Summer, 1991

Construction Zone
Simple analysis of the logistic function

A derivation supplied by 5. Arlinghaus in response to questions from William D. Deake,
School of Natural Resources, University of Michigan, concerning aspects of his interest in
transition theory. Discussed Tuesday, May 6, 1991, Colloguium in Mathematical Geography,
IMaGe. Present: Sandy Arlinghaus, Bill Drake, John Nystuen (this commentary is included
in Solstice at the request of the latter),

1. The exponential funetion-unbounded population growtls

Assumption: The rate of population growth or decay at any lime { 15 proportional to
the size of the population at ¢.

Let Yy represent the size of a population at time ¢. The rate of growth of Y5 is propor-
tional {e ¥y
d}.-:flll:ﬂ- = k}.-:

where & is a constant of proparbionality,

To solve this differential equation for ¥, separate the variables,
dnf&-}:kds;fwmr _ fm.

Therelore,
In{¥yl =kt + e

Consider only the positive part, so that

. TR . a
¥y = ektteo _ gtopkt

Let Yy = e Therefore,
¥, = Vet

exponential growth is unbounded as ¢ — oc!

Suppose £ = 1. Therefore,
Yi=Yye =¥

Thus, ¥Yip 15 the size of the population at { = 0, under conditions of growth where & = 0
(Figure 1).

2. The logistic function-bounded population growth

Assumption appended to assumption for exponential growth. In reality, when the pop-
ulation gets large, envirnomental factars dampen growth.

The growth rate decreases— dVy/dt decreases. So, assume the population size is limited
te some maximum, g, where 0 < ¥, < g. As ¥V, — ¢ it follows that dY,/dt — 0 so that
population size tends to be stable as ¢t — oo, The madel is exponential in shape initially
and includes effects of enviconmental resistance in larger populations One such algebraic
expression of Lthis 1dea is
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Figure 1

becnuse in the factor L:") when ¥ 1&g small, T‘q—r" 15 close to 1 (and the growth therefore

close to the exponential}) and when Y 15 close to g, !_Th is close to 0, and the growth rate
d¥;/dt tapers ofl. This faclor acts as a damper to exponential growth.

Replace k/g by K so that
d )Yy fdt = I{-}-tl:_l.';l' — ]rr}
and the rate of growth 1s proportional to the producl of the population size and the difference

between the maximum size and the population size,

Solve this latter equation for ¥y: (separate the variables)

d} f d¥y /
———=Kdt; | ——= [ Kd
Yilg — Y3 Yolg—13)

Use a Table of Integrals on the rational form in the lefi-hand integral;

1

¥y
- In|——| =Kt +C
q lfr—l*fl

Tr

I
Inf— =gkt 4 ol
q_“l gkt + g

Becanse ¥y > 0 and g — ¥ = 0,

-

¥y
In = gl + g,
'? -‘_I-'-: ql ':FC-

Therefore,
i —— etFtral _ poRiaC
g—Ye
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Replace €% by A Thercfore,
l';——il_J = .-'irz'?xt;
Yi= g = Y;)detXt,
¥y = gAdet™t _ y 40051,
e tHE 1) = gAetHL.
o Aeokt
FT AetEi
now divide top and bottom by Ae?™*, cquivalent ta multiplying the fraction by 1, so that
q i3 q N
1+ F}zﬂ'f 5 I = P s

:l‘": -

Replace 1/4 by o and —gK by & producing a common form for the logistic function (Figure
2},

Foem HL
1 + ﬂE.-Elf
with & < 0 because b = —gK  and g, K = 0.
3. Facts about the graph of the logistic equation,
a. The line ¥3 =g iz a horzontal asymptote for the graph.
This is 0 becanse, for b < 0,

Lim 4 — ] =1
= ] 4 ogebd | =+ a{0)

Can the curve cross this asymptote! Or, can it be that

- }.‘f o
}4 = —_ﬁ:
1+ ae™t
O,
1 =1+ ae™?
Or,
I'I.E'M =

O, that & = (17 No, because a = 1jA. Or, that " = B-ne,

Thus, the logistic growth curve deseribed above cannot cross the honizontal asymptote
so that it approaches it entirely from one side, in this case, from below,

b. Find the coordinates of the inflection point of the logistic curve.
Vertical component:

The eguation d¥y/di = KYylg —Y;) = fg¥, - KYE ie a measure of population growth.
Find the maximum rate of growth-derivative of previous equation:

d*Vydi® = Ky — 2Ry,
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To find a maximuin (min), set this last equation equal to zero.
Kg—2KY, =10

Therefore, ¥y = ¢/2. This is the vertical coordinate of the inflection pomt of the curve for
¥, the logistic curve—dYy/dt is increasing to the left of ¢/2 (dV,/dt = 0) and Y,/ dt =
decreasing to the right of g/2 (d°Vy/dt < (1). So, the maximum rate of growth occurs at
Yy = gf2. [The rate at which the rate of growth is changing is a constant since the first
differential equation is & gquadratic (parabaola)].

