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1. Introduction

It is well known that the area of a region in the plane can be computed by an appropriate
miegration around the boundary of the region leg. Hildebrand, page 306]. If the boundary
15 defined by a sequence of points connected by straight lines (& pelygon), the parametric
representation of the boundary 15 particularly simple, and an explicit formula for the arca
can be denved. Using Stokes' Theorem, this idea can be extended to derive area formulas
for regions on non-planar surfeces whose boundarnes are defined by o sequence of points
connected by appropoate curves. In this note we present exact ares formmlas for regions in
the plane and regions on the sphere whose boundaries are defined by such discrete sets of
poanls

An application of these formulas arses in computing the ares of o region on a map
Suppose that the boundary of the regon of wnterest 15 traced by an encoding desnce that
records its coordinates, relative to some user-defined {2, %) system, in & computer file. Such
a file may contain hundreds or thousands of coordinate pairs. I the map covers a zelatively
small region. the surdace of the earth can be approsimated locally by a plane, and the aren
computed directly from the (z,y) coordinate pairs. I the map covers a large region, the
earth can be approxamated by a sphere. The {r, %) coordinate pairs are then converted to
latitude and longitude using the appropriate map projection equations, and the ares on the
apher= is computed.

The vsual method for computing area 15 to divide ap the two dimensional surface into &
large number of small cells, and to add up the areas of those cells that lie inside the boundary
of the region. This method iz computationally slow. because every cell must be tested Ffor
inclusion in the region, and because high accuracy requires & small cell size. In contrast, the
formulas derived here, besides being exact, are gquickly evaluatled on a computer because the
computation is proportional to the number of boundary points. The two dimensional area
caleulation 15 reduced to a one dimensional boundary calculation.

The next section outhines the general mathematical formulation. Sections 3 and 4 give
explicit results for the plane and sphere A numerical example and concluding remarks are
presented 1n the last section.

2. General Formulation
atokes’ theorem says

f/(‘i’:-e:]“]-ﬁd.-% =% IRy (1)
5 C {Ef- !

where 5 iz the region of a surface bounded by the curve O, fi 15 the unit ontward normal

on the surface, R(t) is a parametric representation of O, and F is an arbitrary vector field.
We suppose thal the surface i specified in some way (eg. 22 4 y¥ 4 2% = 1 for the unit
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sphere), so that the unit outward normal @ can be determimed (e.g. fi = 2i —yj+ 2k for the
unit $phere). We then choose any vector field F such that the integrand on the lefi hand
side of [1) 15 unity in 5:

(VxF)a=1 (2)
With F determined {though not uniquely) by eguation {2), the left hand side of (1) simply

reduces to the area of 5, giving
d4lt
A= P TFa (3)

In order to evaluate the integrand on the nght hand side of (3), we need a descaption of
. Suppose that N pomnts on the surface are given, Py, Ps, ..., Py, and that ' is
defined by connecting these points in sequence, returming to Py (define Py, = Py ). On
each segment, from Py to Pyoy . let B(t] be a parametnic representation of the connecting
curve. There are many possible connecting curves o choose from, but the most natural
chaoice is the geodesic, the curve of minimum length (e.g. a siraight line in the plane, a
great crele on the sphere). The geodesics can be found in princple from & description of
the suriace (for example, Wenstock pages 61-82), The collection of the N geodesies R (1]
connectmg the N points Py, Pa, . ., Py, constitutes the parametric description Rt} of
' on the right hand side of {3)

Now that we have speafied how 1o construet Lhe integeal 1 (3) as a sum of integrals
along the N comnecting geodesics, the area formula can be written more explicitly as

N piy 4R
:u‘ifu F(s)- St ds ()
k=1

where s is the are length parameter along the geodesic Rg(s), and L 15 the total arc length
of the k-th segment. The geodesics need not necessanly be parameterized by are length,
but this 15 what we have used in the sections that follow.

The determination m prindple of all quantities is now complete. To summarize the steps:
Given a surface and a set of points P, k= 1.2, ..., N that defines the boundary of a region
on the surface;

{1} Find the unit outward normal on the surface, fi;

{2) Find a vector field F that satisfies equation (2} (V=2 F)-fi=1;

{3) Find a parametenzation Ri(s) of the geodesic from point Py 1o Py
{4) Form the integrand mn equation (4) and do the integration;

{3) Sum the contributions in (4) to get the area of the region.

