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CHAPTER 1

Introduction

An analysis, design, and optimization methodology for structures that vibrate

in the 1 kHz to 10 kHz frequency range has been developed. This methodology

is the synthesis of several established research fields including structural dynamics,

compliant mechanism design, finite element computational analysis, and structural

optimization via an evolutionary algorithm.

Three primary contributions are outlined in this dissertation, the first of which

is the unification of the computational methods required for analyzing and design-

ing structures with integral compliant mechanisms. In Chapter 2 a review of the

underlying finite element theory is given, and this review is followed by two specific

numerical examples for method verification.

The next two chapters represent the second primary contribution of this work. The

analysis and design of structures with integral compliant mechanisms is introduced

in Chapter 3. Structural size and topology optimization using a genetic algorithm is

then discussed in Chapter 4. Multiple spatial scales are examined including smaller

“unit cell” structures that are integrated into larger “global” structures in order

to attenuate vibro-acoustic response. Extensions to this methodology are discussed

including: unit cell designs using alternative (i.e. nonmetallic) materials; parallel and

serial connected structures for enhanced attenuation or multi-functional properties;

and the analysis and design of three-dimensional (3-D) structures. Supplementing

1
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this work, size and topology optimization are brought forth to “tune” structural

dynamic response to a desired frequency range, and to illuminate possible alternative

unit cell topologies, respectively. Hence, the goal in these chapters is to establish the

concepts, definitions, and analytical tools associated with designing structures with

integral compliant mechanisms, and to illustrate the design process with numerical

examples.

The third primary contribution of this research is set forth in Chapter 5 where

the analysis, design, manufacturing, and vibro-acoustic testing of two prototype

structures is explained. The first structure investigated has a traditional square core

design prevalent throughout much of the prior literature, thus serving as a control for

comparison. The second structure has a compliant mechanism core. In this chapter

the experimentally measured dynamic response of each structure is quantitatively

evaluated and compared with computational predictions.

In Chapter 6 an overview of the analysis, design, and optimization methodology

is provided, synthesizing the contributions listed above. Two potential applications

of this research are discussed including the manufacturing of practical vibro-acoustic

isolation panels for aerospace vehicles, and the design of vibration isolation couplers

for rotating shafts in automotive vehicles.

Chapter 7 concludes this dissertation with a discussion of future directions for

this research. These directions include the development of adaptive-passive, active,

and multi-material/fluid-filled structures, in addition to the development of possible

biological sensors and structures. Lastly, the major accomplishments of this research

are summarized.
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1.1 Motivation

Hearing loss prevention has been declared one of the 21 priority areas for research

in the next century according to The National Institute for Occupational Safety

and Health (NIOSH) [72]. It has been reported by NIOSH that roughly 30 million

Americans are exposed to noise induced hearing loss (NIHL) hazards in their work

environment. Furthermore, Kosko [52] reports that studies have shown that noise

can cause stress that results in cases of long-term memory impairment, loss of ability

to read, and sleep deprivation. Looking to the source of noise in our world, we see

that engineered structures are seldom subjected to purely static environments since

we live in a dynamic world where objects are in motion. This dynamic environment

generates mechanical vibrations that at increased frequencies create noise, which not

only has an adverse effect on human performance, but also diminishes perceived

product quality as discussed by Frampton & Clark [26].

Traditional analysis of vibrations has focused on lower frequency response since

these modes produce the largest displacement. More recently, the middle to high fre-

quency region has gained attention in conjunction with fatigue, sound transmission,

and lightweight vehicle response. Spring-mass absorbers, visco-elastic coatings, and

active control solutions have proven effective in vibration attenuation across these

frequencies. Nonetheless, these solutions can lead to other problems like increased

system complexity or weight since they are commonly an addition once a problem

has been identified. Moreover, modal analysis in the mid-frequency range presents a

challenge due to the lack of a straightforward computational strategy. Thus, the mo-

tivation behind this research is to develop a comprehensive methodology that couples

an efficient computational approach to a novel design paradigm for the reduction of
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Figure 1.1: International space station, from NASA [70]

mid-frequency structural-borne noise.

Fields of application for this research are accordingly broad and include mechan-

ical, aerospace, naval, and civil engineering, or any application in which structural

response generates or transmits noise. One example of a current need for such a

methodology can be found on the International Space Station (ISS) shown in Fig-

ure 1.1. The American Association for the Advancement of Science [1] and Oberg [74]

have reported that many of the valves, fans, and pumps that are mounted to the

ISS excite resonant modes within the structure. As a result, a considerable amount

of structural-borne noise is generated upwards of 70 dB within the workspace for

the astronauts. The Military Audiology Association [63] has studied this problem in

depth since there is a concern that astronauts are not able to obtain “auditory rest.”

In fact, long-term space flight has been shown to produce 30 to 50 dB of NIHL due

to exposure to noise in the 4 kHz to 6 kHz range. Absorbent padding has served as

the “band-aid” solution thus far, but for future space flight a more robust approach

that is an integral part of the design process is appropriate.

Further research associated with the phenomenon of turbulent wall pressure fluc-
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distances of microphones from the nearest fuselage skin varied from 26.5 to 61 in (0"67 to 

1.55 m). The distances between microphones varied from 27 to 128 in (0.68 to 3.24 m). The 

arrangement yielded a reliable way of measuring the reverberant noise field in the acoustic 

enclosure. 

A ground test was conducted to determine the reverberation time in the acoustic enclosure 

without any noise reduction treatment. The acoustic absorption of the enclosure would be 

expected to change slightly when rubber wedges are bonded to the panels. However, the 

addition of damping tape should not affect the reverberation time. The estimation of rever- 

beration time and the corrections for the room absorption are discussed later in section 3.1. 

All microphones were calibrated before and after each flight test, using a 250 Hz/124 dB 

piston phone. Data from all microphones were recorded on a tape recorder in FM mode at a 

tape speed of 30 in/s (0.76 m/s) to produce the analog source tape. The analog recording was 

later replayed into digitizing equipment to obtain a digital tape with 20 K samples/s. 

A computer program with a CDC 6600 computer was used to reduce the digitized data 

and obtain pressure power spectral densities (PSD) and sound pressure levels (SPL) 

with the desired resolution bandwidth. An averaging time of 4.61 s was used for all data 

reduction. 

The interior microphones and other instrumentation probes which were located inside 

the acoustic enclosure did not generate spurious noise in the enclosure. 

2.4. EXCITATION 

The aerodynamic pressure fluctuations on the exterior of the acoustic enclosure were 

recorded at each flight condition. However, a preliminary analysis of the data showed large 

experimental scatter indicating microphone failures, probably due to the formation of a 

thin film of ice on the outside surface of the microphone diaphragms. Therefore exterior 

io 5 

g 
g 
g 

IO 4 

>o 

10 2 iO 3 

Third-octa~e center frequency (Hz) 

Figure 3. Estimated spectra for turbulent boundary layer excitation, o 
0"55. 

104 

o, Mach 0.85; • • ,  Mach 

pressure fluctuation data acquired during earlier flight tests [8] were used for predicting the 

excitation spectrum. Boundary layer thickness and local skin friction coefficient were 

estimated, again with data from reference [8], and are shown in Table 1. The estimated tur- 

bulent boundary layer excitation spectra at a midpoint on the acoustic enclosure are shown in 

Figure 3. 

The properties of the turbulent boundary layer excitation vary along the acoustic enclosure. 

The variations in boundary layer thickness, 8, and local skin friction coefficient, Cf, are 

estimated to be +20 ~o and ±3 ~ ,  respectively. A typical variation in the excitation spectrum 

Figure 1.2: Estimated pressure spectrum for turbulent boundary layer excitation:
Boeing model 727-200 aircraft (upper curve for Mach 0.85, lower curve
for Mach 0.55), from Bhat & Wilby [6]

tuations has also provided various potential applications for this research as outlined

in the comprehensive review by Bull [12]. It is known that surface-pressure fluc-

tuations give rise to several engineering problems: 1) the vibrational generation of

acoustic radiation into space, such as a vehicle cabin; 2) the generation of external

acoustic radiation from piping systems by vibration of the pipe walls excited through

turbulent flow; 3) the transmission of pressure fluctuations through jackets of towed

underwater sonar detection arrays; and 4) the generation of acoustic radiation into

the flow as a result of vibration of a flexible boundary surface excited by a fluctuating

pressure field.

Specific to item 1, commercial aircraft design has revealed that a common source of

noise in aircraft cabins is turbulent boundary layer flow causing pressure fluctuations

on, and excitation of, the fuselage exterior. Bhat & Wilby [5, 6] note that the

frequency spectrum of excitation at common cruise speeds generally extends upwards

of 10 kHz as shown in Figure 1.2. Traditional approaches to this problem include
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between adjacent stringers and adjacent frames are 9 and 20 in (22.86 and 50"8 cm), respect- 

ively. Circumferential tear straps, which are 0.064 in (1 '63 mm) thick, are bonded onto the 

skin beneath the frames. Above the window line, the fuselage skin is not fastened directly to 

the frames, but a 9 in ! 20 in (22.86 cm ! 50"8 cm) panel segment formed by adjacent 

stringers and tear straps can be considered as a basic vibrating element in the fuselage 

/ -  \ , ,  

3Oft 
(9.14m) 5"5in (13,97cm) 

Acoustic bulkhead 

Figure 1. Schematic representation of acoustic enclosure. Area: fuselage skin (radiating) = 327 ft 2 (30.38 

m2); floor and bulkheads (non-radiating) = 330 ft: (30.66 m2); total = 657 ft 2 (61.04 m2). Volume = 1170 ft 3 
(33.11 m3). 

Fromes / T e a r  strop~ 
Stringers ~ .  ./~-.~0~;., / ~ ~ .3 in (76 2 rrrn) 

'/ j ~ ~ ~ /  ~ "~zf%b;?edgex." ~ " ~  . 

,n Str" ger~ I I~<:~ ~2̂ L n ,- t:>~l I 9 0 in 
~ P a n e l  ~ 86 cm) 

O.04in ( 1.02 ram) ~, 
Tear s t r a p s - ~ d \ ~ , ~ ,  ~'~ thick 

"k29j ~ I< 20 in (50.8 cm) >1 

(a) (b) 

Figure 2. Representation of fuselage structure. 

structure. A diagrammatic representation of a typical fuselage construction is shown in 

Figure 2(a) and (b). 

The fuselage structure around the windows deviates slightly from the foregoing description. 

The longitudinal strip of structure containing the windows has a width equivalent to four 

longitudinal stringer bays on each side of the fuselage. The fuselage structure in this region 

is fabricated from a thicker skin and it is substantially stiffer than the basic fuselage panels. 

Including areas around windows, the curved wall of the acoustic enclosure is formed by the 

equivalent of 32 stringer bays in the circumferential direction and nine frame bays along the 

length of the enclosure. The fuselage structure which deviates from the regular stringer-frame 

Figure 1.3: Representation of aircraft fuselage structure, from Bhat & Wilby [6]

the application of damping tape or rubber wedges to the inside skin of the aircraft

fuselage to reduce vibro-acoustic response as illustrated in Figure 1.3. More recent

approaches include active control to either cancel structural vibrations directly, or

to cancel acoustic pressure fluctuations within the cabin, per Gardonio [29].

While these solutions are effective for this specific engineering problem, a more

comprehensive approach to the design of structures that minimizes overall system

complexity is warranted. Specifically, the research presented in this dissertation is

aimed at demonstrating that addressing vibro-acoustic noise challenges during the

design stage of a structure can lead to a reduction in transmitted noise, thus allowing

for the structure to fulfill multi-functional roles. In other words, the structure not

only meets strength requirements, but also facilitates a quieter operating environment

without the addition of complicated electronics or excessive weight. This translates

into increased customer satisfaction and reduced acoustic signatures, both of which

are desirable from an engineering standpoint.

1.2 Background & Literature Review

With regard to engineered structures, the broad topics of computational me-

chanics and dynamics, compliant mechanism design, and structural optimization are

synthesized in this research. From these broad topics there are five specific areas
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of research that are drawn upon to assess the current state of the arts: computa-

tional methods for mid-frequency structural dynamic response, truss/lattice vibra-

tion analysis, passive versus active vibration isolation, static and dynamic analysis

of compliant mechanisms, and structural optimization of trusses using evolutionary

algorithms. The subsequent sections provide a literature review of the pertinent

research within each of these fields.

1.2.1 Mid-Frequency Structural Dynamics

A thorough understanding of existing computational approaches is a prerequisite

to the development of a rigorous methodology for the design of structures in the mid-

frequency range. Since any computational analysis is only as good as its accuracy, a

robust analytical strategy must be formed. Furthermore, a complete understanding

of the fundamental dynamics at hand must be sought prior to the introduction of

such an approach. To this end, the dynamic analysis of mechanical systems can

be divided in to three general frequency regimes including low, middle, and high as

outlined by Vlahopoulos & Zhao [100].

In the low-frequency regime all members of a structure are short relative to the

wavelength of vibration. Conventional finite element analysis (FEA) has been shown

to be an acceptable computational technique in such applications since modal density

is low and natural frequency uncertainty is relatively small, as discussed by Huebner

& Thornton [41], Shabana [90], and Yang [106].

In the high-frequency regime all members of a structure are long relative to the

wavelength of vibration. Conventional FEA is incapable of capturing higher order

modes and wave phenomena within the system unless the number of elements is

increased prohibitively. To reduce computational time and uncertainty, statistical

energy analysis (SEA) and energy finite element analysis (EFEA) methods were de-
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veloped by Lyon [62] and Bouthier & Bernhard [10], respectively. These methods

allow for proper characterization of structural dynamics for high-frequency applica-

tions and they work well when all members of the structure have high modal density.

The mid-frequency regime is then considered when some members of the structure

are long and the rest are short relative to the wavelength of vibration. In this case,

FEA is still unreasonable in terms of computational cost due to discretization of

long members, while both SEA and EFEA contain assumptions that are relevant

only when every component of a structure has high modal density. Due to the short

members of the structure, these energy methods cannot properly predict resonant

effects. Accordingly, hybrid finite element methods merging FEA and EFEA have

been proposed by Vlahopoulos & Zhao [100]. While this computational strategy

produces acceptable results, it is also complex for simple truss-like structures since

it requires the solution of two analyses (i.e. EFEA for long members and FEA for

short members) in order to fully characterize the dynamics.

Covered comprehensively in the work of Doyle [17, 18] in 1989, the spectral finite

element method differs from the conventional FEA method in that wave propagation

effects are included in the formulation of a finite element. Consequently, there are two

major simplifications that arise. First, element subdivisions of structural members

for proper mass and stiffness distribution are no longer required, thus reducing the

general size of the problem. Continuous single elements between structural disconti-

nuities can be utilized. Second, due to the ability to accurately and efficiently model

wave propagation, this computational approach allows for straightforward modal

analysis in the mid-frequency range. Thus, the spectral finite element method is

exploited throughout the work presented herein and serves as a practical tool for

mid-frequency structural dynamic analysis.
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Figure 1.4: 3-D truss made from an aluminum casting alloy, from Wallach & Gib-
son [102]

1.2.2 Analysis of Truss / Lattice Structures

The ability to control either the static or dynamic response of a structure has

generated great interest within the structural design community. Particularly, truss

structures, sometimes referred to as lattice or cellular structures, have been proven

across engineering disciplines to provide a light, strong chassis having multi-functional

characteristics that can be utilized in support of more complex machines and systems.

From a static analysis perspective, advances in the design of truss structures are

still being made as demonstrated by the recent work of Wang [103] who focused

on a unit cell analysis approach for functionally graded structures. Other examples

include the work by Bezazi et al. [4] who examined the static properties of a new

reentrant honeycomb composite, and Chiras et al. [14] who optimized the structural

performance of truss panels with a tetragonal topology. Prototypes of novel designs,

as exemplified by the structure in Figure 1.4, are also being manufactured in order to

experimentally characterize static response. Various manufacturing processes, such
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as investment casting, are being explored as discussed by Wallach & Gibson [102] and

Wadley [101]. Despite this ever growing body of work, the research field pertaining

to the static response of truss structures is, for the most part, well established.

From a dynamic analysis perspective, Brillouin [11], Langley [56], Mead & Parthan

[67], and Noor [73] are but a few researchers over the last century that have studied

the basic principles of wave propagation in periodic lattices. Structures with “band

gap” characteristics have been identified and become the subject of a great deal

of investigation as evidenced by the work of Fish et al. [25], Halkjaer et al. [33],

Hussein et al. [43], Martinsson & Movchan [65], Ruzzene et al. [85], and Sigmund

& Jensen [92]. Such structures have frequency bands in which wave propagation is

either hindered (i.e. “stop bands”) or unhindered (i.e. “pass bands”).

Specific to larger periodic truss beams, Signorelli & von Flotow [93] used a transfer

matrix analysis to establish that these structures exhibit complex mechanical filtering

properties when subjected to vibration. Bondaryk [9] also showed, via a direct global

stiffness matrix approach, that larger truss structures with varying strut lengths

tend to a low-pass frequency characteristic. Furthermore, El-Raheb & Wagner [20]

proposed a transfer matrix method for the evaluation of the vibro-acoustic response

of periodic sandwich truss panels. El-Raheb [19] then went on to use this transfer

matrix method to examine the frequency response of curved sandwich truss panels

having either fluid-filled cavities or visco-elastic constrained layer damping.

In has been shown in much of this prior work that periodic lattices or truss

structures can often be analyzed at both “local” and “global” scales. The local level

analysis can often predict the global response leading to a reduction in computational

effort. This reduction in computational effort then allows for greater freedom in the

exploration of alternative designs, the execution of optimization routines, or the
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sizing of prototype structures.

The research presented in this dissertation moves the dynamic analysis of periodic

truss structures in a new direction. It is based on similar research performed by

Ruzzene [84] who also exploited the aforementioned local-global approach in studying

the vibrations of and sound radiation from sandwich beams with periodic truss core.

Ruzzene investigated two structures composed of a traditional “square” core topology

and a “reentrant” or negative Poisson’s ratio core topology, respectively. Thus,

Ruzzene’s work serves as a seminal framework for this research in three ways. First,

Ruzzene demonstrated that truss beams with reentrant core radiated less sound.

The deformed shapes of the reentrant core suggested topologies similar to compliant

four-bar mechanisms. Second, the spectral finite element method proved to be an

efficient technique in the analysis of structures having multiple spatial scales and

complicated internal geometry. This is in contrast to the use of the conventional

finite element method where many more elements are necessary to properly capture

dynamic (i.e. wave propagation) behavior. Third, the spectral or frequency based

method proved to be an appropriate means for interfacing between acoustic and

structural analyses since sound radiation in an acoustic medium is often analyzed

using a Fourier transform process as explained by Junger & Feit [49] and Stuart [95].

Accordingly, the research presented in this dissertation begins by examining the

vibro-acoustic response of simplified two-dimensional (2-D) truss beams with periodic

integral compliant mechanisms. A local-global computational approach is similarly

employed. This work then leads into the eventual analysis and design of 2-D multi-

layered lattices, and 3-D structures, having integral compliant mechanisms.
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1.2.3 Vibration Isolation

The selection of a vibration isolation technique is dependent upon the nature of

the vibratory problem. In most cases the analyst must identify one of three goals:

1) reduction of response at a specific frequency, 2) reduction of response across a

broadband frequency range of interest, or 3) precisely controlling response to achieve

a desired output. Passive damping techniques are often applied to the first and

second goals with relative success. The third goal typically requires active damping

techniques as greater precision is necessary. Thus, such goals ultimately dictate the

manner in which damping systems are employed and the extent to which they must

be utilized.

A fundamental feature of passive damping is that it does not add to the kinetic

energy of a structure, but rather passive damping dissipates kinetic energy in re-

sponse to the structure’s motion, per Housner et al. [39]. This form of damping has

the benefit of reduced complexity since a power source is not necessary. Addition-

ally, safety is less of a concern since stable systems will remain so. As Faulkner [24],

Johnson [47], and Nashif et al. [71] have noted, the passive damping of structures

is traditionally based on one of four technologies including visco-elastic materials,

viscous fluids, magnetics, or passive piezoelectrics. More recently, alternative ideas

have been developed as illustrated by the uniaxial spring-mass vibration isolators

proposed by Yilmaz & Kikuchi [107, 108], which can be designed for low-pass filter,

band-stop, or broad-band vibration isolation applications. Regardless, in terms of

conventional methods, visco-elastic damping layer treatments are still most common

while viscous fluids, magnetics, and piezoelectrics are typically seen in strut embodi-

ments. Furthermore, the implementation of conventional damping techniques varies,

however, they share the two disadvantages of added weight and temperature sensi-
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Figure 1.5: Cross-section of machine augmented composite, from Hawkins et al. [37]

tivity. Moreover, passive damping is often added as an afterthought to a structure

once specific resonance or broadband response problems have been identified. This

fact is illustrated by the ISS example given in Section 1.1.

In contrast to passive damping techniques, active damping systems typically use

feedback or feedforward control to minimize mechanical vibration through automatic

modification of structural response within the control system bandwidth as discussed

by Preumont [82] and Fuller et al. [28]. An active system can be lighter and less

expensive than a passive one, and in some cases they can achieve performance that

would otherwise be impossible (e.g. disturbance correction in earth based telescopes).

Despite these advantages, active systems tend to increase complexity since they

require power and have the potential to destabilize the system if the control scheme

is not properly implemented, per Housner et al. [39].

Moving from a structural viewpoint to a material level perspective, the litera-

ture is abundant in the field concerned with designing materials for novel vibra-

tion reduction characteristics. Controlling passive vibratory response via compliant,

mechanism-like topologies is possible, as established by the negative Poisson’s ra-

tio foam developed by Lakes [55] whose dynamic properties were also analyzed by

Scarpa [88]. Additionally, an embedded machine patent pertaining to material de-

sign is held by Hawkins [36]. Figure 1.5 shows a material developed by Hawkins in

which there are numerous embedded 4-bar machines. This work has recently been
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expanded upon by McCutcheon et al. [66] and Tang et al. [97] to demonstrate the

potential for achieving novel dynamic functions. However, a unified analysis, design,

and optimization methodology using multi-scale compliance for vibro-acoustic dy-

namic applications is not yet established, and is thus the objective of the research

presented in this dissertation.

1.2.4 Compliant Mechanism Design

Traditional mechanisms have rigid links with discrete joints while compliant mech-

anisms have flexible links and joints that achieve the same function of traditional

mechanisms through material elasticity. A significant amount of work has been done

in the static analysis and synthesis of compliant mechanisms, as demonstrated by

Ananthasuresh [2], Frecker [27], Howell [40], Kim [51], Larsen [57], Lobontiu [59],

and Saggere [86].

Only lately are the dynamic characteristics of compliant mechanisms being ex-

plored more fully by researchers like Yu et al. [109]. In their work they analyzed

compliant mechanism dynamic behavior using the pseudo-rigid body model with the

goal of determining natural frequencies. Other research in this developing field has

focused on the merging of actuators with compliant mechanisms. For example, Tan-

tanawat, Li, & Kota [98] have shown how a compliant mechanism stroke amplifier

can be applied to active vibration isolation systems. Shown in Figure 1.6 is the com-

pliant stroke amplifier that serves as the foundation of their research. This compliant

mechanism was based upon a patent for a micro-electro-mechanical (MEM) system

originally developed by Hetrick & Kota [38] and Kota et al. [53].

The work presented here further builds on the study of this stroke amplifier topol-

ogy. This compliant mechanism was initially selected since a considerable amount

of analysis has been performed on it and its general behavior is well characterized.
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Figure 1.6: Compliant structure MEM device, from Kota et al. [53]

This fact makes it a suitable benchmark. Additionally, while the active control ap-

plications mentioned above incorporated system level actuators for the generation

mechanism motion, the following work utilizes the notion of vibro-acoustically in-

duced response. Thus, vibration isolation is accomplished passively, via a number

of periodic integral compliant mechanisms within a structure, rather than actively.

Serving as independent verification of the results achieved using this mechanism,

another separate compliant mechanism core topology is also synthesized as an initial

step in this research.

Based on this effort, two hypotheses are proposed and investigated with regard

to synthesizing unit cell compliant mechanism core topologies. The first hypothesis
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consists of using amplification principles as a guide in the selection of a mechanism

topology and shape. The principle of mechanical advantage is utilized; and, as a

simplification, power conservation (i.e. the use of rigid links) is assumed. However,

since the mechanism is ultimately compliant, power is not conserved between the in-

put and output sides of the structure as suggested by Salamon & Midha [87]. Thus,

using the results from the spectral finite element analysis, the total energy distribu-

tion in the structure is visualized along with the deformed shape of the structure in

order to provide a complete understanding of energy flow, isolation, and dissipation.

The second hypothesis is based on utilizing the local unit cell length scale coupled

with its frequency response function (FRF), as described by Ewins [23], to control

response attenuation zones. A straightforward wavenumber-frequency analysis is

developed to understand these unit cell length scale effects. In conjunction, the

compliant mechanism FRF amplitude and phase information is computed using the

results from the spectral finite element analysis in order to gain substantial insight

into the behavior of global structures.

Therefore, while the current state of the arts shows that much work has been done

to understand standalone static and dynamic compliant mechanism performance,

this research takes a different step forward by utilizing multiple small scale compli-

ant mechanisms within larger scale structures for novel dynamic functionality. The

aforementioned principle of mechanical advantage, deformed shape and total energy

mapping, unit cell wavenumber analysis, and FRF analysis represent an innovative

assemblage of tools used in forming an in-depth understanding of the fundamental

structural dynamics at work.
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1.2.5 Structural Optimization

In this final section of Chapter 1, structural optimization is introduced as a rich

field that complements the four research areas discussed above. Specifically, opti-

mization using an evolutionary (e.g. genetic) algorithm is investigated. As Gold-

berg [30] outlines, the efficiency of a genetic algorithm comes from the fact that

while randomized, it uses historical information based on design fitness to search

new spaces. A genetic algorithm is capable of handling noisy data in a global search.

While calculus-based methods are generally limited to searching for local maxima

and minima, a genetic algorithm can search larger design spaces for an optimal so-

lution. Thus, genetic algorithms have a notable advantage in optimizing truss-like

structures that have a large number of non-linear, inter-related variables that pro-

duce a broadband frequency response with many resonant peaks. These are the

primary reasons why a genetic algorithm was chosen over a calculus-based method.

Many researchers have applied genetic algorithms to topology optimization. Chap-

man, Saitou, & Jakiela [13] examined the optimization of a cantilevered beam as

represented by a finely discretized continuum. Parsons & Canfield [77] explored the

genetic algorithm optimization of truss structures for compliant mechanism applica-

tions, and they validated the approach on familiar examples like a compliant gripper.

These researchers also verified that genetic algorithms work for shape optimization

by allowing nodes within a compliant mechanism structure to wander once a final

topology had been selected. In this way, even better performance of the compliant

mechanism is achievable. Shape optimization has further been examined in relation-

ship to truss structures with unusual geometries as investigated by Keane [50] and

Moshrefi-Torbati et al. [68]. Two optimized truss structures developed by Keane and

Moshrefi-Torbati et al., that have enhanced vibratory characteristics, are shown in
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Figure 11. Frequency response of optimized design with limits of !25% on all 18 joints, 4400 evaluations over
22 generations (band average=0·13× 10−9; initial frequency response shown dotted).

mmin (!,1)[1− (E/Dmax)!]+ (E/Dmax)!, where E is the Euclidean distance of the member from
its cluster centre (which is always less than Dmax; moreover, when E=Dmax no penalty is
applied).

In addition, the implementation of the G.A. used here allows the solution of individual
members of the population to be run in parallel if a multiple processor computer is available.

6. RESULTS

To begin the optimization process relatively tight limits of !5% were placed on the joint
positions and a modest number of 1000 trials used, spread over five generations (giving 200
members per generation so as to ensure reasonable coverage over the rather large domain
being investigated here, at the expense of final convergence). This run gave rise to the
configuration shown in Figure 3 and the response illustrated in Figure 4. With this
configuration, the total energy flow in the 100 Hz band investigated has been reduced from
0·33× 10−6 to 0·21× 10−7 (for unit forcing), i.e., a reduction of 23 dB, indicating how purely
periodic structures can give rise to very significant noise transmission problems. Next, the
limits on the joint positions were relaxed to !25% but only six of the mid-span joints were
allowed to move, again using 1000 trials and five generations. This leads to the configuration
of Figure 5 and the response shown in Figure 6. This gives slightly less isolation with the

Figure 12. Optimized design with limits of !25% on all 18 joints, 4500 evaluations over 15 generations.

Figure 1.7: Optimized 2-D truss structure, from Keane [50]

Figure 1.8: Optimized 3-D truss structure, from Moshrefi-Torbati et al. [68]

Figures 1.7 and 1.8. The majority of this earlier research suggests that the best first

approximations to optimized structures can be obtained in a straightforward manner

using already established genetic algorithm methods.

Given this, the hypotheses and tools proposed in the Section 1.2.4 are used as

a guide in selecting two a priori mechanism topologies and shapes. From there,

the final size optimization of a compliant mechanism design is examined with the

goal of “tuning” specific performance criteria. This entails coupling the spectral

finite element analysis discussed in Section 1.2.2 with a basic selection, crossover,

and mutation algorithm patterned after the work by Satyadas and Krishnakumar in

Winter [104]. This preliminary study does not exhaust all possibilities with regard to

the implementation of a genetic algorithm for optimization, but rather it exemplifies

the power of such an approach.

In subsequent steps, the topology optimization of a simple unit cell binary ground

structure truss network for vibro-acoustic response is investigated. This study pro-
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vides additional insight into possible compliant mechanism unit cell designs. The

strategy used in selecting final topologies is similar that used by Maddisetty &

Frecker [64] where structural elements are allowed to range in thickness from a pre-

determined upper limit to a lower limit approaching zero. Elements that lay in the

optimization domain of the structure and are close to zero thickness are then assumed

to contribute minimally to the performance of the unit cell allowing their removal

from the structure. The final optimized topologies are then revealed.

