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Preface

This is the forty-fourth in a series of reports growing out of the
study of radar cross sections at The Radiation Laboratory of The University
of Michigan. Titles of the reports already published or presently in
process of publication are listed on the preceding pages.

When the study was first begun, the primary aim was to show that
radar cross sections can be determined theoretically, the results being
in good agreement with experiment. It is believed that by and large this
aim has been achieved.

In continuing this study, the objective is to determine means for
computing the radar cross section of objects in a variety of different
environments. This has led to an extension of the investigation to include
not only the standard boundary-value problems, but also such topics as the
emission and propagation of electromagnetic and acoustic waves, and phenomena
connected with ionized media.

Associated with the theoretical work is an experimental program which
embraces (a) measurement of antennas and radar scatterers in order to verify
data determined theoretically; (b) investigation of antenna behavior and cross
section problems not amenable to theoretical solution; (c) problems associated
with the design and development of microwave absorbers; and (d) low and high

density ionization phenomena.

K. M. Siegel
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Chapter 1

INTRODUCTION

Exact solutions of diffraction problems are rare and until recently
there was only one method of solution applicable to more than one particular
problem. By diffraction problem is meant the general problem of deter-
mining a solution of the Helmholtz equation which satisfies homogeneous
boundary conditions, either Dirichlet or Neumann, has a prescribed
character both at infinity and in the neighborhood of any edges, and which
may be singular only at points corresponding to sources. The physical
problem then is the determination of a spatial field when an obstacle is in
the presence of a time harmonic source of wave motion. Although the term
diffraction is usually applied only when the boundary, in the language of
geometric optics, has an "'illuminated" and a '"shadow' region it will not
prove inconvenient to include the limiting cases of no shadow, e.g. when the
boundary is an infinite plane.

The classic technique produces solutions as infinite series of eigen-
functions and is limited to coordinate systems in which the Helmholtz
equation is separable and boundaries which are level surfaces of these
coordinate systems. Important as this method is, the usefulness of the
solutions thus obtained almost invariably suffers because of the slow con-

vergence of the series.



Exact solutions obtained in "closed form' are even rarer. What
constitutes a closed form solution is subject to debate but it is generally
agreed that infinite series do not qualify. When Sommerfeld (Ref. 25) intro-
duced his many valued wave functions to solve the half plane problem in 1896,
he thought this idea could be extended to solve other diffraction problems,
notably that of the strip. However, all subsequent attempts at extension,
except to wedges of which the half plane is a special case, have been unsuc-
cessful. Thus the Sommerfeld approach remains a technique, indeed a
remarkable and elegant one, for solving a particular problem rather than
a general method of solution.

More recently, Wiener Hopf techniques have been successful in
treating certain problems involving parallel half planes (see Bouwkamp,
Ref. 3, for a discussion of Wiener Hopf techniques in diffraction theory).
Exact solutions by this technique are, to date, limited to boundaries of
infinite extent.

A simpler integral equation formulation than that previously used
in the Wiener Hopf treatment has been given by Clemmow (Ref. 8) The
scattered field is considered as a superposition of plane waves of complex
angles of incidence and in this sense is the method comparable to Sommer-
feld's technique. This approach does not eliminate the restriction to

infinite boundaries for exact results.



In the present work, however, we shall concern ourselves with a
method for obtaining exact solutions in closed (integral) form even when
the boundary is finite. A general class of solutions of the Helmholtz equation
is derived which resemble Clemmow's and Sommerfeld's functions in that
they are superpositions of elementary solutions except that the superposition
is accomplished in a manner such that the solutions assume particularly simple
form on boundaries which are level surfaces of the coordinate system used.
The usefulness of these solutions is demonstrated by employing them to
construct an exact integral representation of the field diffracted by a strip.

This problem of diffraction by a strip has occupied a prominent
place in the literature since the work of Lord Rayleigh(Ref. 21)who found
an approximate solution for long wavelengths in 1897, Since that time exact
solutions in the form of infinite series have been found by Schwarzschild
(Ref. 23)who used the Sommerfeld half plane solution as a basis for calculating
successive interactions between the two edges, and Sieger (Ref. 24)who
found the solution in terms of Mathieu functions as suggested by Wien (Ref. 34).
We shall not attempt to give a complete bibliography but refer the reader
to the treatments of this problem given by Sommerfeld (Ref. 26) Baker and
Copson (Ref. 1) and Bouwkamp (Ref. 4) . Bouwkamp's exhaustive survey
just cited covers the many attempts to find long wavelength approximations
and summarizes the numerical results. Short wavelength approximations

have also been sought and, again without claiming completeness, we call



attention to the work of Clemmow (Ref. 9), Karp and Russek (Ref. 12),
Levine (Ref. 14) and Millar (Ref. 18), whose treatment is based in part on
the Schwarzschild approach of successive interaction, and Burger (Ref. 6)
and Timman (Ref. 30) who applied techniques of supersonic airfoil theory
to the hyperbolic (time dependent) wave equation.

The success of the present approach depends on the fact that the
problems of diffraction by a half plane and a strip are not really independent
and in fact the method consists, in part, of transforming the solution of one
into the solution of the other.

This is accomplished by using the new solutions of the Helmholtz
equation to derive an integral equation for the wave function satisfying a
Dirichlet condition on a line segment. We write these integral equations for
both the half plane and strip problems, one in parabolic coordinates and the
other in elliptic coordinates, and then assume that the unknown functions in
the integrand are related via the same transformation relating the two
coordinate systems. Since the half plane problem has been solved, we are
able to obtain an explicit representation of this function, hence, if the assump-
tion is valid, we also obtain, using the strip integral equation as an integral
representation, the solution of the strip problem. The validity of the
assumption is established by demonstrating in detail that it does indeed
produce the solution of the problem of diffraction by a strip.

As will be evident, the construction of the solutions depends vitally

on the fact that we consider line sources rather than plane wave incidence.



The plane wave solutions may be obtained but will involve a rather compli-
cated limiting process. Since it is almost standard procedure in diffraction
theory to consider the plane wave case first, the fact that line sources are
apparently more appropriate in this case may help to explain why the strip
problem has resisted closed form solution for so long.

We shall confine our attention entirely to two dimensional problems
which are particularly appropriate to the present approach. The possibility

of extension to three dimensional problems is not to be excluded but will

not be treated here.



Chapter 2

A CLASS OF SOLUTIONS OF THE HELMHOLTZ EQUATION

In this chapter we shall derive a class of solutions of Helmholtz'
equation which provides a basis for all that follows. These solutions can
be characterized as a non-trivial superposition of elementary solutions
where, as will be seen, non-trivial denotes that we integrate elementary
wave functions between variable end points.

1. Some Remarks on Superposition

Tikx Tiky
Although plane waves of the form e and e are the elementary
solutions of the homogeneous Helmholtz equation (2.1. 1), in rectangular

coordinates,

L + 9 +k2 ci> =0 (2.1.1)

we shall consider line sources, the elementary solutions of cylindrical
coordinates.

Following convention, we will use three dimensional terminology to
describe two dimensional problems ; thus we shall speak of line sources
rather than two dimensional point sources, diffraction by a half plane rather

than a half line, etc.

