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2. FULL-LENGTH ARTICLE

BEYOND THE FRACTAL
SEIIJI'.’!J.'FJ. LHEJ.J J‘!LJ'.rJ:HE'.IIIr'J.IJE

“I never saw & moor,
I never saw the sea:
Yet know 1 how the heather looks,
And what a wave muost be”

Emly Dickinson, “Chartless.”

Abstract.

The fractal notion el sell~gimilarity {2 usefil for characterizing change in scale; the reasan factals are =feciive
in the geometry af central place theasy is becneee that geamezry = hiernrelical in pature. Thus, a natuen] place to
look for other conneetions of this soct is Lo slher peopraphical concepiz that zce hieraschical in natece, Within this

fractul context, this chapter examines the cose of spatial diffusion.

Wlen the idea of dilfaaton s extesded to see “adeplers” of an innavaiion o= “attraciars” of new adapters, a Julin
sel iy introduced as = ponsille axis against which 10 mensnre one clss of geageaphic phenomena. Bevond the frooel
cantext, fractnl concepts, suck ae "eompression™ and "spaces flling™ wre coneidered o ow broader prapi-tbeoretic
cupbexl

Imtroduction.

Because a fractal may be considered as a randomly generaled statistical image [Man-
delbrotl, 1981), one place to look for geometric fractals tailored to fit geographic concepis is
within the set of ideas belund spatial configurations traditionally characlenzed using ran-
dominess. The spatial diffusion of an innevation s one such case; Hagerstrand characterized
it using probambstic simulation techmgques |Hagerstrand, 1967), This chapter builds directly
on Hagerstrand’s work in order 1o demonstrate, in some detail, how fractals mmght anse in
spatial diffusion. From there, and with a view of an adopter of an innovation as an “atirac-
tor” of other adopters, the connecied Julin set = = 2% — 1 is examined, only broadly, for its
potential to serve as an axis from which to measure spatial “attraction.”

More generally, it 15 not necessary to consider fractal- like coneepts such as "attraction.”
Yspace-filling,” or “compression” relative to any metric, as in the diffusion example, or
relative to any axs, as i the Juba sel case. These broad fractal nolions are examined.
in some detail, in a graph-theoretic realm, free from metric/axis encumbrance, as one siep
beyond the fractal An effort has been made to explain key geograplical and mathematical
concepts so that much of the matenial, and the flow of ideas, i= self- contained and accessible
to readers from various disciplines.

A fractal connection Lo spatial diffusion

The diffusion of the knowledge of an innovation across geographic space may be simulated
numenically using Monte Carlo techniques based in probability theory (Hagerstrand, 1967).
A simple sxample illustrates the basic mechames of Hagerstrand's procedure

Consider a geograplue region and cover it with a grid of uniform eell size suited to the
scitle of the available empirical information about the innovation. Enter the number of initial
adopters of the innovation in the grid: an entry of “17 means cne person (household, or other
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Summer, 1890

set of people] knows of the innovation. Ower tine, this person will tell others. Assume thai
the epread of the news, from this person to others, decays with distance: 'To simulate this
spread, probabilities of the hkelihood of contact will be assigned o sach eell surrounding each
imitizl adopter. A table of random numbers is used in conjunction with the probahilities, as
followrs.

Given a grdded geographic region and a distribution of three initial adopters of an
innovation [Figure 1}, Assume that an initial telling occurs no more than two cells away from
the initial adepters’ cells. This assumplion ereates a five-by—five gnd in which mterchange
can occur between an initial adopier in the central cell and others. Assign probalbibties of
contact 1o each of these twenty—five cells as a percentage likelihood that a randomly chosen
four digit number falls within a given interval of numbers assigned Lo each cell [Figure 2
Because the intervals in Figure 2 partition the set of four digit numbers, the percentage
probabilities assigned to each cell add te 100%. Pick up the five-by—five grid and center i
on the original adopter in cell H3 (Figure 1). Choose the first number, §248, i the Lst of
random numbers {(Figure 23 1§ falls in the intesval of numbers in the central cell. Enter »
=17 in the associpted cell, 13, to represent this new adopter. Move the five-by— five gnd
acrass Lhe distobution of onginal adoplers, stopping it and repeating this procedure with
the next random number in the list erch time a new original adopter iz encountersd. Center
the five—by—five gnd on Hd; the nexi random number is 0925 which fells in the mterval m
the cell immediately northwest of center (Figure 2). Enter a "+1% n cell G3 {Figare 1),
the cell immediately northwest of H4. Finally, center the moving gnd on H3. The next
random number, 4997, falls in the center cell; thersfore, enter a “+17 in cell H5. Cneoe this
procedure has been applied to all original adopters, the population of adopters doubles and a
“first generation” of adopters, comprising original adopters and newer adopters represented
as “4+1'%", emerges {Figure 1). Any number of additional generations of adopiers of the
mnovalion may be simulated by iteration of this procedure

There arc numerous side 1ssues, which are important, thal may eomplicate this basic
pracedure [Higersirand, 1967; Haggett <t al, 1977), How are the pereentages for Uhe fve—
by-five grid chosen? Indeed, how is the dimension of “five” chosen for a side of this grd?
Should the choices of percentages and of dimension be based on empincal data, on other
abstract considerations, or on a mix of the two? What sorts of criteria should there be
in judging suitability of empitical data? What if a random entry falls cutude the given
grid; what sorts of boundary /barrier considerations, both in terms of the position of new
adopiers relative to the regional boundary and of the synuneiry of the probabilities within
the five=by-five gnd. should be taken into account?

