needs to be very careful in selecting ¢ if an optimal solution is desired. Refer
to Berrada and Stecke (1986) for additional details. To overcome this drawback of the
existing algorithm, we propose a new (exactly optimal) branch and bound algorithm in

the next section. We use the above formulations in this new algorithm.

3. A New Branch and Bound Algorithm

There are several ways to build a branch and bound tree for a loading problem.
For example, each level of the B&B tree can correspond to an operation, or alternatively
to a machine group. See Figure 1 for an illustration of a case with four machine groups.
In our approach, we initially branch on the number of operations asgigned to each group,
which we call a number érouping, because this permits us to fathom nodes more easily

in the earlier stages of the algorithm.



>> Insert Figure 1 here <<

In the following, properties for fathoming or pruning nodes in the B&B tree are
presented for the unbalancing objective, along with methods to avoid generating
redundant nodes. (We also explain briefly how these results should be modified for the
balancing objective.) We use these properties in the new branch and bound procedure
for the objective of unbalancing workloads. The objective is to minimize the maximum
(over all machine groups) of the ratios of the actual workload to the ideal workload. As
discussed earlier, we first generate all possible number groupings, which specify how
many operations are to be assigned to each machine group.

The machine groups can be partitioned into several sets, where each set contains
groups with the same number of machines. For example, the first set will contain all
machine groups with one machine, and the second set will contain all machine groups
with two machines, and so forth. (Some sets may be empty.) A machine group in one set
has a différent number of machines than a machine group in another set, and therefore
the two groups have different processing time capacities. Let kij be the number of

operations to be assigned to the j-th machine group in the i-th set, and ¢; be the number of

machine groups in the i-th set. All possible number groupings can be generated for a

loading problem with b operations and M machine groups by solving NGUB. Note that
l

Y ¢; isequal to M, where [ is the number of sets.
i=1
(NGUB) Find all number groupings (kyj, ", Ric, Boy, "y koy = ki Rye)

suchthat k; <k,<-- <k, , for =12,

g kij =b,
=1 j1 ‘

-

kij is a positive integer, for all i and j.

For example, consider a problem with 7 operations and 3 machine groups. If the
machine groups are of equal size, there are four number groupings for the operations:

(1,1,5), (1,2,4), (1,3,3), and (2,2,3), where the numbers in parentheses denote the numbers



of operations assigned to the respective machine groups. There are nine number
groupings, namely, (1,1,5), (1,2,4), (1,3,3), (1,4,2), (1,5,1), (2,2,3), (2,3,2), (2,4,1), and
(3,3,1), if two machine groups, say groups 1 and 2, are of equal size. If all three machine
groups differ in size, there are 15 number groupings, i.e., (1,1,5), (1,2,4), (1,3,3), (1,4,2),

(15,1), (2,1,4), (2,2,3), (2,3,2), (2,4,1), (3,1,3), (3,2,2), (3,3,1), (4,1,2), (4,2,1), and (5,1,1).

3.1. Eliminating dominated number groupings

We derive properties that allow us to eliminate number groupings in which a
machine group has too many or too few operations assigned to it. Let p; be the
processing time for operation i, k; be the number of operations to be assigned to the j-th
group in the current number grouping, and (i) be the index of the operation with i-th
longest processing time, i.e., Pu2P )2 2Py In addition, let IXj be the ideal workload of
machine group j, and R,,,, be an upper bound (e.g., from an incumbent solution) of the
maximum ratio of the actual workload to the ideal workload among the machine groups.
Note that feasible assignments from a number grouping (k,, k,, - - -, k), ) must have k,
.operations assigned to the first group, k, operations assigned to the second group, etc.

One should not confuse the expressions for number groupings in the following
propositions and with those in NGUB. For simplicity, the group identification indices,
which were expressed as double subscripts above, are reindexed 1 through M in the

following propositions.