In cylindrical coordinates the non-homogeneous Helmholtz equation,

for a source at r = ro, 6 = 90,



B 18 18 2 (§=_47r§(-f_;>, (2.1.2)
T r2 o

has solutions C}) = ~im H(()Z)(kR), im H(()l)(kR), and -7 No(kR) where

o a 2, 2 2 2
= - = + - - = - + - i
R lr ro‘ \/r r 2rr cos(6 60) \j(x xo) (y yo) . In keeping

(2)

+i
with a suppressed time dependence of e 1wt, -im H0 (kR) represents waves

diverging from R = 0. Neglecting the constant factor we write this as

H(()z)(kR) _ Hi2)<{ \&x—- x0)2+ (y - y0)2 > = HéZ)é \/@—x+ iy) - (xo+ iyof} [:(x— iy) - (xo— iyos] >

and observe that the function obtained by setting Y, = 0, replacing X by some
complex o, multiplying by an arbitrary function of ¢, and integrating over o,

viz

<{> = S;Hff)(k \[(x+iy-a)(x-iy-a) ) f(a)da, (2.1.3)

will still be a solution of the Helmholtz equation if the contour ¢ is independent
of x and y and f(a) - is sufficiently well behaved. The points of the path of
integration represent sources of strength —4if(¢). Similarly, letting X, = 0

and Yy © i we obtain

\{’ = i Hc()z)(k \ﬁx+iy+a)(x-iy—a) )f(a)da (2.1.4)

which also remains a solution.
In a sense we have reversed the usual superposition where the elementary

solution of rectangular coordinates (plane wave) is written in cylindrical



coordinates and integrated over complex angles of incidence of the plane

wave, i.e.

§ flo) oTC0s(0-0) o (2.1.5)
C

We have written the elementary solution of cylindrical coordinates and
integrated over complex positions of the line source.
2. Derivation of Non-Trivial Solutions

At first this reversed superposition may appear unnecessarily
complicated since now we must worry about the branch points of the integrands.
However, by choosing a particular path we are led to a rather surprising and
interesting result, namely: if f(o) is analytic in a simply connected region

containing the path of integration and A is constant, then the expressions

x+ iy
g JOQ(\/(xi-iy—a)(X—iy—a) )f(a/)doz (2.2.1)
A
x-1iy
S Joé\/(x-ﬁy—oz)(x—iy—a) >f(a)da (2.2.2)
A
-X - iy
JOQ{\/(x+iy+a)(x— iy - a) > flo) da (2.2.3)
‘A
and x -~ iy
| S 5 (Voctiyta)e-iy-a) ) fe) de 2.2.4)
A

are all solutions of the homogeneous Helmholtz equation in this region. J o

denotes the ordinary Bessel function of order O.



To see that this is true, first for (2.2.1) we proceed as follows. In
formula (2. 1.3), where the integrand has branch points at o = xT iy, take the
path of integration to be a loop enclosing the point o = x+iy as shown in

figure 2.2.1.

FIGURE 2.2.1: o-PLANE

Before discussing the branch cuts, let us note that, despite the square

root of its argument, J o@ \/(x+ iy-a)(x-iy-a) > is an analytic function of «
in the entire finite a-plane, so we need only concern ourselves with the
logarithmic branch points of the Hankel function. These can be separated

out as follows:

Hiz)é\/(x+iy—a)(x—iy~a)> = :%l Joéc\/(x+iy~a)(x—iy—a) >10g\/(x+iy-a)(x— iy - @) >

+ F<\](x+iy—a)(x—iy—a)> (2.2.5)

where F is an analytic function of «. This is evident on looking at the series

representations. Using the shorthand p = \ﬂx+iy—a)(x— iy-a) , formula (2.1.3)

can be written as



H (ko) fla)der = 2 | 3_(ko)logo Ha)da+ | F(o) e dar . (2.2.6)

c (¢ c
Since f(o) is assumed analytic throughout a region containing the contour
¢ and F(p) is also an analytic function of o, the contour shown in Figure 2.2.1
is really closed for the second term on the right hand side of (2. 2.6) hence,
by Cauchy's theprem, this term vanishes. We have written the logarithmic
part as log p2 to eliminate, when defining the branch cuts, any complications
due to the square root in the definition of p.

We choose as a branch cut the negative real axis in the p2 plane. To

see what this maps into in the o-plane, we write o = §+in and examine

p2 = (x+iy-a)(x-iy-a) = (x+iy-E-in(x-iy-£&-in
= k-8 -0ty +2in(E - x). (2.2.7)
The condition, p2 real —> 2n(E-x) =0 and p2<0ﬁ(x—§)2 -n2+ y2<0.
If n=0 the second of these is violated hence & =x, n>lyland €=x, n<-‘y\ are
the branch cuts in the a-plane, as shown in Figure 2.2.1.
To keep track of which sheet of the Riemann surface of log p2 we are
dealing with, we employ the following notation: we define the rrt—h- sheet to
consist of all values of log p2 where (2n-1)7 <arg p2 < (2n+1)7 and indicate

2
this explicitly by writing logn p2. Finally, by requiring that arg logop L =0,
=0

we remove all ambiguity from the definition. The values of log p2 on two
successive sheets are related by

log - lognp2 = 2mi. (2.2.8)

n+1p

10



Now we can make precise the meaning of the contour shown in Figure 2.2.1.
Starting at the point o = A, we choose the principal value of the logarithm,
log0 pz, and let the function vary continuously along c¢c. Thus the solid portion
of ¢ indicates points on the otll sheet of the Riemann surface of the logarithm,
but continuous variation across the branch cut takes us onto the Ll sheet
which is indicated by the dotted portion of c.

Since we have assumed f(o) to be analytic, however, we may deform

the contour to that shown in Figure 2.2.2.

*+ _iy

FIGURE 2.2.2: o-PLANE

The integral in (2.2.6) can now be written

o
(] c'

1% (k) ) dar = = 5 3_(kp) logp” £la) da
x+ iy
1\ J (ko) £ (log_p2-log pH)d
- ko) fe)(log_p"-log_ 07 dar .
‘A

(2.2.9)

Using relation (2.2.8), this becomes

11



X+iy
Hf)(kp) fl@)da = 2 J0<kp) flo)do . (2.2.10)
[¢ A

Since the left hand side of (2.2.10) is a solution of Helmholtz' equation,

the right hand side is also. Hence (2.2.1) is shown to be a solution of the
Helmholtz equation. This same procedure can be readily used to establish
that (2.2.2), (2.2.3), and (2.2.4) are also solutions and it would be needlessly
repetitious to do this explicitly.

3. An Alternate Proof.

An alternate procedure, consisting of direct substitution in the differ-
ential equation, can be employed Nto establish that the expressions (2.2.1) -
(2.2.4) are indeed solutions of Helmholtz' equation. Contrary to the method
used above, this gives no hint as to how the relations were found but does
have the vadvantage of being somewhat simpler. This is illustrated by
demonstrating directly that (2.2.2) is a solution. Whereas before we needed
f(o) to be analytic in order to deform contours, now the analyticity forms
a sufficient condition to permit differentiation according to the usual rule.

