Wintes, 1800

CONSTRUCTION ZONE
FIRST CONSTRUCTION;
readers mught wish to construct figures to accompany
the electronic text as they read

Feijpenbauwm’s number: exposition of one case
Motivated by quernies from Michael Weldenberg,
|}::pz|.rlm-r:n‘l of ﬂtugruphj': SUNY Buffalo,
during his visit 10 Ann Arbor, Swmmer, |880.

Here 15 a description of how Feigenbaum's number arises from a graphical analysis of a
simple geomelric system |1 Feigenbaum’s original paper is clear and straightforward [1]; this
ponstruction 15 presenled Lo serve as exposure prior to reading Feigenbaum's longer paper
\1]. The construction is complicated althongh mdividual steps are not generally difficult
Following the construction, a suggestion will be offered az to how to select mathematical
constraints within which 1o choose geographical systems for Feigenhaum-1ype analysis,

l. Consider the famly of parabolas y = =

+ ¢, where ¢ 15 an mtegral constant. Thes 18
just the set of parabolas that are like y = 27, slid up or down the y-axis. The smaller
the value of ¢, the more the parabola opens up {otherwise & lower one would mterzect a
higher one, creating an algebraie impossibility such as —1 = 0) (Figure 1}.

2

2. To begin, conmder the particular parabola, y = 2° — 1, obtained by setting ¢ = 1.
Graph this (Figure 2). Also draw the line ¥y = o on this graph, Now we're going to look
at the “orbit” of the value ® = 1/2 with respecl to this parabola (function). By “orbit”
is meant simply the ileration string obtained by using 2 = 1/2 as input into y = g2 —1,
then using thai cutpul as a new input mmio gy = r? — 1, then using that oulput as a
new mput _.. and so forth. In this case, the orbit of 2 = 1/2 15 represented as follows,
numerically. {Use .5 — —0.75 to mean thal Lhe mput of .5 15 mapped to the output
value of —0.75 by the function y =27 —1.)

0.8 — —0.75F — —0.4375 — —[.B085038
— —0.3461761 — —0.8801621 +— (2253147
= —(.9492333 — —0.0989562 — —(9002077
= —0, 019488 — —.9996202 — 00007595

— —0,9999994 — —0.0000012 — —1
=+ () = =1 =¥} —

Clearly the values bounce arcund for awhile, and then eventually settle down to the
values, —1 and [}

3. Let’s see what this particular iteration stnng means EE-&]III:LEitiJ.].i:r' {Figure 3]. Locate
r = 0.5 on the z-axs. Drop down fo the parabola to read off the corresponding ¥ -value
[in the wsual manner] —0.75. Now it is this y—value that 15 to be used as the next input
in the iteration siong. We could go back up to the z-axs and find it and drop back 1o
the parabola, but we won'’t. Instead execute the following, eguivalent transformation—
THIS 1S THE KEY POINT. Assuwme your penpoint is on the y-value —0.75; now slide
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SOLSTICE

honzontally over to the line ¥ = z—vou want 1o use the y-value in the role of the
r-value. Thus, treail this point as the new imput and drop to the parabola from it as
you did inomoving from the z-axis to the parabola. Then, with your penpoinl on the
parabols, shide honzontally back to the line = o and use this as the mmput; drop o
the parabola and keep going. A glance at Figure 2 suggesis why economists call this a
“eabweb” diagram |presumably locking at fluctuating supply and demand). Follow this
diagram long enough, and you will see that evenlually values for o luctnate belween
0 and —1, around a stationary square cycle. Looling ai the ®dynamies™ of o value,
with respect fo a funclion, in this geometncal manneer 15 relerred (o as [Fegenbaum's)
*graphical analysis” |1
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Figure 1. Parabolas of the form y = #? + . Figure 2. The parabola y = z* — 1 and

y =z Figure 3. Graphical analyzs ol y = * = 1.

4. 8o, we have the numerical orbit and the graphical analysis for the value z = 0.5 with
respect to the function y = 2% — 1. What abeut r_'zL]-;:LL]uL':ILg these values for starting

values of ¢ other than # = 0.5. Consider # = 1.6, Its orhit is as below, and the

o
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SOLSTICE
eorresponding graphical analysis 15 given in Figure 4,
1.6 +— 1.56 +— 1.4336 — 1.0a5204
= L 154658 — —(,DBT]1255 — =0.02555833
=4 = BID3455 e =001 3080 — =0 99098854
et =—(L0000034 = =1 =D v— =1 =0 —

The dvnamies of @ = LG are really vary much the same as for » = 0.5 with respect to
the miven function. Let’s lock at 7 = 1.7

LT =+ 1LBY = 25721 »—-3.6156084

— 30.536006% — 931.45149 — BETE00.8T — .. o oo

Graphical analysis shows this clearly, geometrically, too (Figure 51 This shooting off
to mmfinity 15 not “interesting” in Lhe way that the cobweb dynamics are. So, for whai
values of 2 do you gel “interesting” dynamics”

erity o | interval
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Figure 4. Orbit of ¢ = L6, Figure 5. Orbiil of 2 = 1.7.

