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Introduction
by
Hannae H Gray
President of the University
Each year, one of the annual events at the Univemsity i the selection of the Norn and
Edward Ryerson Lecturer. The selection is made by & committer of facalty which teceives
nominations from their faculty colleagnes, Each vear, this eommittes comes up with an ab-
salutely superh selection for the Ryvetson Lecturer, and this vear is tnumphant confirmation
of that generalization

The selection emanates from facilty nomination and discussion, and i i analogous to
the process of the selection of faculty in this University, representing n selection based on
the work and contmbution, on the hugh esteem for the intellectual imagination and breadth
of u collengue. The peer roview process, in this as in faculty appomntments, stresses schol-
arship and research, stresses the contribution of a member of the faculty to the progress of
knowledge. 1n addition, of course, the faculty appointment process looks also to teaching
and to institutional Gtizenship.

Ii 1 had the nerve to fill out an A-21 form for Professor Saunders Mac Lane, [ would: |
think, be creating & new mathematics because | would award hum 100 percent for resemsch,
100 percent for teaching, and 100 percent for contnbution or atizenship. Even | can add
thai op 4o 300 percent

Now, of course, m the evaluation of younger scholars for Jjunior appomtments smlar
judgments are made. They are based on the same three categoriss, and they are judgments
about the promise of continuing creativity, continuing growth, continuing intellectual contn-
bution. That judement of the young Saunders Mac Lane was made a very long time ago in
Montelair, New Jersey. Montclair, New Jersey 18 the home of the Yale Club of Monteiar. |
once had the snormous privilege of bemng invited to the Yale Club of Montelur where | was
mven something called the Yale Bowl, which had on it an inscnption testifiing that 1 had
earned my Y in the “Big Game of Life "

In 1828, the young Saunders Mac Lane went to the Yale Club of Montclaie, | was tald—
he was then finishing his senior year at Yale—and thers was a young dean of the Yale Law
school who was leaving iz order to go 16 the University of Chicago as president. And the
Yale Club of Montelair, which usually gave its awards to football players, decided on ths
occasion to give recognition to o young mathemabcan and to a young law school dean, and
that was where Mr. Hutchins and Mr. Mac Lane met

As Ssunders Mac Lane graduated from Yale, Mr. Hutchins encouraged him personally
to come to Chicago. And Saunders came He had, however, neglected to take steps that
are wsually taken when cne travels to enter mnother university, and the chairman of the
Department of Mathematics, Mr. Bliss, had to say 1o him rather directly, “Young man,
you've got to apply first.”

He did apply, and fortunately he was accepted. Within & yesr, he had recetved his M.A.
from Chicago and had come into contact with lots of extraordinary people, but two very
extraoedinary people in particular. One was the great mathematioan E H. Moore, and
the other was & graduste student m economice named Dorothy Jones, who was in 1833 to
become Mrs, Mac Lane
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Now, those of us who know Saunders think of him =5 n Hyde Parker. and indeed as &
Hyde Parker forever. And, of course, he is o Hyde Parker, and & Hyde Parker forever, but
he had a penod i bis life, 1 have to 1=l you, after he had taken kis M.A. when ke became
semaething of an academic traveler We really ought to have been able to trace those travels
when we think ahout Saunders’ chejoe of costime

Now, that’s not easv 1o figure out today becsuse 1 think that necktie came out of & safe
this momning. But if you think sbout the finming reds, for example, that Saunders affects,
you are pechaps remnded of Cambridge. Massachusetts 5 you think of the Scottish plaids
which he affects, that's a hasder one, because | would say that that has to de with the great
tradition which took him to New England and made him for s time a resident of Connecticut
And then. of course, there is the Alpine hat which could only have come from Ithaea, New
York.

Saunders received his doctorste from the University of Gottngen m 1934, He had speit
the years 193334 again at Yale as a Sterling Fellow. He then spent two years at Harvard
He then spent a year at Cornell, Then he came to the University of Chicago for » vear, And
then again he moved, called back to Harvard as an assistant professor, and there he rapidly
went through the ranks. Fortunately, i 1047 he retutned to the University of Chicago and,
i 1963, became the Max Mason Distinguished Service Frofessar. Between 1952 and 1058 e
suceeeded Marshall Stohe as chairman of the Department of Mathematics for twe three- veuar
terms, and he has served the University as he has his department with total dedication

Seunders has extended his role beyond our Univemsity, serving prnmarily and prominemiy
in & number of national scholarly organizaticns and institutions  devoted 1o large questions
of the relationship of learming to policy. He was president of the Mathematical Association
of America and received its Distinguished Service Award in 1975 In recoguition of his sus-
tuined and active concern for the advancement of undergraduate mathematical teaching and
undergraduste mathematies. He was wlso president of the Amencan Mathematics] Socety
n 1873-74 He has been a member of the National Science Board and vice-president of the
Natianal Academy of Saences

His work w mathematics. of course, has been widely recognized. AHred Putnam, who
studied with Saunders at Harvard, had this to say of Saunders in & biographical sketch
that he hes published. He wrote “Beginning as a graduate student with n hrisf EXposTre
to group extensions, ['ve watched the development of Saunders Mar Lane's mathematics
through homological slgebra 1o category theory. Sannders Mac Lane belonge in u category
by himself ™

And so he does. So he does 25 mathematican, as an academic ctizen, as = spokesman
for the fundamental values and prnciples of the University, and. of course, in sartonal
wonder

Now, it i 10 this category that we Jook for the Nors and Edward Hyverson Lecturers,
When the Trustees established the lectureship in 1973, they sought a way to celebrate the
relutionship that the Ryersons and their famuly have had with our University—a relationship
of shared values and a commitment to learming at the most advanced level

Me. Ryemsson was elected to the Board in 1623 and became Chairman of the Bowrd
in 1953. Nera Butler Ryerson was a founding member, if not the foander. of the Univer.
sity’s Women's Board Hoth embraced a avie trust that left few institutions in our city
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umtouched, and they passed to future generstions of their family the sense of engagement
and participation

Satnders Mac Lane, through lis staunch loyalty to our Unjversity, his broad interest
in the community of scholars and their work, his distinguished scholarly career, reprosents
these values for us in & special way, and, of course, he s entirely sncompromising alse in his

commitment to them. I 18 a pleasure to introduce this vear’s Ryerson Lectorer. Saunders
Mac Lane
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Prool, Truth, and Confusion
Saunders Marc Lane
I. The Fit of Ideas

It is a5 honor for & mathematician to stand here Let me first suy how much 1 appreciate
the initintive taken by the trustees on behalf of the Hyerson family in providing for this series
of Jectures, which afford opportunity for a few fortunate faculty members to present aspects
of thetr scholatly work which might be of mterest to the whale university communite. In my
own case, though the detailed development of mathematics tends 1o be highly techuical. |
find that there are some underlying notions from mathematics and ite usage which can and
will be of general interest. | will try to disentangle these and 1o relate them to the general
mteresi

Thss intent accounts for my title Mathematicians are cone=rned to find truth. or. more
modestly, 1o find a few new truths. In reality, the best that | and my collesgues in math:
ematice can do s to find proofs which perhaps establish some truths. We trv to find the
nght proofs. However, same of these proofs and the techniques and numbers which mmbady
them have turned out to be so popular that they are applied where they do not belong—with
results which produce confusion, For this, 1 will try 1o ¢ite examples and to draw conclusions.