Thus, keeping in mind the following easily verifiable relations,

Joé\/(x+iy—a)(x-—iy—a)> oz=x—iy= 1
2

% Joé\ﬂx+iy-a)(x—iy—a)> L=X~iy= —i%‘Y (2.3.1)
2

9 Y - _ky

oy JO<<\/(x+1y a)(x-iy a)> R 5

we find that

12



X - iy

_{%{ Joé\/()ﬁiy—a)(x—iy—a) > fla) da
‘A
X -1y
= f(x-~iy) + % JO<<\/(x+iy——a)(x—iy~a) >f(a)da
A (2.3.2)
and
X - iy
52 of (x-iy)  ik’y f(x- iy)
P Joé{\/(x+iy—a)(x—iy—a)>f(a)doz=&X_ly - 12 2y
A
X - 1y 9
+ -g;z Joéi\/(x+ iy -a)(x-iy-a) > fle)da.
A
(2.3.3)
Similarly
X - iy
82 . k2
57 | TEV ety abiy-a Yi@ae = -~ 200 4 T gy
A Yy
X -1y 9
+ 8%2 Joéi\/(x+iy—a)(x—iy—a) > fla) do .
A (2.3.4)

.

Since ~-i of (x- 1y) - of(x - iy)

, upon substitution of (2.2.2) in the Helmholtz
oy ox

equation we obtain, with (2.3.3) and (2.3.4)

13



x- iy

2 2
0 0 2 < - - >
" T o Tt +iy - ) (x- iy -
ox2 = oy2 k Jok\/(x iy-a)(x-iy-a) ) fl@)da
A
X - iy 9 9
- R Re e (k\/(x+iy-a)(x-iy-a) ) fl@)da = 0 (2.3.5)
15):¢ ayz le) . .
A

Hence (2.2.2) is a solution of the Helmholtz equation and, of course, an almost
identical procedure could be used to establish that the other relations (2.2.1),
(2.2.3 ), and (2.2.4) are also solutions.
4. Some Properties of the Solutions

Upon subtracting (2.2.2) from (2.2.1), the constant end point of
integration is eliminated and we obtain a function, @(x, y), with some remark-
able properties. Explicitly

x+ iy

b(x, y) = Jo@ \/(x+iy—a)(x—iy -a) > flo) do (2.4.1)
_.1y

If the path of integration is entirely confined to a simply connected
region, R, where f(a) is analytic, then with no other restrictions on (o),
f(x, y) is a solution of the homogeneous Helmholtz equation and vanishes on
the segment of the line y = 0 lying in R.

A similar expression is obtained from (2.2.3) and (2.2.4), viz.

14



x-iy
Ux, y) = Joéi\/(x‘F iy+a)(x- iy-a/)> flo) da (2.4.2)

-X - iy

where ¢/(x, y) vanishes on the appropriate segment of x = 0,

Further, the derivatives assume particularly simple form on these

boundaries:
Q) o Wb~ zugte (2.4.3)
y=0 Y y=0
and
%di(x, y) = 2f(-iy) %ﬂx’ y) = 0. (2.4.4)
x=0 y x=0

As will be seen shortly, solutions of the form (2.4.1) and (2.4.2) can
be constructed for the non-homogeneous Helmholtz equation by allowing f(a)
to have singularities. We shall make use of these expressions in the following
chapters to find integral representations of solutions of some boundary value
problems, for which purpose these functions are obviously well suited.
5. A Limiting Case

To end this chapter we call attention to one of the most immediate
consequences of the particular form of the solutions (2.4.1) and (2.4.2).
With the simplest (a subjective but hopefully not an unreasonable judgment)
non-trivial choice of f(o), namely f(a) = 1, (2.4.1) and (2. 4.2) become the
Helmholtz equation generalizations of the simplest non-trivial solutions of

Laplace's equation, y and x.

15



Thus

x+iy X+1iy
lim ; X > .
+ —-— — — — frd
K> 0 Joéi\/(x iy-a)(x-iy~-a) )do do = 2iy (2.5.1)
x- iy x-1iy
and
x- iy x-1iy
lim
+iy+a)(x- iy - = =
K> 0 JOQ{\/@{ iyta)(x-iy-a) >da da 2x . (2.5.2)
-x-1iy -x-1iy

The expressions for the wave functions can be simplified considerably.

In the first case, with the substitution « = iy cos 6 + x, we find that

x+1iy T
Jo<<\/(x+iy—a)(x—iy—a)> da = iy Jo(kysinG) sin 6 d 6. (2.5.3)
x-1iy (o]

This last form can be integrated explicitly, (see reference 16), obtaining

X+iy

Joé\/r(x+iy—a)(x—iy—a))= 2iy Jl/z(ky) 2—1/2 '—r'—(liézz)— (2.5.4)
- iy (ky)
_ 2
= X sinky (2.5.5)

Similarly, the substitution « = xcos6-1iy in the second form enables us to write

x-1iy
Joé\/&+iy+a)(x—iy—a)> da = l—z{sinkx. (2.5.6)
-X -1y

While these forms are, of course, among the most elementary wave
functions it is noteworthy that when the expressions comparable to (2.4. 1) and
(2.4.2) are developed in other coordinates, (see for example the discussion of
the elliptic coordinates in Section 5. 3), it is possible to find wave equation

generalizations of solutions of Laplace's equation that are not so well known.
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Chapter 3

A REPRESENTATION THEOREM FOR WAVE FUNCTIONS
SATISFYING DIRICHLET CONDITIONS ON A LINE SEGMENT

In this chapter, we use formula (2.4. 1) as the basis for an integral
representation theorem for certain solutions of the Helmholtz equation
satisfying Dirichlet boundary conditions. This theorem is then employed

to obtain integral representations of combinations of cylinder functions.

(2)

o (kR).

Particular attention is devoted to the case of the line source, H
1. The Representation Theorem

With the understanding that by an analytic function of the real
variables x and y we mean that the function has a Taylor expansion in x
and y but not necessarily in z = x+1iy, the fundamental result of this
section, the representation theorem, is formulated as follows.

Theorem: If f(x, y) is an analytic solution of the Helmholtz equation
in a simply connected region, &, containing the line segment y = 0, x; <x<X,

and @(x, y) = 0 on this segment, then, in this region, &, @(x, y) has the

integral representation

x+1iy
bz, y) = 51‘1 Joé{ \ﬂx+iy—a)(x—iy—oz) > %%(a, v) do ., (3.1.1)
. v=0
X - iy

The proof of this theorem, proving that (3.1.1) is not an equation

but an identity, consists of showing that both sides of (3.1. 1) have the same

17



value on the line segment and that their normal derivatives are also equal

on this segment. Then, by virtue of the Cauchy-Kowalewsky theorem which
ensures that there cannot be more than one analytic solution of the Helmholtz
equation in a neighborhood of a curve on which the function and its normal
derivative are prescribed, the validity of (3.1.1) as an identity follows.

Thus the left hand side of (3.1.1), #(x, y), is given to be an analytic solution
of the Helmholtz equation, vanishing on the line segment, and whose normal

p(x, y)
9y

derivative on the segment is given by The right hand side of

y=0’

(3.1.1) is an analytic solution of the Helmholtz equation since it is of the
form (2.4.1); it obviously vanishes when y = 0; and its normal derivative

at y =0 (see (2.4.3)) is _ggoc, V)

V=0 Hence by the uniqueness cited above,

(3.1.1) is established as an identity.
Sommerfeld, (Ref. 27), shows very clearly and constructively why

uniqueness obtains when the solution of an elliptic equation is given, with

its normal derivative, on a curve. Hadamard, (Ref. 11), discusses the more

general results of Cauchy and Kowalewsky which guarantee existence as

well as uniqueness. He also cites the work of Holmgren which indicates

that the requirement of analyticity might be weakened to a condition of

sufficient regularity, derivatives up to second order throughout the region,

but we shall not consider this possible generalization at present.