Horizontal component:

To find £, put ¥y =4/2 in the logistie equation and solve:

g

i A
q' F_ 1'I'||.E'M

solving,
| +ae = E;Eh =lja:e ™ =q: bt =In a,

_ina
=
Thus, the coordinates of the mflection point of the logistic curve are:

(Inaf(—b).q/2).

[n order to track changes in transitions, such as demographic transitions, monitormg the
position of the inflection point might be of use. To consider feedback i such syatems,
graphical analysis (Figure 2) of curves representing transitions might be of use.

x;T
ik
ga=g

[*-‘i,'"ﬂ

(o L_]

it

—t

'rﬂl'-l"-'}
Figure 2. The intersection points of the line y = = with the legistic curve are, using
terms from chaos theory, atiractors on either end, and a repelling fixed point in the middle,
possibly near the mflection point of the curve.
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Educational Feature
Topies in Spatial Theory
Based on lectures given by 5. Arlinghaus
as a guest speaker in John Nystuen's
Urban Planning, 507, University of Michigan
Feh. 21, 28, 1990; four hours
The people along the sand
All turn and look one way.
They tum their back on the land.
They look at the sea all day,

They cannot look out far.
They cannot lock in deep.
But when was that ever a bar
To any watch they keep?

Robert Frost Neither Out Far Nor In Deep

L. Introduction

Theory guides the direction technology takes; mathematics is the theorelical foundation
of technology. To become more than a mere user of various software packages and program-
ming languages, which change rapidly (what is trendy in today’s job market may be obsolete
tomortow ), il s therefors crtical to understand what sorts of decisions can be made at the
theoretical level. Underlying theory is “spatial” in characier, rather than “lemporal” when
the objects and proeesses it deals with are ordersd 1 space rather than in time [most can
be done m both-decide which iz of greater interest). The focus with GIS is spatial; hence,
the theory underlying il is “spatial.”

This 15 not a new idea; [VArcy Thompson, a biologist, saw (as early as 1917) a need
for finding a systematic, theoretical organization of biclogical species that went bevond the
classification of Linnaeus. What he found to be fundamental, to characterization along
structural (spatial, morphological) lines (rather than alomg temporal, evolutionary Lines)
was the "Theory of Transformations”—in Thempson’s words:

“In a very large part of morphology, our essential task lies in the comparison of related
forms rather than in the prease defimbion of each; and the deformation of a complicated
figure may be a phenomenon easy of comprehension, though the figure itsell have fo be
left unanalysed and undefined. This process of companson, of recogmising in one form a
defimte permutation or deformation of another, apart altagether from a precise and adequate
understanding of the criginal 'type’ or standard of companson, lies within the immediate
province of mathematics, and finds its solution in the elementary use of certain method of the
mathematician, This method s the Methed of Co-ordinales, on which is based the Theory
of Transformations.® [*The mathematical Theory of Transformations 15 part of the Theory
of Groups, of greal 1mpertance m modern mathematics. A distinction 15 drawn between
Substitution-groups and Transformation-groups, the former being discontinuous, the latter
continuous—in such a way thal within one and the same group each transformaiion is infinftely
little different from another. The distinction among biologiste beiwesn a mutation and a
vanahion 15 curously analogous. |
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[ imagine that when Descartes conceived the method of co-ordinates, as a generalisation
from the proportional diagrams of the artist and the architect, and long before the immense
possibilities of this analysis cowld be foreseen, he had in mind a very simple purpose; i1 was
perhaps no more than to find & way of translating the form of a curve {as well as the position
of & point} into numbers and inio words. This is precisely what we do, by the methad of
coordinates, every time we study a stalistical curve; and conversely transiate numbers into
form whenever we ‘plot a curve’| to dlustrate a fable or mortality; a rate of growth, or the
daily variation of temperature or barometric pressure. In precisely the same way if iz possible
to mseribe in a net of rectangular co-ordinates the cuiline, for instance, of a fish, and so lo
translate 1t into a table of numbers, from which again we may at pleasure reconstruct the
curve.

But 1t 15 the next step in the emplovment of co-ordinates which is of special inierest
and use o the morpheologist; and 1his step consists in the alterstion, or deformation, of our
system of co-ordinates, and in the study of the corresponding transformation of the curve or
fisure inscribed in the co-ordinate network,

Let us mscribe in a system of Cartesian co-ordinates the outline of an orgamsm, however
cemphcated, or a part thereof such as a fish, a crab, or a mammalian skull. We may now
treat this complicated flgure, in general terms, as a function of z, yv. If we submil our
rectangular system to deformation on simple and recognised lines, altering, for instance, the
direction of the axes, the ratto of oy, or substtuting for © and y some more complicated
expressions, the we obtain a new system of co-ordinates, whose deformation from the original
type the inscribed figure will precisely follow. In other words, we obiain a new figure which
represents to old figure under a more or less homogeneous strain, and is a function of the
new co-ordinates in precisely the same way as the old figure was of the original co-ordinates
x and y ;