Observe that this strategy is not as comprehensive as the load path representa-

tion method proposed by Lu & Kota [61]. The elimination of elements to form final

topologies based on a predetermined minimum element thickness does not fully avoid

binary ground structure issues associated with floating structures, ungrounded de-

signs, and disconnected inputs. Regardless of these drawbacks, the approach taken

here illustrates that additional unit cell topologies are realizable and opens the door

to further research implementing more sophisticated genetic algorithm routines.



CHAPTER 2

Computational Modeling

In support of the goals set forth in Chapter 1, a computational code was devel-

oped for the implementation of the spectral finite element method. A brief review

of the conventional formulation of a 2-D plane frame finite element is given in Sec-

tion 2.1 prior to outlining the theory behind the spectral finite element method in

Section 2.2. A 2-D analysis domain serves as a basic building block for more compli-

cated problems and has been the proving ground for numerous compliant mechanism

analyses. However, this research is not limited to two dimensions and the spectral

finite element computational code is extended to handle 3-D space frame elements

in Section 2.3.

After the introduction of the spectral finite element method, an assessment of

the accuracy of the computational code is made using a simple wave propagation

problem consisting of a 2-D semi-infinite cantilevered beam subject to an impulse.

This problem was proposed by Doyle & Farris [18] and their solution serves as a

benchmark in Section 2.4. In Section 2.5 the code is then further verified using

known solutions for the natural frequencies of free vibration for a fixed-fixed beam

given by Blevins [8].

20
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considerable amount of analysis has been performed on it and its general behavior is well 

characterized, making it a suitable point of reference for further work.  Additionally, 

while the applications mentioned above have utilized actuators in generating mechanism 

motion, the following work utilizes the notion of vibro-acoustically induced mechanism 

response.  Thus, vibration isolation is accomplished passively, rather than actively via a 

number of embedded compliant mechanisms within a structure. 

III Finite Element Analysis 

 

Prior to outlining the spectral finite element method proposed by Doyle [14], a brief 

review of the formulation of conventional two-dimensional frame (i.e., rod and beam 

combination) elements is given.  Further details regarding the conventional formulation 

can be found in Yang [15].  The rationale behind implementing a two-dimensional 

analysis is that it serves as a basic building block for more complicated problems and has 

been the proving ground for numerous compliant mechanism analyses. 

A. Conventional 2-D Rod/Beam Finite Element Formulation 

 

Traditionally, a frame element combines the degrees of freedom of both a rod and beam 

element.  As shown in Figure 1 below, a rod element typically has a single axial degree 

of freedom at each node while a beam element has both transverse and rotational degrees 

of freedom at each node. 

 

 

 

 

 

 

 

Figure 1: Rod & Beam Element Nodal Degrees of Freedom and Loads 
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Figure 2.1: Rod element and beam element nodal degrees of freedom and loads

2.1 Conventional Finite Element Formulation: 2-D Rod & Beam

A conventional linear frame finite element combines the degrees of freedom of

both a rod element and a beam element as outlined by Yang [106]. In Figure 2.1, a

rod element is shown to have a single axial degree of freedom at each node while a

beam element is shown to have both transverse and rotational degrees of freedom at

each node.

The element material density, Young’s modulus, cross-sectional area, length, and

area moment of inertia are denoted by ρ, E, A, L, and I, respectively. The rod

element axial loads and displacements are specified respectively by Fi and ui, while

the beam transverse loads, moments, transverse displacements, and rotations are

given respectively by Vi, Mi, vi, and θi, where i denotes the node number of interest.

An energy formulation of the rod element stiffness matrix is given below. For

the rod element, the axial displacement at any location, x, along the length of the

element is given in terms of the nodal displacements as

(2.1) u(x) =
(
1− x

L

)
u1 +

(x
L

)
u2

where the coefficients in front of the nodal displacements are the nodal shape func-
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tions, N1 and N2, which can be written explicitly as

(2.2) N1 = 1− x

L
; N2 =

x

L

The axial strain, εx, and stress, σx, of the element are then expressed in the following

form

(2.3) εx =
∂u

∂x
; σx = Eεx

and assuming a constant element cross-section, the strain energy, U , of an element,

e, follows from the definition

(2.4) Ue =
1

2

∫ L

0

∫
A

σxεxdAdx =
1

2

∫ L

0

EA

(
du

dx

)2

dx

Using Eqn (2.1), Eqn (2.4) can be evaluated and written in matrix form as

(2.5) Ue =
1

2
[u1 u2]

EA

L

 1 −1

−1 1


 u1

u2

 =
1

2
dr

TKrdr

where Kr is the rod element stiffness matrix and dr is the rod element nodal dis-

placement vector.

The work, W , done by the applied force to the element can also be defined in

terms of the rod element nodal force vector, Fr, as

(2.6) We = dr
TFr

Combining Eqn (2.5) with Eqn (2.6), the total potential energy of the element is

formed using the expression

(2.7) Πe = Ue −We =
1

2
dr

TKrdr − dr
TFr

The principle of minimum potential energy is then stated for the rod element in

equation form as

(2.8)
∂Πe

∂dr

= 0
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Figure 2: Rod & Beam Element Lumped-Mass Approximation 

 

For the rod element the axial displacement can be written as a function of the 

nodal shape functions: 

 

! 

u(x, t) = u
1
1"

x

L

# 

$ 
% 

& 

' 
( + u2

x

L

# 

$ 
% 
& 

' 
( 
 

 

The axial strain and stress of the element can then be written as: 
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Figure 2.2: Rod element and beam element lumped-mass approximation

Thus, Eqn (2.8) yields the rod element nodal force vector in terms of the rod element

stiffness matrix and nodal displacement vector

(2.9)

 F1

F2

 =
EA

L

 1 −1

−1 1


 u1

u2



(2.10) Fr = Krdr

In the development of a conventional finite element, it is often assumed that

the mass of the element acts as inertia forces lumped at the nodes instead of being

distributed over the length of the element. This is known as the lumped mass method.

This method is derived from the consistent mass method, which is based on a kinetic

energy formulation that does not have a simple interpretation of masses at nodes.

Both methods are shown to produce results that are roughly equivalent in terms

of accuracy, although the lumped mass matrix has the computational advantage of

being diagonal. Consequently, a lumped mass approximation is reasonable and used

here in the development of mass matrices for both the rod element and beam element.

In Figure 2.2 the lumped mass is given by mi and the mass moment of inertia is given

by Ii at each node of interest.
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Thus, using Newton’s second law of motion, the nodal inertia forces, Fi
′, on the

rod element are written in terms of the nodal acceleration, üi, as follows

(2.11) F1
′ = m1

∂2u1

∂t2
=
ρAL

2
ü1

(2.12) F2
′ = m2

∂2u2

∂t2
=
ρAL

2
ü2

Eqns (2.11) and (2.12) can be written to express the rod element inertia force vector,

Fr
′, in matrix form as a function of the rod element mass matrix, Mr, and nodal

acceleration vector, d̈r, as

(2.13)

 F1
′

F2
′

 =
ρAL

2

 1 0

0 1


 ü1

ü2



(2.14) Fr
′ = Mrd̈r

Combining Eqn (2.10) with Eqn (2.14) yields the homogeneous system of differ-

ential equations for the rod element.

(2.15) 0 = Fr
′ + Fr = Mrd̈r + Krdr

For forced motion, the non-homogeneous system of differential equations for dynamic

applications of the rod element is then expressed in terms of the externally applied

axial force vector, Fext r, and Eqn (2.15) as

(2.16) Fext r = Mrd̈r + Krdr

A similar procedure to the one just taken for the rod element can also be followed

to arrive at the commonly known beam element stiffness matrix, Kb, and lumped
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mass matrix, Mb. The details of the derivation are omitted for the sake of brevity.

(2.17) Kb =
EI

L3



12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2



(2.18) Mb =
ρAL

420



210 0 0 0

0 L2 0 0

0 0 210 0

0 0 0 L2


These matrices allow for the non-homogeneous system of differential equations for

dynamic applications of the beam element to be written as

(2.19) Fext b = Fb
′ + Fb = Mbd̈b + Kbdb

where Fext b is the externally applied transverse force and moment vector; Fb
′ is the

nodal inertia force vector; Fb is the nodal force vector; d̈b is the nodal acceleration

vector; and db is the nodal displacement vector for the beam element.

A general frame member subject to both axial and bending loads can now be

formulated by assembling the rod element stiffness and mass matrices with the beam

element stiffness and mass matrices, respectively. The resulting 6 × 6 frame element

stiffness matrix, Kf, and the 6 × 6 frame element mass matrix, Mf, reflect the



26

respective load-deflection relation and inertia properties of a general frame member.

(2.20) Kf =



EA
L

0 0 −EA
L

0 0

0 12EI
L3

6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L

0 −6EI
L2

2EI
L

−EA
L

0 0 EA
L

0 0

0 −12EI
L3 −6EI

L2 0 12EI
L3 −6EI

L2

0 6EI
L2

2EI
L

0 −6EI
L2

4EI
L



(2.21) Mf =
ρAL

420



210 0 0 0 0 0

0 210 0 0 0 0

0 0 L2 0 0 0

0 0 0 210 0 0

0 0 0 0 210 0

0 0 0 0 0 L2


Accordingly, the inertia force vector, Ff

′, nodal force vector, Ff, acceleration vector,

d̈f, and displacement vector, df, for a frame element are

(2.22) Ff
′ =



F1
′

V1
′

M1
′

F2
′

V2
′

M2
′


; Ff =



F1

V1

M1

F2

V2

M2


; d̈f =



ü1

v̈1

θ̈1

ü2

v̈2

θ̈2


; df =



u1

v1

θ1

u2

v2

θ2


In the analysis of a structure composed of many frame elements the remaining

computational step is to assemble elements in the traditional manner where the
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element matrices in the local coordinate system are transformed to a global coordi-

nate system by a standard transformation (i.e. rotation) matrix. The components

from individual frame element stiffness and mass matrices that correspond to specific

global degrees of freedom are assembled into the global stiffness and mass matrices,

KG and MG, respectively, per the usual numerical algorithms outlined in references

such as Hughes [42]. The application of boundary conditions then follows to reduce

the total number of global degrees of freedom.

Following this, the reduced system of differential equations representing the forced

motion response of a structure modeled with frame members is obtained

(2.23) Fext G = FG
′ + FG = MGd̈G + KGdG

where Fext G is the externally applied nodal force vector; FG
′ is the nodal inertia

force vector; FG is the nodal force vector; d̈G is the nodal acceleration vector; and

dG is the nodal displacement vector for the global structure.

Two restrictions are evident for structures modeled with conventional finite ele-

ments. First, for problems solved in the frequency domain (e.g. modal analysis), a

prohibitively large number of elements must be used in order to accurately repre-

sent the mass and stiffness distribution of each structural member. This becomes

especially important in wave propagation problems where the element discretization

often must be fine enough to capture the numerous bending modes of a structure

at higher frequencies. More elements lead to a higher-order characteristic equation

that must be solved in the eigenvalue analysis to determine the larger number of

resonances. This requires greater computational effort. A second restriction arises

when solving dynamic problems in the time domain. Specifically, a step-by-step nu-

merical integration scheme, such as the Newmark method outlined in Hughes [42], is

typically implemented. However, in order to capture wave propagation phenomena
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at high frequencies, the time step over which the system of equations is repeatedly

solved must be sufficiently small. This again leads to excessive computational times

for large systems. Thus, such limitations have made conventional FEA of structural

dynamic response in the middle to high frequency range computationally expensive.

2.2 Spectral Finite Element Formulation: 2-D Rod & Beam

In the development of a spectral rod element the mass is no longer considered

lumped at the ends of the element, but rather distributed evenly along the length.

This treatment of the mass distribution allows for the propagation of longitudinal

waves through the rod element acting as a waveguide. It can be established, as

shown by Doyle [17], that the space-time solution for the longitudinal displacement

of a point on a rod is represented by

(2.24) u(x, t) =
∑
n

ûn(x, ωn)e
iωnt

Eqn (2.24) represents the general solution for the time harmonic variation of any

variable, where ω is the frequency and Eqn (2.24) is summed over the n, or number

of frequencies of interest. In this equation, the ˆ nomenclature is established to

represent a spectral quantity. Thus, the spectral displacements for the rod element

are represented by ûn, which have the form

(2.25) ûn = Ae−iknx +Be−ikn(L−x) ; kn = ωn

√
ρ

E

Comparing Eqn (2.25) with Eqn (2.1) reveals this to be the frequency dependent

rod element shape function. Observe that the wavenumber, kn, not only depends on

frequency, but also the material through which longitudinal waves are traveling. In

the equations that follow, the subscript n is dropped, however still implied.
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The coefficients A and B can now be solved for in terms of the nodal displacements

by applying the known boundary conditions

(2.26) û(x = x1, ω) = û1

(2.27) û(x = x2, ω) = û2

(2.28) where, x1 = 0 ; x2 = L

Consequently,

(2.29)

 A

B

 =
1

1− e−i2kL

 1 −e−ikL

−e−ikL 1


 û1

û2


The nodal forces for a rod element are then found in terms of the element stiffness

matrix as follows

(2.30) F̂i = niEA
dû

dx


x=xi

where, ni =

 −1 for i = 1

1 for i = 2

Resulting in

(2.31) F̂1 = −EA dû

dx


x=x1

(2.32) F̂2 = EA
dû

dx


x=x2

Or, in matrix form

(2.33)

 F̂1

F̂2

 = EA
ik

1− e−i2kL

 1 + e−i2kL −2e−ikL

−2e−ikL 1 + e−i2kL


 û1

û2



(2.34) F̂r = K̂rd̂r
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The development of the beam spectral element follows similarly that of the rod

element. Bending degrees of freedom, however, allow for the transmission of flexural

or transverse wave propagation through the element as opposed to the longitudinal

waves addressed by the rod formulation. Hence, the space-time solution for the

transverse displacement of a point on a beam element is as follows

(2.35) v(x, t) =
∑
n

v̂n(x, ωn)e
iωnt

The frequency dependent spectral displacements and wavenumber for the beam

element can now be written as

(2.36) v̂n = Ce−iknx +De−knx + F e−ikn(L−x) +Ge−kn(L−x) ; kn =
√
ωn

[
ρA

EI

]1/4

Based on this displacement function, the rotation at each end of the beam can be

found by taking the derivative of Eqn (2.36) with respect to x.

(2.37) φ̂ =
dv̂

dx

Applying the known boundary conditions on the element allows for the solution

of the coefficients C, D, F , and G.

(2.38) v̂(x = x1, ω) = v̂1

(2.39) φ̂(x = x1, ω) = φ̂1

(2.40) v̂(x = x2, ω) = v̂2

(2.41) φ̂(x = x2, ω) = φ̂2
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Consequently,

(2.42)



C

D

F

G


= Q̂



v̂1

φ̂1

v̂2

φ̂2


The matrix Q̂ is not given here for the sake of brevity, but easily obtained using

symbolical computation software. The beam nodal loads are then found, in terms of

the spectral stiffness matrix, by substituting the coefficients C, D, F , and G back

into Eqn (2.36) and differentiating the resulting displacement function to form the

moment and shear force at each node

(2.43) V̂i = niEI
d3v̂

dx3


x=xi

(2.44) M̂i = − niEI
d2v̂

dx2


x=xi

Resulting in

(2.45) V̂1 = EI
d3v̂

dx3


x=x1

(2.46) M̂1 = −EI d
2v̂

dx2


x=x1

(2.47) V̂2 = −EI d
3v̂

dx3


x=x2

(2.48) M̂2 = EI
d2v̂

dx2


x=x2

Or, in matrix form

(2.49) F̂b = K̂bd̂b
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Further details regarding the derivation of the spectral stiffness matrix for the beam

element can be found in Appendix A.

There is a boundary condition, which is unique to wave propagation problems

when solved using the spectral method, where a finite element member extends to

infinity. Such elements are designated as “throw-off” elements by Doyle [17, 18] since

energy is guided out of the system via these elements. One cannot simply allow the

element length to become extremely large since the original spectral stiffness matrix

formulation accounts for incoming (i.e. reflected) waves. Rather, one must use a

spectral stiffness matrix form for the rod element and beam element where only

outgoing waves are addressed.

For the rod throw-off element

(2.50) F̂1 = EA [ik] û1

and for the beam throw-off element

(2.51)

 V̂1

M̂1

 = EI

 (i− 1)k3 ik2

ik2 (i + 1)k


 v̂1

φ̂1


Observe that the form of both of these equations corresponds to right-handed throw-

off elements (i.e. elements that extend to infinity to the right), and that it is possible

to formulate left-handed elements as well.

At this point, the spectral frame finite element is formulated in a manner similar

to that of the conventional frame finite element. The 2 × 2 matrix, K̂r, of the spectral

rod element and 4 × 4 matrix, K̂b, of the spectral beam element can be combined

to describe a 2-D spectral frame element with three (i.e. longitudinal, transverse,

and rotational) degrees of freedom per node. The resulting dynamic stiffness matrix,

K̂f, is 6 × 6. The primary advantage of developing the spectral frame element in
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this manner is that all of the tools from the conventional formulation, with regard

to assembling elements to form a global structure, can also be applied here.

There are, however, two main differences with the conventional formulation. First,

the step-by-step time integration problem from the conventional formulation now

becomes a step-by-step frequency problem. Instead of solving a differential equation

in time, a pseudo-static equation in frequency must be solved. Second, fewer elements

can be used since wave propagation is treated more precisely in this formulation.

Thus, the analyst does not have to be as concerned with mesh discretization. In

fact, the power of this method is that it is very accurate at high frequencies, as

explained by Doyle [17].

In contrast, the primary disadvantage of this method is that the stiffness matrix

must be formed and inverted at each frequency, which adds cost to computational

efficiency. Post processing can also take more time since fewer nodal displacements

are calculated in general. Thus, plotting deformed shapes in detail can be more in-

volved since it requires inputting the known nodal displacements into Eqn (2.25) and

Eqn (2.36) and subsequently calculating the desired displacements at an intermediate

point of interest along the length of the element.

2.3 Spectral Finite Element Formulation: 3-D Space Frame

The 2-D plane frame element formulation presented in Section 2.2 is now readily

extended to a 3-D space frame formulation by adding the necessary torsional and

out-of-plane bending degrees of freedom. Small displacement theory dictates that

all of the axial, bending, and torsional effects can be assumed to be uncoupled.

Thus, by combining the equations that treat these effects separately, the 3-D element

formulation is obtained.
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Figure 2.3: 3-D space frame element nodal degrees of freedom and loads

Shown in Figure 2.3 is a space frame element having six degrees of freedom per

node. The axial displacement, transverse displacement along the local y-axis, trans-

verse displacement along the local z-axis, torsional rotation about the local x-axis,

bending rotation about the local y-axis, and bending rotation about the local z-axis

are given by ûi, v̂iy, v̂iz, φ̂i, θ̂iy, and θ̂iz, respectively. The corresponding axial force,

transverse force along the local y-axis, transverse force along the local z-axis, torque

about the local x-axis, moment about the local y-axis, and moment about the local

z-axis are respectively denoted by F̂i, V̂iy, V̂iz, T̂i, M̂iy, and M̂iz.

For the space frame element, the three-node method is used to establish all three

local element coordinates, per Bhatti [7]. To start, it is assumed that the local x-axis

vector is defined as pointing in a direction from the first node to the second node

of the element. Next, by specifying an orientation vector directed from node 1 to

3, the local z-x plane is arbitrarily defined as shown in Figure 2.3. The local y-axis

is then found by taking the cross product of the orientation vector with the local



35

x-axis. Lastly, the local z-axis is found by taking the cross product the local x-axis

with the local y-axis. This is a standard convention that serves to correctly orient

the space frame element.

The added stiffness terms due to the torsional degrees of freedom are found using

a similar derivation to that for the spectral rod element. The equation of motion in

matrix form is similar to Eqn (2.33) and can be shown to have the form

(2.52)

 T̂1

T̂2

 = GJ
ik

1− e−i2kL

 1 + e−i2kL −2e−ikL

−2e−ikL 1 + e−i2kL


 φ̂1

φ̂2



(2.53) F̂t = K̂td̂t

where F̂t is the nodal torque vector, K̂t is the spectral stiffness matrix for the torsional

rod element, and d̂t is the nodal rotation vector. In Figure 2.3 and Eqn (2.52), the

shear modulus and torsional stiffness constant of the element are given by G and J ,

respectively.

The added stiffness terms for the out-of-plane bending degrees of freedom are the

same as those derived previously in Eqn (2.49) of Section 2.2 except there is now

the distinction of rotation in z-x plane occurring in the opposite sense as rotation

in the x-y plane. This necessitates a sign change in the appropriate rotation terms

of the spectral stiffness matrix in Eqn (2.49). Additionally, there are also two area

moment of inertia terms, Iy and Iz, as illustrated in Figure 2.3. The Iy area moment

of inertia is associated with bending about the local y-axis, and Iz is associated with

bending about the local z-axis.

The increased number of element degrees of freedom results in a larger 12 × 12

spectral stiffness matrix for the 3-D space frame element. Despite this, the assembly

of multiple elements to form a global structure follows the procedures discussed in
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Section 2.2 with the more involved step of using the three-node method to calculate

the direction cosines, and thus, the necessary local-to-global transformation matrix.

Post-assembly, solving the system of equations proceeds as described in Section 2.2.

2.4 Verification Model 1: Semi-Infinite Cantilevered Beam

The first computational model presented is that of a planar semi-infinite can-

tilevered beam subject to a transverse impulse load. The purpose of this analysis

is to verify the adequacy of the spectral finite element computational code and to

compare the results with those from a conventional finite element analysis as done

by Doyle & Farris [18]. Hence, this model serves as a benchmark for the verification

of the spectral finite element code. The software program MATLAB was used in

generating the code, running the analysis, and visualizing the results. The text by

Kwon & Bang [54] served as a reference in providing an elementary architecture upon

which the code was written.

The semi-infinite beam is 85 inches in length, has fixed-free boundary conditions,

and is impacted transversely by an impulse load 80 inches from the fixed end. The

beam was analyzed using two separate finite element models as shown in Figures 2.4

and 2.5. Table 2.1 gives the physical parameters of the beam. The first model

consists of 170 conventional elements each having a length of 0.5 inch. This model

has 171 nodes with 513 total degrees of freedom (i.e. 3 degrees of freedom per node).

The second model consists of two spectral elements (the first 80 inches in length and

the second 5 inches in length) with three nodes and nine degrees of freedom total.

The 80 inch element in the spectral model is treated as a throw-off element since it

effectively extends to infinity and no wave reflections occur within the timeframe of

interest.
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Table 1: Semi-Infinite Beam Physical Parameters 

 

Beam Physical Parameters Value 

Beam Height (h) 0.25 inch 
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Figure 2.4: Schematic of semi-infinite beam modeled using conventional elements
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Figure 2.5: Schematic of semi-infinite beam modeled using spectral elements

Table 2.1: Semi-infinite beam physical parameters
Beam Physical Parameters Value

Beam Width (h) 0.25 inch
Out-of-Plane Beam Depth (b) 1.00 inch

Young’s Modulus (E) 10.6 × 106 psi
Material Density (ρ) 2.74 × 104 lb/in3
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Figure 2.6: Impulse force: (a) time history and (b) FFT

In analyzing the spectral model, the frequency components of the impulse load

were determined by using the Fast Fourier Transfer (FFT) function in MATLAB. A

sampling rate of N = 1024 was used with ∆T = 5 µsec. These parameters correspond

to a Nyquist (i.e. the (N/2 + 1)th value) frequency fn = 1/(2∆T ) = 100 kHz. The

significance of the Nyquist frequency is that, in order for the FFT to be accurate, the

highest noteworthy frequency in the signal must be less than the Nyquist frequency.

The time history of the impulse force and the FFT of this time signal are given in

Figures 2.6 (a) and (b), respectively. Observe that the frequency components of the

pulse are contained well below the Nyquist frequency.

As discussed in Section 2.2, the solution for the spectral element model proceeds

by solving the spectral system of equations pseudo-statically over the frequencies of

interest. The procedure begins by taking the FFT of the impulse time history to

form the spectral forcing vector for the global system at discrete frequencies (reference

Figure 2.6). In this numerical example, the frequency steps are ∆f = fn/(N/2), or

195.3 Hz. At each frequency step, the spectral stiffness matrix for each element is
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Figure 2.7: Transverse velocity response comparison for semi-infinite beam subject
to an impulse load

calculated using the appropriate frequency value, and the global spectral stiffness

matrix is assembled in the conventional manner. Next, the displacement boundary

conditions are applied to condense both the global force vector and stiffness matrix.

Following this, the stiffness matrix is inverted and the spectral displacements are

solved for. The spectral displacements are then stored to disk at each frequency

step. Once the frequency loop is finished, the time response is reconstructed by

taking the inverse FFT of the spectral displacements.

In analyzing the conventional element model, the Newmark method a-form, as

outlined in Hughes [42], was used for time integration of the equation of motion.

Specifically, the central difference method (i.e. β = 0, γ = 0.5) was used with a time

step of ∆t = 1 × 10−7 seconds for a total time of 500 µsec. Additionally, a lumped

mass matrix was used.

In Figure 2.7 a comparison is given of the transverse velocity response of the
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cantilevered beam computed using the conventional finite element method versus

the spectral finite element method. The transverse velocity is shown as a function

of time at two locations along the beam: 1) the impact site and 2) five inches from

the impact site at the free end. The transverse velocity of the beam is a good metric

of performance since it best illustrates both the wave propagation phenomenon and

the wave reflection phenomenon. Evident in this figure is the remarkable degree of

agreement between the results computed using the conventional and spectral element

methods. These results also closely match the results from the original work of Doyle

& Farris [18], thus verifying the performance of the computational code. The power

of this method is made clear in the reduction of the size of the computational problem

from 170 elements to just two. Specifically, for the spectral element solution of this

problem, processor time on a standard laptop computer (i.e. 1.33 GHz processor

with 768 MB SDRAM memory) running MATLAB is reduced to less than 2 seconds

compared with approximately 290 seconds for the conventional element solution.

2.5 Verification Model 2: Fixed-Fixed Beam

In this section, a second numerical study is presented for further verification of

the capability of the spectral finite element computational code. The transverse and

longitudinal natural frequencies of free vibration for a fixed-fixed beam are investi-

gated. Appropriately, this study highlights the ability of the method to predict the

propagation of multiple wave types. The effect of mesh density is also examined by

modeling the same beam twice using a two spectral element discretization in the first

case and a 20 spectral element discretization in the second case. Finally, the results

obtained from both computational analyses are compared with the analytical results

calculated using the formulas given by Blevins [8].
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SFEA Validation

• Natural frequencies for free vibration of a fixed-
fixed beam examined using 2 SFE models:

– 1st Model: 2 elements

– 2nd Model: 20 elements

• Natural frequencies examined by plotting 
at 10 Hz increments over 10 kHz

E, A, I, !, L

Fixed-Fixed Beam

! 

log
1

det[K]

" 

# 
$ 

% 

& 
' 

Figure 2.8: Schematic of fixed-fixed beam

Table 2.2: Fixed-fixed beam physical parameters
Beam Physical Parameters Value

Beam Width (h) 0.0011 m
Out-of-Plane Beam Depth (b) 0.0127 m

Young’s Modulus (E) 7.1 × 1010 N/m2

Material Density (ρ) 2700 kg/m3

Length (L) 0.4 m

Consider the fixed-fixed beam shown in Figure 2.8. The physical parameters of

the beam are given in Table 2.2. Computationally, the resonant frequencies of free

vibration for the structure can be found by monitoring the determinant of the global

spectral stiffness matrix. Specifically, the determinant of this matrix should approach

zero at resonance. Therefore, by computing log
(
1/det

[
K̂G

])
over a frequency range

of interest, the natural frequencies of the structure can be determined.

The analytical solution for the natural frequencies of a fixed-fixed beam are given

by Eqn (2.54) and Eqn (2.55) for bending and axial modes, respectively (see Case

#7 on p. 108 and Case #3 on p. 184 in Blevins [8]).

(2.54) fq bend =
λ2
q

2πL2

(
EI

ρA

)1/2

where, λq = (2q + 1)
π

2
; for q = 1, 2, 3, . . .

(2.55) fq axial =
λq

2πL

(
E

ρ

)1/2

where, λq = qπ ; for q = 1, 2, 3, . . .

The finite element analysis was carried out over a frequency range of 0 Hz to

10 kHz in 1 Hz frequency steps. Shown in Figure 2.9 are the computed values of

log
(
1/det

[
K̂G

])
for the two element model over a truncated frequency range of 0

Hz to 1 kHz. The smaller frequency range is used in this figure for visual clarity.
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Figure 2.9: Natural frequencies of fixed-fixed beam modeled using two spectral finite
elements

The seven peaks visible in Figure 2.9 represent the first seven resonances for the

fixed-fixed beam. Thus, using this visualization approach, the natural frequencies

were determined for both the two element and 20 element model.

All results are presented over the entire 10 kHz frequency range in the third col-

umn of Table 2.3. The analytical values for the natural frequencies of the structure,

calculated using Eqns (2.54) and (2.55), are also given in the second column of Ta-

ble 2.3. Surprisingly, the two element and 20 element computational models predict

the exact same natural frequencies, and each computed value is well within 1% of the

corresponding analytical value over the entire frequency range of interest. Moreover,

as Table 2.3 shows, the first axial mode is evident at 6410 Hz in both finite element

models. This result underscores how the spectral finite element method is capable

of capturing the propagation of different, in this case longitudinal and transverse,

waves in a structure. Also, observe that increasing the number of elements from



43

two to 20 does not alter the accuracy of the computational results. As previously

discussed, this is an artifact of the spectral element formulation, which correctly

accounts for wave propagation effects through the assumed element shape function,

thus eliminating the need for excessive element discretization.