Note that a completely analogous representation of wave functions

vanishing on the line x=0 can be obtained using the expression (2.4.2), namely:
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If Y(x, y) is an analytic solution of the Helmholtz equation in a simply
connected region, ®, containing the line segment x = 0, y; < y<y,and
Y(x, y) = 0 on this segment, then, in this region &, ¥(x, y) has the representation

X - iy

(p'(x, Y) = _;' J0<{ \/zx+iy+a)(x_iy_a)> g__;dlj(y, ioz)

-x-1iy

do . (3.1.2)
v=0

The proof completely parallels that given above.

The theorem of this section can be considered in two different ways.
On one hand it provides a method of obtaining integral representations of
solutions of specific boundary value problems if the solutions are known. On
the other hand, if the solution is not known, (3.1.1) provides us with an
integral equation which it must satisfy. This integral equation is akin to
that obtained through the use of Green's functions except that here we have
a Volterra equation where the path of integration does not have such a
ready interpretation as a physical boundary.

This integral representation can also be derived, as the Bessel
function kernel suggests, by employing Riemann's method of integrating the
linear second order hyperbolic differential equation (see Ref. 28). Intro-
ducing the characteristic coordinates

£ =x+iy n=x-iy (3.1.3)
transforms the elliptic wave equation

82 2
2
0x oy

19



into the hyperbolic equation

2 2
9 k _
ym + 4} p(e, n]= o. (3.1.5)

Following Riemann, we express a solution, ¢, of this hyperbolic
equation in terms of its values on a curve in the &rp-plane in a manner
completely analogous to the use of Green's theorem in elliptic equations, where
instead of Green's functions we employ the characteristic function or the

Riemann-Green function

v=36\VeE-E)nn) ). (3.1.6)

Requiring the solution §§ [E, T)] to vanish on the line & = n (which corresponds

to the boundary condition f(x, 0) = 0 in the xy-plane ) and choosing the
region of interest to be bounded by segments of this line and two characteristics,
(see Figure 3.1.1) enables us to express the function at Eo’ o in terms of

its values on r, the segment of § =7, as follows

¢[§’o, n0]= % {v -gg cos(n,&) + v gg cos(n, n)} ds . (3.1.7)
[

n
l

/- € .8)
N\

FIGURE 3.1.1: &n-PLANE
20



Since rl is the segment of the line & =5 lying between & = SO and & = Mo
this can be simplified considerably. With the normal drawn outward,

cos(n, &) = - -1\’2: and cos(n, n) = Y—z—l- thus (3.1.7) becomes

¢[§O,no] = + 21*—\/2_ Vigg_%@} ds . (3.1.8)
[

The distance g ds must be positive if £ and n are real thus we must
r
define the line element along V" as

ds = Vg% an® = - V7 as (3.1.9)

o

so that ds = -\\2 d& = g-n >0. (3.1.10)
r "o

If SO— Mo <0, that is if the point (&’O, no) were on the other side of the line

€ = n from that shown in Figure 3. 1.1 both the sense of I” and the sign of the

square root would alter. In either case (3.1.8) becomes, writing v explicitly,

s , '
¢[‘§O, no:] = —% {Jo<k\/7€—§o)(n—no)> <§§ - gg) Q[&’ n]} dt. (3.1.11)
n=¢&

g

)
Although it has been convenient to consider &, n and SO, M as real, it is
of course true that the function defined by (3.1.11) is still a solution of the
hyperbolic equation (3.1.5) and vanishes when §0= n, even if &, n, SO, and UR

become complex. In particular, with the transformation (3. 1. 3) it is easily
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seen that

6. _ 9o _ 1
i

E T om (3.1.12)

9
oy

and =& corresponds to y=0. Thus (3.1.11) becomes

x0+ iyo
_ 1 , , (x, y)
¢(x0, yo) = 5 S Joé \/(?— X - 1yo)(x—xo+ 1y0)> 5y dx . (3.1.13)
y=0
X

o iyo
Renaming the dummy variables appropriately and dropping the subscripts yields
formula (3.1.1).

Choosing [" to be a segment of the line & = -n rather than & =y would
lead to formula (3.1.2) by the same procedure.

2. Some Remarks on the Application of the Representation Theorem.

It must be pointed out that some caution should be exercised in the
use of (3.1.1) as a representation of solutions of boundary value problems
valid for all values of x and y.

First of all, it is often true that physically significant problems
deal with functions that are not analytic at the boundary. As an example,
consider the problem of finding the field, @(x, y), of a single line source in
the presence of a perfectly soft strip, a problem considered at some length

in Chapter 5. An attempt to immediately write the solution of this problem

in the form (3. 1.1) for points in the region & (see Figure 3.2. 1) might be

(%, y)

unsuccessful because P(x,y) is not analytic in y (when x; < X < X, 5y

is not continuous at y =0).
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It is still possible to use the integral form (3.1.1) to represent the
field in this case without relaxing the analyticity requirement by considering
an intermediate problem, or more correctly, by considering an alterhate
but equivalent problem; i.e., the mixed boundary value problem depicted in

Figure 3.2.2. The advantage in treating this problem is that the physical

’ \
i (xo, yo) - source point (xo, yO) - source point
(x,y) R~ (x,y)
field point field point
@ 1 ' 1
X o X
X1 X2

a9\ =
(x ,=y ) ordinary point on (x ,-y )-ordinary
o° Yo o’ Yo )
) point
FIGURE 3.2.1: A LINE SOURCE FIGURE 3.2.2: A LINE SOURCE
IN THE PRESENCE OF A SOFT IN THE PRESENCE OF A SOFT
STRIP STRIP IN A RIGID SCREEN

problem is confined to the upper half plane and an analytic continuation of ¥
to the lower half plane in the region % is possible, even if i/ has no physical
meaning there. Hence ¥ can be expressed in the integral form (3.1.1).