The problem is closely akin to that of the cartographer who transfers identical dats to
one projection or ancther [reference below(; and whose object 18 to secure {if it be possible)
a complete correspondence, in each small unit of area, between the one representation and
the other. The morphologist will not seek to draw his orgaine forms in a new and artifical
profection; butl, m the canverse aspect of the problem, he will enquire whether two different
but more or less obviously related forms can be so analvsed and interpreted that each may be
shown to be a transformed representation of the other. This once demonstrated, it will be a
comparatively easy task {in all probability) to postulate the direction and magnitude of the
force capable of effecting {he required (ransformation. Again, if such a simple alteration of
the system of forces can be proved adequate to meet the case, we may find ourselves able fo
dispense with many widely current and more complicated hypotheses of biological causation.
For 1t 15 a maxim in physics that an effect ought not to be aseribed to the joint speration of
many causes if few are adequate to the production of it

Reference: Tissot, Memoire sur la representation des surfaces, et les projections des
cartes géographiques (Pans, 1881L"
air IVArcy Wentworth Thompsoen, pp. 271-272, in On Growth and Form.

Look at Thompson's comments concerning biological structure to see what parallels there
are, already, with GIS strocture and to see what they might suggest—compare to Tobler’s
map transformations.
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Figure I Sample of Thompson’s Transformations. Fig. L1 Argyropelecus olfersi. Fig.
1.2: Sternoptyx diaphana.

I. GIS {the digitizer] nses coordinates o translate forms {maps) into numbers.

2. ANl IS software translates nwmbers into maps, which may then be printed out,
patallel 1o inscobing a fish in & set of coordinates, translating it into a get of numbers, from
whach the fish may be reproduced al any time (Figure 11}

3. Thompson's deformations correspond to the ideas of scale shifts on maps, Transfor-
mations describe shifts in seale. Figure 1.2

4., Thompson's comments on the distinction between discontinuous and continnous e
flects partitioning of mathematics into discrele and continuous. Discrete need not be finil=-
look at two different types of garbage bag ties—twist ties and slip-through ties, and imagine
them to be of imfimte extent.

5. We see simple transformations in G1S-maps might he stretched or compressed in
the vertical direction. Imagine using a small digitizing table o encode a large map by
deliberately recording “wrong® positions—then use a transformation within the computer

to correct the “wrong" positions so thatl the map prints cul correctly on the plotter. Large
digitizing tebles become unnecessary.

6. We look, for future direction, to the Theery of Groups, For today, we confine ourselves
to A few simple transformations.

II. Transformations

Transformations can allow yon fo relate one form to another in a systematic manner
allowing retieval of all forms. To do this, you need to know how to define a transformation

s thet this is possible. Beyond tlus, one might consider a stripped-down transformation,
for even more efficient compression of electronic effort [Mac Lane).

A, Well-defined (single-valued),

Let “tau” be a transformation carrying a set X to aset Y@ i notation, v X — F.

a0
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Tau 1= said to be well-defined if each element of X corresponds to exactly one element of ¥
Visually, this might be thought of in terms of lists of street addresses: the set X comsists
of house addresses used as “return” addresses on letters. The set V' cansisie of other house
addreszes. The transformation is the postal transmission of a letter from locations in X to
locations in ¥ A single value of X maps to single value of V'

Figure IL1 This is a transformation—two distinet letters (z and z') can be posted to
the same address (y ). (Many-one map).

Figure IL2 This is NOT a transformation-one letter (] cannat, itself, ro lo two
different addresses (y and y') (new techuology of e-mail permits this—suggests for possible
need for change m fundamental definitions), (One-many map),

B. Reversibile
1. One-to-one correspondence.

A one-to-one correspondence is a transformation in which each = in X goes to a distinet y
¥ ; the sitnation depicted in Figure [1.] cannot hold. From the standpoint of reversibility,
this 12 important; if the situation in IL1 conld hold how would you deade, in reversing,
whether to “retum” y to = or to 277

1. Transformations of X onto ¥V

A transformation of X onto ¥ 15 such that everv element in ¥ comes from some element
of A'; there pre no addresses outside the postal system (Figure IL3).

31



Summer, 1991
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Figure I1.3 This 15 2 transformation-it is ueither one-to-one, nor onto {y' is cutside the
system ).

. A transformation 7 from X to ¥ s reversible- it has an inverse ! from ¥ to X i

r 15 one-to-one and onto; it has an inverse from a subset of ¥ to X ff 7 15 one-to-one
(Figure 11.4).

=1 end ngt

————

()Y

.-E.—I

Figure IT.4 In the top part, (A ) =Y. In the bottom part +(X ) is properly contained
m ¥ this 15 like data compression-like ZI7 followed by UNZIP.
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C. Rubbersheeting

The use of transformations that have inverses is critical in rubbersheeting; associations
betwesn data sets must be made in a manner so that correct information can be gained from
the process.