This involves a thesis as to the nature of mathematics: | contend that this venerable
stbject is one which does reach for truth, but by way of proof, and does get prool by war
of the concatenation of the right ideas. The ideas which are involved in mathematics are
those idens which are formal or can be formalized. However, they are not purely formal, ihey
ariee from aspects of human activity or from problems ansing m the advance of soentific
knowledge The ideas of mathematics msy not atways Jead to truth; for this remson it is
mportant that good ideas not be confused by needless compromise. In brief. the idess
which matter are the ideas that fit

Howsver, the fit may be problemntical A friend of mine with & vacation home in
Vermont wanted to suitably detorate his barn, and so asked the local paintsr 1o put on
the door “the biggest number which can be written on the broad side of & barn door.” The
painter complied, painting on the barn door a digit 6 followed by as many further such digits
as eould be squeszed onto the door (Figure 1.3) A competitor then claimed he could do
better by pmnting smaller 9's and so a bigger number, A second competitor then rubbed
out the first line and wrote instesd: The square of the number 8, . (Figure 1b) Even
that didn't last, because wnother young fellow proposed the paradosical words, “One plus
the biggest number that can be wntten on the broad side of thie barn door” (Figure 1.c). At
each moment, this produces a bigger number than anything before. We may conclude that
there is no such biggest number. This may illustrate the paint that it is not easy to get the
idess that fit—om barn doors or otherwise

II. Truth and Proof

I'return te the “truth” of my title. When | wes voung | believed it RMH-shich same
tmes stends for Robert Maymard Hutchins, whe to my grest profit first encouraged me Lo
come to Chicago—and which sometimes stands for the slogan, “Reach Much Higher” At
uny rate, when young | thought that mathematics could reach very much higher so as to
achieve absolute truth. AL that time, Principia Mathematica by Whitehead and Rusesl]
seemed to model this reach; it claimed to provide all of mathematics firmly founded on the
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The Square of
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Figure 1. o The biggest number on that barn door. b A bigger number on that barn
door. ¢ An even bigger number on that bam door.

truths of logic The logic 1n Pranapia was slabomate, symbolic, and hard to follow. As a
result, it took me some years to discover that Princpin Mathematica was nol & Practics
Mathematica—much of mathematics, in particular most of geometry, simply wasn'l there in
Prncipis. For that matter, what was there didn’t come exclusively from logic. Lome could
provide a framework and a symbolism for mathematics, but it could not provide guidelines
for a direction in which to develop

This limstation was & shocking discovery. Logie, even the best symbobe logic, did not
provide all of absolute truth. What did it provide instend” It provided proof—the ngorous
proof of aone formal statement from another pnor statement; that is, the deduction of theo-
rems from axoms. For such a deduction, one nesded logic to provide the rules of inference.
In addition, one nesded the subject matter handled in the deductions: the ideas used in the
formulation of the axioms of geometry and number theory, as well as the suggestions from
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autside mathematics as to what theorems might nsefully be proved from these amoms

Deductive logic is important aot because it can produce sbsolute truth but becanse 1t can
setile comtroversy. It has settled many. One notable example arose in topolegy, o branch of
mathematice which studies qualitative properties of geometric objects such as spheres. From
this perspective, a smooth sphere and a conkly sphere would have the same gualitative
properties—and we would consider not just the ordinary spherss—iwo-dimensional, since
the surface has two dimensions—but also the spheres of dimensions 3, 4, and higher {Figure
9. For these spheres, topologists wished to calculate a certmn number which measures the
connectivity—a measure “two dimensions up” from the dimension of the sphere. The Soviet
topologiet L. Pontzjagan in 1838 etated that this desired measure wai one Cithers thought
inetead that the measure was two, In & related connection, the American reviewer of another
paper by Pontrjagin wrote, “Both theorems (of Pontgjaging contradict a previous statement
of the teviewsr. It is not easy to see who is wrong here ™ Fortunately, i was possble 1o see
With careful analvsis of the proof, Pontrjagm did see who was wrong—and i 1030 pablished
a statement correcting his 1938 eror: that the measure of connectivity twe dimensions up
15 not one, but two,

Circle 2-5phere ASphere
tFour Coordinates}
by
Le.sd z
o
%
¥
Ay =4 eyl -] P+ Et=1
Figure 2

A f=w vears ago, the New York Times carried an item sbout a enmlar fundamental
disagreement between & Japanese topologist and one of our own recent graduate studente,
Raphasl Zahler. Analysis of the deductions showed that Zahler was might. There lies the
real role of logic: 1t provides a formal canon designed to disentangle such controversies

Truth may be difficult to capture, but proof can be descnbed with complete acenracy
Fach mathematical statement can be wrtten as a word or sentence in a fixed alphabet—ausing

12
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one letter for ench prmitive mathematical notion and one letter for each logical connective
A proof of & theorem is & sequence of such statements. The imtial staiement must be one
of the axioms, Each subsequent statement not an axiom must be a comsequence of prior
slatements in the sequence. Here “consequence” means “consequence according to one of
the specified rules of inference”—rules specified m advance A typical such rule 15 that of
modus ponens; Given statments “S" and “S umplies T," one may infer the statement “T."