That the problems depicted in Figures 3.2.1 and 3.2.2 are really
equivalent, that is, given the solution to one of them it is possible to
construct the solution to the other, is easily seen. Following Bouwkamp,
(Ref. 5) , the solution to the problem of Figure 3.2.1 can be written, save

for a constant multiplicative factor that determines the strength of the source, as
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(2)

B(x, y) = H(()Z)(kR) .

kR + o (x, y) y 20

¢D(x, -y) y<0 (3.2.1)

where ¢D(x, y) is finite for -0 <x <o, y >0 and vanishes for x; <x <Xy,
3 f(x, y) , _ . .
y=0. Moreover, oy must be continuous at y =0 when there is no physical

barrier, i.e., when x <x;, or x >X,, hence, for these values of x,

op_(x, y) op (x, -y)
58— [HéZ)(kR) - H(z)(kR'] +-é——D = —a—l—) (3.2.2)
y o y=0 y =0 y y=0
Since, as is easily verified,
aHf)z)(kR) aH(()Z)(kR')
2 = - == (3.2.3)
y y=0 y y=0
it follows from (3.2.2) that
(2)
op &, ¥) ~ oH ' (kR) X <x,
S, = - —2 , (3.2.4)
Oy oy S
y=0 y=0 s
With this relation it is clear that the function ¥(x,y), defined as
- <x<
Uiz, y) = 1P ur) - B ar) + 20 (%, y), @SxXS© (3.2.5)
o} o] D y >0

is a solution of the problem depicted in Figure 3.2.2. Thus, knowing any one
of the functions @, ¢, or ¢D’ it is possible to construct the other two. Further-
more, in the region &, these functions can be expressed as integrals of the

form (3.1.1)
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Of course the next step is to attempt, by analytic continuation, to
obtain an integral representation valid for the entire range of x and y. This
step must also be taken with caution. The function §(x, y) in the strip problem
and y¥(x, y) in the mixed problem both have non analytic behavior at three
points of physical significance; (x = X, y= yo), (x=x, y=0), and (x=%,, y=0).
The first of these, the source point, can be eliminated by considering

¢D(x, y), the diffracted field. The other two remain however, so when extending
the definition of the integral representation of ¢D(x, y) to the case when x <xy,

or X > Xy, the path of integration will have to vary as illustrated in Figure 3.2.3

in order that the continuation be analytic.

(x+1iy) ()'( +iy) (x+1iy)
|
X; )1(2 );1 )éz )"(1 )‘(2
3
(x - iy) (x - iy) (x - iy)
a) x <x, b) x; <x < xy c) x > x

FIGURE 3.2.3: CONTOURS FOR THE INTEGRAL FORM OF ¢D(X, y)

Thus it is seen how the integral (3. 1. 1), which apparently vanishes
on the entire line y =0, actually can represent a function which only vanishes
on a segment of that line. It will prove more convenient, however, when
considering the strip problem, to obtain a representation comparable to (3.1.1)

in elliptic coordinates where the apparent behavior and the actual behavior are

the same.
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3. Integral Representation of a Class of Cylinder Functions

Having pointed out some of the hazards involved in using (3.1.1) to
represent a function (solution of Helmholtz' equation) which vanishes on a
line segment, we now consider the representation of functions for which the
form (3.1.1) is ideally suited; that is, solutions of Helmholtz' equation which

vanish on the entire line y=0. A large class of such functions is known to be

cos\/ kz— V2 X .
sin\ kz— 1/2 X

In the sense that cylinder functions result from solving the two dimen-

given by

sinvy. (3.3.1)

sional Helmholtz equation by separation of variables, leading to circular
cylinder functions in polar (circular) coordinates, parabolic cylinder functions
in parabolic coordinates, etc., the expressions (3.3.1) can be called rectangular
cylipder functions. In this sense, "rectangular' coordinates are misnamed

and would be more correctly called '"right angle" coordinates. However,
regardless of the possibly offensive nomenclature, the expressions (3.3.1)

can be written, with the representation (3.1.1), as

x+iy

cos \ K2 12 x sinvy = 2—1/1 Joé V (x—oz)2+ y2> cos\l K212 ada (3.3.2)
x-1iy

and

+iy
2
sin\[k —1/2 X sinv Zﬁy—i Joé\/(x—a)2+y2 >sin\/k2—1/2 ada. (3.3.3)

x-1iy
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The representation of the sum of (3.3.2) and (3.3.3) has a particularly
simple form, i.e.,

x+1iy

V 2 2 \’ 2 2

ik - k-

e V' % sinvy = -2—7/; JO<< \} (X—oz)2+y2) e V%4 (3.3.4)
x-1iy

which, with the substitution o = x+iy cosf, yields

VQZ— V2 cosf
sing df . (3.3.5)

T

sinvy = % Jo(ky sinff) e Y

()
This is a special case of a formula discovered by Gegenbauer (Ref. 31). We
have already encountered formula (3.3.5) for the special case v = k in section 2.5.
Another, perhaps more fruitful, application of the representation theorem

involves the class of functions given by

+ -
Z (kR) e” ! (3.3.6)

where Zv represents any circular cylinder function of order v, and (see Figure

3.3.1)
2 2 2 2 2 2
= (x- + (y- 7= (x- + (v+
R” = (x xo) (y yo) R (x xo) (y yo)
® = tan 1y Yo ® =1tan1 YTy, (3.3.7)
X-X X=X
(o] 0o

Clearly ify =0, then R =R'and ® = - ®' hence the expression (3.3.6)

vanishes. This expression is of course an analytic solution of the Helmholtz
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FIGURE 3.3.1: GEOMETRY OF R,@ AND R',®

equation in any simply connected region excluding the points x = Xo’ y = fyo .

(Indeed if ZV =J. ,n=0, T1, T2,..., then it is analytic everywhere.) Then,

2n

if yo# 0, it follows from the representation theorem that in a neighborhood of

the line y = 0,

x+1iy
+iv@® . -iv®" 1 N 2, 2
ZU(kR)e - ZV(kR)e = 33 JO<< (x-a) +y f(xo,yo,a/)da
: (3.3.8)
X - iy
and x+iy
-iv@® nTiv® 1 oo 2,2
ZV(kR)e z (kR'e 51 Jo<< (x-a) +y g(xo,yo,oz)da
X -1y
(3.3.9)
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where

b .
f(x ,y ,a) = 2 [z kRe @ _ 7 kre “’®] (3.3.10)
0 o oy v v
y=0
=a
and
- 2 -iv@® +iv@']
g(xo,yo,ar) = oy ZV(kR)e - Zv(kR')e (3.3.11)
y=0
X=a
From the definition of () in (3.3.7) we find that
X""Xo Y-y
cos@ = and sin@ = = (3.3.12)
Vex- )% (g-y )2 V -2 )% -y )?
o o o 0

where, as Figure 3.3.1 makes clear, the positive square root is to be employed .

Thus
) x-x_ +ily-y)
el® = cos®@ +isin@® = 2 5 2 5 (3.3.13)
- + (v -
\ﬁx x ) +y-y)
In exactly the same way we find that
i@l x-x +ily+y )
e = < 0 (3.3.14)

\ﬂx— x0)2+ (y + y0)2

With these expressions we may write f(xo, Y. a) and g(xo, Y «) explicitly in
terms of X yo, and «. Thus, carrying out the indicated differentiation,

(3. 3.10) becomes

dZ (kR) . .
_ v iv® OR, . iv® 0@
f(xo,yo,oz) = [k R ° oy + iy ZV(kR) e —ay

dZ (kR’) (] |} !
v -iv@' R’ , -iv@o® :
k —aGm) © oy + 11/ZV(kRv) e —-—ay] (3.3.15)

-

y=0
X=o
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Upon introducing the familiar recursion relations

dZ (kR)

2 qam) T Ly MR -2, GR)
and (3.3.16)