Proposition 1. The current incumbent solution dominates any solution from a number
grouping (ky, ky, -, ky ) for which

k.
ilp(b#'l—l) / I‘Xj 2 Rmax ) j=1,2,"', or M. (6)
i=

Proof. For any j, kj is the number of operations to be assigned to the jth machine group.

k; -
Therefore, i P(b+1-i) is a lower bound on the workload of the jth machine group.
i=1



Hence, the left hand side of (6) is a lower bound on the ratio of the actual to the

ideal workload of the jth group. Therefore, the number grouping (%, ky, -, &y, )

is dominated by the current incumbent solution. W

Proposition 2. There exists at least one feasible solution which is as good as any

solution from a number grouping (k,, ky, -, ky ) for which
k
21 Pi +Pp) < IXj, Jj=1,2,, 0or M ™
=

and the tool slots needed for any k,+1 operations do not exceed the tool magazine

capacity for the machines.

k
Proof. 2’, p(;) is an upper bound on the workload of the first machine group, which has
i=1

k. operations assigned to it. The addition of operation (b) does not violate the tool
magazine capacity constraint and does not increase the maximum ratio.
Therefore, the number grouping (k,, &y, -, ky, ) is dominated by a number

grouping in which the first group has & +1 operations assigned to it. M

The above properties permit fathoming of dominated number groupings.
Proposition 1 eliminates number groupings in which a machine group or groups have
too many operations assigned to them, while Proposition 2 eliminates those in which a
machine group has too few operations.

From the above propositions, upper and lower bounds on the number of operations
in each group can be obtaiﬂed. Furthermore, these bounds can be improved by noting the
relationships among these bounds and the total number of operations, b. For example, if
the lower bound for group i is less than & minus the sum of the upper bounds of the other
groups, the lower bour;d for group i can be reset to the latter value. Similarly, if the
upper bound of group i is greater than the value obtained by subtracting the sum of the

lower bounds of the other groups from b, an improved upper bound can be obtained for

group i.

10



3.2. Branching
For each of the remaining number groupings, a B&B sub-tree must be constructed.

In the B&B tree, nodes specify operations and the level of each node corresponds to a

specific machine group. For example, if the number grouping considered is
(RS,kS, k), the nodes at levels 1,2,k specify the operations to be assigned to
machine group 1, the nodes at levels kS+1,k0+2,-k0+k5 specify the operations for
machine group 2, and so on.

In the assignment problem, the order of inclusion of operations in a machine
group does not make any difference. In other words, many different nodes in a B&B
tree give exactly the same assignment. To prevent generating redundant nodes which
result in the same assignment, we use two rules to generate successor nodes in our B&B
algorithm.

Rule 1. The index of the i-th operation of a group should be greater than the index of

the (i-1)-th operation of the group.

Rule 2. When there are two or more groups with the same processing time capacity
and the same number of assigned operations, the index of the first operation of
the i-th group should be greater than that of the (i-1)-th group.

Feasibility of the current operation assignments with respect to the tool magazine
capacity constraints is checked at each branching step. The impact of using tools or
components common to two or more operations assigned to the same machine group is

considered in the feasibility checking routine.

3.3. Fathoming

Properties similar to those in Propositions 1 and 2 can be used to fathom operation

assignments as well. Let I; be the set of indices of operations assigned to the jth
machine group, and bj be the cardinality of the set I;. Each set I ; can be represented by

a node in the B&B tree. Recall that k; operations are to be assigned to group j. The

11



cardinality of Ij may, however, be strictly less than kj except at terminal nodes in the

tree. The following two propositions can be used to fathom nodes corresponding to

dominated operation assignments.

Proposition 3. The current incumbent solution dominates any solution obtained from a
node for which

X P 2 Ry X (8)

i€l +l;
where I, is the set of indices of the kj--b J shortest operations not in IJ-, and the level of

the node being considered is associated with the j-th group.

Proof. Since the left hand side of (12) is a lower bound on the workload of the group, the

above result is obvious. M

Proposition 4. There exists at least one feasible assignment which is as good as any

solution from a node for which

2 P +pg SIX; 9

iel +;
where I, is the set of indices of the kj-bj longest operations not in I, d is the index of
the shortest operation not yet assigned to a machine group, and the operations in I ; and

any other kJ—b ; +1 operations do not violate the tool magazine capacity constraint for the

machine group.

Proof. When branching from the node under consideration, there are k~b; more
operations to be assigned to group j. The first term on the left hand side of (9) is an
upper bound on the workload for machine group j. The addition of operation d does

not violate the tool magazine capacity constraint and does not increase the

maximum ratio. Therefore, having kJ—b +1 more operations gives a better feasible

solution, which cannot be reached from the node under consideration. [ ]

12



3.4. Branch and bound algorithm

In the proposed algorithm, all possible number groupings are generated by NGUB
and some of them are eliminated by applying Propositions 1 and 2. A feasible solution
is needed to eliminate dominated number groupings, which in turn reduces computation
time significantly. If a feasible solution is not available, we can select a number
grouping arbitrarily and build a B&B sub-tree to find a feasible solution. However, the
solution found from the arbitrarily selected number grouping may not be good enough to
eliminate many number groupings. The heuristic algorithms in Kim and Yano (1987),
which incorporate tool magazine capacity constraints, are used to find an initial
solution. We have observed that these heuristics provide excellent initial solutions
which are generally better than the solutions obtained from the €-optimal procedure of
Berrada and Stecke (1986). The value of R,,,, obtained from the heuristic is used in
applying Proposition 1.