This description gves & firm standard of proof Actual proofs may cut a few comers oz
leave out some obwious steps, to be filled m if and when needed. Actual proofs may even be
wrong. However, the formal descnption of a proof is complete and definitive It provides a
formmal standard of ngor, not necessanly for sbsolute truth, but for absolute proof

There 15 & surprising consequence: no one formal system suffices to establish all of
mathematics Precisely because there 15 such & rigorous deseription of a “proof” in 8 *formal
system.” Kurt Gidel was able 10 show that, in cach such syetem with calculable ruies of
inference, one could formulate in the system a sentence which was not deadable m the
system—that 15, & sentence G which can neither be proved nor disproved acearding to the
spectfied rules of inference. More exactly, this is the case for any system which contains the
aumbers xnd the mles of anthmetie, and in which the rules of inference can be explicitly
listed or numbered in the fashion called “recursive”

In such & svstem, all statements are formal and are constructed from o fixed alphabet.
Hence we can number all the possible proofls, Moreover, we can formulate within the system
s sentence which reads, *n is the number of the proof of the statement with the pumber
k.* On this basis, and adapting ideas illustrated by the paradox of the bam door, one thes
constructs another sentence G = G(p) (with number p) which reads, “There is no number
which is the proof of the sentence number p™ This means in particular that this very sentence
G eannot be proved in the system This is because G itsell states that “there is no prool in
the svstem for me™—hente G 14 true (Figure J). Hence, unless the system is inconsistent, il
can contain no refutation of &, Thus tn such & formal sysiem we can wnie one statement
{and heoce many) which, though true, is smply undecidable, yes or no, within the system.

Godel's Sentence G = Gip)
w = A chosen variahle

Sub (x.t} = The number of the following statement
“In Statermnent no, x, Replace the Varfable w by the Numeral

Dem iy, u) = “The Proof numbered ¥ Demonstrates the Statement
mmber 1"
Giw) = “Far no. v, Dem (v, Sub {w, wi)
T B
0 Eulbip, pl s Gip}
Glp) = “There is no proof of Gip)”
"You can't prove me”

Figure 3
13
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This result is startling. It may seem cataztrophic—but it turns out to be not guite so
dizastrous. It shows that there is an intrinzic imitation on what can be proved within any
one formal system; thus proof within one such system camnnot give all of truth. Very well
then, as we shall see, there can be more than one formal system and hence more than one
way in which to reach by proof for the truth.

ITI. Tdeas and Theorems

Some chservers have claimed that mathematies is just formalism. They are wrong. A
mathematical proof in a given formal system mmst be about something, but it is not about
the outside world, I say it i= about ideas. Thus the formal system of Euchidean geometry
is about certain “pictonial” ideas: point, line, triangle; and congruence; m their turn, thess
ideas arcse as means of formulating our spatial experiences of shape, size, and extent and
our altempts to analyze motion and symmetsy.

Each branch of formal mathematics has a comparable ongin in some human activities or
in some branch of scientifie knowledge. In each such case, the formal mathematical sysiem
can be understood gs the realization of a few central ideas.

Mathematics 1s buill upon a considerable varety of such ideas—in the calculus, ideas
about rate of change, summation, and limit; iz geometry, ideas of proximuty, smoothness,
and carvature. To farther iliustrate what [ mean here by “idesx.” I choose o small sample:
The related ideas of “connect,” “compose.” and “compare.”

Te “Connect” means io join. There are different ways in which mathemanecians have
defined what it means for a piece of space 10 be connected, Une definition says that a mecs
of space 15 connected if it does not fall apart into two [or more) suitably disjoinl pieces,
Another definition says that a piece of space is path-connected if any two points in the prece
can be joined within the piece by & path—that is, by a continuous curve lying wholly in the
piece. These two formal explications of the idez of “connected” are not identical: a piece of
space which 15 path-connected 15 always connected 1n the first sense, but not necessanly vice-
versa. This simple case of divergence illesirates the observation that the same underlying
pre-formal idea can have different formalizations.

*Compeose” 15 the next idea, To compose two numbers ¢ and y by addition 15 to takes
their sum = +y; 1o compose them by multiplication s to take their product =y . To compose
one motion L with a second motion Af is to follow L by M to get the “composite” motion
which we write as L oM. Thus to rotate a wheel first by 23° and then by 43% will nield after
composition a rotation by T0°. To compose & path L conmecting a pomnt p to a peint g with
a path M connecting g to a third pomnt & 1= to form the longer path L o Af which follows
first L and then A, as in the top of figure 4, In all such cases of compesition, the resulf of
a composition L oA o of three thinge in succession depends on the factors compozed and
the sequence or order in which they were taken—hut mot on the position of the parenthesis.
Thus anses one of the formal laws of composition, the assocative law

Le{MaeN)=(LoM)oN.
However, L o M may very well differ from M ¢ L! The order matiers.

The third sample idea is “Compare” One may compare one triangle with another as
to size, so as io study congruent triangles. One may compare one triangle with another
as to shape, and so study more generally similar triangles. Another companson is that by
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L Connecls F ta |
L Composed with M Pio E

(written L-M]
LM Compares tuKll Jy"l
(L-M)N = L {M-N) |

Figure 4.

deformation: Two paths in a plece of space may be compared by trying 1o deform the first
path in a continuous way inte the second—as in Figure 4. the composite path £ ¢ M ifrom
p 1o v can be deformed smoothly and continuously into the path A also joining p o 7.

Ideas such as these will function sffectively in mathematics only after they have been
formalized, becpuse then explicit theorems about the ideas can he proved. The idea of
composition 15 formalized by the concept of & group, which applies to those compositions
in which each thing L being composed has an “inverse” thing or operation [—! so that
Lel-1=1 One readily s21s down axioms for a group of “things" with such composition.
The axaoms are quite simple, but the concept has proven fo be extraordinarily fruitful, There
are very many exampiles of groups: Groups of rotations, sroups of symmetry, crystallographic
groups, groups permuting the roots of equations, the gange groups of physics, and many
* others. There is a sense (analyzed by Filenberg-Mac Lane in 2 seres of papers) in which any
group can be buwilt up by successive extensions from certain basic pizces, called the “simple”
groups. Specifically, a group is said to be simple when it cannat be collapsed into a smaller
group except in a tnvial way. A long-standing conjecture suggested that the number of
elements m a finite simple group was necessarily either an even number or a prime number,
About twenty years ago, here at Chicage. Thompson and Feit succeeded in proving this to be
true (and 1 could take pleasure in the fact that Thompson, one of my students, had achieved
such a penetrating result), The Thompeen-Feit method turned out to he so suggestive and
powerful that others have now been able to go on 1o expliatly determine all the finite simple
groups. For example, the biggest sporadic ane has 24632052 .78 112 133 .17. 19--23-29.
41 -47 .58 - 71 elements (that number is approcamately B followed by 53 zeros). This simple
group is called the "Monster” (Figure ). Another one of our former students has heen able
to make 2 high dimensional geometric picture which shows that this monster really exisis
He needed a space of dimension 196 884

Groups also serve to measure the connectivity of spaces, In particular, there are certain
homology groups which count the presence of higher dimensional holes in space. To start
with, & piece x of space is said to be simply connecied if any closed path in the space y
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A Group G
hultiplication!