Some specific cases follow.

3. The Plane
In the plane z = (1, the unit outward normal is 1 = (0,0, 1) and the condition (2) on
the components [Fy, Fy, F3) of F is
aFy  8F

ﬁ—r-azl_ [5]’
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We choose Fy = —y/2 and Fz = /2. The goodesics Ris) = [zis),y(2),0) are straight
lines, and the integral in equation (4) becomes

Loyl ¢ dy  de :

Let the boundary points Pp have coordinates (z3,y5) The parametric equations for the
boundary segment connecting Py and Py.; (of length L)) are

z{s) =2+ Tk = 2} y(s)=ye+ ihm-z — i) (7)

Substituting these expressions into equation (§) with Az =z, — 2y and Ay = Ve — ¥4

Eives
;_1f"‘{,, Sy oy 2y) (A,
O W ekl T P ST

=1fL*{="ki:# —“_h}ds
2 Jo Lo Ly i8]

(zapdy —yris)

!
i
=

fl

1
= SlER b — VK]
It follows that the area of the polygan in the plane whose veriexes are the points (24,45 15

N
1« \
A=z Z[l' B+l — ¥t i) {9)
= k=l
where 2n.11 = o1, ¥N+1 = 71, and the points {25, 4,]) trace the boundary in a counter-
clockwise sense. If the order of the points is reversed, the negative of the area will result

4. The Sphere

Withoul loss of geperality we consider the unit sphere. It will be convenient to use both
rectangular and sphencal coordinates. The longitude &, measured positive eastward, and
latitude ¢, measured positive northward, are relaled to =, 9, z via

r=cosd cosfl y=cosgeinf z=smg (10

and the vnit vectors in the 8, ¢, and radial direclions are related to the rectangular onit
vectors 1,7, k via

_y r =

T .
B

V1—2 4] = s

g = (sing cosd i 4 (sing simd 1§ + (~eosd )k

Tr ¥r - 116
BT s BT e il W

g = (—smf i + (cost )] = (1le)
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0, = (cosd cosf i + (cosg sind)j + (sind )k = 21 + yj + =k (1)

The unit outward normal on the sphere is just the unit radial vector i, With the vector
F written in terms of its spherical components F = Fyiip + Fyiiy + Frii,, the condition (2]
becomes [Hildebrand|

1 a8 ¥
) oy, = - —_—— — ¥ 12
(¥ xF)-i, i EEI:F'#'J 5¢{cas¢ F.-;]] 1 {12)
This 15 mosl naturally satisfied if we take
a : a .
H—[.b[-::m:,.‘k Fa) = —cosd E?_E"Jr ¢ =10 {13)
ar o
Fo= g+ 0L  peonm (14)
S0

where g 15 an arbitrary function of #, and & s an arbitrary function of . No radial
dependence has been introduced into g and f becaunse we are only interested in the values of
F on the surface » = constan?, Also, the radial component of F, F,, is ol no conseguence:
any tangeni vector Lo the sphere; dR/di, has no radial component, so the dot product
F.dR/dl anmbilates any radial contribution from F. Therefore we take F. =0

Now that F 13 determined (up to two arbitrary functions}, we tum to the parameter
iation of the boundary, We suppose that N paire of longitude/latitude coordinates are
give, namely Vi, o for k= 1,2,... N (with dxy =8y and ¢y = 1), that form the
boundary of the regon when the points are connected in the given order. The boundary
points will also be denoted by P, and by their rectangular coordinates (24, y5, 25). We can
use equation (10} to go from spherical to rectangular cocrdinates.