The number groupings left after the elimination are heuristically ranked for
consideration as follows. In the unbalancing case, number groupings are ranked in
increasing order of the maximum number of operations per machine across all
machine groups. In the balancing case, number groupings are considered in
decreasing order of the variance of the number of operations per machine group (also
per machine, since the group sizes are equal). The rationale for these rankings is to
give preference to number groupings which are "mostly likely to" avoid over- or
underloading the machine groups from the standpoint of capacity utilization. This
allows us to generate improved solutions early in the search, which in turn, allows us to
prune other portions of the tree quickly.

For each number grouping in turn, the branching scheme is used to construct a

B&B sub-tree using a depth-first search. Nodes are fathomed by applying Propositions 3

and 4. The value of R, obtained from the incumbent solution is used in the

13



application of Proposition 3. Since our objectives have the "minimax" form, the

incumbent R, ., plays the role of an upper bound, and any partial solution with a larger
Rpax (or lower bound on R,,,,) can be fathomed. Lower bounds on the workloads

obtainable at each node (and the consequent lower bounds on R,,,,) are computed using

the formula in Proposition 3. Proposition 4 provides for fathoming of nodes when the
upper bound on the workload of a machine group is so small that another easily-
constructed solution with a larger workload on this underloaded group (and thus also a
smaller workload on an overloaded group) will perform as well or better. The
algorithm terminates when no unconsidered number groupings and no dangling nodes

remain in the B&B tree.

3.5. Modifications for the Balancing Case

Since all groups are identical with respect to processing time capacity and the tool
magazine capacity, the combinations of number groupings can be reduced by replacing
the first set of constraints in NGUB by a constraint that the i-th group should have at
least as many operations as the (i-1)-th group, i.e., k; <k, <--- <kp. When the group
sizes are not all equal, this constraint cannot be employed. Thus, for a given number of
operations and machine groups, the cardinality of all the groupings generated from
NGUB is usually much ]arger than that of the comparable balancing problem, as
illustrated in Figure 2.

The propositions should be modified by noting that for the case of balancing:
b

(a) IXj= Y, p; / M for all j, and
i=1

(b) R g, IXj is simply is maximum workload among the groups.
Rule 2 should be modified as follows:
Rule 2. When there are two or more groups that have the same number of operations
assigned, the index of the first operation of i-th group should be greater than

that of (i-1)-th group.

14



Also, because all groups are identical in this case, Proposition 1 can be strengthened to
consider multiple machine groups simultaneously. See Kim and Yano (1989) for

details.

4. Computational Results

Since flexible manufacturing systems differ widely, a solution procedure which
performs well on one system is not guaranteed to perform well on other systems.
Moreover, even for a particular system, the demand characteristics can affect the
performance of a solution procedure. Since our approach to the loading problem is
designed to be general rather than to be system-specific, it is desirable to test the
algorithms on a wide range of problems. Unfortunately, we were unable to obtain actual
data for a wide variety of systems, partly because of the proprietary nature of such data.
However, the test problems are generated in such a way that the resulting data represent
characteristics of real systems relatively well. (In fact, the parameters for the problems
came from one author's experience at a manufacturing company. The resulting data
ére reflective of FMSs within the company.)

Two sets of loading problems are generated randomly, one for balancing and one
for unbalancing. Each set has 30 problems with 10 to 20 operations and 2 to 5 machine
groups. For each problem, the other required data are generated as described below:

1) The tool magazine capacity (the number of tool slots in the magazine) ranged
from 50 to 90, which is a selected parameter for each problem.

2) The processing time for each operation is generated from a discrete uniform
distribution between the minimum and the maximum processing times, which
are selected parameters for each problem. The minimum value ranged from 10 to

30, and the maximum value ranged from 40 to 100.

15



3) The total number of tools considered in each problem lies between 50 to 100, where
the specific value is selected for each problem.