2v o

& 2R = Z (R +Z . (KR)
we obtain

_ k ) iv® OR i 0@

Gy .a) = 2{ [Zy_l(kR) - Zwl(kR)J oy * iR [ o 1(kR) + zyﬂ(kRﬂ V@ o

_ L B @' OR! ’ ’ ) 5@
[Zy_l(kR) Z (R )] + iR [ LR +Z (kR} V@ 5

dy
y=0
X=q
(3.3.17)
It follows from their definition that
2 2
= 1 +
R|y=0 R \y 0= (x- xo) v,
OR _ _ OR! - _
oy oy \/ 2 2
= = - +
y=0 y=0 Ge-x Yy (3.3.18)
and
809 _ 2@

oy

y=0 L’ \/(X x)+y

Substituting these expressions, together with (3.3.13) and (3.3.14), in (3.3.17)

we obtain, after simplification,

a-X —1y
fx ,y ,) = ik (\/(a x)+y
0o -1 (a x ) +y2
. 1
5 -X —1y
+ ik ZWlé\/(a—xo) +y ) . (3.3.19)
\/(a X ) +y

v-1




A similar procedure yields

- +iy
\ / 2 2 o Xo 0
= - i - +
g(Xo’yo’ @) ik Zy—lé (o Xo) yo> 2 2
(a—XO) +yo

. 1
a~X tiy
ik Z . [k [la-x )Py S (3.3.20)
v+l o} o 2 2 T
(a—xo) +yo

If, in (3.3.19) and (3.3.20), Z=J and v=2n+1 then f(xo,yo,a) and g(xo, Yo Q)

have no singularities. In all other cases, however, they have branch points and
possibly poles as well at o = xofiyo. In these cases we must specify the branch
cuts and paths of integration in (3.3.8) and (3.3.9) in order for these repre-
sentations to be meaningful. This is accomplished by employing the same
branch cut convention adopted in Section 2.2. This ensures that when o is
real the argument of the cylinder function is real and positive. We number
the sheets of the Riemann surface of the logarithm exactly as in section 2.2
and then require that we remain on the 0th sheet along the paths of integration
in (3.3.8) and (3.3.9). _

+

The branch of the factor (o - xo‘f iyo)y is determined by requiring

consistency on both sides of (3.3.8) and (3.3.9). That is, in (3.3.8) the
+iv® -iv@

factors e and e give rise (see (3.3.13) and (3.3.14) ) to terms

. . v .
like [x— x0+ ily- yo)] and [x— X - 1(y+yO)J v respectively, which are
equal, when y = 0, to [x— X - iyo] Y. We must then require that
the factor [a- X" iyo] Y in f(xo, Yy @) have exactly the same value when o = x,

then let it vary confinuously as o« becomes complex. Similarly, in (3.3.9)
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when y =0 the factor [x— xo+ iyo:] v appears on the left and this determines the

branch of a—xo+ iyo-_]v in g(xo, yo,a). Figure 3. 3.2 shows the branch cuts

(x +1y )

and a possible path of integration.

(x+1iy)

-*-— dintegration path

branch cuts

(x —1y ) (x—1y)

FIGURE 3.3.2: a-PLANE
While it is true that so far we have only established the validity of
the representations in a neighborhood of y =0 it is clear that by analytic
continuation these representations remain valid throughout the cut xy-plane.
The points x = X, V= iyo are singular and in general the functions
) Tiv@

i@y
ZV(kR e and ZV(kR') e @ are multiple valued thus we must cut

the xy - plane as well as the a-plane. However, in the special case when

i—.
v=n (=0, 11, 2, ...) the functions Zn(kR)e in®

and Z_(kR') o-in ®
are single valued throughout the xy - plane hence in this case the integrals
(3.3.8) and (3.3.9) must also be single valued, even though the integrand
still has branch points. This means that for x =X, ¥ > yo, the path of

integration can be either that shown in Figure 3.3.3a or 3. 3.3b depending on

whether x — X, from right or left but both paths must yield the same value
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of the integral.

As long as y # Y, these integrals are defined and must be

equal since they both represent the same function.

(%ot iy)
(x,*iyo)

(x0+ iyo)

(%ot iy)

a)x=x
0

“ (%o~ iyo)

(xo0- 1y

FIGURE 3.3.3: a-PLANE

b) x =x

(xo- iyo)

(xo- iy)

The fact that (3. 1. 1) successfully represented a function with a

singularity illustrates how (2.4.1) and (2.4.2) can be used to represent

solutions of the inhomogeneous Helmholtz equation.

4. The Integral Representation of Line Sources

Z
v

H™ (kR) -
(0]

Of special interest is the particular case of (3.3.8) or (3.3.9) when

(2)

is chosen to be Ho , Viz.:

(2)

H ™ (kR")
o

k
2

x+iy

<\/(x @) +y> (2)<\/(a X)+y>
X - iy

+H(2)<\/(a X ) +y >

33

a- x—1y

(@-x ) +y2

do .

(3.4.1)



Further simplification yields

x+iy (2)< \/ 2 2

H™ 'k \/la-x ) +y 2

19ur) - B4R = -ty \ 3 < V(x—oz)2+y2> ! R
0 0 \/(a..xo) +yo

(o] 0
X- 1y (3.4.2)

which can also be written

+iy
Hf)z)(kR)'- H(()Z)(I;R’) = i J0<< \/(x—a)2+y2> -5%; H(()Z)é \’ (a—xo)2+y§> dao.
X - iy (3.4.3)
In addition to being of interest in itself, this last identity proves to
be of considerable importance in the diffraction prdblems discussed in later
chapters. It can be proven valid without making use of the representation
theorem of this chapter and although this direct proof is somewhat tedious,
formula (3.4. 3) is felt to be of sufficient importance to warrant its inclusion
here.

We proceed by first substituting o =iy cost+x in the right hand side

of (3.4.3) obtaining

+iy

. \/ 2, 2\ 9 @/ \/ 2, 2

i JO<< (x-a) +y >8—y; H0 << (a—xo) +yo>da
X~ 1iy '

= -y \ J (kysint) 2 H(2)<<\/(x -x-1iy cost)2+y2> sintdt . (3.4.4)
o Byo o o o

(o)
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We restrict y so that
2 2 2
- + >
(x xo) y, >V

which implies that

‘(x X) *y, | >‘1ycost‘

and then make use of the addition theorem for the Hankel function (Ref. 32)

HiZ)é \[r2+ pz— 2rp cos > = i € Jn(kp) Hl(lz)(kr) cosnf (3.4.5)
n=o

where €0=1, en=2 (n=1, 2, 3,...), and|rl>|p‘.