Independent of how many generations are caleulated wzing Lhis procedure, the patiern of
“filling 1in" of new adopters is heavily influenced by the shape of the set of original adopters.
inda&ﬂ, over trme, an-nw!ﬁrlgc of the mnovation diffuses slewly mitially, picks up in speed of
transmession, tapers ofl, and eventually the population becomes satnrated with the knowl-
edge. Typically this is characterized as a continuons phenomenon using 2 differential equation
af inhibited growth that has as an initial supposition that the population may not exceed M,
an upper bound, and that F(f}. the population P at time { grows al a rate proportional
to the size of itsell and proportional to the fraction lefi to grow [Haggett ef al., 1977; Boyce
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SOLETIVE
Figure 1.

Thres onmnal adoplers, represented as l's.  Posmions are simulated for three new
adopters, represented as —1"s The two sets taken together form a first generation of adoplers
of an innovation {gnd after Hagerstrand),

North at the 1op.
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and [HFPrima, 1977). An equation such as

dPit)
di

=k P{t)(1 — (Ft)/M))

serves as A maethematical medel for this sort of growth in which & > [} 15 a growth constant
and the fraction (L= [(P{E)/M] acte as a damper on the rate of growil [Boyee and DiFPnims,
1977). The graph of the equation is an S-shaped (sigmoid) logistic curve with honzontal
asymplote at P{t] = M and inflection poant at P{) = M/2. When dP/di > [ the
population shows growth; when d°P/di? = 0 (below P{t) = M/2) the rate of growth is
increasing; when d*P/dt? < 0 (above FP(t] = M/2) the rate of growth is decreasing.

The differential equation mode] thus vields information concerning the rate of change of
the tolal populaiion and in the rale of change in growth of the tolal population. 1t does not
show how to determine A ; the choice of M is given a priore.

Iteration of the Higerstrand procedure gives a position for Af omece the procedure has
been run for all the generations desired.

For, it is a relatively easy matter to accumulate the distributions of adopiers and stack
them next to each other, creating an empincal sigmoid logistic carve based on the simulation
(Haggett el al., 1877), Finding the position for the asymptote [or for en upper bound close
to the asymptotic position] is then straightforward.

Meoither the Hﬁ.gerstran& p:n:h:l:t]:nc nor the inhibated Er{m‘lh ol el prn:-v'sdts an estimate
of saturation level (horizonta] asymptote position) (Haggett, ef al., 1977) that can be calen-
lated carly in the measurement of the growth. The fractal approach suggested below offers
a means for making such a ealeulation when seli-similar hierarchical data are involved; al-
lometry is a special case of this procedure (Mandelbrot, 1983). The teasons for wanting Lo
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Summer, 1990
Figure 2

Five-by-five gnd overlay. Numerical entries in eells show the percentage of four digit
numbers assocaated with each eell. The given bsting of cells shows which cell 15 associated
with which range of four digit numbers.

Naorth at the top.
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A random sel of numbers I:smir-::-:: RO Handbook of Standard Mathemationl Tab}es}:
G248, 0925, 4097, 0024, 7V54
717 2854, 2077, DAGZ, 2841
SO0, 9647,

and so forth.

landom number assignment to matrix cells, with cell number given as an ordered pair
whose first entry refers to the reference number on the leflt of the matnx m this figure and
whose second entry refers Lo the reference number al the top of that matrix.

(1,1): 0000-0085; (1,2): 0096-0235; (1.3): 0286-0403
(14) 0404-0543; (1,5): 0544-0639
(2,1): 0640-0779; (2,2): OT80-1080; (2.3): 1081-1627
(2,4): 1628-1928; (2,3); 1929-2068
(3,1): 2060-2235; (3.2): 2237-2783; (3.3): 2784-7214
(3.4): 7215-7761; (3,5) 7762-7929
(4,1): T930-B0BD; (4,2): BOTO-83T0; (4,3): B3T1-8917
(4,4): 8018-9218; (4,5); 9219-9358
(5,1): 9359-0454; (5.2): 0455-0594; (5,3): 9595-0762
(5,4): 9763-0902; (5.5); GO03-9959

make such a caloulation might be to determine where to position adopter “seeds™ in order
to produce varous levels of mnovation saturation.

As 15 well-known, not all innovations diffuse i a uniform manner; Paris fashions read-
il!l" ﬂm&lﬁb]'ﬂ j.i.i i.'l.L"d.j'iJ‘].' U S. L]L.i.l"_"E B iH.I.d Li'i.'l-'-'.']i EElI'.'I:.'[ coast [I]]El’lt !-iClI:tD]TI. I:lE SCCT1 'i'l.'l 'I."I:I|.'E|J
midwestern towns, To determine how the ideas of fractal “space—filling” and this sorl of
dilfusion—relate:d “space- ﬁ]]ing" mighl be ajign-:d, consider the fallowing example.

Given & distribution of three onginal adopters occupyving cells H3, H4, and H5 in a lincar
paltern (Figure 3.A). The probahbilities for positions for new adopters are encoded within
each cell surrounding each of these (as delermined from Lhe five-by-five gnd of Figure 2).
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SOLSTICE
Figure 3.A.