4) The number of tool slots needed for each tool is chosen randomly from 1, 3, and 5
with probabilities of 0.7, 0.25, and 0.05 for the values, respectively.

5) The number of tools needed for each operation is generated randomly from a
discrete uniform distribution between 4 and 10.

6) Tools are assigned to operations as follows. The number of operations requiring
each tool is generated from a discrete uniform distribution between 1 and 4. For
each tool, the indices of operations sharing it are randomly selected from among
those operations for which the number of tools from Step 5 had not yet been
assigned. When there is a conflict between the results of Step 5 and the number of
operations requiring specific tools (which occurs because of interdependency of
these two sets of data), the former has priority. That is, the latter is modified as
long as it does not exceed a maximum of 4.

7) A set of tools used solely for a single operation is treated as a single tool for
simplicity. The number of tool slots needed for the single artificial tool is the

sum of the tool slots required by the individual tools.

For the two sets of test problems, we tested both the algorithm of Berrada and Stecke
(and a modification of it for the case of unbalancing, as described in Section 2), and our
new algorithm. These are referred to as B&B1, and B&B2, respectively. These
procedures, both of which were coded in FORTRAN, were run for up to one hour of CPU
time on a personal computer with an 80486 processor. The computer code for the original
branch and bound algorithm was provided by Berrada and Stecke. Note that their
procedure is an e-optimal algorithm. Their algorithm was run with two different values
of &. The first value is the same as in the original code, and is equal to the shortest

operation processing time divided by the number of machine groups (the same as in

16



their original code). The second value is set to a smaller value with the intent of
finding a closer-to-optimal solution). We used €=0.999 for the balancing objective and
€=1./max; IX; for unbalancing. These values are those that yielded the best results
after much trial and error.

To distinguish the performance of the B&B procedures from that of the
initialization routines, we used the heuristic of Kim and Yano (1987) to generate the
initial incumbent solution in all cases. This heuristic is reported to perform well and to
be expected to produce near-optimal or optimal solutions for a range of test problems.

The results are shown in Tables 1 and 2. Two performance measures appear in
the tables. The maximum deviation ratio is the maximum ratio of actual workload to
the ideal workload among machine groups, and expected production rates (EPR) in the
tables were calculated on the basis of the actual workload (from the solution) using the
closed queueing network model of Stecke and Solberg (1985). The latter measure was
included to compare the performance of the algorithms for the final objective,

maximizing the expected production rate.

>> Insert Tables 1 and 2 here <<

In the experiments, B&B2 outperformed B&B1 in both computation time and
solution quality. For the balahcing objective, most of the heuristic solutions used as the
initial incumbent solutions were €-optimal in B&B1. As mentioned earlier, to ascertain
whether the procedure could improve upon the initial incumbent and find closer-to-
optimal solutions, we ran B&B1 with the smaller ¢ value for one CPU hour, and
obtained an improvement in a few problems. On the other hand, B&B2 found optimal
solutions for most problems in much less time.

Similar results can be seen in the case of the unbalancing objective. B&B2 by far
outperformed B&B1 in this case, also. In most ﬁroblems for which B&B1 did not

improve on the initial solution, B&B2 found an optimal solution or a better feasible

17



solution. Although a few of the solutions from B&B2 have not been verified as optimal,
they are good in an absolute sense, since the maximum deviation ratios of those
solutions are less than 1.015, which indicates that the actual workloads are within 1.5%
of the ideal workloads. Also, the solutions from B&B2 gave higher (or equal) expected
production rates than those from B&B1 in all test problems except for problem 5. It
should be noted, however, that in this problem, the surrogate objective value of the
solution from B&B2 is better than that from B&B1. Thus, the small discrepancy in the
expected production rates is a consequence of a less-than-perfect correspondence between
the surrogate and true objectives.

There are two probable reasons why B&B2 works better. First, Propositions 1 and 2
eliminate a significant percentage of the possible number groupings, as shown in Table
3. Second, bounds are determined by solving small zero-one problems in the Berrada
and Stecke procedure, which may require a significant amount of CPU time. On the
other hand, in our procedure, lower bounds are obtained very quickly without solving
optimization problems. These two factors are the primary differences between the new
algorithm and the Berrada and Stecke procedure, and consequently, are likely to be
responsible for much of the observed improvements.