Table 2.3: Natural frequencies of fixed-fixed beam
Natural frequency Natural frequency

Mode number calculated using formulas computed using both Percent
and type from Blevins [8] 2 & 20 element SFEA error
1 - Bending 36.2 Hz 36 Hz 5.5E-1 %
2 - Bending 99.9 Hz 100 Hz 1.0E-1 %
3 - Bending 195.8 Hz 196 Hz 1.0E-1 %
4 - Bending 323.7 Hz 324 Hz 9.3E-2 %
5 - Bending 483.6 Hz 484 Hz 8.3E-2 %
6 - Bending 675.4 Hz 675 Hz 5.9E-2 %
7 - Bending 899.2 Hz 899 Hz 2.2E-2 %
8 - Bending 1155.0 Hz 1155 Hz 0.0 %
9 - Bending 1442.8 Hz 1443 Hz 1.4E-2 %
10 - Bending 1762.5 Hz 1762 Hz 2.8E-2 %
11 - Bending 2114.2 Hz 2114 Hz 9.5E-3 %
12 - Bending 2497.9 Hz 2498 Hz 4.0E-3 %
13 - Bending 2913.5 Hz 2914 Hz 1.7E-2 %
14 - Bending 3361.1 Hz 3361 Hz 3.0E-3 %
15 - Bending 3840.7 Hz 3841 Hz 7.8E-3 %
16 - Bending 4352.3 Hz 4352 Hz 6.9E-3 %
17 - Bending 4895.8 Hz 4896 Hz 4.1E-3 %
18 - Bending 5471.3 Hz 5471 Hz 5.5E-3 %
19 - Bending 6078.8 Hz 6079 Hz 3.3E-3 %
20 - Axial 6410.0 Hz 6410 Hz 0.0 %

21 - Bending 6718.3 Hz 6718 Hz 4.5E-3 %
22 - Bending 7389.7 Hz 7390 Hz 4.1E-3 %
23 - Bending 8093.1 Hz 8093 Hz 1.2E-3 %
24 - Bending 8828.5 Hz 8828 Hz 5.7E-3 %
25 - Bending 9595.8 Hz 9596 Hz 2.1E-3 %



CHAPTER 3

Analysis & Design

In Chapter 2 the computational methods required for the analysis of 2-D and

3-D truss-like structures were presented. It is now possible to focus on the dynamic

response analysis of structures having more complicated geometry. The analysis

of a square core “unit cell” and a full structure is presented first in Section 3.1;

this analysis serves as a benchmark for comparison throughout the remainder of

this dissertation. The square core unit cell and structure are subject to an impinging

pressure wave on one side, and the radiatory response into a fluid domain is examined

on the other side. The structure’s output side root mean square (RMS) normal

velocity is the figure of merit since it is directly linked to energy of motion, pressure

fluctuations, and hence, radiated sound in a fluid domain, per El-Raheb [19], El-

Raheb & Wagner [20], and Ruzzene [84]. The overarching objective of this model

is to apply the spectral analysis methodology to a more complicated problem where

the mid-frequency vibro-acoustic response of a structure is of interest.

The concepts and definitions associated with the analysis and design of a com-

pliant mechanism unit cell and structure are introduced in Section 3.2. This section

contains the seminal study of this research. Both the unit cell and structure are

subject to an incident pressure wave on one side while the normal velocity response

is computed on the other side. The numerical results from this analysis are compared

with those obtained from the analysis of the square core unit cell and structure. A

44
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determination is made as to whether or not velocity attenuation is achieved across a

prescribed frequency range. Following this, a second compliant mechanism topology

is developed and analyzed in order to independently verify the concepts proposed

via the first model.

These initial studies are built upon through further investigation into the design

of structures made from alternative (i.e. nonmetallic) materials in Section 3.3. A

moldable polymer structure is used to illustrate the fundamental relationship between

the material a structure is built from and the unit cell sizing.

In Section 3.4 the dynamic behavior of parallel and serial connected structures

is outlined. The standalone and additive composite effects of stacking and coupling

compliant mechanism layers having separate response characteristics is addressed.

The results in this section are directed towards answering the question of how to

further minimize structural dynamic response. Additionally, this section provides an

introduction to the design of larger multi-functional structures.

Lastly, in Section 3.5 the analysis and design of a 3-D compliant mechanism

unit cell and lattice panel serves to demonstrate how the principles upon which 2-D

structures are based can be extended to the design of structures having more realistic

spatial geometry.

3.1 Benchmark Square Core Unit Cell & Structure

The numerical study in this section applies the spectral finite element method

to the analysis of a square core unit cell, Figure 3.1, and a structure consisting of

an assemblage of 20 periodic square core unit cells, Figure 3.2. The structure is

treated as a truss beam connected to a rigid baffle at both ends and subjected to a

distributed load induced by an incident pressure wave.
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Figure 3.1: Square core unit cell (numbers that are circled denote elements, numbers
that are not circled denote nodes)

24

Figure 7: Baffled Square Core Truss and Incident Loading

Figure 8: Finite Element Model and Nodal Coordinates for Square Core Unit Cell

Table 2: Square Core Unit Cell & Truss Physical Parameters

Physical Parameters Value

Height (h) of Top & Bottom Elements (e.g., 2 & 4) 0.005 m

Height (h) of Core Elements (e.g., 1, 3, & 5) 0.0025 m

Unit Cell Length 0.1 m

Unit Cell Height 0.05 m

Young’s Modulus (E*) 7.1 X 1010 N/m2

Density (!) 2700 kg/m3

Total Number of Unit Cells in Truss 20

Total Truss Length 2 m

Fluid Domain

Rigid Baffle

Incident Pressure Wave

Distributed

Load Induced by

Pressure Wave

x

y

1 3

42
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Figure 3.2: Periodic square core structure

3.1.1 Analysis

As shown in Figure 3.2, the bottom layer of the truss beam is excited by an incident

pressure wave front. Prior to solving for the response of the unit cell or structure,

the spectral load vector equivalent to the incident pressure for each bottom layer

element must be formulated. In two dimensions, the standard form for the harmonic

variation of pressure, pi, in time is

(3.1) pi(x, y, t) = pi(x, y, ω)e−iωt
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Assuming an incident pressure wave that impinges perpendicular to the bottom layer

of the structure, the pressure in the frequency domain is written as

(3.2) pi(x, y, ω) = pin

where pin is the amplitude of the normally incident pressure wave.

Using this description of the pressure, the spectral work done by the impinging

wave on a bottom layer element of the structure can be defined at a specific frequency

as

(3.3) Ŵe(ω) =

∫ Le

0

pin v̂bot(x, ω) b dx

where b is the out-of-plane element depth, and v̂bot is the transverse spectral dis-

placement of the bottom layer element. Substituting the coefficients obtained from

Eqn (2.42) into Eqn (2.36), the transverse spectral displacement is written in terms

of the vector of spectral beam element nodal shape functions, N̂b, as

(3.4) v̂bot(x, ω) = d̂T
b N̂b(x, ω)

Combining Eqn (3.3) with Eqn (3.4), the spectral work takes the following form

(3.5) Ŵe(ω) = d̂T
b

∫ Le

0

pin N̂b(x, ω) b dx

Or,

(3.6) Ŵe(ω) = d̂T
b F̂e(ω)

where the spectral load vector, F̂e, is

(3.7) F̂e(ω) =

∫ Le

0

pin N̂b(x, ω) b dx

Or, similarly

(3.8) F̂e(ω) =

∫ Le

0

pin ŵb(x, ω) dx
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where ŵb is the spectral weighting function for the beam element.

Symmetric boundary conditions, representative of those imposed on a unit cell

when assembled into the full structure, are enforced in the unit cell analysis. Ro-

tational degrees of freedom of the nodes on the left and right edges of the unit cell

are constrained with all remaining degrees of freedom unconstrained. For the full

structure, only the degrees of freedom of nodes interfacing with the rigid baffles are

constrained. Unless otherwise stated, the forcing function and boundary conditions

for the unit cell and structure are implemented in the exact manner described above

for all of the remaining computational analyses in this dissertation.

Following El-Raheb & Wagner [20], the structural dynamic response is computed

in terms of the top layer RMS transverse velocity as

(3.9) vRMS = 20 log 10

 ω

vref

[
1

N

N∑
j=1

∣∣v̂top
j

∣∣2]1/2


where ω is the frequency of interest, vref is a reference velocity, v̂top is the transverse

spectral displacement of the jth node of interest, and N is the number of top layer

nodes. In the next section, the RMS normal velocity response of the square core unit

cell and structure are given and compared with existing results from the research of

El-Raheb [19], El-Raheb & Wagner [20], and Ruzzene [84].

3.1.2 Computational Results

Each new unit cell and structure that is introduced in this dissertation is assumed

to be made of aluminum material unless specified otherwise. This material is taken

to have a Young’s modulus, E = 7.1 × 1010 N/m2, and density, ρ = 2700 kg/m3. As

is typical of such structures, hysteretic material damping is introduced to account

for inherent energy loss. A complex modulus, E∗ = E(1 + iη), is utilized, where the

loss factor, η = 0.01. This value is slightly high relative to typical loss factor values
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reported for aluminum by Lazan [58], but it is consistent with prior research by El-

Raheb & Wagner [20] and Ruzzene [84]. Nonetheless, the effect of using a slightly

higher loss factor has been explored with the result being that resonant peaks are

damped, whereas the fundamental frequency response of general interest is basically

unchanged.

Unit cell dimensions of 0.1 m by 0.05 m, and structure dimensions of 2 m by 0.05

m, are used. The out-of-plane element depth, b, for all elements is set to unity. With

noted exceptions, this is the standard out-of-plane depth for all two-dimensional

structures described in this work. The width of the “core” elements (i.e. elements 1,

3, and 5 in Figure 3.1) of the unit cell is 2.5 mm while the top and bottom facesheet

thickness (i.e. elements 2 and 4 in Figure 3.1) is taken as 5.0 mm.

In the analysis of the unit cell and structure the incident pressure field amplitude

in Eqn (3.8) is pin = 1 N/m2. The RMS transverse velocity of the unit cell and

structure is computed using a reference velocity, vref = 10−8 m/s, in Eqn (3.9). These

values represent the standard convention for the incident pressure field amplitude and

reference velocity used throughout this dissertation.

The frequency range of interest for this study is 0 Hz to 6000 Hz, evaluated at 10

Hz frequency steps. The RMS normal velocity responses for the square core unit cell

and the structure are given in Figures 3.3 (a) and (b), respectively. Four resonances

of the unit cell are present at 1120 Hz, 2600 Hz, 3700 Hz and 5910 Hz. Above 2 kHz

response is attenuated at three frequencies: 1) at 2660 Hz just after the resonance at

2600 Hz, 2) at 4600 Hz following the resonance at 3700 Hz, and 3) at 5740 Hz just

prior to the resonance at 5910 Hz.

Observe that the unit cell response predicts the structure response, particularly

at higher frequencies, where the deformation of the structure is dominated by lo-
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(b) Structure

Figure 3.3: Top layer RMS velocity of square core structure: (a) unit cell and (b)
structureSquare Core PPS and Time Recon.nb 1

(a) 2600 Hz

Square Core PPS and Time Recon.nb 1

(b) 2660 Hz

Square Core PPS and Time Recon.nb 1

(c) 3700 Hz

Square Core PPS and Time Recon.nb 1

(d) 4600 Hz

Figure 3.4: Deformed shapes of square core unit cell: (a) 2600 Hz, (b) 2660 Hz, (c)
3700 Hz, and (d) 4600 Hz
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(c) 1500 Hz

Figure 3.5: Deformed shapes of square core structure: (a) 90 Hz, (b) 380 Hz, and
(c) 1500 Hz (dotted lines denote undeformed configuration, continuous
lines denote deformed configuration)

cal deformations of the unit cell. The deformed shapes of the unit cell shown at

various frequencies in Figure 3.4 illustrate this phenomenon. The peaks in RMS

normal velocity response at 2600 Hz and 3700 Hz correspond to deflection of the

top and bottom layers, with strong coupling between the two. On the other hand,

the deformed shapes at 2660 Hz and 4600 Hz correspond to greater deflection of

the core members. This suggests that at specific frequencies the vibratory energy

either excites the core or bypasses it. This result is similar to Ruzzene’s work [84],

except for the deformed shape at 2660 Hz. While Ruzzene computed deflections of

the diagonal core member, the response from this analysis predicts deflections of the

vertical core members instead. Despite this, the peak in response at 3700 Hz does

match, demonstrating the largest deflection of the top and bottom members and
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corresponding to the greatest top layer RMS normal velocity response above 2 kHz.

The transition from a global level response to a local level response is further

explained through the deformed shapes of the full structure given in Figure 3.5.

The appearance of a greater number of waves propagating through the structure is

visible at increased frequencies, which is consistent with the response described by

El-Raheb [19] and El-Raheb & Wagner [20].

The exploitation of the local level deformations of a structure at middle frequencies

is the foundation for the concepts outlined in the remainder of this dissertation.

Specifically, in the next section the concept of designing the unit cell core in order

to prevent energy transmission is introduced.

3.2 Compliant Mechanism Unit Cell & Structure

The results presented in Section 3.1.2 demonstrate the suitability of using a local

level unit cell analysis in predicting the global response of periodic structures like the

one shown in Figure 3.2. This section builds upon these results by establishing that

compliant mechanisms can be used effectively at a local unit cell level to attenuate

broadband vibro-acoustic response at a global level. Specifically, the unit cell can be

thought of as a framework into which a compliant mechanism topology is placed in

order to employ local level deformations and reduce the output normal velocity of a

structure.

3.2.1 Concept & Definitions: Compliant Mechanism 1

The notion of transmitted sound being related to the normal velocity of a ra-

diating object suggests the use of amplification principles in reducing the output

(i.e. top layer) normal velocity of a unit cell or structure. Specifically, the principle

of mechanical advantage is explored in the synthesis of an appropriate compliant



53

mechanism topology.

Generally, a compliant mechanism topology with a large mechanical advantage is

sought. Let Fin and Fout be the respective input and output force vectors; similarly

vin and vout denote the velocity vectors of the points of force input and output,

respectively. Then, assuming power conservation

(3.10) Pout = Pin ⇒ FT
outvout = FT

invin

where Pout is the mechanism output power and Pin is the mechanism input power.

Assuming that the velocity and force vectors are parallel, mechanical advantage is

then defined by Erdman et al. [22] as

(3.11) MA =
Fout

Fin

where the scalar quantities, Fout and Fin, denote the corresponding force vector mag-

nitudes and MA is the mechanical advantage.

Eqn (3.11) provides the mechanical advantage for a rigid body mechanism in

which power is conserved. However, as Salamon & Midha note [87], for a compliant

mechanism power is ultimately not conserved since, when loaded, elastic energy is

stored due to member flexibility. They go on to show that the actual mechanical

advantage is really some fraction of the rigid body value expressed as

(3.12) MA =
Fout

Fin

(
1− Fcompliant

Fin

)
where Fcompliant is the part of the input force required to elastically deform the mech-

anism members.

Notwithstanding this more thorough treatment of mechanical advantage, from

this point forward, Fcompliant is neglected. This is an assumption used to simplify

the process of selecting a mechanism topology. Thus, Eqn (3.12) is reduced back to
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Figure 3.6: Rigid link 4-bar mechanism diagram (numbers denote links, (·,·) denote
instant centers)

Eqn (3.11), and using the magnitudes of the respective velocity vectors the MA is

written as

(3.13) MA =
vin

vout

The significance of Eqn (3.13) is that for a given input speed, vin, the output speed,

vout, can be reduced by seeking a mechanism topology with a large mechanical ad-

vantage.

Based on this conclusion, the compliant stroke amplifier developed by Hetrick &

Kota [38] and Kota et al. [53] (introduced in Section 1.2.4) was chosen as the first

compliant mechanism topology for investigation. A prototypical rigid link version

of this 4-bar mechanism is shown in Figure 3.6 with a compliant mechanism unit

cell realization of the rigid link mechanism given in Figure 3.7. The equation for

calculating the mechanical advantage, MACM1, of this rigid link mechanism is

(3.14) MACM1 =
vin

vout

=
rin

rout

((1, 4)− (2, 4))

((1, 2)− (2, 4))
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Figure 3.8: Periodic compliant mechanism structure

where rin is the mechanism input radius, rout is the mechanism output radius, (·, ·)

represents an instant center between two links, and ((·, ·) − (·, ·)) represents the

distance between two respective instant centers, per Erdman et al. [22].

The conceptual model of a full compliant mechanism structure is shown in Fig-

ure 3.8, comprising an assembly of 20 unit cells. The structure is again fixed to a

rigid baffle at both ends and is subjected to a distributed load induced by an incident

pressure wave.

In the compliant mechanism unit cell model given in Figure 3.9, frame elements
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Figure 3.9: Compliant mechanism unit cell model (numbers that are circled denote
elements, numbers that are not circled denote nodes)

1, 2, 8, 10, 12, 14, 15 and their symmetric counterparts are shown with thicker lines.

This implies that these elements are modeled as stiffer beams than the rest of the

unit cell although they still technically have compliance. The purpose of making

elements 1, 2, and 8 stiffer is that these elements represent the “ground” for the

mechanism. Elements 10 and 12 provide reinforcement for link 4 as shown in the

rigid link mechanism diagram. Lastly, the input to the mechanism, element 14, and

its output counterpart, element 15, are also modeled with stiffer beams since they are

“transmission” members and minimal deflection is desired. The remaining elements

in the unit cell are considered core members in which greater flexibility is sought.

In terms of element connectivity within the unit cell, the ground elements are
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connected to the output/top side of the structure. The mechanism input is then

connected through a single element to the bottom layer allowing transverse waves

generated by the incident pressure field to propagate through elements 3 and 20.

As the wavelength of vibration, λ, approaches the length scale of the unit cell (Fig-

ure 3.9), these transverse waves actuate the compliant mechanism evoking mechanical

advantage and reducing the top layer normal velocity of the structure.

While the unit cell element connectivity affects the frequency at which response

attenuation starts, the width, w in Figure 3.9, of the core elements in the unit

cell dictates the attenuation zone cutoff. The natural frequency of the mechanism is

linked to this sizing, with increased stiffness leading to a greater cutoff frequency. The

frequency response function (FRF) amplitude and phase of the mechanism output

displacement relative to input displacement are defined to illustrate this relationship

(3.15) Amplitude =

∣∣∣∣ v̂13 − v̂4

v̂10 − v̂2

∣∣∣∣ ; Phase =
180

π
[∠ (v̂13 − v̂4)− ∠ (v̂10 − v̂2)]

where the output is taken as the transverse spectral displacement of node 13 relative

to node 4, while the input is taken as the transverse spectral displacement of node

10 relative to node 2. Nodes 4 and 2 are selected since they are part of the ground

of the mechanism.

Lastly, to predict the frequency at which attenuation begins a straightforward

wavenumber analysis is used. The wavenumber for transverse waves in a beam

element, from Eqn (2.36), and its relationship to wavelength are combined to yield

a wavenumber-frequency equation

(3.16) k =
√
ω

[
ρA

EI

]1/4

and, λ =
2π

k
⇒ ω =

(
2π

λ

)2
√
EI

ρA

where ρ, E, A, and I are the physical parameters of the bottom layer elements.
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3.2.2 Analysis: Compliant Mechanism 1

While the top layer RMS normal velocity of the structure, found using Eqn (3.9),

is related to the energy of motion, another measure of the reduction of sound ra-

diated by the compliant mechanism structure is the far-field sound pressure level

(SPL). A numerical approximation to the SPL for a baffled rectangular radiator was

suggested by Ruzzene [84]. Specifically, the pressure level distribution in the acous-

tic fluid domain above the structure is evaluated numerically using the results from

the spectral finite element analysis by way of the Fourier transform solution to the

Helmholtz equation.

(3.17) pt(x, y, ω) ∼=
−iρfω

2

2π

m∑
−m

v̂t(m∆γx, ω)
eiy

√
k2 − (m∆γx)2√
k2 − (m∆γx)2

eim∆γxx∆γx

This equation is the numerical form of the integral representation of the pressure at

a specific frequency, ω, of interest. The integral is approximated as a summation

over, m, number of finite, ∆γx, steps; where, γx is the usual transform parameter,

per Junger and Feit [49]. In Eqn (3.17) ρf is the density of the fluid and k = ω/ca

is the acoustic wavenumber, where ca is the speed of sound in the fluid. The form of

the numerically evaluated transverse displacement transform, v̂t(m∆γx, ω), is given

by Ruzzene [84].

In the next section, the RMS normal velocity response and the far-field SPL distri-

bution of the compliant mechanism unit cell and structure are compared, respectively,

with that of the square core unit cell and structure from Section 3.1.2.

3.2.3 Computational Results: Compliant Mechanism 1

Unit cell dimensions of 0.1 m by 0.05 m, and structure dimensions of 2.0 m by 0.05

m, are used. The sizing of the unit cell leads to a compliant mechanism mechanical

advantage that is calculated using Eqn (3.14) as 8.3. The width of core elements
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for the compliant mechanism unit cell are taken as 2.5 mm while stiffer members

(e.g. ground, transmission, etc.) are given a width of 5.0 mm. These widths were

chosen since they are comparable to those used in the square core structure, which

had a core member thickness of 2.5 mm and facesheet thickness of 5.0 mm. However,

despite this comparable sizing, the total mass of the compliant mechanism unit cell is

1.61 times that of the square core unit cell due to a greater number of core members.

The frequency range of interest for this study is 0 Hz to 6000 Hz, evaluated at

10 Hz frequency steps. The unit cell FRF is given in Figure 3.10 where the ampli-

tude and phase are scaled for visual clarity by factors of 10 and 1/10, respectively.

Below 2 kHz two prominent peaks in response are visible at 880 Hz and 1780 Hz

representing resonances of the unit cell at frequencies below the attenuation zone

starting frequency. Substituting the physical parameters of elements 3 and 20 into

Eqn (3.16), along with λ = 0.1 m (i.e. the length of the unit cell), gives an at-

tenuation starting frequency of 2320 Hz, accurately predicting the response shown

in Figure 3.10. Moreover, the FRF illustrates that within the attenuation zone the

compliant mechanism exhibits non-resonant (i.e. small amplitude), out-of-phase “in-

versor” behavior. At the cutoff frequency of 5300 Hz resonance is characterized by

a large amplitude and in-phase behavior.

The top layer RMS transverse velocity of the compliant mechanism unit cell and

structure are graphed in comparison with the square core unit cell and structure,

respectively in Figures 3.11 and 3.12. For the compliant mechanism structure, the

resonances at 880 Hz and 1780 Hz, visible in the unit cell response, are present

as expected. Between 2320 Hz and 5300 Hz significant broadband attenuation is

apparent, most notably at 3700 Hz, where an average reduction of approximately 40

dB is visible relative to the square core structure.
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Figure 3.10: Compliant mechanism unit cell FRF
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Figure 3.12: Top layer RMS velocity comparison for structure

Supplementing the FRF and RMS transverse velocity results, the deformed shapes

of the unit cell can also be computed along with element energetics to gain additional

knowledge of the behavior of the structure. The total energy, E, of each element

is evaluated using the spectral stiffness matrix for a given frame element once the

spectral nodal displacement vector for that element has been computed.

(3.18) Ee =

∣∣∣∣12 d̂T
f K̂fd̂f

∣∣∣∣
The deformed shape and total energy at several frequencies provide insight into the

compliant mechanism unit cell performance, Figures 3.13 through 3.16. Thicker lines

denote greater energy content. Within the attenuation zone (Figures 3.13 and 3.14)

energy isolation is evident, corresponding to the propagation of a transverse wave in

the bottom layer and the mechanism acting as an “inversor.” At the first mechanism

resonance (Figure 3.15) in-phase behavior is observed. Outside the attenuation zone

(Figure 3.16) energy flows into the core and top layer.
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In the calculation of the far-field SPL distribution, Eqn (3.17) is summed from

m = −100 to m = 100 and each structure is assumed to be in air with ρf = 1.2 kg/m3

and ca = 343 m/s. The far-field SPL is computed over a 4 m by 4 m grid having a

0.0125 m spatial resolution in the x and y directions. A comparison is made of the

far-field SPL distribution in the fluid region above both structures at 1780 Hz and

3870 Hz. Figures 3.17 and 3.18, respectively illustrate that the compliant mechanism

structure indeed produces a higher SPL distribution at 1780 Hz, as expected based

on the RMS normal velocity response. Note that the structure top layer is located

between -1 m and +1 m along the bottom horizontal axis of these figures, and

that the SPL radiation patterns are dependent upon the unique deformation of each

structure. Furthermore, a reduced SPL distribution of nearly 40 dB at 3870 Hz,

within the attenuation zone, is seen in Figures 3.19 and 3.20. These results represent

a significant reduction in transmitted sound relative to conventional square core truss

structures.
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Figure 3.13: Compliant mechanism unit cell deformed shape and energy distribution
at 3500 Hz (dotted lines denote undeformed configuration, continuous
lines denote deformed configuration)
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Figure 3.14: Compliant mechanism unit cell deformed shape and energy distribution
at 4500 Hz (dotted lines denote undeformed configuration, continuous
lines denote deformed configuration)
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Figure 3.15: Compliant mechanism unit cell deformed shape and energy distribution
at 5220 Hz (dotted lines denote undeformed configuration, continuous
lines denote deformed configuration)
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Figure 3.16: Compliant mechanism unit cell deformed shape and energy distribution
at ∼6000 Hz (dotted lines denote undeformed configuration, continuous
lines denote deformed configuration)
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Figure 3.17: Square core structure SPL at 1780 Hz – units: dB re 20E-6 Pa
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Figure 3.18: Compliant mechanism core structure SPL at 1780 Hz – units: dB re
20E-6 Pa
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Figure 3.19: Square core structure SPL at 3870 Hz – units: dB re 20E-6 Pa
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Figure 3.20: Compliant mechanism core structure SPL at 3870 Hz – units: dB re
20E-6 Pa
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To ensure accurate calculation of the far-field SPL distribution the convergence

of Eqn (3.17) was examined. The far-field SPL distribution for the compliant mech-

anism structure at 1700 Hz is compared in Figures 3.21 (a), (b), and (c) using values

for m in Eqn (3.17) of 10, 100, and 200, respectively. The percent difference between

the far-field SPL distribution calculated using m = 10 and m = 100 is shown in

Figure 3.22 (a). Significant differences are noticeable in peripheral regions beyond

the edges of the structure above the rigid baffles. The percent difference between

the far-field SPL calculated using m = 100 and m = 200 is shown in Figure 3.22 (b).

Only slight differences are noticeable, thus verifying the adequacy of using m = 100

in the final computation of the far-field SPL distributions.

Spatial convergence was also examined by comparing the far-field SPL distribution

obtained using a grid having a 0.0125 m spatial resolution versus a 0.00625 m spatial

resolution. The far-field SPL of the compliant mechanism structure was computed

over a 1 m square grid at 3870 Hz for each resolution, as shown in Figure 3.23. Minor

differences in the far-field SPL distribution are noticeable, substantiating the use of

a 0.0125 m resolution. Note, however, that as even higher frequencies are considered

a finer step size must be utilized to sufficiently capture wave propagation.
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(a) m = 10
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(b) m = 100
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(c) m = 200

Figure 3.21: Convergence of far-field SPL at 1700 Hz: (a) m = 10, (b) m = 100, and
(c) m = 200 – units: dB re 20E-6 Pa
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(a) % difference: m = 100 and m = 10
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(b) % difference: m = 200 and m = 100

Figure 3.22: Percent difference between far-field SPL distribution at 1700 Hz: (a) m
= 100 and m = 10; (b) m = 200 and m = 100
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(a) 0.0125 m grid
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(b) 0.00625 m grid

Figure 3.23: Spatial convergence of far-field SPL distribution at 3870 Hz: (a) 0.0125
m resolution; (b) 0.00625 m resolution – units: dB re 20E-6 Pa
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Figure 3.24: Deformed shapes of compliant mechanism structure: (a) 40 Hz, (b) 150
Hz, and (c) 3000 Hz (dotted lines denote undeformed configuration,
continuous lines denote deformed configuration)
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Lastly, moving to a global view, deformed configurations of the compliant mech-

anism structure are given in Figures 3.24 (a), (b), and (c) at frequencies of 40 Hz,

150 Hz, and 3000 Hz, respectively. It is again evident that as frequency increases

the deformed shape transitions from global to local. Specific to the design of this

structure, the local deformation at 3000 Hz illustrates the propagation of a transverse

wave traveling through the bottom layer.

3.2.4 Concept & Definitions: Compliant Mechanism 2

In this section another “inversor” compliant mechanism topology is integrated

into a unit cell as independent verification of the analysis and design methodology

introduced thus far. Namely, a mechanism that is commonly described as a rhombus

straight-line linkage is investigated. Straight-line mechanisms served their role in

American history through power machines (e.g. 18th century Watt-Boulton steam

engines). Functionally, they can be used to convert the linear motion from an oscil-

lating piston into the rocking motion of a balance arm. The rhombus straight-line

linkage is inspired by Model S39 from the Reuleaux Collection of Kinematic Mecha-

nisms at Cornell University [83], and it has been shown to have an optimum topology

for compliant mechanisms with a large mechanical advantage by Larsen et al. [57].