1. Types of Translormalions

One mght consider moving objecie within a fixed coordinate system, or holding the ob-
jects fixed and moving the coordinate system Thompson did the latter; rubbersheeting does
the latter; NCGIA matenals (Lecture 28) comment thal the latter approach is particularly
well-suited to GIS purposes.

Two major types of transformations:

a. Affine transformations: these are transformations nunder which parallel lines are pre-
served as parallel lines, That is, both the conecepl of "straight line” and "parallel” reman;
angles may change, however.

There are four types of affine transformations as noled on smtable NCGIA handout
(Figure I11.1). Products of affine transformations are themselves affine transformations,

Current technology employs types 1 and 2, quite clearly, CRT allows for translation
of maps, and lor scale change in y-direction only. Copier also allows for the same, and in
addition, permits different shifts in scale along the two axes, allowing maps with different
scales along different axes to be brought 1o the same scale and pieced together. (See output
from Canon Color Copier.) On that ontput, the z-axis if fixed by the transformation and the
y-axis is streiched to 200% of the original, Thus, # circle transforms 4o an ellipse, a rectangle
with base parallel to the z-axis transforms to a larger rectangle, and a rectangle with base
not parallel to the z-axs transforms to a parallelogram with ne right angles {Figure [11.2).

B. Curvilinear transformations; neither straighiness nor parallelism is necessarily pre-

served {Thompson fish, Figure 111.3).
IV. Exercise, page 5, lecture 28, NCGIA.
V. Steiner networks

If centers of gravity are used as a centering scheme in a triengulated irregular network,
then 1t 15 desired to have no centroid lie outside a tmangular cell. Thus, no cell should
have angle greater than 120 degrees, so that the Stemer network (where all angles are ex-
actly 120 degrees) will serve as an outer edge {3 limiting position) for the set of acceptable
terangulations, Thus, it is unportant le know how to locate Steiner networks,

VI. Digital Topology

The notion of a “triangulation™ is a fundamental concept in topology (sometimes called
"rubber sheet” geometry), “Digital” topology s a specialization of “combinatorial” topology
in which the fundamental units are pixels. The same "important” theorems underlie sach.
The Jordan Curve Theorem (which charactenzes the difference between the "inside” and
the "outside” of a curve, 1z an example of such a thecrem). Using concepts from digital
topology, “picture” processing (as a parallel to “data® processing) 15 possible. There are
numerous references in this field; some include works by geograplier Waldo Tobler and by
mathematician Agzriel Rosenfeld. Other key-words to topics of interest in this area include,
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Jordan Curve Theorem in higher dimensions; yuadtrees: seale-free transformations; close-
packings of pixels.

VIL. The algebra of symmetry-some group theory

I’Arey Thompson commented that the theory of transformations was tied to the theory
of groups. A “group” is a mathematical system whose structure 15 simpler than that of
the number system we customarily use in the “real-world” In our usual number system,
we have two distinct operations of “4+" and “x; thus, we have rules on how to use each
of these operations, and rules telling us how to link these iwo operations (distributive law;
comventions regarding order of operations).

A group is composed of a finite set of elements, § = {a,b,e, .. . n} that are related to
each other using a single operation of “«.* Under this operation, the set obeys the following
rules (and is, by that fact, a group).

a4
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The product, under +, of any two elements of S is once agan en element of §—this
system is “closed”™ under the operation of +—ne new element (information) is generated.

Given a, b, and ¢ in 5: (a« bl#e=ag=(bwc), The manner in which parentheses are
introduced is not of significance in determining the answer (information content) resulting
from a string of operations under = The speration of = is said to be associative.

There is an identity element, 1, in 5 such thal for any element of S, say a, it bollows
that

dxl=1=a =2

Fach element of 5 has an inverse in 5 that 15, for atypical element a of §, there exisis
another element, b of £ such that

axb=lhea=1
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Figure II1.3

Denote the inverse of @ as a=!'. Thus, axe ' =g lag =1

The order 1n which elements are related to each other, usmg « , may matter; it need not
be true that @+ b = bwa. (Elements of the group do notl necessanly “commute” with esach
other. )

The algebraic idea of "closure” is comparable to the GIS notion of snapping a polygon
ghut, so that chaining of line segments does not continue forever—the svstem i "closed.”

A. The affine group; afline geametry.

The definition of group given above was to a sel of elements and an operation linking
them, These elements might be regarded as transformations. In particular, consider the set
of all affine transformations of the plane that are one-to-one (translations, scalings, rotations,
and reflections). Thess form a group, when the operation = is considered as the composition

of funclions

a6
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1. The product of two affine transformations is itself an affine transformation;

. In a sequence of three affine transformations, it does not matter which two are grouped
first, as long as the pattern of the thres iz nnchanged —aseocativity.

ii. The affine transformation which maps the plane to itself serves as an identity element.
1. Because the affine transformations dealt with here are one-to-one, they have mverses (all
translations have inverses; only those linear transformations with inverses are considerad
lhere).
Affine geomeiry 15 the study of properties of figures that remain invanant under the
group of cne-to-one affine transformatons. Here are some thesrems from affine geometry.