Since each "limb" (sub-tree) of the branch and bound tree is constructed for a
particular number grouping, the depth of the tree is no greater than the number of
operations to be assigned, although in most cases, branches are fathomed before the full
depth is reached. To provide an indication of the sizes of the trees, we also report in
Table 3 percentages of nodes considered (100 times the ratio of the number of nodes
generated in the algorithm to the maximum number of nodes that might have been
generated without fathoming). The percentage decreases as the problem size increases,

which demonstrates the power of the propositions in fathoming branches.

>> Insert Table 3 here <<
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B&B2 is slower for the unbalancing objective than for the balancing objective.
This was expected because more number groupings must be considered. Moreover, for
the unbalancing case, the properties used to eliminate number groupings and fathoming

partial assignments are not as powerful as those for the balancing case.

5. Summary and Concluding Remarks

The primary contribution of this paper is a more efficient branch and bound
procedure for the problem of allocating operations to machine groups so as to maximize
throughput while satisfying tool or component storage constraints. To the best of our
knowledge, this algorithm is the first to consistently obtain truly optimal solutions for
problems with up to 20 operations. When the number of machines in each group is
equal, the objective is to minimize the maximum workload among the machine groups.
Otherwise, we use the objective of minimizing the maximum ratio of the assigned
workload to the ideal workload among the machine groups. These objectives are shown
to outperform other similar objectives.

We generalize and improve an existing B&B algorithm which was designed for
the case of equal machine group sizes. We show that a simple transformation of the
data makes this algorithm applicable to the case of unequal machine groups. We
develop a more efficient branch and bound algorithm, which uses several new properties
that significantly reduce the number of alternatives to be considered. The new
properties allowed us to find optimal (or in a few cases, better feasible solutions) for
problems which could not be solved optimally by the existing B&B approach.

Our branch and bound algorithm can be applied in other contexts as well.. For
example, it can be applied directly to scheduling problems with the objective of

minimizing makespan when there are identical or uniform processors. The only
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modification required is to eliminate the routine for checking feasibility of the tool
magazine capacity constraints.

The results in this paper suggest that problems of reasonable size can be solved
optimally or near-optimally. In practice, heuristic solutions such as those obtained
using the heuristics of Kim and Yano (1987), which we used as initial incumbent
solutions in our study, may be more than adequate. However, algorithms that allow us
to solve problems to optimality are useful in their own right, even if their primary
purpose is to serve as a benchmark in the evaluation of heuristics. In many problem
arenas, optimal solutions cannot be found, even for relatively small problems, and the
development of good heuristics has been hampered as a consequence.

Further research is needed to incorporate other objectives. For example, we do not
consider minimizing material movements. Further research is also needed to permit
processing times to vary across machine groups. In addition, sharper bounds are
needed for the suggested branch and bound algorithms, since the computing time needed

for larger problems is expected to be excessive.
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Appendix
Comparison of Surrogate Objectives

The following measures of (un)balance are evaluated. All objectives are to be

minimized. X, and IX; denote actual load and ideal load for machine group ! (not per

machine), respectively.

Cl = max, (X,-IX;) C7T = max, (X,-1X; )/ IX,
C2 = max, (IX; -X;) C8 = max, (IX;-X; )/ IX|
C3 = C1+C2 C9 = C7+C8

C4 = max, | X, -1X, | C10 = max, | X, -1X;, | 1 IX]
C5=12 | X, -1x; | Cll = [2 | X -1X, | ] IX,
Cé =1’2 (X, -1X;, )* Ciz =¥ (X-IX, 2/ IX,

If C1 is used, the maximum workload among the groups is to be minimized, while
if C2 is used the minimum workload is to be maximized. The sum of these two, C3, can
be another measure of closeness. C4 is the maximum deviation of actual workload from
the ideal workload and is equal to the maximum of C1 and C2. C5 is the sum of the
deviations and C6 is the sum of squared deviations. These six measures are considered
because they are commonly used to measure deviation from certain standard or target
values (e.g., sum of absolute errors, sum of squared errors, maximum absolute error,
etc.). C7 through C12 are the counterparts of C1 through C6 with the reciprocal of the ideal
workload as a weighting factor for each group. These measures reflect relative, rather
than absolute deviations. Note that the measures C7 through C12 are equivalent to the
measures C1 through C6 for the objective of balancing workloads.

To compare these measures, we tested them on fifty system configurations using
both balancing and unbalancing objectives. A configuration is defined by the number

of machine groups (ranging from 3 to 7) and the number of machines in each group
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(ranging from 1 to 6). For each configuration, fifty scenarios with randomly generated
actual loads for the machine groups were created. To calculate the expected production
rate for a given configuration and workload assignment, the closed queueing network
(CQN) model of Stecke and Solberg (1985) was used. For each system configuration, the
ideal loads and the expected production rate were calculated with the CQN model, and
the values of the measures of (un)balance and the expected production were also
calculated for each of the fifty randomly generated workloads.