While this mechanism topology differs from the one presented in Section 3.2.1, it

embodies the same amplification principles. A diagram of one half of the rigid link

rhombus straight-line mechanism is given in Figure 3.25. The compliant mechanism

unit cell embodiment is shown in Figure 3.26. The equation for calculating the

mechanical advantage, MACM2, of this rhombus rigid link mechanism is given as

(3.19) MACM2 =
vin

vout

=
rin

rout

((1, 5)− (3, 5))

((1, 3)− (3, 5))
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Figure 3.25: Rigid link diagram of one half of rhombus mechanism (numbers denote
links, (·,·) denote instant centers)

Figure 3.26: Rhombus compliant mechanism unit cell model

In the compliant mechanism unit cell model shown in Figure 3.27, the sliders in

the rigid link diagram are enforced through symmetry about the vertical centerline

of the unit cell. Moreover, the ground elements for the mechanism, elements 3 and

23, are attached to the unit cell top layer. As explained in Section 3.2.1, when the
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Figure 3.27: Rhombus compliant mechanism unit cell model (numbers that are cir-
cled denote elements, numbers that are not circled denote nodes)

unit cell bottom layer elements (i.e. 4 and 19) are subjected to an incident pressure

wave, this connectivity scheme allows transverse waves to propagate through the

bottom layer unimpeded, evoking mechanical advantage through passive mechanism

actuation.

The frequency response function (FRF) output to input amplitude and phase of

this compliant mechanism unit cell model are defined by the following relationships

(3.20) Amplitude =

∣∣∣∣ v̂13 − v̂5

v̂11 − v̂5

∣∣∣∣ ; Phase =
180

π
[∠ (v̂13 − v̂5)− ∠ (v̂11 − v̂5)]

where the unit cell output is taken as the transverse spectral displacement of node

13 relative to node 5, while the input is taken as the transverse spectral displace-

ment of node 11 relative to node 5. Node 5 is selected since it represents part of the

ground of the mechanism. These relationships provide insight into the performance

of the compliant mechanism unit cell distinguishing out-of-phase, non-resonant per-

formance versus in-phase, resonant performance.
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Figure 3.28: Rhombus compliant mechanism unit cell FRF

3.2.5 Computational Results: Compliant Mechanism 2

Unit cell dimensions of 0.1 m by 0.05 m are used, which leads to a compliant

mechanism having a mechanical advantage of 7, per Eqn (3.19). In Figure 3.27 thicker

lines represent stiffer elements having a width of 5 mm. Thinner lines represent

elements having greater compliance and a width of 2.5 mm. The width of members

within this compliant mechanism unit cell is consistent with the width of members

within the prior two unit cells that have already been analyzed. The sparse topology

of this compliant mechanism unit cell leads to a total mass that is only 1.13 times

that of the square core unit cell.

All of the analytical tools developed for the square core structure and the first

compliant mechanism structure are used to compute the structural dynamic response

of the rhombus compliant mechanism unit cell from 0 Hz to 10 kHz, evaluated in

10 Hz frequency steps. The FRF response is shown in Figure 3.28. The structural
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dynamic response of the rhombus compliant mechanism unit cell design mimics that

of the first compliant mechanism design given in Sections 3.2.1–3.2.3, serving as

independent verification of the analysis and design methodology.

Below 2320 Hz two peaks in response are visible at 1070 Hz and 2030 Hz. Above

2320 Hz two major attenuation zones are present spanning the frequency ranges of

2320–5000 Hz and 9240–9600 Hz. At the starting frequencies of these attenuation

zones, the wavelength of vibration for transverse waves in the unit cell bottom layer

is equal to the unit cell width and half-width (i.e. λ = 0.1 m and λ = 0.05 m),

respectively, per Eqn (3.16). Within the first attenuation zone the compliant mech-

anism demonstrates out-of-phase, non-resonant (i.e. small amplitude) behavior, as

expected. Between the two attenuation zones (i.e. 5000–9240 Hz) in-phase, resonant

behavior is exemplified by peaks in the RMS transverse velocity response, increases

in the FRF amplitude, and a FRF phase that transitions away from 180 degrees.

Similarly, a significant peak in FRF amplitude is located in close proximity to the

start of the second attenuation zone. This phenomenon is better understood through

inspection of the deformed shapes of the unit cell. Nonetheless, significant reduction

in RMS normal velocity response is still present within the second attenuation zone.

Shown in Figures 3.29 through 3.35, at several frequencies, are the rhombus com-

pliant mechanism unit cell deformed shape and total energy distribution. Thicker

lines again denote greater energy content. Within the first attenuation zone (Fig-

ures 3.29 and 3.30) energy isolation and the propagation of a transverse wave in the

bottom layer are evident. The input and output of the compliant mechanism unit

cell are out-of-phase corresponding to the mechanism acting as an “inversor.” At

the first mechanism resonance of 5110 Hz (Figure 3.31) larger amplitude deformation

of the output relative to the input is observed corresponding to the peak in RMS
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velocity response in Figure 3.28. At 6620 Hz (Figure 3.32) in-phase behavior is vis-

ible and energy flows throughout the core and top layer. The peak in RMS normal

velocity response at 7420 Hz in Figure 3.28 is a consequence of energy flowing into

the unit cell core (Figure 3.33). The second attenuation zone begins at 9240 Hz (Fig-

ure 3.34). Despite the fact that the input and output are shown to move in-phase in

Figure 3.28, the deformed shape clarifies the fact that the mechanism is still acting

as an “inversor.” Close examination of this figure reveals the presence of localized

deformations of the mechanism links within the core, which counteract the in-phase

movement of the input and output of the unit cell. Additionally, isolation occurs

to confine energy content to the bottom layer of the structure. Finally, at 9600 Hz

(Figure 3.35) in-phase behavior dominates these localized core deformations despite

continued energy isolation. This behavior leads to the eventual rise in RMS normal

velocity response shown in Figure 3.28.
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Figure 3.29: Rhombus compliant mechanism unit cell deformed shape and energy
distribution at 3000 Hz (dotted lines denote undeformed configuration,
continuous lines denote deformed configuration)
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Figure 3.30: Rhombus compliant mechanism unit cell deformed shape and energy
distribution at 4000 Hz (dotted lines denote undeformed configuration,
continuous lines denote deformed configuration)
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Figure 3.31: Rhombus compliant mechanism unit cell deformed shape and energy
distribution at 5110 Hz (dotted lines denote undeformed configuration,
continuous lines denote deformed configuration)
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Figure 3.32: Rhombus compliant mechanism unit cell deformed shape and energy
distribution at 6620 Hz (dotted lines denote undeformed configuration,
continuous lines denote deformed configuration)
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Figure 3.33: Rhombus compliant mechanism unit cell deformed shape and energy
distribution at 7420 Hz (dotted lines denote undeformed configuration,
continuous lines denote deformed configuration)
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Figure 3.34: Rhombus compliant mechanism unit cell deformed shape and energy
distribution at 9240 Hz (dotted lines denote undeformed configuration,
continuous lines denote deformed configuration)
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Figure 3.35: Rhombus compliant mechanism unit cell deformed shape and energy
distribution at 9600 Hz (dotted lines denote undeformed configuration,
continuous lines denote deformed configuration)
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Figure 3.36: Rhombus compliant mechanism unit cells with varying mechanical ad-
vantage: (a) MA = 7, (b) MA = 5, (c) MA = 3, (d) MA = 2, and (e)
MA = 1

The sparseness of the topology of this integral compliant mechanism affords the

benefit of easy shape modification to gain a greater understanding of the role of

mechanical advantage as it pertains to the structural dynamic response of the unit

cell. Adjusting the aspect ratio of the rhombus by moving the location of the top

slider (i.e. link 6 in Figure 3.25) modifies the location of instant center (1,5). In this

manner, the mechanical advantage calculated in Eqn (3.19) can be decreased. Thus,

consider five rhombus compliant mechanism unit cells having a respective mechanical

advantage of 7, 5, 3, 2, and 1 in Figures 3.36 (a) through (e).

In Figure 3.37 the top layer RMS transverse velocity for the unit cells having MA

values of 7, 5, 3, and 2 is shown computed over a frequency range of 0 Hz to 15

kHz, evaluated in 10 Hz increments. The extended upper limit on the middle fre-

quency range is used in order to fully visualize the effect of decreasing the mechanical

advantage on both attenuation zones.

Generally, a reduced unit cell mechanical advantage leads to an increase in the

amplitude of response within both attenuation zones. Specifically, within the first
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Figure 3.37: Top layer RMS velocity comparison for rhombus compliant mechanism
unit cells with varying mechanical advantage

attenuation zone the slope of response increases as mechanical advantage is reduced;

the resonant amplitude at the first attenuation zone cutoff frequency increases while

shifting towards slightly higher frequencies. This behavior is an artifact of the in-

creased transverse displacement of the output of the compliant mechanism unit cell

relative to that of the input, which is illustrated by computing the FRF from 0 Hz to

8 kHz for each of these unit cells. Comparing FRF amplitude response at 3600 Hz in

Figures 3.38 through 3.41 reveals that amplitude increases as mechanical advantage

decreases, as expected.

As mechanical advantage is reduced to a value of unity, dynamic behavior of

the unit cell further changes as shown in Figure 3.42. However, observe that the

resonant peak at the attenuation zone cutoff frequency (i.e. 4160 Hz) has shifted

much lower and does not follow the established trend. Examining the deformed

shape and energy distribution at the cutoff frequency for all five unit cells reveals
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Figure 3.38: Rhombus compliant mechanism (MA = 7) unit cell FRF
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Figure 3.39: Rhombus compliant mechanism (MA = 5) unit cell FRF
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Figure 3.40: Rhombus compliant mechanism (MA = 3) unit cell FRF
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Figure 3.41: Rhombus compliant mechanism (MA = 2) unit cell FRF
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Figure 3.42: Top layer RMS velocity for rhombus compliant mechanism unit cell
having MA = 1

the fundamental change that leads to this different dynamic behavior.

Results show that as mechanical advantage is reduced from 7 to 3, Figures 3.43

(a)–(c), the deformed shape and energy distribution at the first attenuation zone

cutoff frequency is similar. Energy flows through core members due to a “squeezing”

type motion of the unit cell, where energy content is associated with the bending of

specific structural members. Examining the deformed shape and energy distribution

of the unit cell with MA = 2, Figure 3.43 (d), suggests the first signs of a transi-

tion between two different types of dynamic response. Following this, the deformed

shape and energy distribution for the unit cell with MA = 1, Figure 3.43 (e), ex-

hibits a substantially different “transverse” type motion. Energy flow is associated

with primarily axial deformation of specific structural members (e.g. observe the

three vertical core members), and thus, it is concluded that this different dynamic

behavior causes the dramatic shifting of the attenuation zone cutoff frequency seen
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(e) MA = 1 at 4160 Hz

Figure 3.43: Rhombus compliant mechanism unit cell deformed shape and energy
distribution at the first attenuation zone cutoff frequency (dotted lines
denote undeformed configuration, continuous lines denote deformed
configuration, line thickness denotes energy content): (a) MA = 7 at
5120 Hz, (b) MA = 5 at 5550 Hz, (c) MA = 3 at 5680 Hz, (d) MA = 2
at 5870 Hz, and (e) MA = 1 at 4160
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in Figure 3.42.

Thus, these results draw a clear link between mechanical advantage and resonance

suppression. However, a distinction must be drawn between the effect of reducing

mechanical advantage (i.e. increasing the slope of response, which leads to larger

amplitudes throughout the attenuation zone), and the effect of modifying the fun-

damental dynamic behavior of the unit cell (i.e. transitioning from energy isolation

via bending deformation to energy transmission via axial response). Furthermore,

these results suggest that, in order to achieve uniform amplitude attenuation over

much larger frequency ranges, a judicious choice of a compliant mechanism unit cell

topology is required to maximize bending deformation while making use of large

mechanical advantage.

3.3 Unit Cell Design using Alternative Materials

Traditional structures are typically comprised of metals such as aluminum or steel.

However, the use of modern cellular composites has recently become more prevalent

in the design of lightweight aerospace, automotive, and naval vehicle structures.

These composites are often made of alternative materials (e.g. polymers) that, when

incorporated into structures, offer comparable strength at reduced weight. Further-

more, additional benefits are gained through the use of alternative materials since

the physical properties of a material can greatly affect structural dynamic response.

Thus, the goal of this section is to instantiate the relationship between the mate-

rial a structure with integral compliant mechanisms is made of and the resulting

middle-frequency dynamic response.

A unit cell made of acrylonitrile butadiene styrene (ABS) is analyzed. ABS is an

amorphous polymer that was selected in this study due to its widespread use in in-
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jection molded structures. It is important to acknowledge that the dynamic behavior

of polymers can differ greatly from that of metals. In contrast with metals, both the

elastic (i.e. storage) modulus, as well as, the viscous (i.e. loss) modulus of polymeric

materials are typically treated as frequency dependent. Specifically, an increase in

frequency has the same effect on these material physical parameters as a decrease

in temperature, as extensively discussed by Sepe [89]. Equivalently stated, higher

strain rates lead to a stiffer response, which is the same result obtained by decreasing

the material temperature. For most polymers the glass transition temperature and

the maximum damping peak in the loss modulus of the material increase about 7

degrees Celsius for every tenfold increase in frequency, per Murayama [69]. This

relationship is incorporated in the analysis of a unit cell comprised of ABS.

The desired attenuation zone starting frequency in this study remains the same

as that of the prior two compliant mechanism unit cell examples. The purpose of

choosing the same value of 2320 Hz is to illustrate the connection between material

selection and unit cell sizing while holding the attenuation zone starting frequency

constant.

The compliant mechanism unit cell topology used in this study is the same as the

first topology presented in Section 3.2.1. However, the material physical parameters

for ABS are different, and they are best defined using Figure 3.44 taken from the

text by Sepe [89]. In this figure E ′ is the elastic modulus, E ′′ is the viscous modulus,

and Tan Delta = E ′′/E ′ is the loss tangent. The room temperature (i.e. 23 degrees

Celsius) modulus data shown in this figure was collected using a strain rate of 1

mm/min with a peak to peak amplitude of 1 mm. This information is translated

in a straightforward manner into an equivalent testing frequency of approximately

0.01 Hz. Taking note that the material modulus values must be reduced by 7 degrees
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MATERIALS DATA SHEET

Material Family   acrylonitrile butadiene styrene (ABS)

Description   unfilled medium impact

Supplier   GE Plastics

Material Trade Name   Cycolac DFA-R

Test Notes   —

PHYSICAL PROPERTIES

Property Unit Value Test Method Specimen Test Condition

Melt Volume Rate ml/10 min ISO 1133,
DIN 53735,
CAMPUS

  

Melt Flow Rate g/10min  ASTM D1238  
Water Absorption @ Saturation %  ISO 62,

CAMPUS
50 ! 50 ! 1
mm

test
temperature:
21–25!C;
relative
humidity: 50%

Moisture Absorption @
Saturation

%  ISO 62,
CAMPUS

50 ! 50 ! 1
mm

test
temperature:
21–25!C;

Figure 3.44: Elastic (i.e. storage) modulus, viscous (i.e. loss) modulus, and loss
tangent of ABS as a function of temperature, from Sepe [89]

Celsius from room temperature for every tenfold increase in frequency, the equivalent

operating temperature at 10 kHz is approximately -19 degrees Celsius. Accordingly,

the elastic modulus increases from 2.741 GPa at 0.01 Hz to roughly 3.0 GPa at

10 kHz, while the viscous modulus stays relatively constant at approximately 68.0

MPa. The initial loss factor, η = 0.025, at 0.01 Hz is found by dividing the viscous

modulus by the elastic modulus. Observe that this loss factor value is roughly 2.5

times that of aluminum at 0.01 Hz and that it decreases only slightly to η = 0.023

or 2.3 times that of aluminum at 10 kHz. These frequency dependent relationships

for the material physical parameters are straightforwardly incorporated into the unit

cell computational analysis.

The width of core elements in the unit cell is taken as 1.0 mm compared with the

2.5 mm width used for the aluminum unit cell of Section 3.2.3. The width of stiffer

members (e.g. ground, transmission, etc.) is taken as 2.0 mm versus the 5.0 mm

width used for the unit cell in Section 3.2.3. Bottom layer element width is similarly

decreased from 2.5 mm to 1.0 mm.
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Aluminum Unit Cell
   (0.1 m by 0.05 m)

         ABS Unit Cell
(0.035 m by 0.0175 m)

Figure 3.45: Schematic representation of relative unit cell sizing resulting from ma-
terial selection (not shown to actual scale)

By way of Eqn (3.16), a unit cell length scale, λ = 0.035 m, is calculated using

the appropriate unit cell parameters: the density of ABS (ρ = 1050 kg/m3), the

frequency dependent modulus relationships, the bottom layer element cross-section

area and area moment of inertia, and an attenuation zone starting frequency of 2320

Hz. Thus, the original dimensions of 0.1 m by 0.05 m for the aluminum compliant

mechanism unit cell from Section 3.2.1 are scaled down to a smaller unit cell size.

For a unit cell comprised of ABS material this size is 0.035 m by 0.0175 m, however,

the above process illustrates that the principle can be extended to the design of a

unit cell made from any arbitrary material of interest. A conceptual schematic of

this principle is given in Figure 3.45.

Given these analysis parameters, the RMS transverse velocity and FRF response

of the ABS unit cell was computed from 0 Hz to 10 kHz, evaluated in 10 Hz frequency

steps. There are two primary features of the response shown in Figure 3.46. First, the

general attenuation zone characteristics are once more confirmed over the frequency

ranges of 2320 Hz to approximately 5000 Hz and 9240 to approximately 9600 Hz.

This dynamic response matches that of the aluminum unit cell shown in Figure 3.10

with the exception of the reduced sharpness of the resonant peaks. This second
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Figure 3.46: ABS compliant mechanism unit cell FRF

feature is due to the increased loss factor associated with the ABS material. Hence,

in summary of this section, these results show that choosing a material that has a

desired combination of physical parameters allows for specific control over structural

dynamic response, plus the ability to adjust unit cell and structure sizing.

3.4 Parallel & Series Connected Structures

Up to this point, the global structure configuration utilized in this dissertation

consists of unit cells that are connected together in a parallel fashion. Each unit cell

can be thought of as having an independent input and output. Thus, by repeatedly

integrating the same unit cell into a progressively longer structure, a primarily one-

dimensional truss-like beam is constructed whereby the bottom layer has a multiple

number of inputs and the top layer has just as many outputs.

Section 3.4.1 is focused on further investigation of parallel connected structures
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with an emphasis on handling locally applied distributed pressure loads. This section

explores the connection of unit cells that have respectively different internal topolo-

gies. The objective is to reduce overall structural complexity while, at the same time,

reduce vibration transmission resulting from the application of a localized pressure

wave.

Sections 3.4.2 through 3.4.4 are centered on the development of series connected

unit cells and their application to structures having enhanced attenuation zones,

multiple attenuation zones, and multi-functional properties. Unit cells are connected

in a series manner through vertical stacking. This newly introduced connection

scheme expands the global one-dimensional truss-like beam structure into a two-

dimensional lattice structure.

In all of these sections, the compliant mechanism unit cell structures introduced

thus far are used as design templates upon which these investigations are based.

Slight modifications to unit cell size are implemented, as noted. In each section the

underlying concept behind the study is first presented, which in turn is followed by

the corresponding computational results.

3.4.1 Parallel Connected Structures: Local Forcing

The approach of using numerous integrated compliant mechanisms throughout

the entirety of a structure has clear advantages as shown throughout Section 3.2.

However, this approach leads to global structures that have greater overall geometric

complexity. Depending on the nature of the applied force that a structure is subjected

to, localized integral compliant mechanisms can be utilized. Take for example the

two structures shown in Figures 3.47 and 3.48. In both figures a localized distributed

load, spanning a total distance of 0.6 m, is induced by an incident pressure wave, and

the distributed load is shown applied to the bottom layer center of each structure.
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Localized Distributed

Load Induced by

Incident Pressure Wave

Rigid

Baffle

Rigid

Baffle

Figure 3.47: Homogeneous periodic square core structure subjected to a localized
distributed load

Localized Distributed

Load Induced by

Incident Pressure Wave

Rigid

Baffle

Rigid

Baffle

Figure 3.48: Heterogeneous structure comprised of square core unit cells connected
in parallel with compliant mechanism units cells and subjected to a
localized distributed load
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This locally applied force can be thought of as representative of a confined excitation

source such as a surface mounted machine (e.g. a blower or compressor).

In Figure 3.47 the structure can be considered globally homogeneous meaning

that all unit cells have a square core topology identical to the one from Section 3.1.

Alternatively, in Figure 3.48 a globally heterogeneous structure is shown. Only the

unit cells directly subjected to the locally applied distributed load are assigned a

compliant mechanism topology. Observe that the compliant mechanism topology

from Section 3.2.1 is used, and that this approach to integrating compliant mecha-

nisms into a global structure minimizes overall geometric complexity. Accordingly,

beyond the edges of the confined loading, square core unit cells are connected in

parallel with compliant mechanism unit cells as illustrated in Figure 3.48.

The same material physical parameters, unit cell sizing, and analysis parameters

utilized for the square core unit cell (Section 3.1) and the first compliant mechanism

unit cell (Sections 3.2.1–3.2.3) are used. In Figure 3.49 the RMS normal velocity

response of the top layer of each structure is shown computed from 0 Hz to 5 kHz,

evaluated at 10 Hz frequency intervals. The expected peak at 3870 Hz is visible in

the response of the homogeneous structure. Considering an excitation source that

operates at or near this frequency, it is logical to expect large levels of structural

vibration, and hence, transmitted sound from the homogenous structure. In contrast,

the response of the heterogeneous structure shows that this peak is significantly

reduced by an average of approximately 13 dB over a frequency range from 3500 Hz

to 4000 Hz.

Despite improved performance at frequencies centered about 3870 Hz, limitations

of this method exist as evidenced by the significant resonances of the heterogeneous

structure that have been newly introduced near 900 Hz, 1800 Hz, and 5 kHz. Thus,
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Figure 3.49: Top layer RMS velocity of square core structure subjected to localized
forcing versus a structure comprised of square core unit cells connected
in parallel with compliant mechanism units cells and subjected to the
same localized forcing

caution must be exercised to completely understand the vibratory problem of interest.

Avoiding dwell time close to these frequencies during operation ramp up of the

localized source is important since these resonances represent an increase in structural

vibration when compared to the response of the original homogeneous structure.

3.4.2 Series Connected Structures: Enhanced Attenuation Zones

In this section series connected structures that have a greater number of com-

pliant mechanism layers are examined. Unit cells are connected in series fashion

to determine whether increased vibration attenuation is achievable. The rhombus

compliant mechanism unit cell (Sections 3.2.4–3.2.5) is utilized. With the exception

of the thicker members of the unit cell, all material physical parameters, unit cell

sizing, and analysis parameters are treated the same. The thicker members of the
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Figure 3.50: Rhombus compliant mechanism unit cell model (the number denotes
the top layer middle node)

unit cell shown in Figure 3.50 are assigned an increased width of 7.5 mm. This thick-

ness value raises the stiffness of the compliant mechanism core and extends the first

attenuation zone cutoff frequency by approximately 500 Hz when compared with the

original rhombus compliant mechanism unit cell response in Figure 3.28.

The investigation entails the incorporation of the rhombus compliant mechanism

unit cells into increasingly taller serial structures. Focusing on the first attenuation

zone frequency range, structural dynamic response is computed from 0 Hz to 8 kHz,

evaluated in 10 Hz frequency steps for each structure. The structures range in height

from one unit cell (i.e. 0.05 m) to 20 unit cells (1.0 m). The physical layout of each

rhombus compliant mechanism series structure is given in Figure 3.51. Observe that

as unit cells are stacked, the top layer of the preceding unit cell becomes the bottom

layer of the following unit cell. Likewise, the output of a lower unit cell becomes the

input of higher unit cell.

The response of each structure is given in Figure 3.52. It is evident that each

unit cell that is added in series reduces response within the first attenuation zone

by approximately 15 dB. This downward trend continues until a point at which the
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Figure 3.52: Top layer RMS velocity of rhombus compliant mechanism series struc-
tures
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Figure 3.54: Top layer transverse and horizontal RMS velocity of rhombus compliant
mechanism series structures

attenuation zone begins to break down as highlighted in this figure. The discussion

of this phenomenon is deferred for the moment.

However, also of interest is the behavior of these series structures at frequencies

below 1500 Hz. As additional unit cells are connected in series, the number of

resonances within this lower frequency band conjointly increases, as illustrated in

Figure 3.53. For clarity in this figure the response of the standalone unit cell is

shown along with the response of the structures having two, three, and 20 unit cells

connected in series.

The breakdown in the attenuation zone mentioned above in relation to Figure 3.52

occurs for structures having 16 or more compliant mechanism unit cells connected

in series. The cause of this breakdown is explored by computing, not only the top

layer RMS transverse velocity, but also the top layer middle node (e.g. node 13

in Figure 3.50) RMS horizontal velocity of several series structures. The structural
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(a) 4410 Hz (b) 4440 Hz (c) 4480 Hz

Figure 3.55: Energy distribution in the top three rhombus compliant mechanism unit
cells for the structure with 20 unit cells in series: (a) 4410 Hz, (b) 4440
Hz, and (c) 4480 Hz (dotted lines denote undeformed configuration,
continuous lines denote deformed configuration)

dynamic response of the single compliant mechanism unit cell is compared with

that of structures having five and 15 unit cells connected in series, respectively, in

Figure 3.54.

This figure shows that as the number of unit cells in series increases above 15 the

RMS horizontal velocity amplitude begins to approach the RMS transverse velocity

amplitude in the frequency range of 4200–4600 Hz. This phenomenon leads to a cross-

coupling of the horizontal and transverse velocity of the structure, and hence, to the

breakdown in the attenuation zone highlighted in Figure 3.52. To better understand

this behavior, the total energy of the structure having 20 unit cells connected in

series was computed. The deformed shape and energy distribution in the top three

unit cells of this structure are shown in Figures 3.55 (a), (b), and (c) at frequencies

within the 4200–4600 Hz range. The dynamic response at the top of the structure

is characterized by side to side movement and energy flow into the core of each unit

cell. These resonant modes are related to the cross coupling of the horizontal and

transverse velocities.

Within a broad context, it is reasonable to assume that the results presented
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in this section can be generalized to any compliant mechanism unit cell topology

connected in series. First, unit cells can be connected in series to achieve greater

attenuation within a predefined frequency range. Second, the additive effect of a

greater number of unit cells connected in series is limited due to the specific behavior

of the structure. This specific behavior is logically connected to the topological details

of the structure and should generally vary depending on the selected topology for the

compliant mechanism unit cell. As further unit cells are stacked, local resonances can

occur to limit the effectiveness of the series structure. Accordingly, while significant

attenuation can be achieved, the attenuation does not increase without bound.

3.4.3 Series Connected Structures: Multiple Attenuation Zones

The next phase in the study of series connected structures is to consider a com-

posite unit cell comprised of two distinctly sized unit cells, as shown in Figure 3.56.

Each individual unit cell is considered to have a response attenuation zone that spans

a unique frequency range. The goal here is to better understand the influence of the

standalone response of each unit cell on the additive composite response of the se-

ries structure. The compliant mechanism unit cell topology, ABS material physical

parameters, and analysis parameters from Section 3.3 are utilized for both unit cells.

The sizing, and consequently the stiffness, of various members within each unit

cell is manually adjusted such that different attenuation zone frequency ranges are

achievable. The bottom unit cell is assigned the same member widths as the unit

cell defined in Section 3.3. Several additional core members of the top unit cell are

assigned the thicker width of 2.0 mm. In Figure 3.56 thinner lines denote members

having a width of 1.0 mm and thicker lines denote members having a width of 2.0

mm.

The RMS transverse velocity response of the top unit cell, the bottom unit cell,
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(a) Bottom unit cell (b) Top unit cell

(c) Series compliant mechanism structure

Figure 3.56: Two unit cells and their assembly into a series structure: (a) bottom
unit cell, (b) top unit cell, and (c) series compliant mechanism structure
(thicker lines denote members with a width of 2.0 mm, thinner lines
denote members with a width of 1.0 mm)

and the series structure was respectively computed from 0 Hz to 10 kHz at 10 Hz

frequency increments. The respective standalone and composite structural dynamic

responses of all three are given in Figure 3.57. The dynamic response of the bottom

unit cell is a repeat of the response shown in Figure 3.46. The dynamic response of the

top unit cell exhibits a shift towards higher frequencies across the 10 kHz frequency

range relative to that of the bottom unit cell. This shift is a consequence of the

increased width of the unit cell core members and the resulting increased stiffness.

Below 2 kHz a single unit cell resonance is visible in the response of the top unit cell.
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Figure 3.57: Top layer RMS velocity of bottom unit cell, top unit cell, and series
compliant mechanism structure

The first attenuation zone is also evident from 2320 Hz to approximately 6500 Hz

with greater modal density at the beginning of the zone. The resonances that occur

in the response of the bottom unit cell from 5500–8500 Hz are confined to a smaller

frequency range of 7000–8500 Hz for the top unit cell. The second attenuation zone

from 9240–9600 Hz is visible in the dynamic response of both individual unit cells.

Moving to the dynamic response of the series structure, the separate unit cell

response characteristics are combined to describe the response of the series structure,

i.e. all resonant peaks are present. Alternatively stated, the response of the series

structure appears as a superposition of the individual unit cell responses. Below 2

kHz three resonances now appear. Above 2 kHz and within the frequency ranges

in which the attenuation zones overlap, RMS transverse velocity levels are reduced.

Above 5 kHz four peaks are present, which respectively represent the peaks found

in the dynamic response of the individual top and bottom unit cells. On average,
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the dynamic response of the series structure from 2320 Hz to 10 kHz is reduced by

approximately 15 dB relative to either of the standalone unit cell responses.

The reduction in structural dynamic response achieved using unit cells in series

is constrained by the fact that the stacking of unit cells introduces increased modal

density. This increased modal density is a consequence of the superposition of the

responses of the individual unit cells. Despite this limitation, at frequencies beyond

the first attenuation zone, the amplitude of all resonances is reduced.