To simplify the notation a bit, let & = 1 and consider the great cireular are frem Pj te
Pa. Let A represent the angle subtended at the center of the sphere by P; and Py, Then
4 satisfies cos A = P1-P3 since all the Py are umit vectors: Note that A is also the length
of the arc from Py to Py. Let o be the arc length parameter along the great circle from
Py to Py, and let K(a) be the position vector along the great circle. Since Ria) liss in the
plane spanned by Py and P, we can write

Ria)=AlalP; + Bla)P; [15)
where A{a) and B(a) are determined from the following two conditions:

(1) R{a) lLes on the unit sphere: R-R = 1;

(2] The angle between P; and Ria) 5 a: PR = cosa. Using eguation (15) for R and
the fact that PPy = cos &, these conditions translate mto

A'+ B 4 24BcosA =1 A+ BeosA = cosa (16)
respectively. Solving for A and B, we find

_anA —a) i sin {a ) .
e iy &l
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Thas 15 the arc length parameterization for the great circle through Py and P.

Witk R{a) determined, the next step is to compute dR/do and then F-dR/do . Com-
putation of dR/da is simple, but we wani to express the result in terms of the unit vectors
g and 04, to fachiate taking the dot product with F. Toward this end, write

dR
— = (Fahip= Hia)iy (18)
da
where (Ga) and H{e) are determined as follows. Let ' denote d/da and write Ria) =
(e{a ), y(a) z(a)) where the lunchions =, y, z are given explicitly by the components of
equation (17). Then the dot product of equation (18) with Gy and iy mives, respectively,

Gla) and H{a). Using eguations (1lab) to express g and fiy in terms of i3,k we have

f{a) = R'4y
= (= == E|— .E'II'-E -l i i— il j]
E . ) BV s A (19}
_ 3y —ya!
T W=
and
Hia)=R"a,
= is T &z o n= - f —
=|:|"1+ —tk-—]- — _th:_:-J
WS e
I )
et oo $EE o)
V1 —z22 1 —37 {20}

L lwle 4 y'y 42l =2

-2

where the last step follows because (z'z + 3"y + 2'2) is the derivative of the constant (z° —
y! g 2:|_.'r2
Using equations (14) for the components of F and converting from 6,6 1o 2,5,5 gives

[ e 1t AR

F=|= + ,
V1—z4 o1 =27]

fig + (e )i g. (21)

lising the components of dR/do from equations (19) and (20), we have

i o -z 'k
piR _ [Ty ¥ ] [ 1L {‘”. (29)
dey Vi—=z2] [1—2?  1—27 W1 —z?

Thie 15 the integrand for the segment of the boundary mtegral from Py to Py, Integration
15 with respect to o, from a =0 to a = A, The variables #,u, 2 and their denvatives (with
respect to o | @',y 2! are all functions of &, as given by the components of equation (17),
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We can choose the functions g and & to simplify equation (22), Nothing is gained by
retaiming the last lerm, so we take h = 0. Ths simplifies the integrand to

dRt. (o9’ —we'Jald) —2)
da 1-2z?

Notice the potential singularities at = = 21, i.e. the North Pole and the South Pole Writing
the denommator as 1 —2® = (1 —z)(1 + 2}, we see that il g = | we remave the singularity
at z =1, and if g = ~1 we remove the singulanty at 2 = —1. We must not put g = 0,
since then F would vanish everywhere on the equator, violating equation (2} there. This
would lead o a value of zere for the areas of the northern and southern hemispheres. In the
following development we take ¢ = 1. In case one of the P is the South Pole, g should he
replaced by —1

F-

(23)

We can now wate the first term in the area summation of equation (4) as
i ] I
Ty’ —pr
Iy = [ <L 0 i (24)
ol I =
Notice the similarity to the expression for the plane, equation (§). We have explicit expres.

sions for =y z.x’,y' from the components of equation (17) and its derivatives, namely

. slu[ﬂ—u]x sim ()
= —— iy + —r
sindA 0 sinA

(252

p o=cos (A —a) cos | o)
xS e ———y e ey
sim A s A
and similer equations for y,%' and z,2'. Substituting these expressions mto equetion (24)
end using standard trigonometric identities Jeads to
i do
o SINA+zsin(A —a)Lzssina

(258)

L= (zw2 —xs) (26)

Recalling that this is the contdbution to the area summation from the segment k& = 1
between P; and P, we can write tli= tota]l grea as

i)