In our case we choose

2. 2
= \/(x- +
(x xo) v, K

(3.4.6)
p= 1iycost
and X -X
o)
cos § =
\/(x -x)2+y2
o) 0
which implies
’ 1 . n 1 L n
cosnf = 5 [cos¢+1sm¢] oy [cos¢—1s1n¢]
1 l"xo—x+iyO n -x—1y
= = - (3.4.7)
2 [- (x —-x)2+y2 \/(x x) +y
0 o

Thus
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[00] \ / 2 2
ng)é \/(xo—x—iy cost)2+Y§> = % Zean(iky cos t) HI(12)€ <xo_ %) +yo> .

n=o
-

xo— x+ 1y0 XO- X - 1yO
\ [ 2 2 M \ , 2 2 °
- + - +
(Xo X) y0 (XO X) yO
-

To obtain a useful form of the derivative with respect to Y, necessary in

(3.4,8)

(3.4.4), we first examine the Yo dependent part of a general term of (3.4.8). With

the substitution r = \/ (x- X, ) +y ( = _;‘9> and the recursion formulas

(3.3.16) we find that

X -x+tiy . X -x-1y N
9 - -x-

9 H( )(kr) < 0 0 L [ o o)
ayo n r r

n+1

+
(2) Xy~ Xy, " XX, .
(k) \ o a— (3.4.9)

Upon differentiating (3. 4.8) with respect to Yy utilizing (3.4.9), and adjusting

2 th ' '
the indices of summation so that HI(1 ) occurs in the n  term, we obtain

a 2 * S
e ()<\/(;< -x- 1ycost) +y >“ ik € J (1kycost)H (k " _;Jri - T r—i
o) Yo %o X7,

n
. ~ -x+iy X -x-1iy
3 - (2) %o ¥ o 0 o
+ = . + " (XX, )
4 < {en_lJn_l(lkycost) en_l_lJnH(l}y cost)J Hn (kr) " -
(3.4.10)
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r r o
But : - : = -
X -x+iy X -x-ly r r
o} o o] o

thus, recalling the definition of € together with the fact that Hle) = - H(12),

(3. 4. 10) becomes

2 H(2)é \/(x -x—iycost)2+y2 >
ayo o o o
1 /X -x+iy o x-1iy n
ik i , , (2) 1 0 ol -(%0 " Yo
= = + — 2
5 2 EIn_l(lkycost) Jnﬂ(lkycost):] Hn (kr) - ( -

(3.4.11)
which, again employing the recursion formula for the Bessel functions,

becomes finally,

2 H(2)<< \/(x —x—iycost)2+y2 >
ayo o] o] o]

n n
nd_ (iky cost) X -x+iy X -x-1iy
= i - 1% (er) Q——" °) T\ —=—=2] . (3.4.12)
-] ycost n r r

Substituting (3. 4. 12) in (3. 4. 4) we obtain, after interchanging summation and

integration,
x+1iy
2 2, 2
i S J é\/ (oz—x)2+y > 2 H(z)é \[l@a-x ) +y >da
o ayo o o o
x - iy
x+iy o X -x-1iy
. (2) 0_ 0 o = Vo . .
= ._n: an (kr) — ) "\ Jo(kys1nt)Jn(1kycost)tantdt.

) (3.4.13)
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However

T /2

T
Jo(ky sint)Jn(iky cost)tantdt = [1— (—l)n] S Jo(ky sint)JO(iky cost)tantdt
o

0 (3.4.14)

and this last form has been explicitly integrated by Rutgers (Ref. 22) who found that

m /2

i (n/2
JO(kYSint) Jn(ikycost)tantdt = -21—}%%—31) Jn(k}’)
0 n

_i_ sk
= J_(ky). (3.4.15)

With this result, (3.4.13) can be written as

X+ iy

2 2
i JO<< \[l@-x)+y >—8—3; H(()z)<< \f(a—x0)2+y§ >da
X -1y

n
] X -xtiy X -X-1y
= - ? it [1— -1)* (ky) H(Z)(kr) 22 - =2 (3.4.16)
, n n r r
n=o
. N ... th . .
which upon multiplying out the factors with n powers and reintroducing the
€ notation (en/z = 1) , which is possible since the n = o term is zero,

becomes

“Formula (3.4.13) appears in Watson (Ref. 33), but is in error by a factor of 2.
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+iy

2. 2 2
i J0<< \le-x)"+y > 5—3; Hf)2)<g \/(oz—xo) +y(2) > da

X-1iy
n
_ 2, |1
= i €an(ky) Hn (kr) 5
=0
(2) 1 Yo~ i(Xo_ 0\ _yojL i(Xo_ x)
— i ean(ky) H (kﬁ‘i _— + |\ . (3.4.17)
£ n T r

Now we again make use of the addition theorem for which the earlier restriction
2 2 2. 2 . . . . .
(x- Xo) +yO =r >y still suffices. For the first sum on the right hand side

of (3.4.17) we may write

n n
@ y -ilx -x) y +ilx -x) .
(2) 1l 0o o 0 0 (2) \/ 2 2
Hl—_ B +1 -
z ean(ky) H (kr)2 - | - H o (k\ y™r 2yr cos
n=o
(3.4.18)
where
b -1 - 41 —_
oo = 1|2 2
2 r r
_ Y
T
Hence

H(()z)é \/y2+r2— 2yr cos ff > = H(()z)é\/ y2+ p2- 2yy,, > (3.4.19)

39



2
or, since r = (x-x )2+y2 ,
0 0

Hc()z)é \[y2+ r2— 2yr cos ¢ > = Hiz)é \/y2'+ (x- xo)2+ ycz)— 2yyO >

(()2)(kR) . (3.4.20)

= H

Similarly, the second sum on the right hand side of (3.4.17) is found to be
H(()Z)(kR') consequently the relation we set out to prove, (3.4.3), is established.
In order to use the addition theorem, it was necessary to restrict the values
of x and y but this is clearly a restriction on the use of the addition theorem
and not on the validity of (3. 4. 3) since the functions on both sides of (3. 4. 3)
can be analytically continued throughout any simply connected region excluding
the points X T Yo

In the ambiguous case when x = X and y > Y, two integration contours
are possible, as shown in Figure 3.3.3. The two integrals thus formed must
have the same value since they both represent the same function. That this

is so may be directly demonstrated by showing that their difference vanishes,

i.e., that

J <{ \ /(x -a)2+y2 > 9 H(Z)é\/(a—x )2+y2 >da =0 (3.4.21)
o\ o) 8y0 0 o o
C

h
where the contour, shown in Figure 3.4.1, is to lie entirely on the OIc blade

of the Riemann surface of the Hankel function.
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+
(x0 iy)
i
(x0 lyo)
c

(x -~ iyo)
(xo— iy)

FIGURE 3.4.1: INTEGRATION CONTOUR

Rewriting the integrand with the help of (2.2.5) we may treat the

singular part separately. Thus

2. 2 0 (2) 2, 2
Jo<< V(xo-q) *y > 3y H é V(a—xo) A >da
c

= -1 \dag <<\/(x —a)2+y2> Gla) + il '
_—x —1 —-x +i
T o o (« X 1y0) (o X 1yo)
c
0 2 2 2 2
+ — - + - +
ay0 Jo<«:\ / (xo a) Y, > log |(a/ xo) yo]
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where G(o) is analytic. With Cauchy's theorem then
2 2
JO<< \/(X ~a) +y > Gl) da= 0 (3.4.23)
o
c

and, since the residues at the two poles are equal but opposite in sign,

2 2
Joé{ \/(xo—a) +y > yoda

s R
(o X 1yo)(a X 1y0)

= 0 (3.4.24)
C

The logarithmic term is also easily evaluated. With the help of

formula (2.2.8) we find that

2 2 d \ 2 2 2 2
Joé \/(Xo—_a) +y > g}"; Joé (a—xo) +y0> log [(Q-Xo) +yojdaf
C

Iy
x iy
= - 97i J <{ (X —Ql)2+y2 ‘—a' J <{ (Q’—X )2+y2 >da’
o\ V o > 8yo o\ V 0 o}
Iy
%o Yo
o Yo
+ 2mi J << (x —a)2+y2> 2 J <{\/(a—x )2+y2>da (3.4.25)
o\ ¥ "o 8yo o o} o
x -y

The right hand side can be simplified, since it is independent of X yielding

42



iy
R.H.S. = -27i \ J <{\/af2+y2> 2 é\/a’2+y2 >da/
0 oy o] o]
0
1y

+ 27i <\/a/2+y2> < a/2+y2> da (3.4.26)

which is clearly seen to vanish on substitution of -« for « in one of the
integrals but not in the other.
5. Asymptotic Behavior of the Line Source Representation

Formula (3.4.3) can be used to demonstrate that for large values of X,
and Yy the circular cylinder function relations pass over into the rectangular
cylinder function relations of section 3. 3.