For each system configuration, we calculated the coefficient of correlation between
the value of the measure and the corresponding expected production rate for the 50
randomly generated scenarios. To test for differences among the correlation
coefficients, paired t tests were done for all pairs of measures. The paired t test was
used since the correlation coefficients were computed for 50 different configurations.
This lack of homogeneity among configurations contributes to the variability of the
coefficients and tends to inflate the experimental error, thus making a true difference
between measures harder to detect. The paired t test eliminates the problem of non-
homogeneity by using matched pairs of data. In the paired t test, the difference between
the correlation coefficients for the two measures is computed first for each configuration,
then these differences for the 50 configurations are used in the statistical analysis.
Thus, the differences between two measures for the 50 configurations constitute the
population and the null hypothesis is that the differences are not statistically different
from zero. (See Montgomery 1984 for details of the method and a discussion of the

advantages of using paired comparisons.)

>> Insert Tables Al and A2 here <<

The results are shown in Tables Al and A2. Table Al shows means of the
correlation coefficients (¥) and the results of the paired t tests for the balancing

objective, while Table A2 shows the same for the unbalancing objective. For the
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balancing case, C1 significantly dominates the others. This justifies the objective
function in the formulation of Berrada and Stecke (1986), minimizing the maximum
workload. For the unbalancing case, however, C1 does not work very well. Instead, C7
(the maximum ratio of overload to the ideal load among the machine groups) works well
in this case. C9, whose value is the sum of C7 and C8, also works well, but this may be

due to the effect of C7.
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-¢—— operation 1

-e—— operation 2

a) each level corresponds to an operation

group 1

group 2

b) each level corresponds to a machine group

(numbers in the nodes denote indices of operations)

Figure 1. Two types of branch and bound trees for the loading problem
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Table 1. Computational results for the balancing objective

B&B1 (e-optimal) B&B2

with original ¢ value | with smaller € value (optimal)
ProblemT| Max. CPU | Max CPU Max. CPU
Dev. EPR Time Dev. EPR Time Dev. EPR Time
Ratio (sec.) Ratio (sec.) Ratio (sec.)
1(10,2) | #1.002 .937 0.77 *t 3600.| #1.002 .937 0.83
2 (10,2) #1.002 .952 0.77 *t 3600. ] #1.002 .952 0.77
3 (10,3) | #1.024 .879 1.21 *1 3600. 1.005 .882 1.55
4 (10,3) #1.044 .897 1.15 *1 3600. 1.008 .909 1.42
5(10,3) | #1.043 .900 2.64 *1 3600. 1.006 .909 3.01
6 (12,2) #1.004 .952 1.15 *t 3600. 1.001 .952 1.15
7(123) | #1007 .909 0.94 i 9931 #1.007 .909 0.94
8 (12,3) | #1.005 .909 0.88 i 10.89 1 #1.005 .909 0.93
9 (124) | #1.057 .859 10.18 i 44.08 1.042 .859 12.85
10 (124) | #1.006 .869 0.98 ¥ 1047 #1.006 .869 0.98
11 (14,3) | #1.040 .902 1.26 1.010 .908 64.33 1.000 .909 1.76
12 (14,3) | #1.033 .906 2.25 1.005 .909 18.28 1.005 .909 2.30
13 (14,4) 1.001 .870 8.80 1 10.62 1.001 .870 2.22
14 (14,4) | #1.038 .865 20.92 1 194.60 1.005 .869 44.56
15 (14,5) | #1.047 .827 27.57 i 113.08 1.012 .833 68.94
16 (16,3) | #1.000 .909 0.16 i 0.16 | #1.000 .909 0.16
17 (16,3) #1.003 .926 1.87 b3 298.57 1.000 .926 2.08
18 (16,4) #1.018 .892 1.71 hs 1668.68 1.000 .893 21.16
19 (16,4) | #1.022 .891 1.31 i 285.55 1.001 .893 32.87
20 (16,5) | #1.044 .859 T77.67 T 44781 1.002 .862 1.96
21 (18,3) | #1.006 .909 143 i 769.27 1.002 .909 1.43
22 (18,4) | #1.008 .893 154 i 263.74 1.004 .893 1.54
23 (18,4) | #1.013 .892 219 t 548.43 1.000 .893 2.25
24 (18.5) | #1.016 .861 1.54 b 672.15 1.001 .862 1.59
25 (18,5) | #1.027 .878 1.60 *1 3600. 1.004 .882 315.55
26 (20,3) | #1.008 .909 148 *I 3600. 1.001 .909 3.35
27 (20,4) | #1.010 .893 1.48 i 839.29 1.004 .893 1.53
28 (20,4) | #1.004 .893 1.92 i 376.03 | #1.004 .893 1.97
29 (20,5) | #1.008 .862 2.09 *t 3600. 1.003 .862 11.48
30 (20,5) | #1.014 .881 483.94 1 1218.89 | *#1.014 .881 3600.