The simulation is o on three orginal adopters with positions given below. Numerical
entnes show Lhe likehhood, out of 300, that a new adopter will fall into a given cell. Zones of
interaction between overlapping five-by-five grids are outlined by a heavy line (begin at the
upper lelt-hand comer {ulhe) of cell F2; move horizontally 1o the upper righli-hand cormer
(urhc) of cell F; vertically to lower nght-hand corner (Irhe} of cell J6; honzontally to lower
lefi-hand comer (lThe) of cell J2; vertically to ulhe of F2 — should be a rectangular enclosure
that you have added to this ligure}. Original adopters are in cells H3, H4, Hs.

Morth at the top.

H 2 1 4 a i T & Totals
A
B
C
e
E . —
F o096 [236 404 448 40¢ 236[ 096 18,20
& 1.40 |4.41 588 11.43 983 4.4] 40 4287
H LG |16 a5l46 53325 oL46 T.15) 1.68 175.83
/ L40 | 441 D88 1149 9.ER 441 L4l 2387
o 096 | 236 404 448 404 2.36) 0946 18.20
K e = - —

6.40 2060 79.30 8718 79.31 20.70 6.41 300

Thus, for example, when the gnd of Figure 2 is superimposed and centered on the onginal
adopter in cell H3, a probability of 3.01% 1= assigned to the bhkelihood for contact from 13
to (G4 when it 18 supenmposed and centered on the original adopter 1n H4, there 15 2 5.47%
likelihood for contact from H4 to G4, and, when it is supenmposed and centered on the
original adopter in HS, there 35 a 3.01% hikehhood for contact from H35 te G4, Therefore,
the percentage likelihood of a new first-generation adopter in cell G4, given this initial
configuration of adopters, 15 Lhe sum of the percentages divided by the number of initial
adopters, or 11.49/3. For case in inserting fractions into the grid, enly the numerator, 11,48,
15 shown as the entry (Figure 3.A ). IL would be uselul, for purposes of comparison of this
disicibution Lo those with sets of initial adopters of sizes other than 3, to divide by the
number of initial adopters in order to derive a percentage that is independent of the size of
the 1mtial distnbution [z'.f-, to normalize the numerical entries f.

[t is easy to see that the values in the cells of Figure 3.4 must add o a total of 300 if one
views them as derived from each of three five—by—five gride centered on each original adopter.
A "zone of mteraction” of entnies from two or more five-by—five grids is outlined by & heavy
line; 25 cells are enclosed in it in Figure 3.A. The pattern of numbers exhibits bilateral
symuetry, insofar ag is possible (allowing for the “appendix” of .01 required to make Lhe
mumerical partition associated with Figure 2 complete] with respect to both North-South
and Bast—West axes (with the onigin in cell H4). Sum and column totals are caleulated: as
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Summer, 195{

Figure 3.B.

The gunulation 15 run on three onginal adopters with posttions given below. Numerical
entries show the likelihood, out of 300, that a new adopter will fall into & mven cell. Zones of
interaction between overlapping five-by-five gnds are outlined by a heavy line (begin ulhe
of F2; horizontally to urhe of Fé; vertically to Ithe of I6; honzontally to Irhe of 15; vertically
te Irhe of J5; honzontally Lo Hhe of J3; vertically to [lhe of 13; horizontally to llhe of 12;
vertically to ulhe of F2 — should be a "fat" T-shaped enclosure that vou have added to this
figure). Original adopters are in cells H3, G4, Hb.

North at the top.

1 2 T 4 5 ] T R Tamﬂs
A
E
&
D
E 0.96 140 168 1.40  0.96 5.40
F D98 | 280 35.65 827 565 280 0.0 27.04
x 1.40 | 469 1234 3033 1234 489 1.40 57.10
H 1.68 | 6.87 49.00 1641 4000 6.87 ) 1.6% 131.51
1 1.40 \ 387 827 770 827 3.98) 140 34.90
J 096 |.r1L*T]L2.ﬁe1 280 265 140 0.7 12 89
e =" =t S

G.40 2069 T9.30 ET.19 79.31 20.70 G.41 3060

the shape of the distribution of mitial adopters is altered (below). these totals will tag sete
of cells 1o demonstirale how -;Jm:tgr.:u m the zone of 1nterection are CCOUTTINE.

Next consider a distribution of three initial adopters derived from the linear one by
moving the middle adopter one umt to the North (Figure 3.B). When interaction velees are
calculated as they were for the initial distmbution in Figure 3.A, a eomparable, but different
numernical pattern emergss {Figure E.B}. Here, the column folals are the same as thaose in
Figure 3.A. but the row totals are different. The zone of interaction contains 23 cells; the
highesi individual cell value of 50.33 12 legs than thatl of the ]1iE]11:5[ cell wvalue, 53.25, i
Figure 3.A. Beeause both sets of values are partitions of the number 300, and because there
are more cells with potential for eontact in Figure 3B than i Figure 3.A, the concentration
of entnes in Figure 3.B 15 nol as compressed as in Figure 3.A, This is reflected 1o the row
totals; a visnal device useful for tracking this compression iz to think of the five-by-five grid
centered on the maddle adopler being gradually pulled, to the North, from under the sel of
entries in Figure 3.A. In Figure 3.B the top of this muddle grid slips out from under, failing
te imtersect the boltom row, J, of the grid. With this view, it is easy to understand why
only the row totals, and not the column tetals, change.