3.4.4 Series Connected Structures: Introduction to Multi-Functional
Structures

In this final section dealing with series connected structures, two configurations

are examined at the unit cell and structure level. The first configuration consists of

two square core unit cells connected in series (from here on referred to as a “double

layer square core” unit cell and structure). The second configuration consists of a

square core unit cell connected in series to a compliant mechanism unit cell (from

here on referred to as a “multi-functional” unit cell and structure). The objective

of this investigation is to introduce multi-functional structures that are capable of

supporting static loads while having enhanced dynamic performance. Thus, in the

case of the multi-functional configuration, the square core unit cell can be thought of

as the structural component, and the compliant mechanism unit cell can be thought

of as the portion of the structure designed for specific dynamic functionality. The

performance of the multi-functional unit cell, as it pertains to vibration transmission,

is compared with the performance of the purely structural double layer square core

unit cell.

The conceptual model for the double layer square core unit cell incorporates the

standalone square core unit cell from Section 3.1 as a design template for both the top
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and bottom unit cells shown in Figures 3.58 (a) and (b), respectively. All material

physical parameters and analysis parameters are assumed to be the same for both

individual unit cells, except for unit cell member sizing. The width of members in

the bottom unit cell is the same as the standalone square core unit cell in Section 3.1

with the exclusion of the top facesheet, which is assigned a thickness of 2.5 mm

instead of 5.0 mm, Figure 3.58 (a). Consequently, the top unit cell must also be

assigned a bottom facesheet thickness of 2.5 mm, Figure 3.58 (b). The conceptual

model of the resultant series structure is shown graphically in Figure 3.58 (c). A

double layer square core structure composed of six double layer square core unit cells

is given in Figure 3.59.

The conceptual model for the multi-functional unit cell also incorporates the same

standalone square core unit cell from Section 3.1 as a design template for the bottom

unit cell shown in Figure 3.60 (a). However, the top unit cell in Figure 3.60 (b)

is modeled after the standalone compliant mechanism unit cell from Section 3.2.1.

Again, all material physical parameters and analysis parameters are assumed to be

the same for both individual unit cells, except for unit cell member sizing. The

bottom unit cell is once more assigned a top facesheet thickness of 2.5 mm. For

simplicity, all members of the top unit cell are assigned a thickness of 2.5 mm. The

conceptual model of the resultant series structure is provided in Figure 3.60 (c). A

structure assembled from six multi-functional unit cells is shown in Figure 3.61.
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(a) Bottom unit cell (b) Top unit cell

(c) Double layer square core unit cell

Figure 3.58: Two individual unit cells and their assembly into a series structure: (a)
bottom unit cell, (b) top unit cell, and (c) double layer square core unit
cell (thicker lines denote members with a width of 5.0 mm, thinner lines
denote members with a width of 2.5 mm)

Rigid

Baffle

Rigid

Baffle

Figure 3.59: Periodic structure comprising six double layer square core unit cells
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(a) Bottom unit cell (b) Top unit cell

(c) Multi-functional unit cell

Figure 3.60: Two individual unit cells and their assembly into a series structure: (a)
bottom unit cell, (b) top unit cell, and (c) multi-functional unit cell
(thicker lines denote members with a width of 5.0 mm, thinner lines
denote members with a width of 2.5 mm)

Rigid

Baffle

Rigid

Baffle

Figure 3.61: Periodic structure comprising six multi-functional unit cells
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Figure 3.62: Top layer RMS velocity of bottom unit cell and double layer square core
unit cell

Several analyses were performed to characterize the various unit cells and struc-

tures that were just defined. All of the top layer RMS transverse velocity response

results shown in the figures that follow focus on the first attenuation zone frequency

range. Thus, structural dynamic response was computed from 0 Hz to 8 kHz, eval-

uated in 10 Hz frequency steps.

A comparison is made in Figure 3.62 between the bottom unit cell from Fig-

ure 3.58 (a) and the double layer square core unit cell from Figure 3.58 (c). The

response of the bottom unit cell is a predictor of the response of the double layer

square core unit cell with comparable amplitude throughout the frequency range.

Observe that changing the thickness of the top facesheet of the bottom unit cell

splits the original square core unit cell resonant peak at 1120 Hz, Figure 3.3 (a), into

two peaks at 1130 Hz and 1390 Hz, Figure 3.62. Furthermore, the unit cell resonance

at 3700 Hz, Figure 3.3 (a), moves to 3300 Hz, Figure 3.62, as a result of the reduced
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Figure 3.63: Top layer RMS velocity of double layer square core unit cell and struc-
ture

stiffness of the unit cell.

In Figure 3.63, the top layer RMS transverse velocity response of the double

layer square core unit cell from Figure 3.58 (c) is compared with the response of the

structure from Figure 3.59. The first resonant mode of the structure occurs at 660

Hz. Increased modal density between 1100–2600 Hz and 3000–4500 Hz is also visible

in the response of the structure. Nonetheless, the response of the double layer square

core unit cell predicts the global structural dynamic behavior.

The top layer RMS transverse velocity response of the multi-functional unit cell

from Figure 3.60 (c) and each of its individual unit cell constituents now is examined.

Figure 3.64 shows the now familiar response of the bottom (i.e. square core) unit

cell from Figure 3.60 (a) having the same notable resonant peak at 3300 Hz. The top

(i.e. compliant mechanism) unit cell from Figure 3.60 (b) exhibits an attenuation

zone that spans the frequency range of 2320 Hz to 5000 Hz with greater amplitude
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of response respectively before and after these two frequencies. Combining these two

individual unit cells into a multi-functional unit cell results in a dynamic response

that shares the resonant characteristics of both individual unit cells, per the results

from Section 3.4.3. However the resonant peak at 3300 Hz is significantly reduced.

This 25 dB reduction is a consequence of the unit cell series coupling, and it illus-

trates the application of this method in building structures with multi-functional

capabilities. In Figure 3.65, the top layer RMS transverse velocity response of the

multi-functional unit cell from Figure 3.60 (c) is compared with the response of the

structure from Figure 3.61. The unit cell response once more accurately predicts the

structure response, despite the presence of greater modal density.

Finally, the response of the double layer square core unit cell is compared with

the response of the multi-functional unit cell in Figure 3.66. The structural dynamic

response of the double layer square core structure is compared with that of the multi-

functional structure in Figure 3.67. A reduction of approximately 14 dB is seen in

the response of the multi-functional structure when compared to the response of the

double layer square core structure over the frequency range of 2320–5000 Hz.

To summarize, the bottom layer of the multi-functional structure can be consid-

ered a load bearing member whose dynamic characteristics generally dominate struc-

tural dynamic performance. In contrast, the top layer of the multi-functional struc-

ture can be considered as an acoustic lining that reduces the amplitude of these dom-

inant dynamic characteristics within a prescribed response frequency range. These

results suggest promising applications of this research to the solution of practical

engineering problems concerned with structural-borne noise.
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Figure 3.64: Top layer RMS velocity of bottom unit cell, top unit cell, and multi-
functional unit cell
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Figure 3.65: Top layer RMS velocity of multi-functional unit cell and structure
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Figure 3.66: Top layer RMS velocity of double layer square core unit cell versus
multi-functional unit cell
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Figure 3.67: Top layer RMS velocity of double layer square core structure versus
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3.5 3-D Unit Cell & Structure

The final topic of this chapter is centered around the extension of the definitions,

concepts, and numerical methods used in the analysis and design of 2-D truss-like

structures to the study of 3-D lattice structures. The 3-D space frame spectral

finite element formulation presented in Section 2.3 is utilized. Additionally, the

rhombus compliant mechanism topology from Section 3.2.4 is implemented in this

investigation.

3.5.1 Concept & Definitions

The study of planar structures has served as an appropriate starting point for this

research. Specifically, this approach has facilitated analysis while avoiding undue

geometric complexity. There are, however, two shortcomings of a 2-D analysis that

need to be addressed: 1) the inability of a two dimensional analysis to capture the

out-of-plane component of wave propagation and 2) the limitations associated with

designing practical structures in a purely planar workspace. Therefore, despite the

common claim that the extension of a 2-D method to 3-D is trivial, it is instructive

to take this step in order to enable the analysis and design of realistic, albeit more

complicated, structures.

A 3-D truss unit cell and lattice panel configuration having neither a top nor a

bottom facesheet is employed in this study. This configuration can be envisioned

as the internal truss core contained within a composite panel. An integral rhombus

compliant mechanism is oriented in both the x-direction and y-direction as illustrated

by the three-dimensional unit cell model given in Figure 3.68. For simplicity, the

members of each integral compliant mechanism unit cell are assumed to have a

circular cross-section.
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Figure 3.68: 3-D rhombus compliant mechanism unit cell model (numbers denote
nodes)
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Figure 3.69: 3-D periodic rhombus compliant mechanism lattice panel structure
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The conceptual model of a periodic lattice structure is shown in Figure 3.69 con-

sisting of nine unit cells assembled in a square panel configuration. The structure is

assumed to be rigidly fixed to a baffle on all exposed sides. The bottom layer (i.e.

the purple colored members that reside in the x-y plane) is subjected to a distributed

load induced by an incident pressure wave front.

In the 3-D rhombus compliant mechanism unit cell model shown in Figure 3.68,

the ground members are connected to the top layer of the lattice per the convention

stipulated in Section 3.2.4. Appropriately, the FRF amplitude and phase of the 3-D

unit cell model are defined as

(3.21)

Amplitude =

∣∣∣∣ v̂30z − v̂31z

v̂2z − v̂21z

∣∣∣∣ ; Phase =
180

π
[∠ (v̂30z − v̂31z)− ∠ (v̂2z − v̂21z)]

where the output is taken as the z-direction spectral displacement of node 30 relative

to node 31, and the input is taken as the z-direction spectral displacement of node 2

relative to node 21. Nodes 21 and 31 are selected since they are part of the ground

of the mechanism.

Observe that in order to predict the frequency at which the attenuation of dynamic

response begins, the wavenumber-frequency equation, Eqn (3.16) from Section 3.2.1,

is still used.

3.5.2 Analysis

In Figure 3.70 the bottom layer of the structure is excited by a pressure wave

front that propagates in three dimensions. This leads to the standard form for the

harmonic variation of pressure in time

(3.22) pi(x, y, z, t) = pi(x, y, z, ω)e−iωt
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Figure 3.70: 3-D plane wave incident to the bottom layer of the structure

where

(3.23) pi(x, y, z, ω) = pine
ikxx+ikyy+ikzz

In Eqn (3.23) kx, ky, and kz represent the cartesian components of the acoustic

wavenumber, k, of the fluid through which the incident pressure wave travels. These

components can be written in terms of the polar angle, ξ, and azimuthal angle, ψ,

as

(3.24) kx = k sin ξ cosψ

(3.25) ky = k sin ξ sinψ

(3.26) kz = k cos ξ

By combining Eqns (3.24)–(3.26) with Eqn (3.23), it follows that

(3.27) pi(x, y, z, ω) = pine
ik(x sin ξ cosψ+y sin ξ sinψ+z cos ξ)
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The assumption of a normally incident pressure wave with ξ = 0, ψ = 0, and z = 0

allows Eqn (3.27) to be written in a reduced form similar to Eqn (3.2) as

(3.28) pi(x, y, z, ω) = pin

Thus, given this formulation of the pressure, the necessary components of the equiv-

alent spectral load vector for a space frame element residing in the bottom layer x-y

plane are found to have the same form given previously in Eqns (3.7) and (3.8).

3.5.3 Computational Results

The three-dimesional unit cell and structure are assumed to be made of aluminum.

An additional material physical parameter is required for a three dimensional analy-

sis. The Poisson’s ratio, ν = 0.33, allows for the calculation of the material complex

shear modulus, G∗, using the relation G∗ = E∗/(2(1 + ν)).

The boundary conditions for the unit cell analysis are the 3-D counterparts to the

symmetry boundary conditions used in all of the 2-D unit cell analyses. Rotational

degrees of freedom are constrained for the nodes that lie on a vertical boundary of

the unit cell in either a y-z plane or z-x plane, referring to Figure 3.68. For the full

panel structure, all six degrees of freedom (i.e. both rotations and translations) of

nodes that lie on a vertical boundary of the structure in either a y-z plane or z-x

plane are constrained, (see Figure 3.69).

The unit cell dimensions are 0.1 m in the x-direction by 0.1 m in the y-direction

by 0.05 m in the z-direction. The lattice panel structure has dimensions of 0.3 m

in both the x and y directions and a thickness of 0.05 m in the z-direction. The

diameter of the bottom layer members of the unit cell that reside in the x-y plane is

2.5 mm. The core members of the unit cell are assigned a diameter of 3.75 mm. All

remaining members (i.e. ground, transmission, etc.) are assigned a diameter of 5.0
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Figure 3.71: 3-D rhombus compliant mechanism unit cell FRF

mm.

The frequency range of interest for this study is 0 Hz to 10 kHz, with response

computed at 10 Hz frequency intervals. The 3-D unit cell FRF is given in Figure 3.71.

Below 2 kHz a single prominent peak in RMS z-direction velocity response is visible

at 1050 Hz. This peak represents a resonance of the unit cell prior to the attenuation

zone starting frequency. Substitution of the physical parameters of the bottom layer

elements into Eqn (3.16), along with λ = 0.1 m (i.e. the length of the unit cell in

both the x and y directions), gives the first attenuation starting frequency as 2030

Hz. Observe that the selection of a circular cross-section affects the attenuation

zone starting frequency by lowering it slightly relative to that of the two-dimensional

rhombus compliant mechanism unit cell. However, similar to the 2-D unit cell,

the FRF illustrates that within the attenuation zone the 3-D rhombus compliant

mechanism exhibits non-resonant (i.e. small amplitude), out-of-phase “inversor”
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Figure 3.72: Top layer RMS velocity of 3-D lattice panel structure versus unit cell

behavior. Beyond 5 kHz the two RMS z-direction velocity response peaks at 5310

Hz and 6350 Hz represent resonances of the compliant mechanism core. In the case

of the first resonant peak at 5310 Hz, the increase in velocity amplitude is associated

with a slight increase in FRF amplitude and a FRF phase that briefly moves closer

to an in-phase angle. At 8 kHz the second attenuation zone is present as predicted

by Eqn (3.16) when λ = 0.05 m (i.e. the half-length of the unit cell in both the x

and y directions). Moving towards 10 kHz the RMS z-direction velocity response

again begins to rise in magnitude as FRF amplitude increases.

The 3-D lattice panel structure RMS z-direction velocity response is compared

with the response of the 3-D unit cell in Figure 3.72. The first resonance of the panel

structure occurs at 890 Hz and carries over into a second peak in close proximity to

1120 Hz. Just prior to the first attenuation zone, the second unit cell resonant peak

near 2 kHz is split into three peaks in the response of the panel structure. Lower
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amplitude resonances are also visible within the first attenuation zone. Specifically,

three closely spaced peaks are noticeable at 2780 Hz, 3190 Hz, and 3540 Hz, along

with a broad peak from 4400–4700 Hz. However, the first attenuation zone is still

present and is only slightly limited by the occurrence of these resonances. Beyond

5 kHz the RMS z-direction velocity response of the panel structure matches, in an

approximate sense, the response of the unit cell. The second attenuation zone starts

at a somewhat lower frequency of 7800 Hz. Increased modal density within the

second attenuation zone is evident near 9400 Hz.

The total energy in each 3-D spectral space frame element of the unit cell and

structure was computed at specific frequencies using Eqn (3.18). The deformed

shape of the unit cell and total energy distribution at 2500 Hz, within the first

attenuation zone, is shown in Figure 3.73 (a). Thicker lines denote greater energy

content, and energy isolation in the bottom layer of the unit cell is visible. The first

mechanism resonance at 5310 Hz is confirmed through examination of Figure 3.73 (b);

a greater transference of energy into the core of the unit cell occurs. The total

energy distribution at 9000 Hz, within the second attenuation zone, is shown in

Figure 3.73 (c). The energy isolation phenomenon is again remarkable.

From a global perspective, examining the total energy distribution within the

lattice panel structure, exclusive of the deformed shape, elucidates the underlying

mechanisms behind increased modal density within the first attenuation zone. The

total energy distribution within the panel structure is viewed edge on for clarity at

numerous frequencies as shown in Figure 3.74. Specifically, results are shown at

frequencies just before, at, and in between the resonances at 2780 Hz, 3190 Hz, 3540

Hz, and the broad resonance centered around 4490 Hz. Again, thicker lines denote

greater energy content.
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(a) 2650 Hz (just prior to first resonance) (b) 2780 Hz (first resonance)

(c) 3000 Hz (between first and second resonances) (d) 3190 Hz (second resonance)

(e) 3430 Hz (between second and third resonances) (f) 3540 Hz (third resonance)

(g) 3840 Hz (just after third resonance) (h) 4490 Hz (fourth resonance)

Figure 3.74: 3-D rhombus compliant mechanism lattice panel structure energy distri-
bution – viewed edge on for visual clarity – at the following frequencies:
(a) 2650 Hz, (b) 2780 Hz, (c) 3000 Hz, (d) 3190 Hz, (e) 3430 Hz, (f)
3540 Hz, (g) 3840 Hz, and (h) 4490 Hz

At frequencies before or after a resonance, Figures 3.74 (a), (c), (e), and (g), energy

is generally confined to the lower half of the structure. In contrast to this behavior,

at each resonance there is a localization of energy within specific portions of the

panel structure, Figures 3.74 (b), (d), (f), and (h), plus energy transfer throughout

the structure including the panel core, and more significantly, the panel top layer.

These local resonances are not captured by the standalone unit cell analysis since

they are related to the interaction between different unit cells once assembled into

a global structure. This is also supported by the observation that, for the global

structure, the number of resonant peaks within regions of increased modal density

tends to be correlated with the periodicity of the structure. In this specific example,

the lattice panel has dimensions that are defined by three unit cells oriented in both

the x and y directions, and in the regions of increased modal density resonant peaks
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tend to appear in groups of three. This global interaction of local unit cells makes

clear the limitations associated with unit cell reduced order computational models.

Prior to leaving this chapter, a final picture of the global dynamic behavior of

the 3-D lattice panel structure is given by computing the total energy distribution

throughout the structure at two frequencies. Isometric views at 2650 Hz and 8040

Hz are provided in Figures 3.75 (a) and (b), respectively. Top layer energy isolation

is prevalent as visualized through a thinner line thickness.



122

(a) 2650 Hz

(b) 8040 Hz

Figure 3.75: 3-D rhombus compliant mechanism lattice panel structure deformed
shape and energy distribution at the following frequencies: (a) 2650
Hz and (b) 8040 Hz (dotted lines denote undeformed configuration,
continuous lines denote deformed configuration)



CHAPTER 4

Genetic Algorithm Optimization

In the previous chapters, numerous computational models and results have been

presented. These studies have focused on establishing several ideas fundamental

to this research including the compliant mechanism unit cell analysis and design

concept, the design of unit cells composed of alternative materials, the connection

of unit cells in parallel and series fashion, and the extension of the analysis and

design methodology to three dimensions. The next step in formulating a unified

methodology is to investigate the optimization of structures with integral compli-

ant mechanisms in order to achieve a desired response over a prescribed frequency

range. In this chapter a genetic algorithm optimization routine is coupled to the

aforementioned spectral finite element computational analysis.

In Section 4.1, size optimization of structural members within a compliant mech-

anism unit cell is performed using a genetic algorithm. Planar structures are once

more the subject of investigation, and the objective is to “tune” the response of an

assumed topology. This topic was discussed briefly in various parts of Section 3.4,

however, the size of unit cell members was adjusted manually to achieve the de-

sired structural dynamic response. In this section the size optimization procedure is

automated.

In Section 4.2, a genetic algorithm is further employed for the topology optimiza-

tion of the unit cell. A starting network structure is assumed, from which final unit

123
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cell topologies are computed. The goal in this section is to introduce topology opti-

mization as another method for deriving compliant mechanism unit cell designs that

exhibit enhanced structural dynamic performance.

4.1 Size Optimization

The genetic algorithm used for size optimization has the standard operations, per

Goldberg [30], found in most applications: 1) selection of candidate individuals from

an initial population according to their fitness value; 2) crossover, where portions

of two individuals are combined to create a new individual; 3) mutation, where

small, random changes are introduced. Additionally, an elitist survival strategy is

implemented to ensure that the fittest individual from a given population survives

in the next generation, as discussed by Keane [50].

4.1.1 Analysis

It is appropriate to define an objective in terms of “response tuning.” As men-

tioned in Section 3.2.1, changing the thickness of various beam widths within the

unit cell alters the attenuation zone breadth (due to modification of the mechanism

stiffness and consequently natural frequencies). Hence, the objective for this study

is to use a genetic algorithm to optimize the size of various beams in the unit cell

and decrease the RMS normal velocity response over a specified frequency range.

Specifically, the objective function is to minimize the following fitness value (FV)

(4.1) min FV =
∑
n

vRMS

where the RMS velocity, vRMS, is summed over the, n, number of frequencies spanning

a frequency interval.

The compliant mechanism unit cell from Section 3.2.1 is used as a template for
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Figure 4.1: Compliant mechanism unit cell model (numbers that are circled denote
elements)

this study. For the size optimization analysis a total of nine element widths are

used as variables; one for each of the following elements: 4 through 7 and 9 through

13 (Figure 4.1). Symmetry is enforced about the centerline of the unit cell. The

elements chosen for size optimization include the mechanism core and top layer

elements, but not the ground, transmission, or bottom layer elements. The latter

groups, not selected for size optimization, are considered paramount to realizing

response attenuation. For example, the bottom layer element width should not be

modified since that will change the frequency at which the attenuation zone begins,

according to Eqn (3.16).

A flow chart of computations for the unit cell genetic algorithm size optimization

procedure is given in Figure 4.2. The analysis procedure requires the generation of an

initial random population after which spectral finite element analyses are conducted

to compute the fitness value for each individual over the specified frequency range.

Following this, the optimizer performs selection, crossover, and mutation, and the

fitness values of the new population members are computed using the spectral finite

element analysis. This procedure is iterated over a set number of generations and
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Generate initial random population 

Execute spectral FEA to 

determine member FV

Selection, crossover, and mutation

Iterate over a set 

number of generations

Compute RMS normal velocity 

response of optimal unit cell design 

over 0-10 kHz using spectral FEA

Start

End

Final

Generation?
Yes

No

Figure 4.2: Flowchart of computations for genetic algorithm size optimization

the final size optimized design is obtained.

4.1.2 Results

The width of each element was allowed to vary +75% / -50% from an initial value

of 2.5 mm. An 18-bit binary encoding was used in the genetic algorithm for the nine

variables (i.e. 2 bits per variable). A population size of 10 was iterated over four

generations. Given the range of fitness values for the members of the population,

individuals within the top 80% were selected and copied into a mating pool with

fitter members more represented. Among those surviving individuals, 80% of them

were allowed to crossover (i.e. breed) after which, a mutation rate of 1% was applied.

The compliant mechanism unit cell was optimized to minimize the FV over the

frequency interval of 5–7 kHz at frequency steps of 10 Hz with n = 200 in Eqn (4.1).

In particular, initial response peaks at 5400 Hz and 6200 Hz, as shown in Figure 4.3,
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Figure 4.3: Top layer RMS velocity of compliant mechanism unit cell

were targeted for reduction. This figure also shows the RMS transverse velocity of

the optimized unit cell response computed over the entire 0 Hz to 10 kHz range at

10 Hz frequency steps. An average reduction of 9 dB was achieved over the 5 kHz

to 7 kHz frequency range with a significant reduction of 25 dB at 5400 Hz and 30

dB at 6200 Hz. Comparing the initial and optimized responses, it is clear that the

unit cell resonances have been shifted to the right across the majority of the 10 kHz

range implying a somewhat stiffer structure.

The final width of each size optimized element is given in Table 4.1 and the initial

and optimized unit cell structures are shown in Figures 4.4 and 4.5, respectively.

Element width is represented by varying line thickness in these figures. The thicker

members in the optimized structure are consistent with the notion of the unit cell

being stiffer, leading to a shift of the unit cell resonances towards higher frequen-

cies. These optimization results are excellent given that only four generations were
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Table 4.1: Initial and optimized sizing of the compliant mechanism unit cell
Element Number Initial Width Optimized Width

4 2.5 mm 3.3 mm
5 2.5 mm 3.3 mm
6 2.5 mm 3.3 mm
7 2.5 mm 4.3 mm
9 2.5 mm 4.3 mm
10 2.5 mm 2.3 mm
11 2.5 mm 3.3 mm
12 2.5 mm 4.3 mm
13 2.5 mm 4.3 mm

Figure 4.4: Initial compliant mechanism unit cell

Figure 4.5: Optimized compliant mechanism unit cell
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evaluated, each with a population size of only 10 individuals.

4.2 Topology Optimization

In the previous section a unit cell topology was considered based on a priori

knowledge of desired compliant mechanism characteristics (e.g. large mechanical

advantage). In this section the unit cell topology, or geometric form, is derived using

a genetic algorithm topology optimization routine. The goal here is to illuminate

other possible unit cell structures that have potential in realizing a preferred mid-

frequency dynamic response.

4.2.1 Analysis

A simple unit cell binary ground structure consisting of a truss network of in-

terconnected frame elements is established to represent the seed for the topology

optimization problem. In Figure 4.6 the bottom layer of the unit cell is connected

via a single transmission element to the ground structure optimization domain. The

ground structure optimization domain is then connected via multiple connections to

the unit cell top layer. This configuration is assumed based on the knowledge that

transverse waves propagating through the unit cell bottom layer will actuate a com-

pliant mechanism residing within the core of the unit cell. For the purposes of this

study, frame elements within the 2-D optimization domain are allowed to cross over

each other. While this configuration is not physically possible in the construction of

a prototype, the approach satisfies the primary goal of this investigation, which is to

demonstrate the potential of the topology optimization method.

In computing an optimum topology, frame elements within the truss network are

allowed to vary in thickness over a preset width range. The topology optimization

problem then becomes a size optimization problem that proceeds as provided in
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Figure 4.6: Initial (pre-optimization) unit cell binary ground structure

flowchart form in Figure 4.7. First, an initial random population of members (i.e.

unit cells) is generated. Each member of this population has a randomly assigned

distribution of element thicknesses for those elements that lay in the optimization

domain. Second, the top layer RMS transverse velocity response of each unit cell

is computed over a reduced frequency range using the spectral finite element analy-

sis method. Following this, the fitness value of each unit cell is computed over the

reduced frequency range using Eqn (4.1). The optimizer then performs selection,

crossover, and mutation, and the fitness values of the new population members are

determined in a similar manner via the spectral finite element analysis. This proce-

dure is repeated over a predetermined number of iteration generations to arrive at

a final generation. Third, a reduced subset of the final generation is selected, and

the top layer RMS transverse velocity response of each “initial unit cell” within this
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Figure 4.7: Flowchart of computations for genetic algorithm topology optimization
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subset is computed over the entire 10 kHz mid-frequency range of interest. Fourth,

a filtering routine is applied to each member of the subset to arrive at a group of

final unit cell topologies. The filtering routine sets the width of elements below a

predetermined threshold to a number very close to zero. Elements with small widths

contribute negligibly to the overall unit cell dynamic response characteristic. This

filtering approach is utilized as a way of automating the filtering process and facilitat-

ing computational efficiency since it avoids the requirement of having to regenerate

the finite element mesh. Lastly, the top layer RMS transverse velocity response of

each “filtered unit cell” is once more computed over the 10 kHz frequency range and

compared with the respective initial unit cell response. In such a way, final unit cell

topologies that have reduced internal geometric complexity are obtained.

4.2.2 Results: Example 1

The unit cell seed for all of the remaining examples in this chapter is assumed to

be made of aluminum and has overall dimensions of 0.1 m by 0.055 m. The starting

width of the core elements of the unit cell is 0.5 mm. These core elements are allowed

to range in thickness from 0.005 mm to 0.995 mm during the optimization routine.

The top and bottom layer thickness is held fixed at 2.5 mm, and the predefined

ground elements of the unit cell are assigned a non-varying width of 5.0 mm. Fig-

ure 4.8 shows the initial sizing of the unit cell where the thickest lines represent the

ground elements; the thinnest lines represent the core elements that define the op-

timization domain; the lines that have an intermediate thickness represent elements

that are part of the top and bottom layers of the unit cell.

A 670-bit binary encoding was used in the genetic algorithm optimization routine

for the 67 core element width variables (i.e. 10 bits per variable). Several optimiza-

tion runs were performed. In this first example, a population size of 140 members was
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Figure 4.8: Initial sizing of unit cell binary ground structure (thickest lines have a
width of 5.0 mm; intermediate thickness lines have a width of 2.5 mm;
thinnest lines have a width of 0.5 mm)

iterated over 10 generations. Selection, crossover, and mutation probabilities were

set at 80%, 80%, 1%, respectively. These same probabilities were used to compute

the optimum topologies presented in the remaining examples in this chapter.

The unit cell was optimized to minimize the FV over the reduced frequency in-

terval of 2320–2330 Hz at frequency steps of 10 Hz and n = 2 in Eqn (4.1). After

execution of the optimization routine, the top layer RMS transverse velocity response

of each top ten initial unit cell topology was computed from 0 Hz to 10 kHz, again

evaluated in 10 Hz frequency steps. The filtering routine was then applied to this

ten member subset of the final generation to obtain the filtered unit cells.

A filter threshold of 0.6 mm was used in determining the final ten unit cell opti-

mum topologies. All members within the optimization domain of a specific unit cell



134

that had a width less than 0.6 mm were reassigned a thickness of 2.54E-5 mm, which

from a computational standpoint represents a negligible stiffness. The top layer RMS

transverse velocity response of each filtered unit cell was then re-computed from 0–10

kHz. Since the bottom layer thickness of the unit cell was held fixed at 2.5 mm, the

attenuation zone starting frequency for each unit cell is 2320 Hz as determined using

Eqn (3.16). The filter threshold was set by determining the maximum number of

frame elements that could be eliminated from the optimization domain while main-

taining reasonable breadth of the first attenuation zone and connectivity between

the unit cell bottom layer, core members, and top layer.