t The numbers in parentheses denote the numbers of operations and machine groups.
* Incumbent solutions after 3600 seconds of CPU time on the personal computer.

# Final solution was the same as the initial incumbent solution obtained from the heuristic.
t The solution is the same as the epsilon-optimal solution with original epsilon value.
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Table 2. Computational results for the unbalancing objective

B&B1 (g-optimal) B&B2

with original € value with smaller € value (optimal)
Problem f Max. CPU | Max. CPU Max. CPU
Dev. EPR Time Dev. EPR Time Dev. EPR Time
Ratio (sec.) | Ratio (sec.) Ratio (sec.)
1(10,2) | #1.003 .941 0.71 *t 3600. 1.001 941 0.76
2 (10,2) | #1.019 .951 0.82 i 0.90 1.002 .955 0.87
3 (10,3) 1.006 .886  3.15 *t 3600. 1.003 .886 1.03
4 (10,3) | #1.005 .919  0.83 *1 3600.| #1.005 .919 0.87
5(10,3) | #1.013 .919  0.99 *1 3600. 1.006 .918 1.03
6 (12,2) | #1.007 955 0.77| 1.003 956 67.28 1.001 .956 0.82
7 (12,3) | #1.008 .912 0.87 *t 3600. 1.007 .912 2.02
8 (12,3) | #1.014 .917 50.96 *1 3600. 1.006 .918 1.29
9 (12,4) | #1.057 .854 276.27 1.029 868  3600. 1.029 .868 3.45
10 (12,4) | #1.023 .877 102.65 *1 3600. 1.004 .880 1.48
11 (14,3) 1.002 .913 790.91 i 973.87 1.002 .913 8.10
12 (14,3) | #1.003 .919 0.99 *1 3600. 1.001 919 1.72
13 (14,4) | #1.013 .872 703.85 3 2218.77 1.002 .873 11.95
14 (14,4) | #1.036 .871 2017.05 *1 3600. 1.004 .879 6.57
15 (14,5) 1.044 .826 1471.35 *1 3600. 1.005 .836 31.03
16 (16,3) | *#1.018 .910 3600. *1 3600. 1.000 .913 5.33
17 (16,3) | *#1.029 .925 3600. *1 3600. 1.001 .934 1.75
18 (16,4) | #1.014 895 1.32 *t 3600. 1.002 .896 329.53
19 (16,4) | *#1.031 .900 3600. *1 3600. 1.001 .902 46.50
20 (16,5) | *#1.064 .845 3600. *1 3600. 1.006 .865 431.69
21 (18,3) | #1.004 913 1.32 *1 3600. 1.000 .913 3.53
22 (184) | *#1.024 .895 3600. *t 3600. 1.000 .896 206.60
23 (18,4) | *#1.024 .895 3600. *t 3600. 1.002 .902 418.85
24 (18.5) | *#1.031 .859 3600. *t 3600. 1.001 .865 1698.91
25 (18,5) | *#1.029 .889 3600. *1 3600. 1.001 .890 1538.47
26 (20,3) | *#1.010 .912 3600. *t 3600. 1.002 913 2581.80
27 (20,4) | *#1.014 .894 3600. *t 3600. | *#1.014 .894  3600.
28 (20,4) | *#1.026 .897 3600. *1 3600.| *1.002 .902 3600.
29 (20,5) | #1.004 .865  1.32 *1 3600.| *1.004 .865 3600.
30 (20,5) | *#1.012 .888 3600. *1 3600.| *1.004 .890 3600.