Any two elements g, h
have a Product g+ h
Each g has an lnverse g
All! Finite “Simple” Groups
One For Each Prime 2, 3, 5..
Several for each Dimension

Flus “Sporadics™ |
For example, The Monster has

2RE- 32050 . 1120139171023 20 -
4147 50- T~ 10° glernents |

Figure 3

can be deformed into @ point. For example, the surface of a sphere is simply connected.
so 1te first homology group is zero: however, it has a non-zera second homology group—
meanng the “hole” reprezented by the inside of the sphere. These properties characterize
the two-dimensional sphere. Long ago, the French mathematician Pancaré said that the
same should hold for a three-dimeniongl sphere (Figure 6). This famous conjecture has not
vet been settled—but some years ago, Smale showed that the charactenization was true for a
sphere of dimension 3 or higher. Just during the last vear, the Californian Michael Friedman
n a long proof, showed that it is also true for a sphere of dimension 4. Exespt for a solntion
which was announced on Apnl 1; nobedy vet knows the answer for a three-dimensional
sphere. Proof advances, but slowly.

| Faincaré Spheres

§ wf 4y 42 =1 Connectivily:
DHmension 0 1 Ponts conneq
1 1 UCirdes collapse
1 I 5won't collapse
N S
Dimension & 1 Poands connect
1 1 Circles collapss
2 | Spheres collapse
3 2 5 won't collapse

Figure &
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IV. Sete and Functions

As already indicated, Whitehead and Bussell, by Principia Mathematica, had suggested
that all mathematical truth could be subsumed in one monster formal system. Their system,
corrupted as it was with “types” was too complicated— but others proposed 2 system based
an the idea of a set. A set is just a collection of things—nothing more. Mathemalics does
invelve sets, such as the set of all pome numbers or the set of all rational numbers between
1 and 2. Mathemstical objects ean be defined in terme of sets. For example, a circle is the
sel of all points in the plane at a fixed distance from the center, while a line can be described
as the set of all its points. Numbers can be defined as sets—the number two is the set of all
pairs; an trrational number is the set of all smaller rational numbers. In thie way numbers,
spatial figures, and everything else mathematical can be defined in terms of sets (Figure 7).
All that matiers about & set § 1s the list of those things ¢ which are members of 5§ When
this 15 so, we write £5, and call this the “membership relation.”

| Sels

| Set S has elements a, b
|§=f{a.b} aeS5. beS, ciS

| Mumters are Sets
o= {-} Empty set
1={0}, 2={0. 1}

e —
Figures are Sets
Line = 5et of points [
Circle = Set of points

Everything (in Mathematics) is a Set!7

Figure T

There are axioms [due to Zermele and Fraenkel] which adeguately formalize the proper-
ues of thie membership relation. These adoms claim to provide a formal foundation—1 call
this the grand set-theorstic doctrine—ior all of mathematics.

By 1940 or go this grand set-theoretic foundation had become so prominent in advanced
mathematics that it was courageously taught to freshmen right hers in the Huichins college.
This teaching practice spread nationally to become the keystone of the *New Math.” As a
result, twenty vears later sels came to be taught in the kindergarten. There is even that
story abeut the fond parents inguinng as to little Johnny's progress. Yes said the teacher,
he is deoing well in math except that he can’t manage to wnte the symbol ¢ when z 15 a
member of the set 5.

Johany was not the only one in trouble. The grand doctrine of the new math: “Every-
thing 15 a set™ came at the cost of making artificial and clumsy definitions. Moreover, putting
everything in one formal system of axioms for set theory ran squarely into the difficulties
presented by Gadel’s undecidable propositions,

Iy
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Fortunately, just about the time when sets reached down to the kindergarten, an alter-
native approach 1o a system of “all” (better “most”) of mathematics turned up. This used
again the idea of composition for functions f; 5 — T sending the elements of o set 5 to
some of those of another set T Ancther function g : T — [/ can then be composed with
f to give a new function g o f (Figure 8). It sends an element of 5 first by f inte T and
then by g into [/ The prevalence of many such compositions led Eilenberg and Mac Lane
m 1045 to define the formal axiome for such composition. With no apologies fo Anstotle,
they called such a system a “category”—hecanse many types of mathematical objects did
form such categories, and these properties were useful in the orgenization of mathematics.
Note especiallv that the intuitive idea of "compeosition™ has several different formalizations:
category and gronp.

Functions
Composze: Example

First Square then Subtract 1

=1
1= -\-""‘-\-\.\_ _.__..-""-Fr e
—e——i T
[RE 3 -\-\“H-. = iy
1 _._____._-—l-

&
!

§

—— e L

1) L
= _.-lr"g'
-
e
<44

" %? ="

_ompose: Ceneral |

|
A

t-5 I
Everything is a function!?

Figure 38

Then in 1970 Lawvere and Tiemey made a surpnising discovery: that in trealing a
function f :5 — T one could forget all about the elements i 5 and T', and wnte enough
nvioms on composition alone to do almost evervthing otherwise done with sets and elements
This formal system 1= called an “elementary topos™——to sugzest some of its connections fo
geometry and “Top”-ology. Their success in discovering this whelly new view of mathematies
emphasizes my fundamental observation: That the ideas of mathematics are vanous and can
be encapsulated in different formal systems.

Waiting to be developed, there must be still other formal systems for the foundation and
organization of mathematics.
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V. Confusion via Surveys

The crux of any search for the nght aliernative to set theory is the search for the right
concatenation of ideas—in the same way in which leading ideas in mathematics have been
combined in the past to solve problems (the Poincaré conjecture on spheres) and to give new
insights. Thus il was with our example, where the related ideas of connection, COMPOSITIon,
and comparison came together in group theory, in the apphecation of groups to geomerry,
and in category Lheory.

But sometimes the wrong ideas are brought together, or the nght deas are used in the
wrong way Today the use of numbers and of quantitative methods is so pervasive that many
arrays of numbers and of other mathematical technigues are deployed in ways which do not
fit

Thie 1 will illustrate by some examples. Recently, in connection with my membership on
the National Seience Board, 1 came acrass the work of one prominent social scientist whe was
promoting (perhaps with reason) the use of computer-aided instruction in courses for college
students However, the vehicle he chose for such instruction was the formal manipalation of
the elementary consequences of the Zermelo-Fraenkel axioms for set theory—and the result
was an emphasis on superficial formalism with no attention to ideas or meaning, It was, in
short, computer-aided pedantry.