The final ten optimum topologies are shown in Figures 4.9 (a)–(j), where thinner

lines represent frame elements that have greater compliance. Missing elements have

a width below the filter threshold and are removed for visual clarity of the underlying

topology. Both the initial and filtered top layer RMS transverse velocity responses

for each unit cell are shown in Figures 4.10 (a)–(j). With the exception of optimum

topology eight, the filtering routine maintains the breadth of the first attenuation

zone. However, observe that the filtering routine introduces a greater number of

resonant peaks just after the cutoff frequency for the first attenuation zone and

prior to the start of the second attenuation zone. In this numerical example no

disconnected unit cell designs were obtained, although two designs have hanging or

floating elements (e.g. optimum topology four and seven), Figure 4.9.

4.2.3 Results: Example 2

Since the initial population from which the optimization routine proceeds is ran-

domly generated, different runs can produce different results depending on the num-

ber of individuals in a population and the number of generations used. Accordingly,

in this second example the results from another optimization run are provided. A
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Figure 4.11: Average FV of 400 member population over 400 generations

population size consisting of 400 members was iterated over 400 generations. To

further explore convergence of the genetic algorithm the average FV of each gener-

ation was monitored. The average FV is shown as a function of generation number

in Figure 4.11. This figure demonstrates that the average FV of the population has

converged after approximately 65 generations. The drift in the average FV after this

point is due to random variations introduced by mutation as discussed by Stoffa &

Sen [94]. Beyond generation 65 the average of the remaining average fitness values is

-4.4 dB. Further inspection of Figure 4.11 reveals that despite this drift, the genetic

algorithm consistently trends back towards the average value of -4.4 dB, as expected.

Given the final generation, a subset consisting of the top ten optimum unit cell

topologies was selected and the top layer RMS transverse velocity response of each

selected initial unit cell design was computed over the entire 10 kHz frequency range.

The filtering procedure was then applied. In this example, a filter threshold of 0.7
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mm was used. The larger filter threshold value, compared to the first example from

Section 4.2.2, was found to produce designs having maximum sparseness while main-

taining attenuation zone breadth and unit cell connectivity. After the application

of the filtering routine, the top layer RMS transverse velocity response of each unit

cell design was computed over the 10 kHz frequency range and compared with the

respective initial response.

The final ten optimum topologies are shown in Figures 4.12 (a)–(j), where thinner

lines represent frame elements with greater compliance. The elements that are miss-

ing from these figures have a width below the 0.7 mm filter threshold. The initial

and filtered top layer RMS transverse velocity responses for each optimized unit cell

are shown in Figures 4.13 (a)–(j). Observe that using a larger filter threshold value

produced only one disconnected design (i.e. optimum topology six). Similar to the

first numerical example from Section 4.2.2, the filtering routine introduces a greater

number of resonant peaks between the first and second attenuation zones. In the

case of optimum topology five the filtering routine substantially modifies structural

dynamic response with the result being that the first attenuation zone is significantly

shortened.

4.2.4 Results: Example 3

In this final example the results from a third optimization run are given. Op-

timization was performed using all of the same analysis parameters from the first

example in Section 4.2.2 (e.g. 140 members, 10 generations, 0.6 mm filter threshold

value, etc. . . ). From the top ten unit cell designs, only the third best was selected

for further investigation. The selected optimized topology is shown in Figure 4.14

and it was chosen due to its relative sparseness. The objective behind studying this

specific topology in-depth is to determine whether a simplified compliant mechanism
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Figure 4.14: Third best unit cell topology from optimization run 3 (140 members
iterated over 10 generations)

Figure 4.15: Reduced unit cell topology (thickest lines have a width of 5.0 mm;
intermediate thickness lines have a width of 2.5 mm; thinnest lines have
a width of 0.6 mm)
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unit cell design that has further reduced geometric complexity can be derived.

The filtered unit cell topology, Figure 4.14, was utilized as a template from which

elements were manually removed to obtain a “reduced unit cell” topology. This

reduced topology is shown in Figure 4.15. Element thicknesses were determined by

using the filtered unit cell topology as an approximate sizing guide. The top and

bottom layer width remains fixed at 2.5 mm. For simplicity, all unit cell core members

were given a uniform thickness of 0.6 mm. The remaining transmission and ground

members were assigned the largest width of 5.0 mm. Observe that the transmission

member that connects the unit cell bottom layer to the core members has been

extended. Additionally, members have been eliminated such that the reduced unit

cell contains no remaining members that cross over each other, thus establishing a

physically realizable configuration.

The computed RMS transverse velocity responses of the initial unit cell, the fil-

tered unit cell, and the reduced unit cell are shown in Figure 4.16. Examining the

dynamic response of the reduced unit cell reveals that the breadth of the first atten-

uation zone remains the same while amplitude increases slightly (i.e. approximately

5 dB) at the beginning of the zone. In general, greater modal density is observed

at frequencies below 8 kHz, which is explained by examining the reduced unit cell

FRF. Above 9 kHz the amplitude of response within the second attenuation zone

has increased by approximately 15 dB.

The reduced unit cell FRF is computed by taking the input as the transverse

velocity of the bottom layer center point (i.e. node 13 in Figure 4.17) relative to

the ground point. The output is taken at the transverse velocity of the top layer

center point (i.e. node 16) relative to the ground point. The motion of the ground

point is assumed to be represented by the transverse velocity of top layer left corner



143

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
!20

0

20

40

60

80

100

120

Frequency [Hz]

V
R

M
S
 [
d
B

 r
e
 1

0
!

8
 m

/s
]

 

 

Initial Response

Filtered Response

Reduced Response
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Figure 4.17: Reduced unit cell model (numbers denote nodes)
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Figure 4.18: FRF of reduced unit cell topology

of the unit cell (i.e. node 4). The reduced unit cell FRF shown in Figure 4.18

exhibits resonant peaks that are characterized by larger amplitudes and excursions

of the compliant mechanism phase angle away from 180 degrees. Observe that in-

phase, lower amplitude response implies the familiar “inversor” type of deformation

characteristic within the first attenuation zone.

Accordingly, to better visualize the “inversor” behavior of the integral compliant

mechanism the deformed shape and total energy distribution of the reduced unit

cell topology is shown at three frequencies in Figures 4.19 through 4.21. In these

figures line thickness denotes energy content. At 4000 Hz, Figure 4.19, bottom layer

energy isolation and out-of-phase deformation characterizes dynamic response. In

contrast, energy transmission through the unit cell core to the top layer occurs at

6550 Hz, Figure 4.20, despite continued out-of-phase motion. Similarities between

the deformed shape of this reduced unit cell topology and the deformed shape of
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Figure 4.19: Reduced compliant mechanism unit cell deformed shape and energy
distribution at 4000 Hz (dotted lines denote undeformed configuration,
continuous lines denote deformed configuration)
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Figure 4.20: Reduced compliant mechanism unit cell deformed shape and energy
distribution at 6550 Hz (dotted lines denote undeformed configuration,
continuous lines denote deformed configuration)
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Figure 4.21: Reduced compliant mechanism unit cell deformed shape and energy
distribution at 9240 Hz (dotted lines denote undeformed configuration,
continuous lines denote deformed configuration)

the rhombus compliant mechanism unit cell topology are clearly evident at these

two frequencies. In contrast, unique response is seen at 9240 Hz, Figure 4.21, where

in-phase deformation occurs and the majority of the total energy content is isolated

within the core of the unit cell rather than the bottom layer. Nonetheless, the limited

energy transmission to the top layer of the unit cell explains the reduced amplitude

of the RMS normal velocity response.

This dynamic behavior illustrates that alternative compliant mechanism unit cell

designs that are obtained via the topology optimization routine are likely to exhibit

dynamic performance that differs somewhat from that of the other unit cell topolo-

gies presented in this research and obtained using a deductive approach. However,

the assemblage of computational tools presented to this point continues to provide

sufficient insight into the physical nature of the structural dynamic response.
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4.2.5 Discussion

In order to compare the reduced unit cell design (Section 4.2.4) with the original

compliant mechanism unit cell design (Section 3.2.1) and the rhombus compliant

mechanism unit cell design (Section 3.2.4), the definition of mechanical advantage

is revisited. Specifically, an alternative formula for the mechanical advantage of the

unit cell, MAUNIT CELL, is defined by taking the input speed, vin, in Eqn (3.13) as the

RMS transverse velocity of all unit cell bottom layer nodes and the output speed,

vout, as the RMS transverse velocity of all unit cell top layer nodes.

(4.2) MAUNIT CELL =

√
(1/Nbot)

∑Nbot

i=1 |v̂bot
i |2√

(1/Ntop)
∑Ntop

j=1

∣∣v̂top
j

∣∣2
In Eqn (4.2) the bottom layer transverse spectral displacements are summed over the

number of bottom layer nodes, Nbot. The top layer transverse spectral displacements

are summed over the number of top layer nodes, Ntop.

The log of the mechanical advantage is computed using Eqn (4.2) and is shown

as a function of frequency in Figure 4.22 for the three compliant mechanism unit

cell designs. The first compliant mechanism unit cell design (Section 3.2.1) exhibits

the largest mechanical advantage over the majority of the 10 kHz frequency range.

The second (i.e. rhombus) compliant mechanism unit cell design (Section 3.2.4)

presents a roughly comparable mechanical advantage within the first attenuation

zone, however, demonstrates generally lower levels above 7 kHz. The reduced unit cell

exhibits the lowest mechanical advantage within the first attenuation zone. Despite

this, the first attenuation zone cutoff frequency for the reduced unit cell is increased

by approximately 1500 Hz when compared with the other two designs. Above 7 kHz

the reduced unit cell demonstrates mechanical advantage values that are comparable

with the mechanical advantage values of the rhombus compliant mechanism unit cell.
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Figure 4.22: MAUNIT CELL as a function of frequency for the 1st compliant mechanism
unit cell (Section 3.2.1), the 2nd (i.e. rhombus) compliant mechanism
unit cell (Section 3.2.4), and the reduced unit cell

As a final point, inspection of the initial unit cell binary ground structure from

Figure 4.6 reveals that the topologies of the original two compliant mechanism unit

cell designs presented in Section 3.2 are not contained within the possible set of

outcomes defined by this starting optimization domain. This represents a significant

limitation of the method proposed in this chapter. Thus, while satisfactory results

have been obtained using the established optimization procedure and simple net-

work structure, it is likely that enhanced solutions can be arrived at through the

implementation of a more complex optimization domain. Furthermore, a more so-

phisticated genetic algorithm code could also be developed to implement the load

path representation method proposed by Lu & Kota [61]. An advantage of the load

path method is that it does not require an initial discretization network. Thus, intu-

ition or prior experience is not required to determine the complexity or configuration
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of a starting mesh.

Despite these drawbacks, the genetic algorithm optimization method outlined in

this chapter provides a realistic starting point for further study. The results presented

in this chapter highlight alternative means of computing compliant mechanism unit

cell topologies that have specific dynamic functionality exclusive of a priori knowledge

of a preferred design.



CHAPTER 5

Verification & Validation

To validate the computational results presented in the prior two chapters, ex-

perimental investigations were undertaken. Specifically, two structures were man-

ufactured and tested in order to validate their computed mid-frequency structural

dynamic response. The first structure has a conventional square core that is pat-

terned after the design presented in Section 3.1. This structure functions as a test

control for comparison purposes. The second structure is a compliant mechanism

prototype structure that has a rhombus compliant mechanism core that is patterned

after the design given in Section 3.2.4.

The design of the compliant mechanism prototype is set forth in Section 5.1 and

includes: the prototype concept, definitions, spectral finite element computational

analysis, and results. Descriptions of the manufacturing and experimental test setup

for the prototype and conventional square core structures are given in Sections 5.2

and 5.3, respectively. In Section 5.4 the normal velocity response of each structure,

measured using a non-contacting laser vibrometer, is reported and compared with

the results from the initial spectral finite element computational analysis. A con-

ventional two-dimensional finite element computational analysis is also introduced

in Section 5.5 for complete verification of the experimentally obtained structural

dynamic response. A discussion of the experimental study is given in Section 5.6.

150
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Figure 5.1: Rhombus compliant mechanism unit cell model

5.1 Prototype Design

The rhombus compliant mechanism unit cell topology is used as a template for

this work. Minor modifications to the sizing of the unit cell are made in order to

ensure manufacturability of the final prototype structure. The initial computational

analysis is performed using one-dimensional linear spectral finite elements. Thus, this

analysis establishes the baseline performance of the prototype compliant mechanism

unit cell and structure prior to experimental study.

5.1.1 Prototype Concept, Definitions, & Spectral Element Analysis

The rhombus compliant mechanism unit cell model used in this investigation is

shown in Figure 5.1. This model is similar to the one shown in Figure 3.26 with a few

modifications to the unit cell sizing and individual member sizing. The conceptual

model of a rhombus compliant mechanism structure, which is an assemblage of six

unit cells, is given in Figure 5.2. The structure is fixed to a rigid baffle at both ends

and is subjected to a localized distributed load induced by an incident pressure wave.

Since the unit cell model in Figure 5.1 is the same as the one in Section 3.2.4
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Figure 5.2: Periodic rhombus compliant mechanism structure

(exclusive of the physical sizing) all of the analytical relationships previously derived

(e.g. the FRF) are still valid. Likewise, the details of the computational analysis

follows the approach first introduced for the square core unit cell and structure in

Chapter 3.

5.1.2 Computational Results: Spectral Elements

In accordance with the manufactured structures, the unit cell and structure are

assumed to be made of 6061-T6 aluminum with a material Young’s modulus, E =

6.83 ×1010 N/m2, and density, ρ = 2713.6 kg/m3, per the Military Standardization

Handbook: MIL-HDBK-5 [15]. Hysteretic material damping is introduced to account

for inherent energy loss. A complex modulus, E∗ = E(1 + iη), is utilized with η =

0.01.

In Figure 5.1, thicker lines represent stiffer elements having a width of 5 mm.
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Thinner lines represent elements 2.5 mm wide. The sizing of members within the

compliant mechanism unit cell is consistent with the sizing of members in the con-

ventional square core unit cell. Recall that the square core unit cell top and bottom

facesheet width is taken as 5 mm and core members are assigned a thickness of 2.5

mm, per Section 3.1.2.

Given the bottom layer physical parameters (i.e. ρ, E, A, and I), the overall

compliant mechanism unit cell length (which is set equal to the wavelength, λ, of

vibration) is determined using the wavenumber-frequency relationship, Eqn (3.16),

along with a selected attenuation zone starting frequency of 2320 Hz. Accordingly,

unit cell dimensions of 0.1 m by 0.055 m are used, leading to a compliant mechanism

with a mechanical advantage of 7.0. The out-of-plane depth of the unit cell is set to

0.0127 m. These dimensions dictate a structure that is 0.6 m long, 0.055 m wide,

and 0.0127 m deep in size.

A pressure wave amplitude, pin = 1 N/m2, is used in calculating the equivalent

nodal loading, Eqn (3.7), for the unit cell analysis. The rhombus compliant mecha-

nism unit cell FRF and top layer RMS transverse velocity, evaluated from 0 Hz to

10 kHz at 10 Hz frequency steps, is given in Figure 5.3. Below 2320 Hz, two peaks in

response are visible at 1100 Hz and 2110 Hz. Above 2320 Hz, two major attenuation

zones are present spanning the frequency ranges of 2320–5300 Hz and 9240–9500 Hz.

At the starting frequencies of these attenuation zones, the wavelength of vibration

for transverse waves in the unit cell bottom layer is equal to the unit cell width and

half-width (i.e. λ = 0.1 m and λ = 0.05 m), respectively, per Eqn (3.16). Within

each attenuation zone the mechanism demonstrates out-of-phase, non-resonant (i.e.

small amplitude) behavior, as expected. Between the attenuation zones (i.e. 5300–

9240 Hz) in-phase, resonant behavior is exemplified by peaks in the RMS transverse
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Figure 5.3: Rhombus compliant mechanism unit cell FRF

velocity response, increases in the FRF amplitude, and a FRF phase that transitions

away from 180 degrees. Similar increases in response are visible immediately after

the second attenuation zone starting frequency of 9240 Hz. Just after this frequency,

the RMS normal velocity response increases slightly, however a more prevalent peak

in the FRF amplitude is present in conjunction with a FRF phase angle that moves

from out-of-phase (i.e. 180 degrees) towards in-phase (i.e. zero degrees).

Moving to a global analysis of the structure, an equivalent nodal loading is com-

puted based on a localized SPL amplitude of 145.4 dB re 20E-6 Pa. From this point

forward all SPL values are assumed to be calculated using a reference pressure level

of 20E-6 Pa unless stated otherwise. This equivalent localized forcing is assumed to

act over a 0.025 m by 0.0127 m area centered about the middle of the bottom layer

of the structure (refer to Figure 5.2). The RMS transverse velocity of the compliant

mechanism structure, computed using the response from 23 top layer nodes (i.e. N
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= 23) in Eqn (3.9), is given in Figure 5.4. The first global resonance of the struc-

ture occurs at 230 Hz. Unit cell resonances at 1100 Hz and 2110 Hz are visible in

the response of the structure despite increased modal density. The first attenuation

zone exists between approximately 2300 Hz and 5300 Hz with the occurrence of four

smaller amplitude resonant peaks. Between 5 kHz and 9 kHz structural dynamic

response increases as expected, and above 9 kHz the second attenuation zone is vis-

ible. The minor resonances within the first attenuation zone highlight the inability

of the unit cell analysis in predicting the interaction between multiple unit cells.

Nonetheless, given the overall breadth of the 10 kHz frequency range, the general

structural dynamic characteristic of interest is verified at the global level.

5.2 Prototype Manufacturing

Prior to manufacturing each structure the respective solid model geometry was

generated using a commercial CAD software package, I-DEAS. The solid model ge-
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Figure 5.5: Solid model geometry of rhombus compliant mechanism structure

ometry of the prototype rhombus compliant mechanism structure is shown in Fig-

ure 5.5. The bolt holes located on both ends of the prototype provide the means by

which the structure is rigidly attached to the experimental test fixture.

A standard 3-axis CNC mill was used to manufacture the prototype rhombus com-

pliant mechanism and conventional square core structures, as shown in Figure 5.6.

The structures were produced by exporting the CAD solid model geometry to .IGS

files and importing those files into commercial CAM software, GibbsCAM, to gener-

ate the machining tool paths for the milling operations. The pocket geometry was

machined using a 1/8-inch diameter end mill as shown in Figures 5.7 (a) and (b).

5.3 Prototype Testing

The experimental test setups for the compliant mechanism structure and the

square core structure are shown in Figures 5.8 and 5.9, respectively. Fixed-fixed

boundary conditions were enforced by mounting each end of each structure to a steel

standoff, which was then rigidly attached to an optical bench. Each test setup was

designed to minimize inadvertent excitation of torsional and out-of-plane bending

modes.
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Figure 5.6: Machining of compliant mechanism structure on 3-axis CNC mill

(a) Pocket geometry (b) Machine fixturing

Figure 5.7: Machining of pocket geometry for compliant mechanism structure us-
ing 1/8-inch diameter end mill: (a) pocket geometry and (b) machine
fixturing
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Figure 5.8: Experimental test setup for compliant mechanism structure

Figure 5.9: Experimental test setup for square core (test control) structure
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(a) SPLV (b) Oscilloscope

Figure 5.10: Experimental measurement system: (a) single point laser vibrometer
(SPLV) and (b) oscilloscope

Appendix B contains a schematic of the acoustic excitation system, the high pass

filter design, and details regarding the use of the non-contacting SPLV measurement

system. Non-contacting localized excitation of each structure was achieved using a

0.025 m diameter tweeter, VIFA model DX25TG05-04, positioned 0.64 mm from the

center of the structure bottom layer. The diameter of the loudspeaker was selected

to match the length over which the localized distributed load was applied in the

computational analysis. Care was taken to assure the loudspeaker diaphragm did not

touch the structure during testing. A first order (i.e. 6 dB per octave) high pass filter

with a crossover frequency of 500 Hz was connected in series with the loudspeaker to

allow pure harmonic stepped-sine excitation in the frequency range of 1 kHz to 10

kHz at 10 Hz frequency intervals. A standard PC with LabVIEW software and an

analog output channel were used as a signal generator. The sinusoidal signal was then

sent to the loudspeaker via an amplifier, Adcom model GFA-535, and the high pass

filter. Response was measured using a non-contacting single point laser vibrometer
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(SPLV), Polytec model OFV-2602 with OFV-353 optics, shown in Figure 5.10 (a). A

total of 901 data points were taken per measurement location for each structure. The

SPLV output voltage was measured using an oscilloscope, Agilent model 54621A, per

Figure 5.10 (b). The oscilloscope output voltage was then converted to a velocity

using the appropriate SPLV scale factor. Sufficient dwell time between frequency

steps was taken to ensure that transient response had decayed significantly so that

only steady state response was dominant.

Two measurement locations were monitored for each structure. The RMS trans-

verse velocity of the compliant mechanism structure is a composite of the transverse

velocity at two points including the top layer center point and a point 0.05 m left

of center. These two measurement locations were selected since they represent the

point of maximum displacement and a compliant mechanism output node, respec-

tively. The top layer center point and a point 0.1 m left of center were used for the

square core structure. These measurement locations represent the point of maximum

displacement and a point exactly one bay to the left, respectively.

Prior to testing, the loudspeaker was calibrated in an anechoic chamber by mea-

suring the SPL with a Larson-Davis 2520 microphone and 2200C preamplifier. The

speaker was driven with 8 W of power, and SPL measurements were taken at a dis-

tance of 1 m over a frequency range of 1 kHz to 10 kHz at 100 Hz intervals. As

shown in Figure 5.11, scaling the measured SPL at 1 m to 0.64 mm allowed for the

calculation of an input SPL to the structure of approximately 145.4 dB. This allows

for direct comparison of the experimentally measured response of each structure with

the corresponding computational result. The sensitivity of the loudspeaker was such

that a relatively flat response was obtained across the 1–10 kHz test frequency range,

Figure 5.11. This precludes concerns of large input pressure fluctuations, and hence,
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Figure 5.11: Speaker calibration SPL spectrum at 1 m scaled to 0.64 mm

local forcing variation.

5.4 Test Results

In Figure 5.12 the RMS transverse velocity response of the square core structure,

computed using the spectral finite element method, is compared with experimen-

tally obtained results. For each computational result in this section the computed

RMS transverse velocity is a composite of the normal velocity response at the same

two top layer measurement locations, i.e. N = 2 in Eqn (3.9), as described for

the corresponding structure in the prior section. Similarly, Figure 5.13 shows the

computational and experimental RMS transverse velocity response for the compliant

mechanism structure.

Initial visual inspection of these figures reveals significant discrepancies. The

experimental data for both structures exhibits greater modal density, larger resonant

amplitudes, and a shifting of response towards higher frequencies. Specifically, the

experimental data for the square core structure shows many more resonances below
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Figure 5.12: Spectral finite element vs. experimental RMS transverse velocity (com-
puted using the response from 2 top layer nodes) for square core struc-
ture
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3 kHz. Additionally, the two peaks around 4 kHz that dominate the computational

response are split into two broader bands of resonant peaks spanning 3 kHz to 5 kHz

in the experimental data. Above 5 kHz, response matches in an approximate sense,

however the amplitude of resonance and the sharpness of each peak at 6380 Hz and

9680 Hz in the experimental data suggests lower levels of structural damping.

The compliant mechanism structure demonstrates similar behavior (Figure 5.13).

The shift of measured response towards higher frequencies is more noticeable imply-

ing a structure that is substantially stiffer. Despite this, upon close examination, the

underlying structural dynamic characteristics of interest are verified. Specifically,

the attenuation zones in the experimental data for the compliant mechanism struc-

ture are present. However, the first attenuation zone has moved approximately 400

Hz higher and extends from 2700 Hz to 5700 Hz. The large peak in the computed

response at 7080 Hz has shifted to 8350 Hz in the experimental data. Following this,

the reduction in the computed response at 8200 Hz, which leads into the beginning

of the second attenuation zone, is present in the experimental data from 9600 Hz to

10 kHz. Despite this shifting, within each measured attenuation zone for the com-

pliant mechanism structure, significant reduction in response is evident relative to

measured response levels for the square core structure.

5.5 Experimental Validation

As can be seen clearly in Figures 5.8 and 5.9, the interfaces between the members

that comprise each structure are not ideal point connections as assumed using one-

dimensional spectral elements. Instead, these connections have a continuum nature

and a non-zero fillet, which are consequences of the chosen manufacturing process.

These radii act to stiffen response. Accordingly, to better capture this continuum
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characteristic, a conventional two-dimensional finite element analysis using contin-

uum elements was performed.

5.5.1 Analysis: Continuum Elements

For the conventional finite element model the nodal loading equivalent to the

localized incident pressure wave on a bottom layer element of the structure is found

in a manner similar to that for the spectral method

(5.1) f e(wb, ω) =

∫ Le

0

wb(x, ω) pin dx

where in this instance wb is the conventional weighting function for a continuum

shell element.

5.5.2 Computational Results: Continuum Elements

A Nastran Direct Frequency Response analysis using the SOL 108 solution se-

quence was performed from 0 Hz to 10 kHz at 10 Hz frequency steps. The con-

ventional square core benchmark structure was modeled using 11,556 CQUAD4 el-

ements. A similar analysis was performed for the compliant mechanism structure

using 17,152 elements. Bottom layer localized forcing of each structure was based on

an equivalent nodal loading calculated from an excitation SPL of 145.4 dB.

Figures 5.14 and 5.15 give the computational and experimental results for the

square core structure and compliant mechanism structure, respectively. A structural

damping parameter of 0.003 provides the best fit between the analysis and the mea-

sured data in terms of resonant peak amplitude. A preliminary visual inspection of

these figures shows that the incidence of resonances, anti-resonances, and minima

generally agree, thus substantiating the refined computational approach.

Accounting for slight shifts in resonant peaks, the agreement between the conven-

tional finite element analyses and the test data is reasonable considering the breadth
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Figure 5.14: Nastran vs. experimental RMS transverse velocity (computed using the
response from 2 top layer nodes) for square core structure
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Figure 5.16: Global mode of compliant mechanism structure – 3963 Hz

of the test frequency range. Attenuation is seen in the expected frequency ranges for

the compliant mechanism structure. The average RMS transverse velocity from 3000

Hz to 5500 Hz is 88.9 dB for the square core structure and 72.1 dB for the compliant

mechanism structure. This represents a 16.8 dB reduction in response within the

first attenuation zone. Maximum attenuation upwards of 45 dB is seen at 3460 Hz.

The primary limiting factor for the first attenuation zone is the global mode at 3963

Hz shown in Figure 5.16, which is predicted by the analysis, yet due to lower levels

of structural damping results in a larger response amplitude. From 9300 Hz to 10

kHz the average RMS transverse velocity is 89.9 dB for the square core structure.

Over the same frequency range, the compliant mechanism structure has an average

RMS transverse velocity of 75.1 dB, which represents a reduction of 14.8 dB within

the start of the second attenuation zone.

5.6 Discussion

The percent error between the measured and computed RMS transverse veloc-

ity responses for the two structures is given in Figures 5.17 and 5.18. Over the

1 kHz to 10 kHz frequency range the square core structure has a measured RMS

transverse velocity average error of 6.2% and a more conservative root-mean-square

error (RMSE) of 8.1% when compared with the Nastran predicted response (Fig-
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ure 5.17). For the prototype compliant mechanism core structure the average error

value increases slightly to 8.2% and the RMSE value increases to 9.6% (Figure 5.18).

Likely sources of error are highlighted in these figures. There are slight (i.e.

generally ranging from 10–70 Hz) shifts of resonant frequencies relative to the com-

putational analysis. In both analysis and experiment, a 10 Hz frequency step was

employed, which allowed for relatively acceptable resolution given the very large

breadth of the overall frequency range. Nonetheless, slight shifts in resonant peaks

are likely attributable to the lack of fine scale fidelity.

The presence of anti-symmetric or double modes also is clear based on a Nor-

mal Modes analysis (SOL 103) performed for each structure. It is well known that

perfectly symmetric, periodic structures become quasi-periodic once minor manufac-

turing tolerances and slight test setup misalignments are introduced, per Ewins [23]

and Pierre, Castanier, & Chen [80]. Disorder effects redistribute energy, exciting

anti-symmetric or double modes that do not exist in a computational analysis where

geometry, boundary conditions, and loading are assumed to be perfectly symmetric.

Furthermore, in the case of the compliant mechanism structure, the acoustic exci-

tation is applied at a location of relatively high flexibility. This results in possible

local effects that, coupled with quasi-periodicity, excite anti-symmetric modes.

The close proximity of symmetric and anti-symmetric normal mode frequencies is

seen in Figures 5.19 (i.e. 8739 Hz) and 5.20 (i.e. 8797 Hz), respectively. Each figure

presents modal results from the normal modes analysis. In Figure 5.21 a zoomed

view of the computational versus experimental RMS normal velocity response of the

compliant mechanism structure is given from 8200 Hz to 10000 Hz. The Nastran

direct frequency response analysis also predicts the symmetric resonant peak at 8739

Hz highlighted in this figure, but not the anti-symmetric peak at 8797 Hz. However,
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Figure 5.19: Symmetric mode of compliant mechanism structure – 8739 Hz
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Figure 5.20: Anti-symmetric mode of compliant mechanism structure – 8797 Hz
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the experimental data in this figure shows the separation of the symmetric mode

into two modes occurring at 8650 Hz and 8790 Hz. Thus, the experimental data

confirms the presence of two modes very close to each other in this frequency range

and splitting the computed peak into two. This final source of error is visible at

several other locations (e.g. at 9290 Hz in Figure 5.21) throughout the 1–10 kHz

frequency range for each structure and accounts for several outlying values.