Naturally, as the muddle mitial adopter 13 pulled successively one unit to the north in

the configuration of onginal adoplers, the maddle five-by-five grid is also pulled one umit
to the north (Figures 3.C, 3.0, 3.E, and 3 F). The numerical consequence s to reduce the

g
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SOLSTICE
Figure 3.C.

The simulation ts run on three onginal adopters with positions given below. Numerical
entries show the likelithood, out of 300, that a new adopler will fall 1nto a given cell. Zones of
ideraction between overlapping five—by—five grids are outlined by a heavy line [begin ulhe of
F2. horizontelly to urhe of F6; vertically to Iche of HE; honzontally to lehe of HS; vertically
to lehe of J5; horizontally to llhe of J3; vertically to llhe of 03; horizontally to llhc of HZ;
vertically to ulhe of F2 — should be a “less-fat” T-shaped enclosure that vou have added
to this figure). Original adopters are in cells H3, F4d, H5.

North at the top

| 1 3 i § 6 T & T-:'.Itﬂfﬁ
A
B
iy
D 1,68  1.40 0.96 6.4
E 547 301 140 14,29
F 098 A7 11 3.:‘1"‘"@203\ 0.06 71.41
G 140 11.49 0.88 441| 140 42.87
H 168 1262 47.30 G644l 188 123.63
I 140 602 687[ 301 140 9558
J 096 280  2.65| 140 0.87 12,42
i

640 20.69 79.30 87.19 T9.31 20.70 6.4l 300

size of the zone of interaction ATNONE thie 1mitzal a-:lr}]JL-:rE and 1o spread the range of cells
over which the value of 300 is partitioned. This implies less concentration near the orginal
adopters and less “filling in" around them as one proceeds from Figure 3.A to Figure 3.F,
Thus, in Figure 3.C the zone of interaction shrinks to 21 cells with a largest individual cell
entry of 47.39. At the stage shown in Figure 3.D, the largest cell entry is 45.99; because
the cells associated with this value are not D'.-'r:rla]:rpr:rj b}r the five-by- five gri-.’l conterad on
the middle adopter, this largest value will not change as the middle adopter is pulled more
to the north, Table 1 shows the sizes of the zones of interaction of the largest mdividual
cell entry for each of Figures 3.A to 3.F. No new information anses from moving the middle
cell to the north beyond the position in Figure 3.F; the five— by—five grd is revealed and no
longer intersects the two overlapping grids rssociated with the other two initial adopters.

The example depicied in Figure 3 shows that even as early as Lthe firsl generation, the pat-
tern of the positions of the nutial adopters affects significantly the configuration of the later
adepters. Figure 3.A with the heaviest possible filling of space using thres mutial adopters
represents a most saturated case, which, laken together with an underlying symmetry that
15 bilateral relative to mutnally perpendicular axes, suggests that an associated space-filling
curve should have dimension 2, should have o rectilinear appearance, and should be formed
from a generator whose shape is related to the pattern of placement of the onginal adopters.
One space-filling curve that mests these requirements is the reciihnear curve of Figure 4.A.
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Figure 3.1

II.:I.-\I]ZI'E E.llllu]-il-l-lcl]: 15 TUIE 43EE L]]ﬂ:l: Uflg]li.E'J udupl‘.:rs 1".'|1.|:| !.'Il_'l.‘ili'lﬂ-ll.!i E]"-'l'.'.tl 1JI:']C|-".".'. NL'I]'I'I[!TiCH.L
entrigs show the likelihood, out of 300, that a new adopter will fall into & given cell. Zones of
mteraction between overlapping five—by—five grids ar= outlined by a heavy line (begin ulhe of
F2: horizontally 1o urhe of F8; vertically to Irhe of G6; honzontally to Ithe of G5; vertically
to Irhe of )5; horizontally to lthe of J3: veruically to llhe of G3; horizontally to Hhe of G2;
vertically to ulhe of F2 — should be & "less—fat" T-shaped enclosure that you have added
to this hgure). Ornginal adopters are in cells H3, E4, HS.

Notth at the top,

1 3 3 4 5 & i & Tobals
A
B
(9 0O6 140 1.68 Labd 0.96 .40
D 1.40 301 547 301 140 14.29
B .68 547 44.31 D47 |68 aR.Gl
F (.96 ] 0,403 27.09
o 1.40 1.40 34.00
H [.68 547 1.6% 117.22
I 140 301 1,41} JH5E
i .86 140 0,487 12,82
K

G40 200689 7930 BT.1% TO.31 20070 6.41 300

I'he generator 15 composed of three nodes hocked together by two edges in a straight path.
Thiz 15 scaled-down, by a factor of 172, and hooked to the endpomnis of the onginal gener-
ator. lteration of this procedure leads to & rectilinear tree with the desired properties. The
approach of looking for a geometrie form to fit o given sel of conditions i3 like the caleulus
approach of looking for a differential equation Lo 0t a given set of conditions. The difference
here 15 that the shape of the generator and other information from early stages may be used
to estimate the relative saturation or space—filling level

The spatial position of the original adopters in Figure 3.8 sugpesis a fracial generator
m the shape af a "V with an mterbranch '.mg]r:, E'; af 90 c]cgr&:&a, while the ¥V on Figure 3.0
suggests a generator with & = 33%, that of Figure 3.D one with # = 377, that of Figure 3.1
one with # = 28° and that of Figure 3.F one with # = 23°. Figures 4.8, 4.C 4D 4 E, and
4.F suggest trees that can be generated uwsing these velues for 2,

A rough measure of how much space each onz "Alls" may be caleulaled uzing Mandel-
brot's formuls for fractal dimension, D, as,

in IV
D=
In{Lfr)

where N represents the number of sides in the generator, which m all cases here is the value
2, and where 7 is some sort of scaling value that remains constant independeni of scale
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SOLSTICE
Figure 3.E.