1. Anyv one-to-one affine transformation maps lines to lines.
1. Any affine transformation maps parallel sets of lines to parallel sets of lines.
i, Any two trangles are equivalent with respect to the afline group.

To demonstrate the theorem m i, consider a fixed tnangle with position [(5Cq),
relative to an x /y coordinate system. Choose an arbitrary tnangle, {ABC). Use elements
of the afine group to move [ABC) to coincide with (OBpCs): a translation slides A to
) (Figure VII.1). Two separate scaling operations and rotations shde B to By and © {a
Ca. This is possible because 0, B, and O arc not collinear (as vectors, OF and OC are
linearly independent).

This 1s the theoretical ongim of the GIS notion that control pomts must be non-colhnear
and that there must be at least three of them. From a mathematical standpoint, it does not,
Lherefore, matter whether the control points are chosen elose together or far apart; however,
from a visuzl standpoint it does matter, When control points are chosen close together the
scaling operation required fo transform the control tnangle inte other tnangles 15 generally
enlargement. When the contral toangle is chosen with widely spaced vertices, the scaling
operations required to transform it into other triangles s genmerally reduction. Errors are
more visible with enlargement. Therefore, it 15 better, for the sake of visual comfort, to
rely en reduction (reducng error size, as well) whenever possible, and therefore, to choose
widely-spaced control points.

Thas 1z hke the exercise above; there are two scalings and another affine transformation
(here a translation, in the exercise, a reflection). In either caze, the outcome of applying a
sequence of afline translormations is still an afline transformation. In this case, il does not
matter in what order the scaling operations are executed and in what order, relative to the
scaling; the translation 1s applied. In the case of the exercize, however, this is not the case.

1t does not matter in what order the scalings are applied. 1t 15 the case that ryore =
To 07y, 1L 15 also the case that 7y 07y =75 0 7. However, it is not the case that

19 GTS = T3 E’Tz r
(50,5) "* (s0,48) * (50,432)
(50,5} ° (50,475) * (50, 4660)

Observe, however, that it is possible to solve the problem applying the reflection earlier,
Take 71 to be the reguired reflection so that g 15 senl to 50 —y (reflection before the scale
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change on the y-was). Figure VIL2 shows the solution here. In the non-commutative case
here, there is a sharp difference in the “correct® y-value and the other possible one. In this
case, as in the previous one, il does not matter how the application of transformations are
separated by parentheses, and it is gnarantesd that the product will itself be affine.

Thus, the order of application of affine translormations, within the group (locally), is
importani. This might cause difficulties (sending you off the sereen), or it might be turned to
an advantage in gooming-in on someihing. What caueed the problem here was ihe reflection.
Products of rotations of the plane are roatations of the plane: products of translations
are franslations, and products of scalings are scalings. Here, and as we shall see later,
reflections cause non-commutativity (similar problems might have arisen in Figure VIILI,
had a reflection been involved).

. Any triangle is affine-equivalent to an equilateral toangle (choose whatever contral tri-
angle desired—can choose an underlying lattice of regularly spaced triangular points and
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rubber sheet them to an irregularly epaced one).

v. Any ellipse is affine equivalent to a circle (demonstrated via copier technology).
a. Parallelism and GIS: crossing lines and polvgon area.

Groups suggest how theoretical structure may be

built from assembling simple pieces.
GIS algorithms for complex processes are also often b

uill from assembling simple pieces.
Straight lines

How can we tell if two lines interseel in & node?

Example from NCGIA Lecture 32 does the line Ly from (4,2) 10 (2,0) cross the line Lo
from (0,4) to (4,0)? From a mathematical standpeint, two lines in the Euclidean plane cross
if they have different slopes, my and ma, where the slepe m between points (2y,y;) and
{3, ¥2) is calculated as (y3—y:)/(xs —21). In this case, the slope of L, is (0—2)/(2-4) =1

Al
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and the slope of Lg is (0 —4)/(4 —0) = —1, The slopes are different, so the lines cross in
the plane. However, in the GIS context:
1. Do the lines cross on the computer screen, or is the intersection point ontside the bounded

Euchdean region of the screen?

i, Even if the lines cross on the screen, do they intersect at a node of the data base {was
that point digitized )”

To answer these guestions, 11 18 necessary 1o determane the intersection point of the two
lines,

Equation of Li: one form for the equation of a line between two poits (g, y1) and
(22,32) is

y—y1=mz -]
where m is the slope and & is the second coordinate of Lhe y-intercept. Thus, L; has
equation ¥y —2 = 1{z —4) or y =2 — 2; La has equation y —4 = -1z —0) or y = —z +4,

Solve these equations stmullaneously to yvield z = 3 and y = 1.