Despite the above sources of error, the enhanced vibratory characteristics of the

compliant mechanism structure are verified using the refined computational ap-

proach, along with the experimental data presented in this section. These results

suggest a two stage design process. In the first stage, the one-dimensional spectral

method is employed to design the basic compliant mechanism unit cell. A subse-

quent, two-dimensional analysis should then be completed, utilizing the manufac-

tured mechanism design to identify the most significant variations from the idealized

one-dimensional analytical prototype.



CHAPTER 6

Methodology & Applications

A hierarchical approach has been implemented in the design of structures with

integral compliant mechanisms. Generally, local units cells have been utilized as

building blocks for the design of global structures. Specifically, unit cell size and ma-

terial constraints have been addressed. The connectivity of unit cells in parallel and

serial fashion has also been investigated, and these investigations have led to different

functional results. Extensions to three-dimensional design were proposed. Further-

more, numerical studies on unit cell size and topology optimization were presented

to demonstrate that different unit cell design approaches exist. This computational

work was then followed by experimental studies that were focused on the verification

(i.e. “proof-of-concept”) of the fundamental hypotheses of this research.

Given this, the main objective of this chapter is to distill the various results from

these studies into an overarching design methodology. The methodology is focused

on providing practical guidance to a structural analyst in the field when designing

structures with integral compliant mechanisms.

An overview of this methodology is given in Section 6.1. Novel applications of the

methodology are then discussed in Section 6.2.

171
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6.1 Methodology Overview

The following is a list of the minimum steps necessary for designing structures

with integral compliant mechanisms for mid-frequency response:

1. Define the size, weight, and material constraints for the global structure of

interest along with the frequency range over which attenuation is sought.

2. Define the initial unit cell size based on the information from Step 1 and an

initial wavenumber-frequency analysis, reference Eqn (3.16).

3. Synthesize a compliant mechanism unit cell topology using either a priori knowl-

edge, or a genetic algorithm topology optimization routine.

4. Compute the unit cell top layer RMS normal velocity response, FRF, and the

deformed shape/total energy distribution in order to characteristic basic struc-

tural dynamic response.

5. If necessary, “tune” the basic structural dynamic response of the unit cell over

the frequency range of interest using a genetic algorithm size optimization rou-

tine.

6. Determine if enhanced vibro-acoustic response is sought. If so, continue to

Step 7. Otherwise, integrate the unit cell into the global structure, compute the

RMS normal velocity response of the structure, compare the structural dynamic

response with requirements, and proceed to Step 10.

The prior steps are those required for realizing simple truss-like beam structures.

If greater vibro-acoustic attenuation or a multi-functional lattice structure is desired,

the additional steps to follow are:
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7. For structures that are subjected to local forcing – Examine a global configu-

ration where compliant mechanism unit cells are attached in a parallel fashion

to the remainder of the global structure. The compliant mechanism unit cells

should be integrated into the structure in the region of the local forcing as done

in Section 3.4.1. Compute the RMS normal velocity response of the structure,

compare the structural dynamic response with requirements, and proceed to

Step 10.

8. For structures exhibiting greater vibro-acoustic attenuation – Examine the serial

attachment of additional compliant mechanism layers to increase the unit cell

height as done in Sections 3.4.2 and 3.4.3. Compute the RMS normal velocity

response of the serial unit cell, integrate the unit cell into the global struc-

ture, compute the RMS normal velocity response of the structure, compare the

structural dynamic response with requirements, and proceed to Step 10.

9. For structures exhibiting multi-functional properties – Examine the serial at-

tachment of a compliant mechanism unit cell layer to an existing structure as

done in Section 3.4.4. Compute the RMS normal velocity response of the multi-

functional unit cell, integrate the unit cell into a global structure, compute the

RMS normal velocity response of the structure, compare the structural dynamic

response with requirements, and proceed to Step 10.

10. Verification of the dynamic response of a prototype structure with integral com-

pliant mechanisms – As a final stage in the overall design process, complete a

continuum computational analysis utilizing the manufactured compliant mech-

anism structure design to identify the most significant variations from the ide-

alized spectral element model.
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The above steps are “general guidelines” to be followed in the design of structures

with integral compliant mechanisms for mid-frequency response. They are also it-

erative and depend on how well the computed structural dynamic response fulfills

requirements. Accordingly, Step 3 and the subsequent process should be revisited

as necessary. The following applications exercise portions of the above methodology

for select 2-D and 3-D problems of interest.

6.2 Applications

Two applications of the above methodology, plus underlying motivation, are ex-

amined in this section. The first application is a basic 2-D conceptual study on the

design of acoustic isolation panels for the reduction of structural vibrations gener-

ated by turbulent boundary layer flow. The second application explores the design

of a torsional coupler for the reduction of the axial vibrations transmitted between

two joined and rotating circular shafts. This application addresses the modeling of

a more complicated three-dimensional circular geometry layout.

6.2.1 Acoustic Isolation Panels

As discussed in the motivation section of this dissertation (Section 1.1), turbulent

boundary layer flow across the external surface of an aircraft produces structural

vibrations, which cause noise within the aircraft cabin. The frequency spectrum of

turbulent boundary excitation for a typical commercial passenger aircraft extends

upwards of 10 kHz, as shown in Figure 6.1, and as discussed by Bhat & Wilby [5, 6].

Figure 6.2 illustrates the use of damping tape and/or sponge rubber wedges as a

common method of reducing internal cabin noise. Alternatively, this investigation

proposes a passive multi-functional structure that serves a structural function and

an acoustic function in the attenuation of this internal cabin noise.
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A I R P L A N E  I N T E R I O R  N O I S E  4 5 3  

distances of microphones from the nearest fuselage skin varied from 26.5 to 61 in (0"67 to 

1.55 m). The distances between microphones varied from 27 to 128 in (0.68 to 3.24 m). The 

arrangement yielded a reliable way of measuring the reverberant noise field in the acoustic 

enclosure. 

A ground test was conducted to determine the reverberation time in the acoustic enclosure 

without any noise reduction treatment. The acoustic absorption of the enclosure would be 

expected to change slightly when rubber wedges are bonded to the panels. However, the 

addition of damping tape should not affect the reverberation time. The estimation of rever- 

beration time and the corrections for the room absorption are discussed later in section 3.1. 

All microphones were calibrated before and after each flight test, using a 250 Hz/124 dB 

piston phone. Data from all microphones were recorded on a tape recorder in FM mode at a 

tape speed of 30 in/s (0.76 m/s) to produce the analog source tape. The analog recording was 

later replayed into digitizing equipment to obtain a digital tape with 20 K samples/s. 

A computer program with a CDC 6600 computer was used to reduce the digitized data 

and obtain pressure power spectral densities (PSD) and sound pressure levels (SPL) 

with the desired resolution bandwidth. An averaging time of 4.61 s was used for all data 

reduction. 

The interior microphones and other instrumentation probes which were located inside 

the acoustic enclosure did not generate spurious noise in the enclosure. 

2.4. EXCITATION 

The aerodynamic pressure fluctuations on the exterior of the acoustic enclosure were 

recorded at each flight condition. However, a preliminary analysis of the data showed large 

experimental scatter indicating microphone failures, probably due to the formation of a 

thin film of ice on the outside surface of the microphone diaphragms. Therefore exterior 
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Figure 3. Estimated spectra for turbulent boundary layer excitation, o 
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pressure fluctuation data acquired during earlier flight tests [8] were used for predicting the 

excitation spectrum. Boundary layer thickness and local skin friction coefficient were 

estimated, again with data from reference [8], and are shown in Table 1. The estimated tur- 

bulent boundary layer excitation spectra at a midpoint on the acoustic enclosure are shown in 

Figure 3. 

The properties of the turbulent boundary layer excitation vary along the acoustic enclosure. 

The variations in boundary layer thickness, 8, and local skin friction coefficient, Cf, are 

estimated to be +20 ~o and ±3 ~ ,  respectively. A typical variation in the excitation spectrum 

Figure 6.1: Estimated pressure spectrum for turbulent boundary layer excitation:
Boeing model 727-200 aircraft (upper curve for Mach 0.85, lower curve
for Mach 0.55), from Bhat & Wilby [6]
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between adjacent stringers and adjacent frames are 9 and 20 in (22.86 and 50"8 cm), respect- 

ively. Circumferential tear straps, which are 0.064 in (1 '63 mm) thick, are bonded onto the 

skin beneath the frames. Above the window line, the fuselage skin is not fastened directly to 

the frames, but a 9 in ! 20 in (22.86 cm ! 50"8 cm) panel segment formed by adjacent 

stringers and tear straps can be considered as a basic vibrating element in the fuselage 
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Figure 1. Schematic representation of acoustic enclosure. Area: fuselage skin (radiating) = 327 ft 2 (30.38 

m2); floor and bulkheads (non-radiating) = 330 ft: (30.66 m2); total = 657 ft 2 (61.04 m2). Volume = 1170 ft 3 
(33.11 m3). 
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Figure 2. Representation of fuselage structure. 

structure. A diagrammatic representation of a typical fuselage construction is shown in 

Figure 2(a) and (b). 

The fuselage structure around the windows deviates slightly from the foregoing description. 

The longitudinal strip of structure containing the windows has a width equivalent to four 

longitudinal stringer bays on each side of the fuselage. The fuselage structure in this region 

is fabricated from a thicker skin and it is substantially stiffer than the basic fuselage panels. 

Including areas around windows, the curved wall of the acoustic enclosure is formed by the 

equivalent of 32 stringer bays in the circumferential direction and nine frame bays along the 

length of the enclosure. The fuselage structure which deviates from the regular stringer-frame 

Figure 6.2: Representation of aircraft fuselage structure, from Bhat & Wilby [6]
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Turbulent Boundary Layer Applications

Fuselage radiating element approximated as a 2-D beam

u (air flow)

Rigid baffle Rigid baffle

u (air flow)

Rigid baffle Rigid baffle

top layer (aircraft interior)

bottom layer (aircraft exterior)

top layer (aircraft interior)

bottom layer (aircraft exterior)

Fuselage radiating element approximated as a 2-D 

truss-like structure with integral compliant mechanisms

Figure 6.3: Conceptual model of fuselage radiating element approximated by a two-
dimensional beam

Turbulent Boundary Layer Applications

Fuselage radiating element approximated as a 2-D beam
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top layer (aircraft interior)

bottom layer (aircraft exterior)

Fuselage radiating element approximated as a 2-D 

truss-like structure with integral compliant mechanisms

Figure 6.4: Conceptual model of fuselage radiating element approximated by a two-
dimensional truss-like structure with integral compliant mechanisms

According to Bhat & Wilby [5, 6], a typical radiating element of the fuselage

structure is defined by the amount of fuselage skin contained with the boundary

defined by the frames and stringers (Figure 6.2). Thus, the structural dynamic

response of this radiating element is the subject of interest for this study. Two

simplified two-dimensional conceptual models of this radiating panel element are

shown in Figures 6.3 and 6.4. Both models are considered to be 2-D edgewise beam

approximations of the 3-D radiating panel element from Figure 6.2. Since airflow

over the exterior of an aircraft tends to be unidirectional (i.e. along the length of the

fuselage), this is considered a reasonable assumption. In the first model (Figure 6.3),

the structural dynamic response of a simple beam, representing the bare fuselage
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skin, is examined. The top side of the structure represents the aircraft interior and

the bottom side represents the exterior of the aircraft, which is subject to a turbulent

boundary layer flow. In the second model (Figure 6.4), a truss-like structure with

integral complaint mechanisms is shown. The top layer again represents the aircraft

interior, which is set apart from the bottom layer by a compliant mechanism core.

The bottom layer is assumed to represent the exterior fuselage skin that is subjected

to a turbulent boundary layer flow.

The design of the structure shown in Figure 6.4 was carried out using the method-

ology summarized in Section 6.1. While material and structural size constraints were

defined, weight constraints were not established since the determination of the gen-

eral feasibility of the concept was the objective of this study. Despite this, weight

comparisons are made since added mass is a crucial metric in any aerospace appli-

cation.

The material for both structures was defined as aluminum (i.e. E = 7.1 × 1010

N/m2, ρ = 2700 kg/m3, and η = 0.01) based on the knowledge that the fuselage skin

of most commercial aircraft is typically made of aluminum or a similar lightweight

material, per Bhat & Wilby [5, 6]. The primary size constraint for the compliant

mechanism structure is the in-plane thickness since it determines the amount by

which the structure extends into the cabin interior. The in-plane thickness of the

compliant mechanism structure was set at 0.05 m. This thickness was deemed ade-

quate since it is less than the thickness of typical sponge rubber wedges (i.e. ∼0.08

m thick per Bhat & Wilby [5, 6]) that are mounted to the interior of the fuselage

skin, reference Figure 6.2. Secondary size constraints are imposed by the overall size

of a typical fuselage radiating element. Based on the dimensions in Figure 6.2 the

in-plane length (i.e. the length parallel to the air flow direction) for the two models
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was set to 0.4 m. The bare fuselage skin was assigned a thickness of 1.1 mm, which

is also the width assigned to the bottom layer of the compliant mechanism model.

The out-of-plane thickness for both models was set to 0.2 m.

Given these material and overall size constraints, the next step was to define the

frequency range of interest for the study and the local unit cell size based on an initial

wavenumber-frequency analysis. The pressure spectrum at a subsonic speed of Mach

0.85 (Figure 6.1) was used to define the frequency range. This spectrum spans a

frequency range from approximately 350 Hz to 8500 Hz. Observe that the largest

excitation amplitudes occur at frequencies above 1 kHz. Thus, the goal in sizing

the bottom layer of the compliant mechanism unit cell was to place both the first

and second attenuation zones of the unit cell within a 1000 Hz to 8500 Hz frequency

range. Appropriately, this maximizes the breadth of both attenuation zones inside

the frequency range of interest.

Using a unit cell bottom layer thickness of 1.1 mm and a unit cell length of

0.1 m sets the attenuation zone starting frequencies at 1020 Hz and 4060 Hz, per

Eqn (3.16). Both of these frequencies are located above 1000 Hz and below 8500

Hz, thus increasing the amount of attenuation occurring inside the sought frequency

range.

The topology used in the design of the compliant mechanism structure was de-

termined in an a priori fashion based on the work in Section 3.2.1. The topology in

Figure 6.4 is identical to the one first shown in Figure 3.9. The core members of the

unit cell were assigned the same thickness as the bottom layer (i.e. 1.1 mm). The

transmission and ground members of the unit cell were assigned a 50% larger width

of 1.65 mm.

The analysis of the compliant mechanism unit cell, bare fuselage structure, and
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distances of microphones from the nearest fuselage skin varied from 26.5 to 61 in (0"67 to 

1.55 m). The distances between microphones varied from 27 to 128 in (0.68 to 3.24 m). The 

arrangement yielded a reliable way of measuring the reverberant noise field in the acoustic 

enclosure. 

A ground test was conducted to determine the reverberation time in the acoustic enclosure 

without any noise reduction treatment. The acoustic absorption of the enclosure would be 

expected to change slightly when rubber wedges are bonded to the panels. However, the 

addition of damping tape should not affect the reverberation time. The estimation of rever- 

beration time and the corrections for the room absorption are discussed later in section 3.1. 

All microphones were calibrated before and after each flight test, using a 250 Hz/124 dB 

piston phone. Data from all microphones were recorded on a tape recorder in FM mode at a 

tape speed of 30 in/s (0.76 m/s) to produce the analog source tape. The analog recording was 

later replayed into digitizing equipment to obtain a digital tape with 20 K samples/s. 

A computer program with a CDC 6600 computer was used to reduce the digitized data 

and obtain pressure power spectral densities (PSD) and sound pressure levels (SPL) 

with the desired resolution bandwidth. An averaging time of 4.61 s was used for all data 

reduction. 

The interior microphones and other instrumentation probes which were located inside 

the acoustic enclosure did not generate spurious noise in the enclosure. 

2.4. EXCITATION 

The aerodynamic pressure fluctuations on the exterior of the acoustic enclosure were 

recorded at each flight condition. However, a preliminary analysis of the data showed large 

experimental scatter indicating microphone failures, probably due to the formation of a 

thin film of ice on the outside surface of the microphone diaphragms. Therefore exterior 

io 5 

g 
g 
g 

IO 4 

>o 

10 2 iO 3 

Third-octa~e center frequency (Hz) 

Figure 3. Estimated spectra for turbulent boundary layer excitation, o 
0"55. 

104 

o, Mach 0.85; • • ,  Mach 

pressure fluctuation data acquired during earlier flight tests [8] were used for predicting the 

excitation spectrum. Boundary layer thickness and local skin friction coefficient were 

estimated, again with data from reference [8], and are shown in Table 1. The estimated tur- 

bulent boundary layer excitation spectra at a midpoint on the acoustic enclosure are shown in 

Figure 3. 

The properties of the turbulent boundary layer excitation vary along the acoustic enclosure. 

The variations in boundary layer thickness, 8, and local skin friction coefficient, Cf, are 

estimated to be +20 ~o and ±3 ~ ,  respectively. A typical variation in the excitation spectrum 
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Figure 6.5: Estimated pressure spectrum for turbulent boundary layer excitation: (a)
Boeing model 727-200 aircraft (upper curve for Mach 0.85, lower curve
for Mach 0.55), from Bhat & Wilby [6]; (b) reconstructed data

compliant mechanism structure was executed using the spectral finite element method.

The frequency dependent forcing function for each computational analysis was de-

termined by manually reconstructing the Mach 0.85 pressure spectrum data from

Figure 6.1. The curve fitted data is compared with the original data in Figure 6.5.

The top layer RMS normal velocity of each structure was computed from 350 Hz to

8500 Hz evaluated in 10 Hz frequency steps. The top layer RMS transverse velocity

response of the unit cell, bare fuselage structure, and compliant mechanism structure

is shown in Figure 6.6.

This figure clearly shows the location of both the first and second attenuation

zones, which lay fully within the desired frequency range. Below 1 kHz, the dynamic

response of the bare fuselage structure and compliant mechanism structure match

in an approximate sense signifying the dominance of global level response. Above

1 kHz, the wavenumber-frequency analysis correctly predicts the beginning of both

attenuation zones for the compliant mechanism structure at 1020 Hz and 4060 Hz.
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Figure 6.6: Top layer RMS velocity of bare fuselage structure, compliant mechanism
structure, and compliant mechanism unit cell

The FRF and deformed shape/total energy distribution analyses have been foregone

since they were adequately covered in a prior chapter for this compliant mechanism

topology. Nonetheless, the expected reduction in response over the frequency range

of 350 Hz to 8500 Hz is present with an average top layer RMS normal velocity that

is approximately 24 dB lower than that of the bare fuselage skin. Even at resonant

frequencies of the compliant mechanism structure, between 2200–3600 Hz and above

6500 Hz, response levels are still equal to, or slightly below, those of the bare fuselage

skin. This represents a significant decrease in structural dynamic response.

Exclusive of these improvements in response, the added mass of the compliant

mechanism structure is not negligible. The mass of the compliant mechanism panel

element is 2.03 kg. Comparing this with 0.241 kg, the mass of the bare fuselage panel

element, makes clear a roughly one order of magnitude increase in weight. Despite

this, there is fundamental difference between the two structures. Visual inspection of
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Figure 6.7: Conceptual model of fuselage structure with integral compliant mecha-
nisms

the bare fuselage panel reveals that it must have a lower out-of-plane bending stiffness

when compared with the compliant mechanism panel. Observe that the out-of-plane

extrusion of the compliant mechanism structure generates an I-beam type structure.

Thus, it is suggested that the frames shown in Figure 6.2 be either reduced in size

or eliminated altogether. The compliant mechanism structure would then serve a

multi-fuunctional role in reducing transmitted structural-borne noise while bearing

load. Similarly, the stringers, while likely not eliminated, may potentially be reduced

in size. A detailed design and analysis must be performed to fully compare mass and

stiffness tradeoffs. Nonetheless, Figure 6.7 provides a conceptual model of what the

potential structure might look like.

The concept presented in Figure 6.7 is but one embodiment of the ideas intro-

duced in this dissertation. For this specific application, other design variations may
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be preferable from a weight perspective. For example, the fuselage structure could

be manufactured out of a composite material to provide a better Young’s modulus to

density (i.e. strength to weight) ratio in Eqn (3.16); or, the fuselage structure could

be left unmodified and injection molded acoustic lining panels could be attached to

the interior of the structure instead. Furthermore, this application is one of many

possible uses for this methodology. The design of “quiet” pipe walls for internal tur-

bulent flows, and jackets of underwater sonar detention arrays for external turbulent

flows, are other possible uses for this technology.

6.2.2 Vibration Isolation Couplers

Vibration transmission between two adjoined rotating shafts is a common problem

encountered in many engineering applications including, but not limited to, automo-

biles, helicopters, ship propellers, and drilling machines. In these applications a

motor is typically connected to a transmission from which a drive shaft extends.

This drive shaft is usually attached to a subsequent pinion shaft by way of a uni-

versal joint. Typically, the pinion shaft is subject to vibrations induced by some

excitation source (e.g. final drive gearing, a rotating propeller, or a drilling process).

These vibrations are known to work their way back through the universal joint, drive

shaft, and transmission resulting in excitation of resonant modes of the supporting

structure or vehicle chassis. Common solutions consist of a vibration isolating cou-

pler near the pinion shaft/universal joint/drive shaft assembly that limits vibration

transmission transfered back to the structure. Many such solutions to this problem

have been proposed in the patent literature as demonstrated by Johnson et al. [48],

LoBosco et al. [60], Olson [76], Paulsen [78], and Takahashi et al. [96]. These solu-

tions employ a resilient component that reduces the vibrations transmitted through

the coupling. Thus, the purpose of this study is to systematically design a novel
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integral compliant mechanism structure, internal to a shaft coupler, to replace the

traditional resilient component. The reduction of axial vibrations between coupled

and rotating shafts in an automotive application is the primary focus of this study.

Interior noise in an automotive vehicle is a complex phenomenon that originates

from many sources including the engine, suspension/chassis, brakes, drive-line dy-

namics, road noise, and traffic noise. These various sources generate sound inside

the passenger cabin, and this sound spans the majority of the audible spectrum (e.g.

0 Hz to 14 kHz) per Bettella et al. [3], Douville et al. [16], Elliott [21], Ishiyama

& Hasimoto [45], and Oh et al. [75]. From this broad frequency range a reduced

frequency range of interest was selected spanning 0–1 kHz. An attenuation zone

starting frequency of 375 Hz was also selected since it is low enough to represent

vibratory excitation originating from the vehicle drive-line dynamics or road noise.

A conceptual model of a vibration isolation coupler with an integral annular com-

pliant mechanism structure is shown in Figure 6.8. The dimensions of the coupler

were chosen arbitrarily in absence of a given set of design size requirements. Addi-

tionally, weight was not considered as a critical design constraint.

The conceptual model consists of a pinion shaft that is attached to a driven shaft

via a coupler that allows the transmission of torque across the coupling, using a slip

fit spline, while isolating axial vibrations. Vibration isolation is achieved by joining

the two shafts with an annular compliant mechanism structure. In this manner,

axial vibrations induced in the driven shaft by an excitation source (e.g. final drive

gearing) are not transmitted back to the pinion shaft. In the event of failure of the

compliant mechanism structure the cap component assures that the shafts do not

decouple.

Two different materials were used in the design of the annular compliant mech-
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Figure 6.8: Conceptual model of vibration isolator coupling with an integral annular
compliant mechanism structure

anism unit cell and structure. Specifically, vulcanized rubber and spring steel were

used with the following material properties. For the vulcanized rubber, E = 1.5

× 106 N/m2, ρ = 950 kg/m3, and ν = 0.48. The use of a Poisson’s ratio of 0.48

for the rubber material, instead of 0.5, is necessitated by the assumption of linear

response. For the spring steel, E = 21.0 × 1010 N/m2, ρ = 7850 kg/m3, and ν = 0.33.

The rhombus compliant mechanism topology from Section 3.2.4 was selected for

use in this application (reference Figure 3.27). Each top and bottom layer facesheet

of the annular complaint mechanism structure was assigned the rubber material

and a thickness of 2.5 mm. The compliant mechanism members were assigned the
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Figure 6.9: Top layer RMS velocity of multi-material rhombus compliant mechanism
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steel material with all core members having a thickness of 0.762 mm and ground

and transmission members having a 1.1 mm width. Thus, based on the specified

bottom layer material (i.e. vulcanized rubber), facesheet thickness (i.e. 2.5 mm),

and preselected attenuation zone starting frequency (i.e. 375 Hz) the length of the

unit cell was determined using Eqn (3.16) as 21.9 mm. Assuming two unit cells in

parallel extending radially outward, the inner radius of the annular structure is 21.9

mm while the outer radius is 65.7 mm. Thus, the overall diameter of the coupler

assembly is 15.24 cm and the thickness is 5.08 cm.

A two-dimensional unit cell analysis was executed using the linear spectral finite

element method. The 2-D nature of the unit cell is a simplified representation of the

full three-dimensional annular structure. Shown in Figure 6.9 is the RMS normal

velocity response and FRF of the unit cell computed from 0 Hz to 1 kHz at 0.1 Hz

frequency intervals. The first attenuation zone clearly starts at 375 Hz and extends
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Figure 6.10: Finite element solid model of one quarter of the annular compliant mech-
anism structure (purple elements represent vulcanized rubber; green
elements represent spring steel)

through 1 kHz. Given the unit cell sizing, the starting frequency for the second

attenuation zone is 1410 Hz, thus falling beyond the maximum frequency of interest

for this study.

This basic unit cell design functions as a building block for the annular compliant

mechanism structure proposed in Figure 6.8. A three-dimensional finite element

model of this structure was constructed using a two-dimensional continuum shell

structure with two unit cells in parallel. This continuum model was then revolved 90

degrees about a predetermined axis to create a three-dimensional model. One quarter

of the annular structure was modeled in order to make use of double-symmetry. The

finite element model was built using approximately 80,000 solid elements and is

shown in Figure 6.10. The purple elements in this figure represent the vulcanized

rubber material; the green elements represent the spring steel material.

The computational analysis of the resultant 3-D annular structure was performed
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Figure 6.11: Boundary conditions for the finite element solid model of one quarter
of the annular compliant mechanism structure

in Nastran. Specifically, two linear analyses were executed including a Direct Fre-

quency Response analysis (SOL 108) and a Normal Modes analysis (SOL 103). Sym-

metric boundary conditions were applied to nodes laying along the radially extend-

ing surfaces of the quarter-model as shown in Figure 6.11. Observe that fixed-fixed

boundary conditions were enforced by constraining the appropriate degrees of free-

dom of the nodes laying along the inner and outer circumferential boundaries of the

model.

As depicted in Figure 6.12 (a), a unit magnitude distributed line load was applied
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Unit Magnitude Distributed Load
Applied to All Nodes Laying Along 
Bottom Layer Center Circumference

(a) Bottom layer loading

Node 185062

Node 175917

Node 172312

Node 179081

Node 164807

Node 168267

Node  8175

(b) Nodal locations for top layer response

Figure 6.12: Finite element solid model of one quarter of the annular compliant mech-
anism structure: (a) bottom layer loading and (b) nodal locations for
top layer response
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to the bottom layer nodes laying along the center circumferential arc of the annular

structure. The top layer velocity of the annular structure was monitored at the

designated nodes illustrated through the top view perspective of the structure in

Figure 6.12 (b). Observe that the locations of the monitored nodes correspond to

the output of the inner compliant mechanism ring (nodes 164807 and 179081), the

middle of the structure top layer (nodes 8175, 172312, and 185062), and the output

of the outer compliant mechanism ring (nodes 168267 and 175917).

The top layer y-direction (i.e. normal) velocity of each of these seven nodes was

computed using the Direct Frequency Response solution sequence over the frequency

range of 5 Hz to 1 kHz, evaluated at 5 Hz intervals. The normal velocity at each node

is shown in units of mm/s in Figure 6.13. Three resonant peaks occur at 200 Hz, 245

Hz, and 295 Hz. At 300 Hz a sharp drop in response occurs at nodes that lay over

the output of the inner compliant mechanism ring (i.e. nodes 164807 and 179081

in Figure 6.12 (b)). This drop signifies the start of the attenuation zone. Since the

normal velocity at these two locations is smaller than the normal velocity at the

other top layer nodal locations (at 300 Hz), the connection scheme in Figure 6.8

is implemented where the pinion shaft is attached to the annular structure at the

output location for the inner compliant mechanism ring.

This is further illustrated by comparing the computed RMS transverse velocity of

the two output nodes for the inner compliant mechanism ring and the RMS transverse

velocity of the remaining five nodes. While the RMS transverse velocity of the two

output nodes for the inner compliant mechanism ring is slightly larger across the

attenuation zone, the beginning of the attenuation zone at 300 Hz is distinct, as

shown in Figure 6.14. Furthermore, response continues to drop off by approximately

20 dB as the attenuation zone is traversed. The RMS normal velocity response at
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the remaining five nodal locations follows the same trend. At approximately 740 Hz

structural resonance occurs sooner than expected when compared with the unit cell

analysis. This resonance represents the cutoff of the attenuation zone. Beyond this

frequency, RMS normal velocity response increases with a maximum peak at 995 Hz

just prior to the end of the frequency range of interest.