The simulstion 15 run on three ongmal adopters with positions given below. Numencal
entries show the likelihood, out of 300, that a new adopter will fall mto a given cell. Zones of
interaction between overlapping five-by-five gride are outlined by » heavy line (begin ulhe of
F'Z, horizontally to wrhe of Fé, vertically to Ithe of FG; horzontally to Iche of F3; vertically
te Irhe of 15 honzontally o lhe of J3; vertically to llhe of F3; horizontally to llhe of F2:
vertically to ulhc of F2 — should be a “less—{a1" T-ghaped enclosure that you have added
to this figure). Original adopters are 1in cells H3, D4, HE.

North al the top.

2 3 ] i = I B T{}!I'-ll!ﬂ
A
B 0,06 140 168 140 0.08 6.4
O 140 301 5AT 301 140 14.25
D 1868 547 4431 547 168 58,61
E 140 301 547 301 140 14.29
F 006 V236 404 448 404 E__ﬂj (.08 19.21
G 140 6.87 6.02 68T 301 1.40 28 58
H .68 547 |45.99 1094 4599 347 LG8 117.22
7 140 301 | 687 602 G87T| 301 140 28 58
J 0.66 140 | 264 280 2.85] Ld40 007 1282
K =

GAD 20,64 T9.30 8715 TO31 2070 G.41 300

(Mandelbrot, 187T7)

The difficulty in the case of trees, denving from the complication of

inlersecting branches, g to seleet a smitable descnption for . One angle, ¢, that remains
conslant throughoutl the iteration, and that produces the desired effect for the case in which
the diffusion is the most saturated, is the base angle of the isoceles triangle with apex angle
#/2 whose equal sides have the length of the equal sides of the two branches of the generator
(Figure 5). When v 13 taken as the cosine of ¢, then ! = 2 in the case of Figure 4. 4 and
it decreases dramatieally as the trees generated by the distribution of onginal adopters §ll
legs space [Table 2).

This decreasing sequence of D-values corresponds only loosely 10 Mandelbrot's mea-
surements of fractal dimensions of trees (Mandelbrot, 1883); here, however, when [ = | the
corresponding tres 15 one with an interbranch angle of 120%. This has some appeal if one
notes that then the tree associated with [ = | might therefore represent a Steiner neiwork
{tree of shortest total length under cerlain creumstances) or part of & central place net.
The aumencal umit 2-value would thus correspond to optimal forms for transport networks
or for urban arrangements in abstract geographic space (in which Higerstrand’s diffusion
procedure also exists)

Ohe uge for these U -values, which measure the relative space—filling by trees, nught be as
units fundamental to developing an algebraic structure for planning the eventual saturation
level 1o arise in communities into which an innovation is introduged to selecied adopters. By
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Swmmer, J9490
Figure 3.F,

The simulation 1 run on three ongnal adopters with positions given below., Numencal
entries show the likelibood, out of 300, that a new adopter will fall mto a givr_'n cell, Fones
of imteraction betwesn overlapping five-by-five grids are gutlined by a heavy line (begin at
ulhe of T3, horzontally $o urthe of F3, vertically to lrthe of J5; honzontally to llhe of J3;
verlically to ulhe of F3 — should be a rectangular enclosure that you have added to this
figure]. Original adopters are in cells H3, C4, H5.

North &t the top.

] 4 &5 4 i & ¥ o Tabals
A 0.0 140 LG8 L40 0.96 .40
B 1.400 3.01 547 301 140 14,29
4 1.68 547 44.31 547 168 3861
e .40 301 547 301 140 14.29
E 0.0 140 168 140 09T G.41
F 096 140 ) 264 280 264 | 140 D96 12.80
& 40 301 | G887 602 687 | 301 140 2858
H 168  5.47 |45.90 10.94 4599 | 547 1.68 LN
I 140 301 6.87 602 68T | 301 L.40 28.08
J 0.96: 1.400( 264 2,80 265 | L4000 0.97 |2 82
K e ——d

6.40 2069 7030 8719 79.31 2070 641 S00

TABLE 1

Size: of zones of interaction and of largest individual cell value for each of the distributions
of initial adoplers in Figure 3,

Figure number: Number of cells Largest value
Position of three i Interaction (out of 300) mm
omgmal adopters. zOME, urdividual e=ll,
Figurs 3 A: Lnear arrangement 25 55.25

Figure 3.B: nuddle cell 1 unit north 23 5.33

Figure 3.C: middle eell 2 units north 21 47.38

IFigure 3.12; middle cell 3 units north 2] 45.99

Figure 3. E: middle cell 4 units north L7 45.99

Figure 3.F: middle cell 5 units north ) £5.00

choosing judiciously the patiern of initial adopiers, the relative space-hlliing of assocated
trees might be guided by local municipal authonties so as not to conflict with, or to interfere
with, other issues of local concern. The [?—values associated with triads of oniginal adopters
{E_s. in Tahble '2::I migiﬂ sorve as jrreducible elements of Lhas EI.]"j"'EllJIiJ., wmte which La:ger e
could be decomposed (much as positive integers (= 1) can be decomposed into a product of
powers of prime numbers). The manner in which the decomposition is to take place would
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Figure 4.