Thus, il the point {3, 1) bes within the boundaries of the screen, the lines intersect on
the sereen; if the point (3, 1) was digitized, Lhen another line might be hooked onto the
mtersection point. If it was not digitized, then the lines “cross” bui do not intersecl, much
as waler pipes might cross bul do nol necessanly inlersect (as i snappiug a segment onto
the middle of a line on the CRT'). This 15 a graph-theoretic charactenstic.

Note that vertical lines are a special case; their slope is undefined because x4 — x4, the
denominator in the slope, 15 gero. Recognizing vertical lines should not be difficolt, but it

should be remembered that atlempting to calculate slope across an entire set of lines, which
might include vertical lines, can produce errors.

Chans of straight line segments.
How can we tell if chains of segments cross?

Because chamns are of fimite length and are bounded, it 15 possible to enclose them in
a rectangle (no larger than the CRT screen) {Figure VII.3). This 1= a minimum enclosing
rectangle.

Thus, given two chains, ) and 'y, if ther respective minimum enclosing rectangles
do not intersect (as do straighl lines) then they do not inlersect, and further testing is
warranted.

Polygon area:

Calculate polygon area using notion of parallelism (Figure VIL4)

Sumple rule, based on vertical lines, to determine if a pont is inside or outside a polygon
(Figure VIIL5)

Centrods of polygons, with attached weights are often used as single values with which
to characterize the entire polygon. Centroids are preserved, as centroids, under affine trans-
formations.

These are technical procedures for determining various useful measures and are docu-
mented in NCGIA matenial; all are based in the theory of affine transformaltions applied to
sels of pixels. Move now to consider the mechanies of how seis of affine transformations
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\\ N
A Lath ia +he ,FL:.-H'!'. and jn CRT spacde.
;

:lh_{-ar‘i'-'- =15
Ly wnd L2 S plane, but neT iw CRT Fpace,

L dind k3 Cwtersect
Figure VIL3

might affect a single pixel.
B. Group of symmetries of a square (pixel); the hexagonal pixel.

A square may have a get of rotations and of reflections applied to it as noted in Figure
VILG. Each may be represenied as a permuitlation of the verlices, labelled clockwise. Permu-

tationz are multiphed a: indicated in the example, below: multiply the permutation [1234)
by the permutation [13)(24):

1 goes 1o 2 (in the left one)
and 2 goes 1o 4 (in the right one)
50 1 goes to 4 {in the product)

4 goes to 1 {in the lefi one)
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Figure VIIL4

and 1 goes to 3 (in the right one)

so 4 goes to 3 (in the product)

3 goes to 4 (in the lefi one)

and £ goes to 2 (in the right one)

se 3 goes 1o 2 (in the product)

2 goes to 3 (in the lefl one)

and 3 goes to 1 (1n the fdght one)

s 2 goes to | {in the product)

Thie last stage is akin to snapping a polygon closed in a GIS environmeni—here it is a
cvcle of numbers rather than of vertices. Figure VILG shows all the calenlations; node, that
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Figure VIL.5

no new permutations ever arise; hence, the system is closed under =; the rotation /| serves
as the identity transformation: each clement has an inverse:

Tal=FT1 =]
RixRs=I;R{' = Ry
Ry= Ra=1;Ry' = Ra
Rax By =181 = R,
HaH=I;V+V=[D1+Di=1;Dsx Dy =1

5o, this system 1z a “group.™ It 15 not, however, a commutative gronp—for example, Ry« H =
fg and H = By = Dy, Once again, a reminder to be eareful when combing reflections
with afline transformations. Note that the sel of rotations (including the identity rotation)
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Figure VIL6 Group of svmmetries of a S{uare

Rotations:
I identity

Ay: through 90 deg

fta: through 180 deg
Az: through 270 deg
Reflections:

I horizontal

V2 vertical
L21: diagonal, 1to 3
Ly diagonal, 2 to 4

Permutlation representation
(1)(2)(3)(4)

(1234)

{13){24)

(1432)

Permutation representation
(14)(23)

(12)(34)

(1)(3)(24)

12)(4)(13)

Table-operation, «, is multiplication of permutations.

i
R

-

'y
f

fis)
13
Ha
s
I
1
Lls
¥
H

fiy
fis
Ry
{
iy
¥
H
Ly
I

Ry H Vv D, Oy
By H V Dy D,
I Dy Dy H 1
M V H Dby D |
Ry Dy Dy ¥V '
s | R: Ry Ra
Dy R ! Rs R,
H Ry Ry I s
5 it 1 Rg Rg !

is itself a grouwp within this group. This is 2 “subgroup”—it is commutative—the order in
which rotations are applied to the square 15 irrelevant,
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SOLSTICE