A=) (ewiss —1zra )i (27)
hm= ]

where the terms Jy are the integrals

s do
Jg-= , _ — 28}
: j; sin (Ay) + zpsin (Ap —a) = 25, 5ina (28)

and Ay comes from cos{A,) = PyPy;, The integral can be put into a standard form
and explicitly integrated with the substitution w = £ Under this transformation, da =
dw/(tw], sing = (w —w™')/% and the integral becomes

5 2 dw
= q
I j; aw? + 2 + ¢ i)

10




SOLSTICE

where

2= Exp] = E-J,E'm' b=tsind E::I[.Em'—:k_;]. {E-I:I.}

The subscript k& on A has been dropped to reduce notational clutter.
The value of J; depends on the sign of the discriminant [ = 2% — ac_ or

D=zl + :i_,_] — 223284 cos A — sin?A (31)

The three cases are [Marsden, Appendix A

n.?lfl In [E*ﬂ'—h_"'@] (L =10

| ﬁl— I
Je= 0 L rctan I‘}'"i'ba] (D <) (32)
o (£ = 0]

where the expressions must be evaluated between the upper and lower limits of w = ¢ and
w = 1. The imaginary parts of the resulting complex expressions are zero, as they must be
since: the original integrand and bmits are real, Algebraic simplification leads us to define

Q=zp-+zi15 414 cosA [33)

m terms of which the expressions for J; become

1 LR '-'T;-'- 1
2 ln [Q——_Jﬁ_ (D = 1)
Jp= ;l,i_ﬂarr.t.nn %] (D < 0] [34]

(1435 1+2451 1008 4] (£ =10]

This completes the determination of the terms in the ares formula (27). We will now sum-
marige the steps and put them in an algorithmie format.

Problem:

Given & sequence of (longitudelatitude) coordinates on the unit sphere, (B dp), k =
1,24,..., N, find the area of the region that is enclosed when the points are connected in
sequence by ares of great circles.

Solution:

(1] Set the running sum 1o 0 and set k to 1.

(2) Compute cos & = PPy either from @424, + YaVke1 + 2iZhe oF fTom cosd
easgpiy cos (Hyy —#8y) + sindy singy.y . Notice that we won't ever need A by itgelf, just
ks cosime,

(3) Compute @ from (33) @ =zp 43441+ 1+cosh or Q =singg +sindhpy; + 1+ cos A,
(4) Compute the discrimimant D from (31): D = 2} + 2}, - 2224 1008 A — sin?A o7
D= (singy +smngpq) —(1+cos ANT —cos A + 2sin dysin gy ),

11
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(5} Compute the integral contnbution Ji in the area formula (27), using the appropriate
form of equation (34).

(6} Compute the first factor in the area formala (27), Ty — WS i) or cosgdy cosdis
sin (fp.; — @)

(T) Multiply together the results of steps 5 and 6 to get the k-th term m the summation of
(27), and add this to the running sum

(B If & i5 less than N then increment & and go to step 2.

A computer program that implemenis the above algorithm is given in the appendix

5. Wumerical Example and Remarks

It is of interest in Arctic oceanography io calenlate the areas of the watersheds that drain
mto the Arctic Ocean. The boundary of the Asian watershed that drains into the Arciic
Ocean was digitized from a Mercator map of the world by tracing its creumference with an
encoding device. This produced a computer file with 672 (z,p) coordinate patrs, in which
the = axs coincded with the eguator; the ¥ axis coincided with the Greemwich Meridian,
and the unit of length was chosen to be one degres of longitude on the eguator. These (z.p)
map coordmates are related to longitude § and latitude & by [Suyder]

180 80, | I
] T.Iﬁ. g = 4 in |arctan (E - 1)] |:_35_|

where # and ¢ are in radians. Inverting these relations and substituting the (z,y) map
coordinates gives a sequence (84, @), k = | to 672, of points on the sphere that defines the
boundary of the watershed

Al first a simple mtegration program was wntten in which the region lying between the
minimum and maximum latitudes and longitudes of the watershed was divided into differen-
tial elements of size Ad by A8, The area of the walershed was calculated as 3 cos ¢ Ag Al
where the summation was taken over all elements inside the watershed boundary. With each
degree of latitude and longitude divided into 32 parts, this amounted 1o 5,918 720 elements,
of which 2 516,738 were found to lie within the watershed. The program required more than
51 hours of elapsed time on a Sun workstation to arrive at the area, 1.424 = 107 km? .