Fractal trees derived from the diffusion grids of Figure 3; labels A through F corre
spond 1 the two Figures. The position of the distribution of onginal adopters in Fizure 3
determines the positions for generators for fractal trees. The interbranch angle, &, iz con-
stant within a tree; values of £ decrease from AL o P as does the [factal dimension, 0.
A @=180%; [¥=272,

B. 8=90°, D =072,

O, 8 = 53.13%, D = 0.47.
D. & = 36,877, D = {(.358.
E. 8=28.07°, D = 0.33.
0 22 620, = 030

ltkely be an issue of considerable algebraic difficully, no doubt requiring the use of geographic
constraints to limit it. {For, uulike the parallel with integer decomposition, this ene would
seemn not to be unique.) An initial direction for such a diffusion-algebra might therefore be
to exploil the parallel with the Pundamental Theorem of Anthmetic.

Ancther use might invelve a seli-study by the National Center for Geographic Infor-
mation and Analvsis (NCGIA) in order to monitor the diffusion of Geographic Information
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)

Figure 5. The consiruction of the angle ¢ used m the caleulation of the fractal dimension,

[, of the trees in Figure 4.

TABLE 2

[} —values, which suggest extent of spacefilling, for the trees (Figure 4) representing the

patterns of mitial adopters i Figure

Figure number:

Position of three

original adopters.

Figure 3.A: linear arrangement
Figure 3.B: middle cell 1 unit north
Figure 3.C: middle cell 2 units north
Figure 3.10: middle cell 3 units north
Figure 3.E: middle cell 4 units north
Figure 3.F: muddle cell 5 units north

3.

Sizge of interbranch
angle, # in

assooated iree

Figure 4.A: & = 180°
Figure 4.8: § = 90"
Figure 4.0: 8 = 53.13°
Figure 4.10: 8 = 36.87°
Figure 4. F: # = 28.07°
Figure 4.F: 8 == 22.62°

Size
of &
= (180 — (8/2))

o0

2l

67.5°
TE.TH
BLTE
2298
BL 35

[ —value.
L=
(in{1/cos))
9

0.721617
(.4T1288
(L.3T847T1
0.32671
0.252116

System (GI13) technology through the various programs designed to promote this technology
1 the acadenme arena. T..'-ni'i.'::rs'it}' tesi—siles for the matenals of Lthe NGG[.&.; for :xa.mpl::_m
might be selected as “seeds™ with deliberste plans for using a diffusion structure based on
these eeeds 1o bang later adopters up lo date.

Another use might mnvelve the determmnation of sites for locally unwanted land vses such
as waste sites, prisons, and so forth. Regions expected to expenence high concentrations of
population coming from the totality of maovations already introduced, o to be introduced,
might be overburdened by such a landuse. When relative fractal saturation estimates are
run on a computer in conjunclion with a GIS, local mumapal avthonities might examine

issues such as thiz for themselves.
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Attraction: the Julia set z = 2% —1

A different way o view the space-filhng charactenstics of the diffusion example 15 to
consider each imiial adopter as an “atiractior” of other adopiers, once again suggesting a
fractal connection. Viewed br-:mdi:..', the diffuzion {!."[-i.'l.'l'.l'lill-'.': sors at]-:nptr:rﬁ attracten o points
within an abstract geographic space. The fractal connection is to describe space—filling rather
than 1o describe the patleen or the direction of the attraction. The material below suggests
a means of viewing the broad class of spiral geographic phenomena as repelled away from
a Julia set toward points of attraction within and beyond the “fractal”: hence, pattesn and
direction of attraction.

The familiar Mandelbrot set, COMPTIEING & Jargf: central cardicid and orcles tangent to
the cardioid, along with points interior and exterior to this boundary, & assocated with
2 — =% + ¢ where "s7 is a complex vasable and “c® 52 complex constant (Mandelbrot,
1977; Peitgen and Saupe, 19838). When constant values for ¢ are chosen, Juliz sets fall out
of the Mandelbrot set (Peitgen and Saupe, 1988).

When ¢ = [}, the corresponding Julia set is the unif circle centered at the ongin, The
boundary iteell is fixed, as a whole, under the transformation = — z%, aithongh only the
mdividual pomnt (1,0) is itself fixed. Points interior to the boundary are attracted to the
origin: for them, iteration of the translormabion leads eventually to a valwe of 0, Points
oulside the arcle are altracted toward infinity; the boundary repels points not on it {Peitgen
and Saupe, 1988). Various natural associations might be made between this simple Julia set
and astronomical phenomena such as orbals or compression within black holes.