Permutation «

(LH(2)3)4)
(1234)
(13)(24)
(1432)
(14)(23)
(12)(34)
(1)(3)(24)
(2)(4)(13)
(1)(2)(2)4)
(1234)
{13)(24)
(1432)
(14)(23)
(12){34)
(L}(3)(24)
(2)(4)(13)
(1)(2)(3)(4)
(1234)
(13)(24)
(1432)
(14)(23)
(12)(34)
(LI[3)(24)
(2)(4)( 13}
(1)(2)(3)(4)
(1234)
(13)(24)
(1432)
(14)(23)
{12)(34)
(1)[3)(24)
(2)(4)(13)
[1)(2)(3)(4)
(1234)
(13)(24)
{1432}
(14)(23)
(12)(34)
(1)(3)(24)
(2)(4)(13)
(1)(2)(3)(4)
(1234)
(13)(24)

Permutation —

(1)(2)(3)(4)
(1)(2)(2)(4)
(1)(2)(3)(4)
LL)(2)(3)(4)
(1)(2)(3)(4)
(1)(2)(3)(4)
(1)(2)(3)(4)
(1)(2)(2)4)
(1234)
(1234)
(1234)
{1234)
(1234)
(1234)
(1234)
(1234)
(13)(24)
{13)(24)
(13){24)
LE3)(24)
[13)(24)
(13)(24)
(13){24)
(13)(24)
(1432)
{1432}
(1432)
(1432)
(1432)
(1432)
(1432)
(1432)
(14)(23)
{14)(23)
(14)(23)
(14)(23)
{14)(23)
(14)(23)
(14)(23)
{14)(23)
[12)(34)
(12)(34)
(12)(34)

Permmtation

[L)(2)(3)(4)
(1234)
(13)(24)
(1432)

(14 )( 23)
(12)(34)
(1)(3)(24)
(2)(4)(13)
(1234)

[ 13)(24)
{1432}
(1)(2)(3)(4)
(1}(3)(24)
[2){4)(13)
[ 12)(34)
(14)(23)
(13)(24)
(1432)
(2)3)04)
(1234)
(12)(34)

{ 14)(23)
(2)(4)(13)
(Lj(2)(24)
(1432)
(1)(2)(3)(4)
(1234)
(13)(24)
(12)(34]
{14)(23)
(2)(4)(13)
(1)(3)(24)
(14)(23)
(2)(4)(13)
(12)(34)
(1)(2)(24)
(1)(2)(3)(4)
(13)(24)
(1432)
(1234)
(12)(34)
(1)(3)(24)
(14)(23)
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(1432) (12)(34) (2)(4)(13)  Dg
(14)(23) (12)(34) (13)(24) s
(12)(34) (12)(34) (1)(2)(3)(4) !
(1)(3)(24) (12)(34] (1234) Ry
(2)(4)(13) (12){34) (1432) Ry
(1)(2)(2)(4) (1}(3)(24) (1)3)(24) Dy
(1234) (13(3)(24) (14)(23) i
(13)(24) (1)(3)(24) (2)(4)(13) D2
(1432) (1)(3)(24) (12){34) 1
(14)(23) (1)(3)(24) (1234) R
(12)(34) (1)(3)(24) (1432) Ry
(1)(3)(24) (1)(3)(24) (1i2)(3)(4) I
(2)(4)(13) (L)(3)(24) (13)(24) Ry
(1)2)3)4) (2){4)(13) (2)4)(13) Dy
(1234) (2){4)(13] (12)(34) v
(13)(24] (2){4)(13) (1)(3)(24) Dy
(1432) (2)(4)(13) (14}(23) H
(14)(23) (2)(4)(13) (1432} iy
(12)(34) (2)(4)(13) (1234) R
(1)(3)(24) (2)(4)(13) (13}(24) ity
(2){4){13) (204313} (1)(2)(3)4) 7

Are there any other subgroups? Yes, [, Rz, #, 1V also form a commmnsative subgroup.
Note that the product of two reflections 15 a retation.

A similar style of analysis might be executed for the pixel viewed as a hexagon Other
theoretical issues arise concerning the possibility of nsing a crt display with hexagonal pixels.

t. Issues involving centroids

a. Transformation to generate a centrally- symmetric hexagon from an arbitrary
(convex) hexagon (rubbersheeting; TIN).
One such issue invelves concern for laking & sel of irregularly-spaced data points and con-
verting them inle some sort of more regular distsibution (as with rubbersheeting and a TIN).
This procedure illustrates how to transform an arbitrary convex hexagon (17, V5, Vi, Vi,
Vi, Ve) into a centrally symmetric hexagon (S;, 53, 53, Si, Ss, 5g) centered on 2 paint
that is easy to find. (See construction in Solstice J—Summer, 1990, Vol 1, No. 1., pp.
41-42.}) Thus, rubbersheeting would appear possible with an hexagonal pixel

b. Area algorithm generalizes to hexagons: regular hexagon is two isosceles trape-
zoids (one on either side of a single diameter of the hexagon),

What else might generalize from Lhe square pixel formal to the hexagonal pixel format? A
hexagon can be decomposed into two trapezaids; thus one might imagine using an algorithm
similar to that for the square pixel to find polygon areas relative to an hexagonal pixel
dizplay.

