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FRACTAL GEOMETRY OF INFINITE PIXKEL SEQUENCES;
“SUPER-DEFINITION" RESOLUTIONTY
Sandra Lach Arlinghaus

Introduciion

The fractal approach to the geometry of central place theory is particularly powerful becauss
among other things, it provides numencal proofl that the subjective labels of “marketing ™
“transgportation.” and “admimstration” for the K = 3, K = 4, and & = 7 luerarchiss
are indeed correct | Arlinghaus, 1985] and because 1t enables solution of all open geometric
guestions identified by Dacey, Marshall, and others in earlier research |Ddacey; Marshall;
Arlinghaus and Arlinghaus]. When the problem i wrapped back on itself and the nature of
the onginal, underlying environment is altered—from urhan to electronic—the same results,
recast m & different light, suggest the degree of improvement in picture resolution Lhat can
come from decreasing mxel size.

Curves on calhode ray fubes are formed from a sequence of pixels hooked togetlier at
their corners; font designers 1 word processors ofler an easy opportunity to observe these
pixel formations (Horstmann, 198G), The pixel sequence merely suggests the curve; it doses
not actually produee a "ecorrzel" curve Reducing the size of the pixel can improve the
resofution of the image representing the curve, The matenal below uszes established results
from fractal geometry to evaluate the degree of sucesss, in 1mproving resolution in a raster
environment, that resolis from decreasing poxel size.

Manhattan pixel arrangement

When a square pixel is the fundamental umi, a sequence of pixels has boundanes separating
pixels in Manhatian, "city— block” space. When smaller square pixele are introdnced, more
lin1es separating ]::-i}:-:r|5 are also miroduced. The intenor of the pixel 13 what carnes the
content—not the boundary of the pixel. Thus, it is sigmficant to know what proportion of
the space filled with pixels is filled with pixel boundary.

Suppose that, in an effort to produce "high— definition” regolution, the number of square
pixels used to cover a fixed area (2 cathode ray tube) is substantizlly increased. One might
be tempted o use even more pixels to produce even better resclution and even more beyond
that. If the PrOCEss 15 carried out infinttely, using a Manhattan gnd, the pixel mesh has
arbitrarily small cell size and the entire plane region is “filled” with pixel boundary, only;
the scale transformation of superimposing finer and finer square mesh on a2 fixed area has
dimension ) = 2 (Mandelbrot, p. 63, 1983). In this situation, all pixel content is therefore
lost, Clearly then, improvement in resclution does not continue, ad infinitum; thers is some
point at which the lradeofl between finencss mm resolution and loss of information content is
at its peak. Determuining this point 1 an 1ssue of difficulty and significance. Is this dilemma
a umversal sifnation thet exists mdependent of the shape of the fundamental pixel unit?

Hexagonal pixel arrangement

Consider instead an electrome envitenment in which the fundamental picture element is
hexagonal in shape [Hosenfeld; Gibson and Lueas). Such a gecmetric environment has a
number of well-documented advantages, centering on close-packing characterisiics [Gibson
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and Lucas). This environment is examined here along the hnes sugpested above—ito see if
improvement in resolution can be carmed out infinitely through pixel subdimsion.

When s bounded lattice of regilar hexagons of uniform eell dimmeter [on & G!?.T:I 15 redined
ag a srmular lattice of smaller uniform cell dipmeter, nprovement in resolation results, There
are an infinite number of ways i which the lattice of smaller cell-size might be supenmposed
on the lattice of larger cell size; The geometry of central place theory describes thess relative
positions of layvers. Independent of the onentation selected, when this translormation from
larger to smaller eell laitice 15 tlerated infinitely, the bounded space is onee again filled
|::|.s in the rectangular pixel case) with hexagonal pixel boundary. Thus, in both the casze
of the rectangular pixel and the hexagonal pixel environments, iufinite “improvement” In
resolution, brought about by decreasing pixel size, causes a black-hole-like collapse of the
onginal, entire image. However, 15 this charactenstic of the whole necessanly inberited by
each of its parts? Any part that does nol mhent this collapsing, spacefilling charactenstic
iz capable of infinite, “super-definition” resolution, Such a part is invarant (Lo some extent)
under scale transformation.

The feactal approach to central place theory shows that there do exist shapes in the
hexagonal pixel environmenl which, when refined mfipitely, de not fill a bounded piece
of two dimensional space. Figure 1 shows a hexagon to which a fractal generator has been
applied to producs a & = 4 hierarchy. [nfimte iteration of this self-similanty transformation
produces & highly crenulated replacement which does not fill a bounded two—dimensional
space; in fact, it fills only 1.585 of a two-dimensional space. When the corrresponding self
similarity transformation is applied to a square pixel a haghly crenulated shape s again the
result of infinite iteration; this shape does fill a bounded two- dimensional space (Figure 2).
The two fractal generators selected are parallel o structure: sach i half of the boundary of
the fundamental pixel shape

If both geometric environments are then viewed as composed of these highly—crenulated
elements (which do fit {ogether to cover the plane), then the hexagonal environment 15 the one
that permits infinite iteration without loss of all pixel content., This approach = akin to that
of Barnsley, which stores sets of transformations thal are used to drive image production.
What is suggested here i= a possible way to vastly improve image resolution corresponding,
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Figure 2. K=4 type of hierarchy generated [raclally [rom square imitistors.

to some exient, o Bamslev's successful strategy to improve data compression |Barnsley).