When ¢ = —1, the corresponding Julia set is described by = = 2? —1 (Figure 6}, The
attraclive fixed points are 0, —1, and mfinity. The repulsive fixed points on the Julia set,
found using the “guadratic” formnla om 22 —2 —1 =0, are at distances of (1 -+ +/3)/2 and
kL i— v"E}I."? umts from the ongin along the zeal axs (distinguizhed on Figure 8} Ponls
within the Julia set are atlracted alternately to 0 and to —1 as attractive “two—cycle” fixed
points; points outside it are attracted to infinity, To see the “two—cyele” effect, iterate the
transformation using z = 1.539 {located witlun the Jubia et} as the mitial valoe

|98 +— 1.5281 — 1.3330896 — (.T824643 — 3877497
s =[LB49650 = <0.2780846 — —0).9226634 — —. 1486022
— —0.9778906 +— —0.0437200 — —0.998087T — —0.003821
w4 —.9009854 — —0.0000282 — —1 = -0.00000000016
— —1 =

This value of = is attracted to —1 faster than it i Lo 0. In this case, iteration sinngs close
down on points of at traction; this 1= not the case for all Juliz sets. The choice of the valus
of ¢ determines whether or not such strings can escape (Peitgen and Saupe, 1988)

‘The movement of an imitial point toward an attractor, and away from a fixed boundary
fas above) sugpests a view of this Julia get as an axis: lines from which the movement
of points are measured are “axes.” Indeed, the repulsive fixed pomnts on this sei, located
at ({1 4 w,ﬂ'g']fi':il:l and ([1 - 1.:"3],."3,'!1}, might serve as “"nnits.” They are the non- zero
terms of the coefhicients in the generating function for the Fibonaca numbers {thanks to
W. Achnghaus for suggesting Lhis conuection 1o the Fibonacci generating function; Kosen,
1988). For, the nth Fibonacci mumber, 8, = a4p_1 +8p-3 ag=0 a;=1, iz generated
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Figure 6.

The Juliasel z = 2% —1_ Fixed points ({1 15}2 ) are distinguished on the boundasy

by
I I -
- = T "rfl}l-'lr.'.-' b} J. g .'2 1|.
an = —=l(1+ VB2 - (L - 5)12)

Becanse the Fibonaco sequence can be expressed using the loganthmic spiral, this particular
Julia set with these values 83 “units” might therefore serve as an aas from which to measure
spiral phenomena al vanous scales ranging from Lhe global o the local: from, for example,
the elimatological to the meteorological

The mechanics of using this curve as an axis might involve an approach different from
that customarily emploved. The curve mught, for example, be mounted as an equator on
the globe partitioning the earth into two pieces in much the way that a seam serves as an
uquuluriaﬂ hne to partifion the lude on a baseball, In tlu: arcumstanee, thers would be
freedom to choose how the equator partitions the earth’s landmass. It might be located in
such a way that exactly hall of the saril’s water and half of the earth’s land lie on either side
of the Julia sei {using thecrems from algsbraic {opology (Lefschetz, 1949; Dugundj, 1966;
Spanier, 1966]).
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Beyvond the fractal: a graph theoretic connection.

The notions of “attraction” and “repulsion” have also heen expressed in the physical
world, using graph theory (Harary, 1969; Ullenbeck, 1960), Fractals eely on distance, angle,
ar some other gquantifier; graphs do net, and in that respect, are more general than are
[ractals. Fractal-hke concepts, such asz space—filling and the associated unage compression
{Barnsley, 1988) may be characterized using graphs, as below [Arlinghans, 1977 1883).

This strategy will be expressed in terms of cubic trees {all nodes are of degree three,
unless thev are at the tip of a branch) of shortest total Jength (Stemer trees) of maximal
branching. It could be expressed n terms of graphs of vancus hnkage patterns; what s
important is to begin with some systematic process for forming graphs.

Given a geographic region whose penphery s oulhned by landmark positions at Py, P,
Fs, Py, and FPg [Fignm T.A) View the landmarks as the nodes of 2 graph and the penpheral
outline as the edges inking these nodes (Figure 7.4} A “global” network within the entire
pentagonal region might he along bimes of a Steiner |shortest Lotal Histam:l:::l tres [Figurl."
T.A) [Aclinghaws, 1977; 1985} atiached to the pentagonal hull joining neighboring branch
tips {Balaban, ef al., 1970).

Figure T.B will be used as an initial figure from which io produece a network that pen
etrates tnangular geographic subregions (introducing edges PoFy and PPy mere deeply
than does the global network of Figure 7.A, yet retans the Steiner characteristic locally
within each geographie subregion. An iferative process using Steiner trees {as & "Sieiner
transformation™) will be applied to Figure 7.8 (Arlinghaus, 18977, 1953), as follows.

Introduee Steiner networks into each of the three triangular regions and remove the edges
FPaFP; and P:Fy so0 thal a new network, containing two quadrangular cells, is hocked into
the pentagon Py P;PiFyF: (Figure 7.C). Hepeat this procedure in the network of Figure
7.0, introducing Steiner networks o all cireuits that de not have an edge in common
with the pentagon Py PaP3FsFPys. Thus, the two four-sided cirenits, Ps® P8y PoS: P85,
in Figure 7.C are replaced wiih the lines of the network, P57, 51585, 5155, PaSa, 555y,
S28%, PaS%, S84, 5yPs, SiS3, shown in Figure 7.D. Repeat this process in Figure 7.0,
using a Steiner tree, §3S7, 5581, 818y, S5P, 535;, to replace the single four—sided cell,
Pg.ﬁ';.ﬁ'g.ﬂ: not shanng an edge with Py Py PPyPr. The regult, shown in Figure 7.E, 15 2
tree wlioch cannot be further reduced using the Stemner transformation. [t satisfies the imitial
conditions of generating a tree more local than the Stemner network of maximal branching
ot P1PyFPyPsFe (but with local Steiner characteristics), while retaining the global structure
of a graph—L!:mmlic tree hooked inla PyPsPsPyls mna patieri gimilar to that of the glubal
Stemer tree (with only local variation as along the edge 5‘25;!:] This process attempts to
wtegrate local with global concerns. In this case, the process terminates after a finite number
of steps, were it to continue, greater space-filling of the geographic region by lines of the
network would oceur (Adlinghaus, 1977; 1985).