“Opinion Survevs” prowide another example of the confusion of ideas. For some socizl
and behavioral research. the necessary data can be obtained only by survey methods, and re
sponsible scentists have developed careful technigues to help formulate the surver guestions
nsed to probe for facts. Unfortunately these technigues are often used carelessly—both be-
canse of commercial abuse, statistical malpractice, or poor formulation of survey questicns
First the malpractice:

On many survevs the percentage of response 1s uncomioriably low, with the result that
the data acguired are incomplete. This situation has led the statisticains into very elaborate
siudies of means for approdmately completing such “incomplete data” Une recont and
extensive such publieation (by the National Research Council) seemed to me technically
cotrect but very elaborate—perhaps overdone, and in any eveni, open ic the misuse of too
much massaging of data that are fatally incompiete:

In cpinion surveys touching directly on the academic profession some of the worst excesses
are those exhibited by the so-called “Survey of the Amencan Professomate” Successive
versions of this survev are replete with tendentions and misleading questions, often such likely
to "create” apinion rather than to measure actual existing opinions. Despite hercic atiempts
by others to suggest improvements, the authors of this particular survey have continued in
their mistaken practices in new such surveys—as has been sel forth with rightecus indignation
by Serge Lang in his publication The File: A Case Stody in Correction.

That otherwise useful publication Science Indicaters from the National Science Board
makes excessive use of opinion survevs The most recent report of the senes (Science In-
dicators 1980) coupled results from a mew, more carefully constructed opinion sarvey with
a simple continuation of poorly formulated questions taken from previons and less careful
SUIVEVS,

The man new opimicn survey commussioned for this NSB report used an elaborate
design—but thie design still involved some basic misconceptions about science and some
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gquestions about science so formulated 2 to digtort the opinions which were to be surveyed.
For example, its Question 71 first observes thal “Science and techmelogy can be directed
toward solving problems in many different areas”—while 1 would clarm that scence cannot
be “directed” in the fashion intended by government bureaucrats. The guestion then hsts
fousteen areas and asks “Which three areas on the list would vou mest like lo receive science
and technology funding from your tax money?” Of the fourteen areas, some had hitle to
do with science or technalogy and much to do with the political and economic structure of
society (for example, controlling pollution, reducing crime, and conserving energy). Only
ane of the fourteen dealt with basic knowledge. With an unbalanced hst of guestions hke
this, the report goes on to claim that the answers “suggest that the public interest tends to
focus on the practical and immediate rather than on resuits that are remote from daily life.”
This may be g0, but it cannot be demonstrated by answers 1o a survey guestionnaire which
iteall e so constructed as to focus on the "practical and immediate”

To get comparizons of opinions across time, new surveys try Lo coninue questions wiich
have besn nsed before—and so often use older questions of 2 clearly msleading character
In Science Indicators, & tvpical such previous question iz the hopelessly general one, “Do
vou feel that science and technology have changed life for the better or the worse?™ The
current version of this question does still more to lead the respondent to a negative answer
[t reads, “I= future scientific research more likely 1o cause problems than to find solutions
to cur problems?” It is no wonder that this latter slanted question, i the 1978 survey, had
only G0% answers faverable to science, while the eatlier one had 75% favorable in 1974 and
T1% in 107G

Surveys also may pose guestions which the respondents are in no position 1o answer.
For mstance, one question 1n thus survey probed the respondents’ expectations of scientific
and technological achievements: “Dunng the next 23 years or so, would you say it is very
likely, possible but not too Lkely, or not likely at all that researchers will discover a way to
predict when and where earthguakes will oceur? Tow can the g,eﬂeral public have a useful
or informed -:ipmmrl on this lughly techmical and *-pel:ulm]‘l"' guestion? The question brought
answers of 5T% “very likely,” 34% “possible.” and 7% “not Likely” After giving these figures,
the text ohscures the carsful tripartite posturs of the question as stated by lumping the first
two categones together in the following summary: “About 9 out of 10 consider it possible
or very likely .

The other five questions asking for similar 25-vear predictions (for example, a cure for
the common forms of cancer) are not much betier,

In sum, the public opinion surveys currently used in Science Indicators are poorly con-
structed and carelessly reported. By emphasizing remeote and speculative uses of saience, the
thrust of the questicns mistepresents the very nature of scientific method. (There are worse
misrepresentations. for example, in a report for GAD (General Accounting Office), mistitled
Science Indicators: Improvements Needed in Design, Construction, and Interpretation].

To summange: Opimon surveys may attempt to reduce to numbers both nebulous opin-
ions and other qualities not easily so reducible. 1t would be wiser if their use were restricted
to those things which are properly numencal.

My own chief experience with other unhappy attempts 1o use mathematical ideas where
they do not fit comes from studying many of the reports of the National Research Councl
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{in brief, the NREC). I recently served for eight years as chairman of the Report Rewview
Commitiee for this Council. This Councl operates under the anspiess of the National
Academy of Soences, wiich by its charier from the government is required to provide, on
request, advice on questions of science or art. Thers are many such requeste. Each year, fo
this end the NRC publishes several hundred reports, aimed te apply scientific knowledge to
various questions of public palicy. Some of these policy questions are hard or even impossible
of solution, so it may not be surprising that the desire to get a solution and 10 make it precise
may lead to the use of guantitative methods which do net fie. This lack of fit can be betier
understood at the hand of some examples

V1, Cost-Benefit and Regression

Before making a difficult desision, it may he helpful te hst off the advantages and the
disadvantages of each possible course of action, trying to weigh the one agamst the other.
Sinece a purely gualitative weighing of plus against minus may not be objective (or at any
rate can't be done on a computer), there has grown up a guantitative cost-benefit analysis,
in which both the costs and the benefits of the action are reduced to a common unit—te
dollars or to some other such “numeraire” The companscn of different actions and thus
perhaps a decision between them can then be made 1n terms of a number, such as the ratio
of cost Lo benefit.

In simple cases or for isclated actioms this may werk well; 1 am told that it did so function
in some of its initial uses in decisions about plans for waler resources. Howewver, the types
of decisions considered in NRC reports were usually not so straight-forward. I studied many
such reports which did attempt to use cost-hencfit analysis. In every such case which came
to my attention in eight years, these atlempts al quantitative cost-benefit amalysis were
faalures

In most cases, these failures could have been anticipated. Sometimes the intended cost-
benefit analvsis was nol an actual numerical analysis but just a pious hope. For instance,
one study toed to describe ways to keep clean air somewhers “way out west.” In this case,
there weren't encugh depsndable data to armve at any numbers for either the costz or the
benefits of that clean air. Hence the report imtially included a long chapter describing how
these costs and benefits might be calenlated—although it really seemed more likely that
there never would be data good enough to get dependable numbers for such a calenlation.