This dismal performance led to the denvation of the formulas in this work, Using the
same 672 coordinates for input, the program in the appendix armived at the same answer
in abont two seconds, The 5.9 millon complicated compansons in the first program were
replaced by 672 iterations of simple calculations,

OFf course in any real physical problem such as the one described here, there are sources
of error such as uncertainty in the exaci location of the boundary, inadequate representation
of the boundary by too few points, and the non-sphericity of the earth. These problems
can be deall with by acquining better maps, digitizing the boundary with more points, and
modifying the formulas here to take into account the flattening of the earth at the poles,
which introduces 2 correction on the order of three parts per thousand.

12
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Appendix — Fortran Program

Prﬂ‘gl'ﬂm arei
implicit undefined (a-z)

D oDon O n DD N DN

non o

o]

Read a sequence of (lengitude,latitude) coordinates.
Compute the area on the unit sphere that is enclosed by connecting
these pointe in sequence with arcs of great circles.

Fefer to '‘Computing Arems of Regions with Discretely Defined
Boundaries".

Constantsa,

real pl, prlverlEl
parameter (pi = 3.14159266368079, pilveri80 = pa /[ i80.0)

Parameters.

integer maxPoints
parametor (maxPoints = 1000)

Mean radius of earth in ¥Kilematers,

real Hearth
parameter (Rearth = 6371.2)

Veriables,

integer n, k

real sum, first, integral, cosDelta, T, 0, K
real cosPhiK, cosPhikl, =inPhik, =sinFhikKl
real phi{maxPeints), theta({maxPoints)

character*1l4 filename

Read number of lenflat coordinate pairs, and
the name of the file comtaining those coordinates.

roead(6,*) n, filename

Read the coordipates. Lomgitude is first. Both in degrees,

14
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[ T e B 5 1 i I I

o &N

2 4 B

i

open(l, file=filename)
read(1,*) (theta(k),phi(k), k=1.,n)
close(l)

Convert to radians.
do 10 k=1,n
phi(k} = phi{k) =* pilverigo
theta(k) = theta(k) =* pillveriB(
continue

Make the sequence of coordinates cyclic.

phi(n+1) = phi(1)
thetai{n+t) = thetali)

Initialize for the summation.
Bum = 1.0

cosPhiK! = cea(phi(1))}
$inPhiKl = sin(phi(1))

de 20 k=1,n

Freviouz "k+1" wvalues become new "k values.

cosPhik
s51nPhik

cosPhikl
ginPhiKi1

Get new "E+1" valuesz.

casPhikl
=inFhikK1

cos(phi(k=1})
sin(phi(k+1) )

Compute first factor im k-th term of summation.
first = cosPhik = co=zPhiRl ¢ sin(theta(k+1)-theta(k}}

Compute integral in k-th term of summation.
First get cosine of delta, then discriminant, then .

cosDelta = cogPhik = cosPhiKl = cos(theta(k+l)=theta(k))

+ sinPhik = ginPhiKi
D = {5inPhik + sinPhiKi)==2

= (1.04+cosDelta)=(1.0-coslelta +2, O=zinPhik=ginPhikl)
§ = s1nPhiK + =inPhiXl + 1.0 4+ cosDelta

15
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<
if (D .gt. 0.0) tshen
R = sgqrt (D)
integral = alog ( (OQ+K)/(Q-R) ) / R
else if (D .1t. 0.0) then
R = sqrt (-D)
integral = 2.0 = atan ( R/0 ) / R
else
integral
endif

§ / ({1.0+21nPhi¥) ={1.0+=inPhik1)=(1, 0+coslelta))

fccummlate sum amd go on To next segment.
gsum = sum + Iirst = integral
20 comtinue
[~ Write resultz and stop.
write(6,903 sum, sum/(4.0spi), sum+Rearth=Hearth
stop
90 format{(lx, ’‘area (om unit sphere) = ', el4.6,
flx, 'area / (4%pi) = ', eld:6,

f1x, ?area (dm=*2 on earth) = ', el£.B)
end
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