This approach is also similar, in general strategy o that emploved by Hall and Gokmen;
botl gsek transformations, applied in an electronic environment, under which some properties
are preserved. Hall and Gékmen locus on transiormations hnking hexagonal and rectangular
pixel space whereas the transformations employed here function entirely withan a simgle type
of geometric environmenl (using one on the other appears Lo be of interest), Additionally,
this approach offers & systematic characterization, in the infinite, for the aggrepate T-kernels
of hexagons, al various levels of aggregation, sugpesied only as finite sequences in Gibson and
Lucas. Finally, Tobler's maps of Cwiss migralion pallerns al Lhree levels of spatial resolunion
suggest a methodological handle of an attractivity function to implement ideas involving
spatial resolution in an elecironic environment. Deeper analysis, of the sort represented m
ihe works mentioned here, is beyond the scope of this particular shorl plece,

Table | shows a sel of fractal dimensions for selected Loschian numbers,

Table 1
(derived from a Table in Arlinghans and Arlinghaus, 198%)
=3 D=1.7§2: K=12, D=1.118; K=27. D=1.087: K=48, D=1.074;
K=7, D=1.120: K=19, D=1.093; K=37. D=1.078; K=61, D=1.060:
(=4 D=1.585; K=1d D=1.0hh: E=28, D=1.188; K=45, D=1.129;

The line of Laschian numbers that beging with i = 4, those that are orgamzed according
to an “transportation” principle, are the ones that fill iwoe dimensional space most thickly.
Thug, when introducing smaller and smaller hexagonal cells to improve resolution in the
gualty of curve representation, or when “zoomung in” il would appear appropriate to let
the onentation of successive layers of smaller and smaller cells correspond to the i = 4 type
of hierarchy. Clutter would not enter as fast as in the Manhattan environment, even o ths
densest arrangement. “Super.” rather than "high” definition of resolution could therefore
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fall naturally from an underlying hexagonal pixel geometry with measures of cluiler and
wformation content determined using fractal dimensions.

Shortest paths

At an even broader secale, one might also look for this sort of application in hooking com-
puters together as parallel processing umts. When “central places” are thought of as central
processing units, not of urban information, bul rather of electronic mformation, then an
underlving geometry for finding “shortest” paths through networks hnking multiple points
might emerge. For in an electronic environment with the hexagonal pixel as the fundamental
anit, the 1207 mtersection pomts wonld correspond exactly to the requirements for finding
Stemner networks, as “shortest”™ networks linking multiple locations. Steiner points in an
electronic configuration might then correspond o locations at which to “jump” from one
hexagonal latbice of fixed vell-size to mnother of different cell size (from one machine to an-
other), where cell size is prescribed by “lengthe” (in whatever metric) between “transmission
tmes” between adjacent Sieiner points.

Relerences

Arlinghaus, 5. (1985) Fractals take a central place. Geografiska Anmaler, 6TH, 2, 53.88

Arhinghaus, 5. and Arhnghaus, W. (1989}, The fractal theory of central place geometry: A
[Mophantine analysis of fracial generators for arbitrary Léschian numbers. Geographical
Analysis 21, 2, 103-121

Barnsley, M. I. Fractals Everywhers. San Diego:’ Academmic Press, 1988,

Dacey, M. I, The geomelry of central place theory, Geografiska Anpaler. 47; 111-124,

Gibzom, L. and Luweas D, Vectorization of raster images using hierarchical methods. Pa-
per: Interactive System: Corporation, 5500 South Syeamore Street, Littleton, Colorado,
gl

Hall, BE. W, and M. Gokmen. HRectanguolar/hexagonal tesselation transforms aud paral-
lel shrinking. Paper: Department of Electrical Engineering, University of Pittsburgh,
Pittshurgh, PA 153261, TR-5P-00-004, June. 1990. Presented: Summer Conference on
General Topology and Applications. Long Island University, 1960,

Horstmann, C. (1986, ChilWmier: the saentfic/mult:font word processor for the IBM-P.C.
{and compatibles). Ann Arbor: Horstmann Software Design.

Mandelbrot, B. (1983}, The Fractal Geomelry of Nature. San Francisco: W, H. Freeman.

Marshall, J. U. 1975. The Loschirn numbers as a problem in number theory. Geographical
Analysis, T: 421-426

Rosendeld, A, (18%0). Session on Digital Topology, National mestings of the American Math-
ematical Society, Lowiville, KY, January, 1990,

Tobler, W. H. Frame independent spalial analysis, 1 Goodcehild, M. F. and Gopal, The
Accuracy of Spatial Databases. London: Tavlor and Francis, 1990

* The author wishes to thank Michael Goadchild for constructive comments on a 1989
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