There are alse cost-benefit. caleulations which must facter in the value of the human
lives which might be saved by making (or nol making) this or that decision. In such cases,
the value ascribed to one human life ean vary by a factor of 10, ranging from one hundred
thousand to onme million dollars. Much of the variation depends on whether one gets the
value of that life in terms of discounted future earmings or by something called mmpheit
self-valuaton of future satisfaction. However, I strongly suspect that whatever the method,
there isn't any one number which can adequately represent the value of human life for such
cost-benefit purposss. Cur lives and our leisures are too various and their value (to uws or
to others) is not monetary. The consequence is that decisions which deal substantially with
actions locking to the potential saving of lives cannot be based in any satisfactory way omn
cost-benehit analyas.

Another aspect of cost-benefit methods came to my attention just yesterday, m the
course of a thesis defense. Cost-benefit methods attend only to gross measures, m 2 stnctly
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utilitanian way, and give no teal weight to the distribution of benefite (or of costs) between
individuals.

Another striking example of the problems attending the unse of cost-benefit analysis in
policy studies 15 provided by a 1974 NRC study, “Air Cluality and Automobile Emission
Control.” prepared for the Committee on Publbic Works, U.S, Senate. That committies was
considering the imposition of various levels of emission controls on automobiles; it requested
advice on the merits of such controls, and in particular wanted a companson of the costs
and the benefits of such control.

Some benefits of the control of antomohile emissions are 1o be found in cleaner air and
some in better health (less exposure to irntating smog). A number of studies of such health
effects had been done: the NRC committes examined them all and considered all but one of
them inadeguate. The one adeguate study was for students in a nursing school in the Los
Angeles area. Each student carefully secorded daily diseomioris and illnesses; these records
were then correlated with the observed level of smog in Los Angeles. The results of this one
study were then extrapolated by the NRC committee Lo the whole of the United States i
order to estimate the health benefits of decreasing smog! It was never clear 1o me why Los
Angeles is typical or how such 2 wide extrapolation can be dependable. Just as in the case
of saving lives, the benefits of good health can hardly be reduced to numbers

Some other difficulties with this particular study concern the use of regression, a math-
ematical topic with a considerable history, Mathematics deals repeatedly with the way in
whicl one guantity ¥ may depend upon one or more other quantities . When such a y is
an explicitly siven function of =, the differential calculus ha: made extracrdinanly effective
use of the concept of a denivative dy/dr = y'; in the first instance, the use of the denvative
amounts to approxamating ¥ by a linear function, such as y = ax + ¢, choosing a to bea
value of the derivative y'. The number o then is units of  per unit of = and messures the
number of unite change in y due {at r) to & one-unit change in r. For certmin purposes
thece linear approximations work very well, but in other cases, the calculus goes on to use
higher stages of approximation — quadratic, cubic, and even an infinite senies of successive
powers of z.

But a vanable quantity v involved in a policy question is likely to depend not just on
one ¢, but on a whole siang of other guantities =, z, and so on. Moreover, the fashion of
this dependence can be quite complex. One approumation is to again fry 1o express y as a
eonstant o times T plus a constant & times z and so on—in brief to express y s a linear
function

Y =ar b4 -

with coefficients a, b, ... which are not vet known, Given enough data, the famous method
of “least squares” will provide the “best” values of the constants a. b, ... to make the
formula fit the given data. In particular, the coefficent o estimates the sumber of units
change in y per umt change in #—helding the other gquantities constant {if one can).

This process is called a multiple “regression” of y on 2, 2, ... This curious chowce of
word has an explanztion. [t was first used by Galton in his studies of mhentance. He noted
that tall fathers had sons not quite so tall—thus height had “regressed on the mean”

This technique of regression has been amply developed by statisticians and others; it is
now popular in some cost-benefit analyses. For example, with the control of auto emission,
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how does one determine the benefit of the resulting clean air?

Clean air cannot be purchased on the market, so the benefits of cleaner air might be
measured by “shadow” prices found from property values, on the grounds that homes m a
region where the air is clear should command higher priees than comparable homes where the
air 15 thick. In the NRC study, the prices of honses in various subregions of greater Boston
were noted and then expressed as a (linear) function of some thirteen different measured
varables thought to influence these prices: Clean air, proximity to schools. good transporta-
ticm, proxamity to the Charles River. and so on. The constants in this linear expression of
house prices were then deternuned by regression. In this equation, the coefficent a for the
variable representing “clean air” (of units of dollars per measure of smog-free air} was then
held to give the “shadow price” for clean air. The resulting shadow price from this and one
other such regression was then extrapolated fo the whole 17.5.A. to mive a measure of the
benefit of cleaner air to be provided by the proposed auto snussion control,

In Boston: House § = a (Smog) = b (Charles Faver) <+ -+. one dozen more

This iz surely a brash attempt to gei a pumber, cost what 1t may. In my considered
judgment, the result is nonsense. Ii iz not clear that buvers of houses momitor the clean
air before they sign the mortgage. A nebulows (or even an airy) gquantity sad to depend
on thirteen other vaoables 1z not likely to be well grasped by any linear function of those
variables. Scime variables may have quadratic effects, and there could be crose eff=cis between
different vaniables. That list of thirteen vanables may have duplicates or may very well miss
some vanables which should be there, Moreover, the coefficients in that function are Lkely to
be still more uncertain than the known costs the equation estimates. These coefficients are
not shadow prices; they are shadewy numbers, not worthy of serious regard. They employ a
mathematice which does not fit.

The difficuliies which have been noted n interpreting the coefficients in some Tegressions
ere by no means new. For example, you can find them discussed with vigor and clanty
i a text by Mosteller and Tukey, Data Analysis and Regression, kept hers on permanent
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reserve in the Eckhart Library. 1 trust thai such reserve has not kept b from the eyes of
economists or other users of regression. What with canned formulas from other scurces
and fast computers, any big set of data can be analyzed by regression—hut that doesn’t
guarantes that the results will fit!