. No doubt you will have noted from the graphical analvses in Figures 4 and & that the
reason one ileration closes down into o cobweb and the other goes Lo infimtly = thal one
initial value of & lies to the left of the intersection point of the parsbola and the line
vy = =, and the other hes to the nghl of that miersection poinl. You maghl therefore be
tempted to guess that all mnitial values of # that Lie betwesn the right hand intersection
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point (call it p™ ) of the parabola and the line and the left hand intersection point {call
it p7 ) of the parabola and the line ¥y = «, produce interesting dynamics. (The =-

coordinates for p~ and p~ are found by solving ¥y =2 and y =27 — | simultaneonsiy—
that 12 by solving 2 — 2 — | = O—the quadratic formula yields =z = (1 % v5)020r
r = |.618034, = = —0.018034}. Indeed, if you try a number of values intermediate

betwesn these you will find that to be the case. However, consider a value of z to the
lefi of ¢ = —0.62, Try = = —1.6.

—1.6 — L0 v L4330 s | (155200

=+ 0,1134659 — —L98T1255 s ~0.0255833
= ={L 0003455 — —L0013086 — —(0.9955983
— —0.000003 — =1 eea l} 42 =] =0 —

There is obvious bilateral (about the y—axis) symmetry in the ileration string, produced
by squaring inputs, Clearly, the mitial value of —1.7 will g0 to positive infinity, as
above. Se, the interval of values of z that will produce mterssting dvnamies is NOT
07|, but rather |—p?, p™], You might want to draw graphical analyses for & = —1.6
and ¢ = —1.7 with respect to this function. Call the interval, |—p™, p™| the “critical”
mterval for any given system of parabola and y = z. In the case of the sysitem y = =
and y = 1% — 1 the entical mterval has l-::ngth 1036068,

So. now we know something gensral about the dvnamics of inpul values with respect to
the fanction y = »¥ — 1. Recall that we got this function by picking one value, ¢ = -1,

from the famaly of parabolas y = 2% + ¢, Let's see what happens for different values of ¢

6. Consider ¢ = (0,25, For thie value of ¢, the line ¥y = = and the parabola y = 2% 4 0,25
are langeni Lo each other. Valnes of 2 to the left of the poinl of tangency (st (0.5,
.25]) have orbits that converge to 0.5 {Figure 6) while values of o to the right of the
point of tangeney have orbilz that go to positive infinity, Initial inputs 1o the left of the
point of tangency have orbits that are “attracted” o the point of tangency, while initial
inpuis to the aght of the point of tangency have orhits that are “repelled” from the point
of tangency. Here, you might view it that p* = p~, When ¢ > 0,25, the line y =
and the corresponding parabola do not intersect, and so all orbits go to infinity—the
dynames are not interesting {Figure 7}, 5o, we should be locking at parrbolas with ¢
less than or equal 1o 0.25. Lel’s look at some, in regard to the notions of “attracting”
and "repelling.”
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Figure 6. The case for ¢ = 1/4, Figure 7. The caze for £ > 1/4.

7. Consider ¢ = 0.24—system: y =z, 9y = 2 +0.24 {Figure 8). Use graphical analysis to
study the dynamics (Figure 8). An orbit of 0.5 is

0.5 = 3025 — 3315063 — 3498964
— 362427 = 3T1303T — 37TH05E
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— 3828111 — 3865443 — JRO4165
vt (AOG452 0 303086 — 3WTHIG — L =04

The orbil converges to the = -value of p= which is found rs U4 by solving the svsiem

asing the guadratic formula, Here, p~ 12 an atiracting fixed point of the systenm, and

p s a repelling fixed pomt of the system. There is convergence of orbits 1o a single

value within the zonme [—p™, p* | Notice a kind of doubling effect as one moves from
the systein with ¢ = .25 to the one with & = 0,26 [penod-doubling)

Consider ¢ = —(0.74. The syilem 1z gy =2, gy = rd — (174, Graphical analysis (Figure
) shows that this system behaves similarly to the one for ¢ = (L24; p~ s attracting
and p~ s repelling for all # in |—p?, p7] The values of p~ and pT are respectively
—0. 4949874 and 1.4949574. Look at the ochil of 0.5, for example.