A mnatural question to ask 1 whether or not this process necessarily terminates; do
successive applications generate & finate reduction sequence of the “eellular” structure into
a “tres” structure within Py PePsPyPe? Or, 1511 possible that this transformation, applied
iteratively, tmght fill enongh space to choke the entire TCELOM with an mfinite regeneralion of
cells and of lines bounding those cells [ Adhnghaus, 1977; 19857

In this vein, take Figure 7.8 and add one edge to it, creating four tnangnlar geographic
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Figure 7.

Network location within geographic regions. Pomis of the pentagonal hull have “P" as=
a notational base; Steiner points have “§% as a nolational base A A Steiner [slmrt-:-st total
distance) tree linking five locations. 1. Partition into three distincl, contignous geographic
regions. O Sieiner networks in each peographic region; boundaries separaiing regions are
removed. D Steiner networks m two quadrangular crewits; cirenit boundarnies removed.
E. Process repeated on remanmg guadrangular cell; the result i a tree with local Stemner
characteristics that provides global linkage following the basic pattern of the global Stoner
tree (Figure 7.A)).

regions {Figure 8.A), Apply the same process 1o it as above, producing the networks shown
in Figures B.B and 5.C. Clearly, further iteration would simply produce a greater number of
polygonal eells, tightly compressed around the node F;, Discovering & means to calculate
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A modification of Figure 7. An extra edge ig added to Figure T.A, creating a graph-
theoretic “wheel.” When the procedure displayed i Figure 7 is appbed to this initial con-
figuration, cells are added within the hull (B. and C.), rather than removed

the dimension of this compression 15 an open 1ssue. [t 158 not difficnlt, howewver, to understand
under whal conditions thas EEquUence I[:.:iE.'_'Il‘I.? O nug]ﬂl not, fermunate [Comments {bastd 11

matenal in Arlinghaus, 1977, 1983) below).
Definition (Harary, 1968, Tutte, 1966),

A wheel W, of oeder n, w = 3, 15 a graph obtained from an n-gon by inserting one
new vertex, the hub, and by joining the hub to at least two of the vertices of the n-gon by
a finite sequence of edges { Fr s the hub of a wheel formed in Figure B4
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Comment [

Hubs of wheels are invariant, as hubs of wheels, under a sequence of successive apphca-
lions of the Stemmer transformation described abowve,

Comment. 2

Suppose that there exists a finite set of contiguous triangles, T'. If T containg a whesl,
then a sequence of successive apphications of the Stener transformation to T fails to produce
an irreducible tree. The sequence faile to terminate [as long as the Steiner treee produced
al each stage are not degenerate).

Comment 3

Suppose that there exasts a fimte set of contiguous tnangles T' = {L1 o Lom } with vertex
set 1= {P;... Py}, = >m (as in Figure 7.B, m = 3, n = 5). Supposc that T does mot
contain & whesl The number of stepe M | in the sequence of successive applications of the
Stemer transformation to T reguired to reduce T to & troe is

M = (max{degree[ )]} — L

Gince T does not contain a wheel it follows from Comment 2 that the reduction spquence
iz finite. The actual size of M might be found wsing mathematical mduction on the number
of eells in T and on the graph-Lheoretic degree of F;.

The examples shown in Figures 7 and 8, together with the Comments above, suggest that
a sequence of successive applicatione of the Steiner transformation to such “geo— graphs”
resolves seale problems in the same manner as fractals. A natural next step beyend the
fractal might be to note that a graph 12 a simplicial complex of dimension 0 or 1 (Harary,
1969), Thus, similar strategy might be applied there: the triangles of Tigure 7.H might
represent simplexes of arbitrary dimension in a simplicial complex of lugher dimension
Theorems from algebraic topology might then be tutned back on the mapping of geographic
mformation using a computer, This notion s already 1 evidence: because “point,” “line”
and “area” translate mto the topological notions of “0-cell” “l-cell” and “Z-cell” in a
Geographic Information System, cells o the underlying computenzed “sim-pixel” complex
can then be colored as “inside” or “outside” a given data sel. This ollows from the Jordan
Curve Theorem [of algebraic topology].

Independent of choice of theoretical tool—from fractal to graph to simpheial complex—

the resolution of scale is achieved by uniting local and global mathematical structures: within
fractal peomeiry as well as bevond it

“In nature, parts clearly do it together mto real siruciures, and the parts are alfected
by their environment. The problem ig largely one of understanding, The mystery
that remaing lies largely in the nature of structural ]'lil::ﬂ.r-:].'l}'., for the human mind
cen examine nature on many different scales sequentially, but not simultaneously.”

(' 5. Smith, m Arthur L. Loeb, 1976
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