Examination of the mode shapes of the annular structure, shown in Figure 6.15,

obtained from the Normal Modes analysis, reveals both the local and global behavior

of the structure. In this figure, displacement contours are superimposed on the

deformed shape of the structure. At 201 Hz, Figure 6.15 (a), the first resonant mode

of the structure is a global mode where the bottom layer moves circumferentially in

unison with a half-wavelength deformation that causes motion of the structure top

layer. The second global mode at 293 Hz occurs immediately before the attenuation

zone. Large motion of the outer compliant mechanism ring is visible relative to the

motion of the inner compliant mechanism ring, Figure 6.15 (b). At frequencies within

the attenuation zone, Figure 6.15 (c) through (e), deformation and energy is confined

to the rubber bottom layer. This bottom layer motion provides passive excitation to

the compliant mechanism core leading to a reduction in top layer response via the

principle of mechanical advantage. This phenomenon is clearly seen in Figures 6.16

(a) and (b) where the top and bottom rubber layers are hidden for clarity, revealing

the fact that deformation is confined to the lower half of the steel core structure as

a direct result of the chosen topology. Finally, moving to a frequency above of the

attenuation zone (i.e. 990 Hz), interaction between unit cells leads to the motion and

greater energy content of the top layer causing significant increases in the normal

velocity response of the annular structure, Figure 6.15 (f).

In summary, a comparison is made between the 2-D unit cell spectral finite element
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(a) 201 Hz (b) 293 Hz

(c) 396 Hz (d) 482 Hz

(e) 699 Hz (f) 990 Hz

Figure 6.15: Displacement contours superimposed on the normal mode shapes of one
quarter of the annular compliant mechanism structure: (a) 201 Hz, (b)
293 Hz, (c) 396 Hz, (d) 482 Hz, (e) 699 Hz, and (f) 990 Hz
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(a) 396 Hz (b) 482 Hz

Figure 6.16: Displacement contours superimposed on the normal mode shapes of
the compliant mechanism core of one quarter of the annular compliant
mechanism structure: (a) 396 Hz and (d) 482 Hz

analysis and the 3-D conventional finite element continuum analysis of the quarter

model annular structure. The local 2-D unit cell analysis adequately predicts the

general structural dynamic response of the global structure. However, the unit cell

analysis has limitations associated with predicting interactions between unit cells

that result in resonances and a lower cutoff frequency at the global level.

From a broader perspective, all analyses presented in this section assume lin-

ear response. Since a rubber material is used, a more complete analysis should be

considered to address the non-linear behavior of the annular compliant mechanism

structure. Additionally, the details of the coupler design pertaining to the interface

between the rubber top and bottom layers and the steel compliant mechanism core

require attention in terms of physical implementation.

Despite these limitations and assumptions, the methodology from Section 6.1 is

successfully applied to synthesize a preliminary design of a multi-material structure

with integral compliant mechanisms for use within a vibration isolation coupler. This

design is intended to isolate axial vibrations between two rotating shafts, however,
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a myriad of alternative design configurations exist for bushings (e.g. to reduce the

transmission of the transverse vibrations of a shaft through a bushing to a housing)

and couplers (e.g. to reduce torsional vibrations). These concepts represent other

possible applications of the methodology summarized in this chapter.



CHAPTER 7

Conclusions

In this final chapter areas of future research are set forth along with a summary of

research achievements. Two new directions of investigation are proposed: 1) multi-

material structures for increased functionality and 2) adaptive-passive and active

structures for variable gain response. In Section 7.1 each branch of study is briefly

outlined. Following this, initial concepts for structures having variable gain response

are introduced in Section 7.2. In conclusion of this work a summary of research

accomplishments is provided in Section 7.3.

7.1 Future Work

The use of multiple materials in the design of cellular or truss-like structures offers

the combined advantages of static, dynamic, and thermal functionality at a reduced

weight, as discussed by Wadley [101]. By coupling the analysis and optimization

methodology (Chapter 6) with multi-material and/or fluid-filled compliant mech-

anism unit cell designs, applications in both traditional and emerging engineering

disciplines can be explored. Specific areas of interest entail biomedical engineering

applications including biological sensors and structures for environmental character-

ization, health monitoring, and biomaterial design. New approaches to the analysis

of these structures are required in order to accurately describe the fluid-structure

physics of the problem. The particle finite element computational method is a pos-

195
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sible approach to this branch of research, per Idelsohn et al. [44]. Furthermore,

experimental validation of these computational models through the manufacturing

and testing of such novel structures is another area of interest, see Gouker et al. [31].

Representing the second possible area of future work is the design of adaptive-

passive and active structures with integral compliant mechanisms for variable gain

response. Adaptive-passive and active structures adapt to their loading environment

by automatically changing shape, and hence response, depending on the frequency of

excitation. Several potential methods of modifying response exist including bi-stable

compliant mechanism structures having multiple operating configurations, see for

example Jensen & Howell [46]. This approach will likely require a non-linear compu-

tational method coupled with an efficient tool for synthesizing appropriate compliant

mechanism topologies. Additionally, the use of actuators and active control, or the

use of adaptable materials (e.g. magnetorheological (MR), electrostrictive (ER), or

shape memory alloy (SMA) materials) have potential for use in realizing variable gain

response. The next section focuses on this research area and gives an overview of

some of the essential concepts that are fundamental to the development of structures

having variable gain response.

7.2 Structures having Variable Gain Response

Building on the research completed for the attenuation of structural vibration

within fixed frequency ranges, the goal of this section is to examine how the variation

of three different unit cell parameters (i.e. bottom layer stiffness, bottom layer mass,

and periodicity) modify the wavenumber-frequency relationship and subsequent unit

cell structural dynamic response. Additionally, the use of internal actuators for the

variation of the amplification properties of the compliant mechanism unit cell is
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addressed. The manifestation of such variations through actual physical changes to

the unit cell is discussed. Thus, this section covers the fundamental methods by

which structures having variable gain response can be realized. The limitations of

these methods are also discussed in relation to what is feasible in the construction

of physical prototypes.

The effect of unit cell bottom layer stiffness, bottom layer mass, and periodicity

on dynamic response is clarified by re-examining the unit cell wavenumber-frequency

relationship, Eqn (3.16), from Chapter 3.

(3.14) ω =

(
2π

λ

)2
√
EI

ρA

Recall that ρ, E, A, and I are the physical parameters of the unit cell bottom layer

beam. Additionally, ω is the frequency of vibration, and λ is the wavelength of

transverse waves propagating through the bottom layer beam.

Inspection of Eqn (3.16) makes clear three key relationships by examining in turn

the variation in ω due to a variation in the unit cell material Young’s modulus (i.e.

bottom layer stiffness), material density (i.e. bottom layer mass), or wavelength

(i.e. unit cell periodicity). Observe that the term “unit cell periodicity” refers to

the wavelength, length scale, or width of the unit cell and that, at the frequency at

which attenuation begins, all of these are equal.

By holding ρ, A, I, and λ constant in Eqn (3.16) and introducing a normalized

Young’s modulus, Enorm, the effect of changing the actual Young’s modulus, E, of

the unit cell bottom layer is examined

(7.1) ω = C1

√
E

Enorm

where the constant, C1, is defined as

(7.2) C1 =

(
2π

λ

)2
√
EnormI

ρA
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Rewriting Eqn 7.1 allows for the definition of a stiffness normalized frequency, ωE norm,

to be written in terms of the normalized Young’s modulus and actual Young’s mod-

ulus of the unit cell bottom layer.

(7.3) ωE norm = ω
C1

=
√

E
Enorm

A similar relationship is derived for a mass normalized frequency, ωρ norm, in terms

of a normalized density, ρnorm, and the actual density of the unit cell bottom layer.

(7.4) ω = C2

√
ρnorm
ρ

where the constant, C2, is defined as

(7.5) C2 =

(
2π

λ

)2
√

EI

ρnormA

giving

(7.6) ωρ norm = ω
C2

=
√

ρnorm

ρ

A relationship is also derived for a periodicity normalized frequency, ωλ norm, in

terms of a normalized wavelength, λnorm, and the actual wavelength of vibration for

the unit cell bottom layer.

(7.7) ω = C3

(
λnorm
λ

)2

where the constant, C3, is defined as

(7.8) C3 =

(
2π

λnorm

)2
√
EI

ρA

giving the final relationship of interest

(7.9) ωλ norm = ω
C3

=
(
λnorm

λ

)2
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Figure 7.1: Normalized frequency as a function of a fraction of the normalized unit
cell bottom layer stiffness, bottom layer mass, and periodicity

The normalized frequency relationships in Eqns (7.3)–(7.9) are now computed

by setting the variables E, ρ, and λ to some fraction of Enorm, ρnorm, and λnorm,

respectively. Figure 7.1 illustrates each relationship using fractions ranging between

0.8 and 1.2. This figure makes clear the required modification in either bottom

layer stiffness, bottom layer mass, or unit cell periodicity required to achieve either

an increase or decrease in the attenuation zone starting frequency. Assuming all

other variables are held constant, increasing the attenuation zone starting frequency

equates to an increase in the unit cell bottom layer stiffness, a decrease in the unit

cell bottom layer mass, or a reduction in the length scale of the unit cell (i.e. an

increase in periodicity). Alternatively, a decrease in the attenuation zone starting

frequency equates to a decrease in the unit cell bottom layer stiffness, an increase in

the unit cell bottom layer mass, or an increase in the length scale of the unit cell (i.e.
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a reduction in periodicity). Moreover, Figure 7.1 illustrates that the most effective

means of varying the start of the attenuation zone is to adjust the length scale (i.e.

periodicity) of the unit cell since ωλ norm varies with a 1/λ2 relationship.

In contrast to varying the beginning of the attenuation zone, recall that the end

of the attenuation zone depends on the selection of a compliant mechanism core

topology and size as discussed in Chapters 3 and 4. Thus, by understanding the

underlying methods through which an attenuation zone is controlled, effective ways

of adapting or varying the vibration characteristics of the unit cell can be formulated.

In the subsequent three sections, the response of the rhombus compliant mechanism

unit cell from Section 3.2.4 is examined by varying the unit cell bottom layer stiffness,

bottom layer mass, or periodicity.

7.2.1 Unit Cell Bottom Layer Stiffness

The top layer RMS transverse velocity of the rhombus compliant mechanism unit

cell was computed using three different values for the unit cell bottom layer material

Young’s modulus, E, while keeping all other analysis parameters constant. While

directly varying the material Young’s modulus in this manner is not physically pos-

sible, this study serves a purpose in showing the effect of increasing bottom layer

stiffness on wave propagation and the subsequent unit cell structural dynamic re-

sponse. Young’s modulus (i.e. E) values of 0.9×Enorm, 1.0×Enorm, and 1.1×Enorm

were respectively used for the unit cell bottom layer beam in Eqn (7.3). The unit cell

top layer RMS normal velocity response shown in Figure 7.2 was computed from 0 Hz

to 15 kHz at 10 Hz frequency intervals. This figure demonstrates a clear relationship

between bottom layer stiffness and the beginning of both attenuation zones. As stiff-

ness increases the attenuation starting frequency shifts towards higher frequencies

and shorter wavelengths.
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Figure 7.2: Relationship between unit cell response and increased bottom layer stiff-
ness

Modifying the Young’s modulus of the unit cell bottom layer, as done in this

conceptual study, is not physically feasible. Nonetheless, other methods for realizing

such an effect are possible. Specifically, the use of a composite beam for the bot-

tom layer of the unit cell is worth further investigation. This bottom layer would

consist of a MR material layer sandwiched between, and contained by, two elastic

material layers as suggested by several researchers including Harland et al. [34, 35]

and Yalcintas & Dai [105]. This concept is shown in Figure 7.3.

The primary assumptions pertaining to the bottom layer of this model are: 1)

there is no slip between the elastic layers and the MR layer; 2) all three layers

experience the same transverse deflection; 3) no normal stresses exist in the MR

layer; and 4) no shear stresses exist in the elastic layers, per Yalcintas & Dai [105].

As a consequence of these assumptions, an increase in the shear modulus of the MR

layer will lead to an increase in the bending stiffness of the composite beam.
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Elastic Layer 

Elastic Layer 

MR Layer 

Figure 7.3: Conceptual model of a compliant mechanism unit cell having a composite
bottom layer designed for variable gain response

(a) Shear stress–shear strain relationship (b) Transverse vibration response

Figure 7.4: MR material behavior and composite beam structural dynamic response:
(a) shear stress–shear strain relationship for MR materials, and (b)
transverse vibration response for MR composite beam, from Yalcintas
& Dai [105]
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The physical properties (i.e. viscosity and shear modulus) of MR materials vary

when the material is subjected to different magnetic field levels. For example, the

shear stress–shear strain relationship for MR materials is shown qualitatively in

Figure 7.4 (a). Assuming behavior within the linear pre-yield region of this figure

and modifying the externally applied magnetic field level, variations in the stiffness

and damping properties of the unit cell composite bottom layer are realized. In

theory, these variations will allow control over the structural dynamic response of

the unit cell. Specifically, the beginning of the attenuation zone is modified by the

application of a specific magnetic field level similar to the variations in dynamic

response predicted by Yalcintas & Dai [105] for a simple composite MR beam shown

in Figure 7.4 (b).

7.2.2 Unit Cell Bottom Layer Mass

The effect of varying the unit cell bottom layer material density, ρ, is examined in

this section using three different values for the density while holding all other analysis

parameters constant. Density (i.e. ρ) values of 0.9×ρnorm, 1.0×ρnorm, and 1.1×ρnorm

were respectively used for the unit cell bottom layer beam in Eqn (7.6). The unit

cell top layer RMS normal velocity response shown in Figure 7.5 was computed from

0 Hz to 15 kHz at 10 Hz frequency intervals. This figure illustrates that a decrease

in the mass of the bottom layer of the unit cell, exclusive of a change in any other

analysis parameter, has the equivalent effect as an increase in the stiffness of the unit

cell bottom layer.

From an implementation perspective, the approach of adding point masses to the

unit cell bottom layer has potential for reducing structural vibration as established

by the work of Martinsson & Movchan [65]. However, physical means of easily

adding or removing point masses to the unit cell bottom layer generally do not exist.
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Figure 7.5: Relationship between unit cell response and decreased bottom layer mass

Alternatively, using a thicker (i.e. more massive) bottom layer beam would also

increase the cross-section area moment of inertia, I, in Eqn (3.16), which has the

opposite result of the added mass. Therefore, while the results of Martinsson &

Movchan and the results of this study are conceptually interesting, their practical

utility in relation to designing structures that have variable gain response is not very

high.

7.2.3 Unit Cell Periodicity

The effect of varying the periodicity of the unit cell within a global structure is

studied through the modification of the length of the unit cell. The concept for a unit

cell having different lengths is illustrated in Figure 7.6, where length, or wavelength

(i.e. λ), values of 0.9×λnorm, 1.0×λnorm, and 1.1×λnorm are shown. Observe that

λ is respectively set to each of these values in Eqn (7.9) to determine the starting

frequency of the attenuation zone. The top layer RMS normal velocity response of
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Figure 7.6: Graphical representation of the modification of unit cell periodicity
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Figure 7.7: Relationship between unit cell response and decreased unit cell length
(i.e. periodicity)

each different length unit cell is shown in Figure 7.7. Vibratory response was once

more computed from 0 Hz to 15 kHz at 10 Hz frequency intervals. Significant shifting

of the attenuation zone starting frequency towards higher frequencies is evident as

the length of the unit cell is decreased. Thus, as the spacing between compliant

mechanism unit cells within a global structure is reduced, the vibration reduction
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characteristics will accordingly shift towards increasingly higher frequencies.

In terms of the physical implementation of the shape changes shown in Figure 7.6,

the latest research being performed in the field of SMA materials has significant po-

tential. Specifically, materials such as NiTi alloy metals (e.g. “Nitinol”) have unique

thermomechanical properties that can potentially be exploited in realizing global

shape changes, plus changes to the material stiffness and damping properties. Shaw

& Kyriakides [91] have thoroughly investigated the relationships between temper-

ature, material phase, and mechanical properties. They have shown that the high

temperature Austenite phase of NiTi has a much larger storage modulus and lower

loss modulus than the room temperature twinned Martensite phase. Thus, con-

sidering a constant shape SMA compliant mechanism structure, a higher operating

temperature (i.e. a temperature above the Martensite to Austenite phase transition

temperature) will result in stiffer dynamic response that exhibits less internal damp-

ing. Consequently, controlling the external thermal environment of a NiTi metal

compliant mechanism structure, or passing temperature controlled fluid through the

internal compliant mechanism topology, could provide substantial dynamic perfor-

mance control capability.

Taking this SMA material research a step further, Grummon, Shaw, & Foltz [32]

have recently developed a new method for brazing NiTi materials using niobium.

They have demonstrated that complex cellular topologies can be formed using NiTi

material as shown in Figure 7.8. Additionally, this technology allows the application

of large recoverable strain to these structures, resulting in substantial modification

of the structural geometry as shown in Figure 7.9. Thus, the ability to reliably

manufacture such structures, coupled with their outstanding mechanical performance

and unique thermomechanical material behavior, points to several new directions for
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Figure 7.8: Cellular topologies enabled using new NiTi brazing method, from Grum-
mon, Shaw, & Foltz [32]

Figure 7.9: Mechanical response of a niobium-brazed open cell honeycomb structure
built from NiTi strip material, from Grummon, Shaw, & Foltz [32]
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Figure 7.10: Rhombus compliant mechanism unit cells with varying mechanical ad-
vantage: (a) MA = 7, (b) MA = 5, and (c) MA = 1 (asterisks denote
locations of internal actuators)
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Figure 7.11: Top layer RMS velocity comparison for rhombus compliant mechanism
unit cells with varying mechanical advantage due to internal shape
change via actuators

future research.

7.2.4 Internal Actuators

In this final section concerned with variable gain response the addition of internal

actuators to the rhombus compliant mechanism unit cell is briefly discussed. A

portion of the results from Section 3.2.5 are revisited in Figures 7.10 (a) through (c)

and Figure 7.11. In Figures 7.10 (a) through (c), three rhombus compliant mechanism

unit cells are shown having mechanical advantage values of 7, 5, and 1, respectively.
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The location of unit cell internal actuators are denoted by asterisks in these figures.

These actuators are necessary to realize the illustrated shape changes.

By changing the internal shape of the compliant mechanism the breadth of the

attenuation zone is modified as illustrated in Figure 7.11. If, for example, variable

gain response is sought at a frequency of 4 kHz, the modification of the amplifi-

cation properties of the compliant mechanism unit cell through an internal shape

change results in the desired control. Such an approach coupled with any of the

concepts presented in Sections 7.2.1 through 7.2.3 would provide enhanced variable

gain response capabilities.

7.3 Summary

In this dissertation numerical methods were synthesized for the computational

analysis of structures with integral compliant mechanisms. These methods were ap-

plied to the conceptualization, design, and optimization of novel two-dimensional

and three-dimensional structures for reduced vibro-acoustic response. The central

tools necessary for bringing together an overarching methodology were formulated

in Chapter 3. These tools include: 1) a mechanical advantage framework for a priori

mechanism topology and shape synthesis; 2) a wavenumber-frequency analysis for

predicting response attenuation zones; 3) the definition of a compliant mechanism

unit cell FRF; and 4) a deformed shape and energy distribution analysis to facili-

tate fundamental understanding of the physical behavior and energy flow through a

structure.

Following the introduction of these initial concepts, a unit cell design using an

alternative polymer material was examined to show the connection between material

selection, structure size, and attenuation zone placement. The initial concepts were
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then applied to the design of parallel and serial connected structures in order to gain

a thorough understanding of the additive composite effect of connecting either the

same or different unit cells together in various configurations. Methods of increasing

vibro-acoustic isolation were discussed along with the design of structures having

multi-functional properties. Unit cell size and topology optimization using a genetic

algorithm was then brought forth in Chapter 4 as a supplementary tool for structural

dynamic response tuning and the realization of alternative topologies. Throughout

all of these studies, the spectral finite element method proved to be a practical tool

in the exploration of these ideas, and it noticeably reduced the complexity, while

increasing the reliability, of such analyses.

Experimental investigations were performed to establish the validity of the un-

derlying hypotheses behind this work. Limitations were discussed regarding the

capability of a spectral finite element analysis in predicting the response of two pro-

totype continuum structures. As a result, a conventional finite element analysis

was required and performed using industry standard software to verify experimental

results. Chapter 5 provided the results from this experimental work, which vali-

dated the hypotheses proposed at the conception of this research effort. Specifically,

physically realizable structures having enhanced attenuation zones were designed,

manufactured, tested, and shown to perform as expected.

An overview of the entire methodology was presented in Chapter 6. The utility

of the methodology was illustrated through the development of two primary appli-

cations including a vibro-acoustic structural chassis/lining for an aerospace vehicle,

and an axial vibration isolation coupler for an automotive vehicle drive shaft. The

second application highlighted the techniques developed in Chapter 3 through the

design of a 3-D annular (i.e. ring-like) structure. Furthermore, this application
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also emphasized the use of conventional solid finite elements in the computational

modeling of a generally more complicated structure.

Finally, in this chapter potential extensions of this research towards the devel-

opment of multi-material/functional, adaptive-passive, or active structures were de-

scribed. Fundamental connections were drawn between various unit cell parameters

and the vibratory behavior of the unit cell. These connections should serve as the

starting point for future research and should be exploited in realizing global struc-

tures with variable gain response. Many promising future directions for this research

exist based on the initial steps taken in this dissertation. Moreover, this effort serves

as a basis for more sophisticated computational verification and experimental val-

idation. Interesting applications and broader manufacturing approaches at smaller

scales appear possible when the scope of this work is broadened to encompass anal-

ysis in the non-linear regime, along with the exclusive or combined use of multiple

materials such as polymers, composites, biological tissues, and adaptable materials.
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APPENDIX A

Stiffness Matrix Components for Spectral Beam Element

(A.1) K̂b11
=

(1 + i) (−i + e2ikL − e2kL + ie(2+2i)kL) k3

1 + e2ikL − 4e(1+i)kL + e2kL + e(2+2i)kL

(A.2) K̂b12
=

i (−1 + e2ikL) (−1 + e2kL) k2

1 + e2ikL − 4e(1+i)kL + e2kL + e(2+2i)kL

(A.3) K̂b13
=

2 (−eikL + iekL − ie(1+2i)kL + e(2+i)kL) k3

1 + e2ikL − 4e(1+i)kL + e2kL + e(2+2i)kL

(A.4) K̂b14
=

2 (−eikL + ekL + e(1+2i)kL − e(2+i)kL) k2

1 + e2ikL − 4e(1+i)kL + e2kL + e(2+2i)kL

(A.5) K̂b22
=

(1 + i) (−1 + ie2ikL − ie2kL + e(2+2i)kL) k

1 + e2ikL − 4e(1+i)kL + e2kL + e(2+2i)kL

(A.6) K̂b23
= −2 (−eikL + ekL + e(1+2i)kL − e(2+i)kL) k2

1 + e2ikL − 4e(1+i)kL + e2kL + e(2+2i)kL

(A.7) K̂b24
=

2 (eikL + iekL − ie(1+2i)kL − e(2+i)kL) k

1 + e2ikL − 4e(1+i)kL + e2kL + e(2+2i)kL

(A.8) K̂b33
=

(1 + i) (−i + e2ikL − e2kL + ie(2+2i)kL) k3

1 + e2ikL − 4e(1+i)kL + e2kL + e(2+2i)kL

(A.9) K̂b34
= − i (−1 + e2ikL) (−1 + e2kL) k2

1 + e2ikL − 4e(1+i)kL + e2kL + e(2+2i)kL
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(A.10) K̂b44
=

(1 + i) (−1 + ie2ikL − ie2kL + e(2+2i)kL) k

1 + e2ikL − 4e(1+i)kL + e2kL + e(2+2i)kL

The remaining components of the spectral beam stiffness matrix are found by

noting the symmetry of the stiffness matrix.

(A.11) K̂b = K̂
T

b
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APPENDIX B

Acoustic Excitation & SPLV Measurement System

B.1 Acoustic Excitation System

A schematic of the acoustic excitation system is shown in Figure B.1. The sinu-

soidal input signal from the PC was first passed through the Adcom audio amplifier

(GFA-535) and subsequently through a serially connected first order high pass filter

that consists of three capacitors in parallel. The audio amplifier expected an 8 Ohm

load. Thus, a 4 Ohm dummy load was connected in series to the 4 Ohm loudspeaker.

The 4 Ohm dummy load is comprised of two 8 Ohm Mills type resistors connected

in parallel. Additionally, the audio amplifier has a fixed gain. Hence, the volume for

the audio system was adjusted by modifying the gain of the input voltage passing to

the audio amplifier via the signal generation program in LabVIEW.

The high pass filter served two purposes. The first was to filter the DC content

from the signal coming from the amplifier and passing to the loudspeaker. This as-

sured that the loudspeaker was protected from accidental power spikes. The second

purpose was to reduce power transmission through the audio system at frequen-

cies that are damaging to the loudspeaker diaphragm. The DC resistance of the

loudspeaker, Rl, is 2.75 Ohms per the vendor specification [79]. The equivalent DC
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Figure B.1: Schematic of acoustic excitation system

resistance, Req, of the audio system is then found as

(B.1) Req = Rd +Rl

where Rd is the resistance of the dummy load found through the addition of the Mills

type resistors in parallel

(B.2) Rd =

(
1

R1

+
1

R2

)−1

Or, numerically

(B.3) Rd =

(
1

8 Ω
+

1

8 Ω

)−1

= 4 Ω

From Eqn (B.1), the equivalent DC resistance of the audio system is found to be

(B.4) Req = 6.75 Ω

The resonant frequency of the tweeter is 650 Hz, so the lowest operating frequency

of the audio system was selected as 1 kHz. A crossover frequency of 500 Hz was chosen

leading to a 3 dB power loss at this frequency, per Tremaine [99]. This limited power
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sent to the loudspeaker at frequencies near resonance. Given this crossover frequency,

the sizing of the first order (i.e. 6 dB per octave) high pass filter was based on the

following equation

(B.5) f =
1

2πCeqReq

where f is the crossover frequency in Hz and Ceq is the total capacitance of the filter

in Farads. Rearranging Eqn (B.5) and substituting numerical values for f and Req

allows for the calculation of the total capacitance of the filter as

(B.6) Ceq =
1

2πReqf

(B.7) Ceq =
1

2π(6.75 Ω)(500 Hz)
= 47 µF

A non-polarized electrolytic capacitor, C1 = 47 µF, was selected for the crossover

design. It was placed in parallel with a mica film capacitor, C2 = 30 pF, to assist

with linearity, and a ceramic bypass capacitor, C3 = 0.1 µF, to carry the alternating

current. Observe that the relatively small sizes of the mica film and ceramic by-

pass capacitors did not effect the magnitude of the capacitance in Eqn (B.7) since

capacitors in parallel add like resistors in series as follows

(B.8) Ceq = C1 + C2 + C3 = 47 µF + 30 pF + 0.1 µF ≈ 47 µF

Accordingly, this filter provided protection against excitation near the resonant

frequency of the loudspeaker by limiting power transmission at frequencies below 1

kHz, and it was capable of filtering possibly damaging DC power spikes. The final

assembled electrical circuit for the high pass filter, including dummy load, is shown

in Figure B.2.
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Figure B.2: Assembled high pass filter (including dummy load)

Table B.1: Measurement ranges for velocity decoder OFV-2602, from Polytec [81]
Range Full Scale Output Resolution Max. Vibration

(peak to peak) Frequency
1 mm/s/V 20 mm/s 0.3 µm/s 10 kHz
5 mm/s/V 100 (60) mm/s 0.3 µm/s 5 (10) kHz

B.2 SPLV Measurement System

The output from the SPLV system was connected to the oscilloscope, which pro-

vided a sinusoidal voltage signal. The peak amplitude of the signal was manually

recorded in units of mV at each test frequency. Following this, the measured volt-

age values were converted to velocity values in units of mm/s using the appropriate

scale factor (i.e. measurement range) setting for the SPLV system. The quality of

the velocity measurements from the SPLV system depended upon the distance and

alignment between the SPLV sensor head and the test structure. This distance was

fixed at 60 cm and aligned orthogonal to the structure surface element of interest

prior to testing per the vendor recommended specifications [81]. The measurement

ranges and limitations for the Polytec SPLV model OFV-2602 with OFV-353 optics

are provided in Table B.1 for reference.
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ABSTRACT

ANALYSIS, DESIGN, AND OPTIMIZATION OF STRUCTURES WITH
INTEGRAL COMPLIANT MECHANISMS FOR MID-FREQUENCY RESPONSE

by

Ercan M. Dede

Chair: Gregory M. Hulbert

The vibration of lightweight structures in the 1 kHz to 10 kHz middle frequency

region generates noise, which has adverse effects on human performance and per-

ception of quality. Typical solutions, such as spring-mass absorbers, visco-elastic

coatings, and active control, are effective across these frequencies. Nonetheless, they

often lead to greater system complexity or weight. Accordingly, the objective of

this research is to introduce a new technique for the reduction of middle frequency

structural-borne noise.

In reducing mid-frequency response, a multi-scale technique based on amplifica-

tion principles is explored to integrate small-scale compliant mechanisms into large-

scale structures. Specifically, the principle of mechanical advantage is examined as

a mechanism design tool to reduce energy transmission. An efficient spectral finite

element computational approach is exploited for basic force-velocity and energy flow

analyses of both two-dimensional and three-dimensional structures. A genetic algo-

rithm is employed to optimize structure topology and size for greatest effectiveness



in the frequency range of interest. The results of prototype testing using acoustic

excitation and laser interferometry measurement techniques are presented to vali-

date computational predictions of structural dynamic response. These investigations

indicate that a significant decrease in structural vibration is achievable, and they

suggest promising applications including the design of multi-functional structural-

acoustic panels for broadband vehicle noise reduction.

In summary, there are three primary contributions of this research. First, the com-

putational methods required for the analysis and design of structures with integral

compliant mechanisms are synthesized. Second, a novel methodology is established

as an integral part of the structural design process for the reduction of mid-frequency

structural-borne noise. Third, the feasibility of this method is experimentally val-

idated. Hence, the field of dynamic analysis is extended towards solving practical

problems through the synthesis of several existing research fields including structural

dynamics, compliant mechanism design, finite element computational analysis, and

optimization via evolutionary algorithms.