I have not studied the extensive academic literature on eosi-heneft analysis, but these
and other fagrant examples of the misuse of these analyses in NCR reports leave me dis-
quieted.  Current political dogma may create pressure for mors cost-benefit analysis, In
Congress, the Houge 1= now considering a “Hegulatory Reform Bill® which reguires that
incependent and executive agencies of the government make a cost-benefit analyvsis before
issuing any new reégulation (except for those health and safety regulations required by law),
It is high time that academicians and politicians give more senous thought to the limitations
of such methods of analysis,

The future is inscrutable. However, people are cumous. so fashion usaally provides some
method for its scruting. These methods may Tange from consultation with {le Oracle at
Delphi to opinion polls to the examination of the entrails of a sacmificial animal. Now.
thanks to the existence of fast computers, some economists can scrutimize the future without
entratling such sacrifice. The short-term predictions by econometric models can he sold at
high prices, though I am told that some of these models deliver mope dependable short-term
predictions when the original modeler is at hand to suitably massage the cutput fizures

At the NRC, my chief contact with projection was on a very much lenger time scale—
ecofiometric projections of the energy future of the United States gong forward for fifty vears
or more. This was done in connection with a massive NRC study called CONAES (for the
Committee on Nuclear and Altemative Energy Svstems). For this study, there was not just
one econometnic projection of energy needs, but a half dozen such models, with a varisty of
time honzons. Now projections for a span of forty or fifty vears cannot possibly take account
of unexpected events such as wars, oil cartels, depressions, or even the discovery of new oil
fields. Since the present differs drastically fram the past, there is little or no hope of checking
a fifty-year projection against fifty vears of actual past development. Conseguently, this
patticular NRO study did not check theory against fact, but just theory againsi theorv—by
asking just how much agreement there was between the half-dozen models. 1 hardly seemed
reasonable to me to conclude that agreement—even a perfect agreement — in the results of
several fictive models can be of any predictive value. In the case of the CONAES repart,
there waz even a propasal to use the thirty-five-vear projection of those models to assess the
future economie valne of the breeder reactor. Such pssesement hresds total futility. All told,
despite the use of fast computers and multiple models. the ambiguities of the models being
computed siill leave the future dark and mscrutable

Projections over time into an unknown future are net the only examples of policy-
promoted projection of the unknown, Many other types of extrapolation can be stimulated—
for example, extrapolation designed {o estimate rsks. Sines it is claimed society has become
more risk-averse, there 15 great demand to make studies of future risks, ws in the reports
of the NRC Commities on the Biological Effects of lomizing Radiation (BEIR for shert).
The third report of this committee. a report commonly known as "BEIR [11" dealt with
exirapolation, ancther kind of projection. Data available from Hiroshima and Nagasaki give
the mumbers of cancers caused by high desages of radiation. For present puropses one wants
rather the effect of low doses, on which there are little or no data. To estimate thig effect,
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one may assume that the efiect E is proportional to dosage IJ—so that £ = kD) for some
constanl k. Alternatively, on may assume that the effect is quadratic so that F depends
both on [ and on D2, Then the curve giving E as a function of D is parabalic {Figure 10).
The constants involved——such as the proportionality factor k—are then chosen to get the
best fit of the line or the parabola to the high dosage data. The resulting formula is then nsed
to calculate the effect at low dosage. Quite naturally, the linear formula and the guadratc
one give substantially different results by this extrapolation; this is the canse of considerabls
controversy. s the linear formule right? Does the choice of formula depend on the type
of canecer considered? There is no secure and scientific answer to these pressing policy
questions. In particular, the mathematical methods themseives cannol poseibly produce an
answer Mathemateal models such as these may be inteenally consistent, but that doesn't
tmply that they must fit the facts. Here, as in the case of regression, the assumption that
the varizbles of intersst are connected by a linear equation is gratuitons and misleading,

AlGEr

1o later Smes

Figure 10

That BEIR IIT report deals with just one of many different kinds of nsks that plague
mankind. There are many others that might be estimated, by extrapolation or otherwise.
From all these cases there has ansen some hope that there might be effective general prin-
ciples underlving such cases—and so constituting a general subject of “risk analysis.”™ The
hope to gel at such generality may resemble the process of generalization so successful in
mathematics, where properties of numbers have been widely extended to form the subject of
number theory and properties of specific groups have led to general group theory. However,
[ am doubtful that there can yel be a generalized such “risk analysis” — and this T judge
from another current NRC report,
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This report arose as follows: The various public concerns about riske were reflected in
Congress, so a committes of the Congress instructed the Nationzl Science Foundation [NSF)
to cetablish a program supporting research on risk analysis. The NSF, in its tum, did not
know how to go about choosing projects in such 2 speculative fisld—so it asked the National
Research Council for advice on how to do this. The NREC, again in turn, set up a commitiee
of experts on misk analysis. This committee, in its tumn, prepared a deseriptive report on
risk analysis “in general.” The report also commented on specific cases of nsk analysis. For
example, there were extensive comments on the BEIR Il report—but theee comments did
not illuminate the BEIR 11 problem of extrapolation and made no other specific suggestions.
The report had little of positive value to help the NSF decide which projects in risk analysis
s fund. Such = general study of risk analysis is clearly interdisciplinary, but [ must conclude
that it 15 mot yet disciplined.

These and other examples of unsatisfactory reports may serve to illustrate the confusion
resulting from questioneble uses of quantitative methods or of mathematical models. But
why are there so many cases of such confusion? Ferhaps the troubled history of that report
on sk analysis is typical, A practical preblem appears; many people are concerned, and se1s
the Congress or the Administration. Since the problem is intractable, but does anvolve some
seience, it is passed om to the scientists, perhaps to those at the NRC. Some of these probleme
can be—and are—adequately treated. For others there 15 not yet any adeguate lechmgue—
and so those technigres which happen to be available [opimon surveys, eost-henefit analvas,
regression, projection, sxirapolation; decision analysis, and others) get applied to contexte
where they do net fit. Confusion arises when the wrong idea is used, whether for political
reasonus of otherwise

There are also political reasens for such confusion. Our representatives, meeting in that
exclusively political =ty of Washington, represent a vamety of sharply different interests
and comstituencies. To gel something done, a compromise must be struck. This happens
in manv ways. One which T have seen, to my sorrow, is the adjustment of the onerous
and bursaueratic regulations of the OMB (Office of Management and Budget) about cost
principles for unsversities, Their Circular A-21 now requires faculty members to report the
percentage distribution of their various university activities, with results to add up to 100%,
on & “Personnel Activity Report Form” (PAR!). Such numbers are meaningless; they are
fictions [ostered by accountants, Use of such numbers makes for extra paperwork—but i
also tends to relocate some contrel of sclentific research from universities to the government
bureaverats. For A-21. there was recently a vast attempl at improvement, combining zll
parties: the government bureaucrats, their accountants university financial officers, and a
few faculty, What resoted? A compromise, and not a very brlliant one.