. Stemer neiworks as boundaries of setz of hexagonal pixels; given a set of points,
find a summal hexagonal network hinking them.

IT centers of gravity (centroids) are used as a centering scheme in a triangulated irregular
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network (or other network of polygons), then it would be nice to have 1o centroid lie outeide
a tnangular cell {or other polygon). A centroid is the intersection point of medans; it is
the balance point on which the figure would rest. Sometimes the centroid Les outside Lhe
polygon; Coxeter suggesis viewing the centroid as a balanee point among electncal charges,
thereby allowing for this possibility. Another point that is uwseful for using as a 'central®
weight 15 a Steiner point; in a tdangle, it is that point which minimizes total network length
joming the three vertices. It is always within Lhe triangle when no angle of the thangle
is greater than or equal to 120 degrees. (See Solstice-I, Vol L. no. 2, "Super-definition
resolution.” )

Assigning point weights to represent polygon values is one way to compare them, another
way is to assign centrally-located networks traversing underlying grid lines (Manhattan lines
with square pixels, Steiner networks with hexagonal pixels); another way is to averlay the
areas—again, a point-line-area classification as mentioned in detail in one of Nvstuen's earher
lectures,

. Izzues involving polygon overlays.
A. Ulose-packings of hexagons; centzal place geometry,
b. Fractal approach; space-filling; data COTMPTESSI01.

Polygon overlay is familiar from OSUMAP. Look at some abstract geographic/ peometric
issues that might suggest directions to consider in looking at ideas behind the process of
overlays.

Geometry of central place theory—including fractal generation of these layers. Look for
a mumber of issues of (his sort, thal are theoretical, in using GlS-type equipment. Below is
an outhne of matenial in these lectures and of suggestions for future directions 1in which to
look,

I Introduction: the role of theory. Mathematics is fundamental, and in dealing with spatial
phenomena, geometry in particular, is fundamental. IHistorieal precedent from Biclogy in
works of [V'Arcy Thompson; Tobler's map transformations.

A Statement of Thompson regarding the role of theary.

B. Visual evidence: one species of fish is transformed into another actual species by
choosing a suitable coordinate transformation.

IT. Transformations.
A Well-defined (single-valued).
B. Reversible
1. Une-to-one correspondence
i, Transformations of X onta Y.

C. “Rubbersheeting” —example from Nystuen lecture, with fire stations. What is
involved is ereating a transformaton from an irregular scatter of locations Lo a regular ane,
locating new points (fire stations) and snappmg the surface back to the irregular scatter.
This requires transformations that are reversible.

III. Types of transformations and examples.
A, Affine
1. Translation
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u. Scaling
i, Rotation
1v. Hefleetion
B. Curvilinear
IV. Exercise—scaling 1o make digitized map mesh with CRT seale.
V. GIS tie to Steiner networks,

VI Digital topology. Quadtrees—Rosenfeld, Tobler, Jordan Curve Theorem: American
Mathematical Saciety special sessions on digital topology (run by Hosenfeld). Hexagonal
pixels—scanner technology.

VIL. Local scale of mathematical extension of the comcept of “affine transformation” The
lgebra of symmetry: definition of a group,

A. The affine group; affine geametry
1. Parallelism and GIS: crossing lines and polygon area.

i. Projective geometry; any two lines intersect in a point; no parallels. Here for
completeness-not really discussed.

B. Group of symmetries of a square (pixel]; the hexagonal pixel.
1. Issues ivolving centroids

L o] . i ,
a, Transformation to generate a centrally-symmetric hexagon from an arbitrary
(comvex) hexagon (rubbershesting; TIN).

b, Area algorithm generalizes to hesagons, hexagom is two trapeszeids.
c. Steiner networks as boundaries of sets of hexagonal pixels; given a set of points,

a

find a mimimal hexagonal network bnking them-dealt with in & third lecture, not presented
here.

i. lssues involving polygon overlays
a. Close-packings of hexagons; central place Eeornetry.
b. Fractal approach; space-filling: data COTPrassion,
VIII. Global scale of mathematical extension of the concept of “affine transformation " Topol-
oY
A. Combinatonal topology.
1. Jordan curve theorem. G1S eonneetion, inside and outside of polygons.
n. Cell complexes; 0, 1, and 2 cells of GIS.
. Hexagons denved from barveentric subdivision of a complex.
E. Point-zet topology.
i. Definitions.
il Consequences of Definitions interpreted in GIS context,
C. Digital topology
L Jordan curve theorem-3-dimensions
. Chiadirees,
HI. Further extension at different scales. Commutative diagrams—entry to different level of
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mathematical thonght and spatial theory
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