0.5 s —(1.40 bme =D 4G e <[} 4901

— —0, 499802 — —0. 400198 r— . .. = —{L2040RT4

'F:Jr#pi!lliua

(1
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Figura 8. The case for ¢ = 0.24. Figure 8. The case for ¢ = —{.74.

0 Consider ¢ = —0.75. The syetem is: y =, ¥ =2 — 0.75, This is not at all the same
sorl of eysiem as those in 7 and 8 above. Here, p~ and p™ are respectively

—[.5 and
1.5. Consider the orhat of (.5.

0.5 = —0.5— —05 = =05 ...

G2
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Constder the oelit of 0.1
01 — —0.74 — —0.2024 — —0. 7000342

— —0. 2472704 — —.GRABHTI — — 2754756
vt = (741132 — — 2055714 — —6E26ITE — — 3109115 — . ..

here, one mig]]h see Lhis -;:]usmg i, from above and below, very slowly on —0.5; O,
there might be two points the orbit 15 Hluctualing toward getbing close 1o, Consider the
orbit of 1.4:

1.4 = 1.21 — . T141 — — 2400612 — —GU2ITNE6 —.. ..

_-‘Lga:iu. the same sorf of thing as above. The behavior of this svstem 15 suggestive of that
af the tangenl case when = (.25

10). So, we mighi suspect some sort of shift in the dynamics for values of ¢ less than —0.75.
Indesd, we have already looked al the case ¢ = 1. In that case, the peinl p~ iz repelling,
rather than atiracting (as it was for (.25 < ¢ < —0.753). Also, the length of the penod
over which an orbit stabilizes has doubled — lands on two values. mstead of convermng

to one. Again, there 15 a sort of hifurcation of dynamical process al ¢ = —0.75, much as
there was al ¢ = .25, The next value of ¢ at which there 15 bifurcation of process 15 at
e = —I.25 (analysis nol shown). Values of ¢ shghtly lese than —1.25 produce sysfems

with orbits for matial x—values in the critical mterval that settle down to fiuctuating
among four values; the pomnt p~, wlich had been sepelling for —0.75 < ¢ < —1.25 now
becomes attracting. And so this continues— another bifurcation near 137, and znother
somnewhere near 4. The values for ¢ al wlich successive bilercations ccour come faster
and faster

11, A summary of this material appears below,

Bafureation values, b:

e=025———b=1

e=—075———b=2
e=-125———b=3
c==137===b=4

derived from empirical evidence of examining the orbit dynamics of the corresponding sys
terns of parabolas and vy = ». Lengths of critical intervals, Ty, [—p~, p7 |, associated with
the system corresponding to each bifurcation value, b

e= .25 Solve: y =2, vy =%+ 25 use quadratic formula—
r=(1+ {1 —4x0.:25))/2=0.5. Thus, p™ = 0.5 s0

Ii=2=x05=1.0

—0.75. Sclve; gy =2, p=r*=.Th, z=(1= ‘._,-'"[l +4 x 0.78))/2 = 1.5 or —(.5. Thus,

o=
pT = 1.5 so
fz=2=x13=4dl

G



Winter, 1580

=

~1.25, Solve: y =,y =2 —1.25. 2 = (L /(1 + 4 x 1.25))/2 = 1.724744D or

~{.7247440. So,

Is = 3.4494808

e= —137, Solve: p =z, 9y =g —1.37. o= (1+ 1.-"{[-1 Fdox 1.37))/2 = 17727922 or
~{. 7727922, So,

fq = 3.5455844

Now, suppose we find the successive differences between these interval lengths:

.D1=J|5~—J'1'—3—|=2

De= T3 — Iy = 3.4404B08 — 3 = L.44%4808
g =1y — Iy = 55455844 — 34404508 = (L.0DG0DD4G

Then, form suceessive ratiog of Lhese differences, larger over smaller

D/ D = 2/0.4404808 = 4 4404807

Do Dy = 4494898 /0960946 = 4.6T7TATE]

This set of ratios converges to Feigenbaum’s number, 46692016 ..

12,

13.

14.

Apparently, empirical evidenee suggesis that any parabola-like system exhibits the same
sorts of dynanuce and the corresponding sets of ratics converge to Feigenbaum's number.
For example, this appears to be the case, from literature, for the system y = = and
¥ = ¢lanz ) and [or the system involving the lomstic curve, y = z and y = ezl —z}
|1].