Thus government policy, when it requires scientific advice on matiers that are intrins-
cally uncertain, is likely to fall into the governmeni mold: compromise. And that, I believe,
15 a source of confusion

VIIL. Fuzzy Sets and Fuzzy Thoughts

The misuse of numbers and equations to project the future or to extrapolate nsks is by
24 means limited to the National Research Coundl. Within the acadermc community AR
there can be similar fads and fancies. Recently 1 have been reminded of one cusious such
case: The doctome of “fozzy” sets.
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How can a set be Tuzzv? Recall that a set 5 15 completely determined by knowing what
things ¢ belong to S (thus zeS) and what things do not so belong. But sometimes, at
15 said, one may not know whether or not ze5. So for & fuzzy set F' one knows only the
bkelihood {call it A{z)) that the thing = iz in the fuzzy eet F. This measure of likelihood
may tange from 0 (z is eertaindy not in F') all the way to | {z 15 certainly m £} Now I
misht have said that A{z] is the probability that = isin F, to make this definition & part of
the well-established mathematical theory of probability, The proponents do not so formulate
it. becaunse their intention is different and much more ambitions: Replace sets everywhers
by fuzzy seis!

By the grand zet-theorenc doctnine, every mathematical concept can be defined in terms
of sets, hence this replacement 15 very extensive, [t even turns out that many mathematical
concepts can be fuzzed up in several ways, say, by varying the furzy meaning io be attached
to the standard sei-thecretic operations (intersection, umion, etc.] of the usual Boolean
algebra of sets  And so this replacement doctrine has already produced a considerable
literature: on fuzey logic, fuzzy graphs, fuzzv pattern recognition, fuzzy systems theory,
and the hke. Much of this work carmes large claims for applications of this fuzzy theory.
In those cases which [ have studied, nome of the applications seem to be real; they do not
answer any standing problems or provide any new lechrniques for specific practical situations.
For example, one recent book is entitled Applications of Fuzzy Sets to Svstems Analvas.
The actual content of the book is a sequence of formal fuzzy restatements of standard
mathematical formulations of mazenals on programming, automata, algonthms, and (even!)
categories,  but there 1= no example of specific use of such fuzzy restatement. Une reviewer
(in. Mathematical Reviews) noted a “minimal use or lack of instructive exampies—the title of
the hock purports applications.” Another more recent book on fuzzy decision Lheory states
as one of its six conclusions, *It iz a great pity that there exist only very few practical
applications of fuzzy decision theones, and sven practical examples to illustrate the theones
are scarce’” This leads me to suspect that the imitially ingenious idea of & fuzzy set has
been overdeveloped in a confusing ouipounng of words coupled with spurious clams to
impariance,

There are other examples—eybernetics, catastrophe theory— where an originally inge-
nicus new idea has been expanded uncritically to lead to meanmngless confusion

IX. Compromise Is Confusing

Eut enough of such troubling examples of confusion. Let me summanze where we have
come. As with any branch of learning, the real substance of mathematics resides in the ideas.
The ideas of mathematics are those which can be formalized and which have been developed
lo fit issuwes arsing in science or in human activity, Truth in mathematics is approached
by way of proofl in formalized systems. However, because of the paradosical kinds of self-
reference exhibited by the barn door and Kurt Godel, there can be no single formal system
which subsumes all mathematical proof. To boot, the older dogmas that “everything = logic”
or “evervthing 15 a set” now have competition-"everything 1= a function.” However, such
guestions of foundation are but a very small part of mathematical activity, which continues
to try to combine the right ideas to attack substantive problems. Of these 1 have touched
on only a few examples: Finding all simple groups, putting groups together by extension,
and characterizing spheres by their connectivity, In such cases, subtie ideas. fitted by hand
to the problem; can lead to imumph.
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Numerical and mathematical methods can be used for practical problems. However,
because of political pressures, the desire for compromise, or the aimple desire for more publh-
cation, formal ideas may be applied in practical cases where the ideas simply donot it. Then
confusion arises — whether from misleading formulation of questions in opinion surveys, from
nebulous caleulations of airy benefits, by regression, by extrapelation, or otherwise, As the
case of fuzzy sets indicates, such confusion is not fundamentally a trouble caused by the
organizations issuing reports, but iz oceasioned by acadeimeaans making careless use of good
1deas where they do not fit.

Asg Francis Bacon once said, “Truth anseth more readily from error than from confusion.”
There remams to us, then, the pursuit of truth, by way of proof, the concatenation of those
ideas which fit, and the beaunty which results when they do fit,

I enly Longlellow were here to do justice to the sitnation:
Tell Me Not in Fuzzy Numhbers

In the ttme of Ronald Heagan
Calculations reigned supreme
With a guantitative measure
O each quabitative dream
With opinion polls, regressions
No nuances can be lost
As we calenlate those numbers
For each benefit and cost
Though his budget will not balance
You must keep percents of tume
I they won't sum to cne hundred
He will disallow each dime
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Winter, 1981

The Ryerson Lecture was given April 20, 1982 in the Glen 4. Lloyd Auditorium of the
Laird Bell Law Quadrangle.

The Nora and Edward Ryerson Lectures were catablished by the trustees of the Unbversity in December 1977,
They are intended 1o give a member of the faculty the opportunity each year to lecture to ar asdience fom the
cittite University on & significant aspect of his or her research and study. The president of ihe University appoints
the lecturer on the recommendation of & facully committes which solielts individual neminations from each member

of the facoity during che wintet guarter preceding the academic vear fot which the aspointment is mpde.
] - F 3 ap

The Ryverson Lecturers have been:

1973-T4: John Hope Franklin, "The Historan and Public Policy”

1874-73: 5. Chandrasekhar, “Shakespeare, Newton. and Beethoven:
Patterns of Creativity”

1975-76: Plulip B. Kurland, *The Povate I; Some Reflections on
Privacy and the Constitution™

1976-T7: Robert E. Streeter, "WASP: and Other Endangered Species”

1877-T8: Dr. Albert Dorfman, “Answers Without Questions and
Questions Without Answers"

1897879 Stephen Toulmin, “The Inwardness of Mental Life"

IAT9-B0: Erica Reiner, “Thirty Piecss of Silver”

1980-81: James M. Gustafson. “Say Something Theologicall®
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