1, I, #,* See the footnotes of Table 1.
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Table 3. Percentages of number groupings and nodes considered by B&B2

Balancing Unbalancing
Problem % of possible no. % of nodes % of possible no. % of nodes
groupings considered | considered groupings considered | considered
1 (10,2) 40.0 (2/5) 0.879 22.2 (2/9) 6.25
2 (10,2) 40.0 (2/5) 0.830 22.2 (2/9) 6.64
3 (10,3) 125  (1/6) 1.75 150 (3/20) 0.978
4 (10,3) 250 (2/8) 1.81 10.0  (2/20) 0.242
5 (10,3) 125 (1/8) 2.06 100 (2/20) 0.269
6 (12,2) 333  (2/6) 0.476 27.3  (3/11) 141
7 (12,3) 16.7  (2/12) 0.00489 6.7  (2/30) 0.763
8 (12,3) 25.0 (3/12) 0.00427 26.7  (8/30) 0.237
9 (12,4) 13.3  (2/15) 0.258 7.3 (3/41) 0.0526
10 (12,4) 26.7 (4/15) 1.79E+4 29.3  (12/41) 0.0125
11 (14,3) 18.8  (3/16) 0.0329 9.5  (4/42) 0.464
12 (14,3) 6.3 (1/16) 0.00142 48  (2/42) 0.0498
13 (14,4) 21.7  (5/23) 9.51E4 149 (10/67) 0.0130
14 (14,4) 21.7  (5/23) 0.0522 209 (14/67) 0.00668
15 (14,5) 13.0  (3/23) 0.00395 282 (20/71) 0.00164
16 (16,3) I 0 (021) o 8.9  (5/56) 0.0241
17 (16,3) 14.3  (3/21) 0.00151 89  (5/56) 0.0502
18 (16,4) 59 (2/34) 0.00143 6.9 (7/102) 0.0250
19 (16,4) 8.8 (3/34) 0.00231 3.9 (4/102) 0.00357
20 (16,5) 54 (237) 3.17E-7 6.6 (8/121) 9.25E4
21 (18,3) 185  (5/27) 1,29E-5 111 (8/72) 0.00158
22 (18,4) 8.5 (4/47) 1.16E-7 109 (16/147) 9.27E4
23 (18,4) 10.6  (5/47) 2.14E-7 6.1 (9/147) 0.00195
24 (18,5) 15.8  (9/57) 6.08E-9 10.3  (20/194) 1.42E4
25 (18,5) 3.5 (2/57) 2.63E-5 26 (5/194) 1.37E-5
26 (20,3) 182  (6/33) 1.42E4 133 (12/90) 0.199
27 (20,4) 3.1 (2/64) 7.18E-9 3.4 (7/204) 10.00104
28 (20,4) 109  (7/64) 6.96E-9 7.8  (16/204) 10.00102
29 (20,5) 226 (19/84) 2,83E-8 129  (38/295) T 1.14E-5
30 (20,5) 107 (9/84) T 1L11E-5 6.8 (20/295) | 11.19E-5

1 These are lower bounds of the actual percentages, since the problems were not solved optimally.
t Initial feasible solution was perfectly balanced.
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Table Al. Test results for difference of the correlation coefficients (Balancing Case)

Measure (7 1) ClL C3 C6 C4 C5 C2
C1(-.979) Kok K *x ** **
C3 (-.946) *k *x *x **
C6(-.925) = *x *x
C4(-919) ** Kk
C5(-.892) Xk
C2 (-.546)

+ mean value of the correlation coefficients from the 50 configurations
*x : statistically different at significance level of .01
= :not statistically different at significance level of .05

Table A2. Test results for difference of the correlation coefficients (Unbalancing Case)

Measure (7t )| C7 €9 C11 C10 C12 C5 C3 Cl1 C4 C6 (2 C8
C7 (-.945) *k Kk *k *k Kk kk Kk Kk Kk Kk kk
C9 (-.938) *E MK Rk kb %k kk k% Rk %k Kk
C11(-917) = Rk kk kk k% Rk Rk kk kk
C10(-.916) KK kk Rk Rk Rk Rk Kk Rk
C12(-.897) Bk kK Rk Rk Rk Rk Rk
C5(-.853) ¥ k% kk kx Kk kk
C3 (-.840) T
C1(-.813) = Rk Rk Kk
C4(-.811) *k Rk k%
C6 (-.793) P
C2 (-.750) Kok
C8 (-.288)

t mean value of the correlation coefficients from the 50 configurations
** : statistically different at significance level of .01

* :statistically different at significance level of .05

= :not statistically different at significance level of .05
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