However, when Lhe curved piece of the system is not parabela-like, different constants
may oceur. (A different curve might be a paralola with the vertex sonared off — smgue.
larities are miroduced—whers the denvative is nndefined) [1

Obviously, many geographical systems can be charactenzed by a curve with fluctuations
that are somewhat parabolic. Of course, we often do not know the equation of the curve.
But, Sunpson's rule from caleulus, that pieces together parabolic slabs to approsimate
the area under a curve, generally gives a good approximation to the area of such curves.
Thus, geographic systems that give rise to eurves for which Simpeon’s rule provides o
good areal approximation are ones that mighl be ressonable to explore in connection
with Felgenbaum’s number,

. oteps 1 to 11 shew how Faigenbaum's “universal” number can be generated. Steps 12 to

14 pive a systematic way to select geographical svsiems 1o examine with respect to this
constant,

REFERENCE
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SECOND CONSTRUCTION
A thres—axs coordinatization of the plane
Mativated by a guestion from Richard Wemand
Department of Computer Science, Warne State University
1. Trinngulate the plane using equilateral tnangles. Then, choose any tnangle as & tnmangle
of reference—this triangle is to serve as an “ongin” for a coordinate system (an area—
ofgin rather than a conventional peint—srigin—this 1= like homogeneous coordinates in
projective geometry e.p. H. 5. M. Coxeler, The Real Projective Flane). Each eide of the
iriangle is an axis—z =10, y = 0, £ = (| (Figure 10-draw to match texi).

2. Each vertex of a triangle has unique representation as an ordered iriple with reference
to the orgin—tnangle (but, not every ordered triple of integers corresponds to a latlice
point— there is no pomnt (2,2, 2)) (Figure 10).

3. Assign an orientation {clockwize or counterclockwise) to the origin-triangle, and mark
the edges of the triangle with arrowheads to correspond to this onentation. This then

determines the onentation of all the remaining triangles.

4, Now suppose that a triangle is picked out at random. Suppose it has onentation - the
same as the reference triangle (clockwise, sav), The coordinates of ifs vertices, in general,
will be (choosing (x4, 2] to be the lower lefi-hand corner):

(ey,zhlz+ Ly 2 —1){zu+1z—1)

and those of triangles sharing & common edge with it (and of opposite onentation to it)
will have coordimates:

lefL: (=42 )iz + Lz —1)(=+ Ly —1,2)
right : [z £ 1.z =1){e.y +1,2—1){= 4 Ly + 1.z —2)
bottom : [z, y + 1,2 — 1) (2y 2}z — 1y +1.z2)

Suppose the arbitrarily selected triangle has orientation opposile that of the reference
triangle (counterclockwise). The coordinates of its vertices, in general, will be {choosing
[n:,y_..:l'l to be the upper lefi-hand corner);

eyl fa=1y+Lakiz+l s ~1)

and those of tnangles sharing n common edge with it {and of oppesite orientation to if
(clockwise)) will have coordinates

left = (z, 9, 2 )ile — 14 + L, 2)ile — Ly, 2+ 1)

right 1 (z — Ly +Lz)iley+ 1z —1)ilz— L+ 2.2 = 1)
top: (=, 2)i {2+ 192 — 1)z, 4 1,2 =1)
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Figure 10. Three-axis coordinate system for the plane
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. Coordinates of trangles sharing & pomt-boundary (and of the same onentation as the
arbitrarily selected triangle) mught also be read off in a similar fashion,

. Naturally, six of these triangles form a hexagon. 5o, this could be considered from the
viewpoint of an hexagonal tesselation, as well Choose an arbitrary hexagon and read
off coordinates of adjacent hexagomal regions i a siular manner,

In a eurrent Collere Mathematics Journal, Vol 21, No. 4, September, 1880, there is
an article by David Singmaster {of Hubik’s Cube fame) which also employs triangular
coordinates of the sort mentioned sbove (pages 278-285— "Tnangles with integer sides
and sharing bareels” ).

This strategy would seem to work for any developable surface (cyhmder, torue, Mdbius
strip, Klein bottle—all can be cul apart mio a plane), Triangles were chosen because
procedure involving them might be extended to simplicial complexes (triangle=smplex).

. Upe way to Loangulate a sphere is to project an icosahedron, mecribed in the sphere, onto

the surface of the sphere {conversation with Jerrold Grossman, Dep’t. of Mathematics,
Cakland University). This procedure will produce 20 trangular regicns of equal size
(under suitable transformation). But, more triangles may be desirable. Alternately, one
might subdivide the tnangular faces of the icosahedron into, say, three toangles of equal
ared, and project the pomnt that produces this subdivision (a barycentric subdivision,
for example] onto the sphere (nsing gnomonic projection (from the sphere's center)].
(Subdividing all of them 2 second {ime wonld produce |80 triengles of equal area and
shape covering the sphere] Subdivision ceniers on apposite sides of the cosahedran
appear 1o hie on a single diameter of the sphere; therefore, when their images are projecied
onto the sphere they will be antipodal otz In that event, o coordinate svstem similar
to the one desenbed for developable surfaces might work
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