Consider first the case of large Y, where

| 2
R = \/&—xo)zJr (y—yo) YV

2 2
' = - + (v + +
R \/(x XO) (y yo) ~ Yty
2 2
- +
\/;1 X) v, ~ oy, (3.5.1)

Retaining the y in the phase and neglecting it in the amplitude in the customary

manner, we use Hankel's asymptotic form (Ref. 17) to obtain

Ti
-i -y)+ —
1k(y0 y) 7

H(Z)(kR) ~
0
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-ik(y +y)+ 7i
H<2)(kR')t\zV"‘g— e ° 4
o Ty
)
-iky +i—7-r-
Hiz)é \/(a-x0)2+y(2)> VeV \/'ﬂ—zy- e o 4 (3.5.2)
0

and

Substituting (3.5.2) in (3. 4. 3) and retaining only the \f__—l_ term in the

differentiation of H(()z) é V(a/—xo)2+ y(z) >, we have,

factors,

yo
after cancelling common

x+1iy

Y _ sy Joé\/(a4x)2+y2 ) da. (3.5.3)
x-ly

This expression has been previously encountered in section 2.5 where it
appears as formula (2.5.5) and also as a special case of (3.3.5).
If instead of choosing Y, to be large, we consider X, large, formula

(3.4.3) becomes the trivial identity, 0 = 0. Of considerably more interest

is the case when ro = Vx(2)+ y(z) becomes large. Using polar coordinates

(ro, 90) for the source and rectangular coordinates (x,y) for the field point

we have, for large T

R = V x2+y2+r2—2xr cos O -2yr sinf ~vr -xcosf -ysinf
o o 0 0 ) o o 0

R'= \/x2+y2+r2—2xr cos O +2yr sinf ~ur -xcos6 +ysinf
o o o 0 0 o 0 o

2 2
+r°- -
\/701 r 2arocos 60 A/ T -0acos 60 (3.5.4)
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and for the Hankel functions

im
-ik(r -xcosf -ysinf ) + 1
0 0 0

H(Z)(kR) nJ l/"g— e 4
0 T

im
-ik(r ~xcos0 +ysinf )+ =—-
H(2)(1<R')~‘/ 2 . 0 0 0 4
o TY
0
in
—~1i - 4+ —
@/ 53 > 1k(r0 @ cos 60) 1 (3.5.5)
HY &k \ fla-x ) +y A\ e
o o 0 e .

Substituting the expressions (3.5.5) in (3. 4. 3) and retaining only the \/——1-———

r
. o @) 2 2 o
term in the derivative of H0 k \/ (- xo) +y0 we have, after cancelling

common factors,

xX+1iy
e1]:<x cos Go(elky sinfp e—lky sin 90) - ksin 90 Joé \ /(oz—x)2+y2 > elka cos 6, do
X - iy (3.5.6)

With the substitution o = x+iy cost and the resulting simplification, (3.5.6)
becomes

ky sin 6

sin (ky sin 90) = —2 Jo(ky sint) e

-kycos 6 cost
5 0

sint dt (3.5.7)
0
Formula (3.5.7) is a disquised form of (3. 3.5) but perhaps a more useful
representation with application in the study of frequency modulation.
Although we have discussed the asymptotic results only for formula
(3.4.3) which is a very special case of (3.3.8) and (3.3.9), there is not much

to be gained in this regard from consideration of these more general cases.
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Choosing v # 0 would not change the asymptotic forms, choosing Z =J or N
would lead to forms in which the dependence on the parameter which was taken
. _ (1) (2)

to be large could not be factored, and choosing Z = HO rather that H0

would lead to essentially the same results presented here.

6. Double Integral Representations

Of particular interest, from the point of view of subsequent applications,

is the expression derivable from the formula obtained by adding (3. 3.8) and

(3.3.9), i.e
x+1iy
ZV(kR)cosz/@ -7 (kR)cosz/@ < \’(a/ x) +y >F(X Yo ) do
X - iy (3.6.1)
where, adding (3.3.10) and (3.3.11),
_ 90 _ J I

F(Xo,yo,a) =~ oy I:ZV(kR) cos v(H) Zy(kR)cosv@;] (3.6.2)

y=c

X=q

With the aid of (3.3.19) and (3.3.20), (3.6.2) can be written as

v-1 v-1
a-X —1y a x+1y
Flix ,y ,0) = = \/(a x)+y
° 0 _1< (a X )2 +y \\/(a X ) +y

r+1 . v+l

a-X —1y a—x0+1yo

V+1< \[ - x ) +y > N — 5 . (3.6.3)
(a X ) +y (a—xo) +yO

. . /
With the expressions (3.3.13) and (3. 3. 14) which give e1® and el® explicitly

in terms of x, vy, X and Y, it is a simple matter to show that
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— + i - - -1 -
X=X iy yo) X=X iy yo)

-

1
cosv@ = + (3.6.4)
2 \/?X - Xo)2+ (y- y0)2 2 \/(x- x0)2+ (y - y0)2
and
, ) x-x +i(y+y) 1 X-X —i(y+y ) v
cosv @ = 2 5 2 5 (3.6.5)
WX—XO) +(y+yo) V(x x ) +(y+y )

Thus exhibited explicitly it is clear that interchanging x with X, and y with
Y, in cosv(®) and cosv(@® is equivalent to multiplying by (—1)V. Since this
interchange leaves R and R' unaltered, we find that interchanging (x,y) with

(xo, y ) in formula (3.6.1) yields, bringing the factor (-1)" to the right,
0

X +1y
7 (kR)cosz/@ - Z (kR')cosz/@ << H(B X +y > F(x,y,B) df
xo— 1y0 (3.6.6)

where we have renamed the integration variable to avoid confusion in what

follows. Substituting (3.6.6) in (3.6.2) we obtain

X +1y
F(x Vo — é\/(x—B) +y > 9 Flay,p) dpg (3.6.7)
X ~1y y=0

where, using (3.6.3),

| ‘ 1
= \/ 2, 2 [Bze-iy Y
- F(a ¥, B) ~— B-a)+y > ———— -
IY 0 { 1/ 1< \/(B 2

—a)2+y
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Upon performing the indicated differentiation and evaluation we obtain

0
By Fla,y,B)

V-2
B kzv-1<k V@_a)z) \7;8——1;2 \f3

-
(B—oz)2
\ 2\ (w+1) B-a \
+ kZ  (k\/(B-a) > (3.6.9)
v+1< Vg_a)z \[(5—002

We have written (3.6, 9) in this purposefully complicated form so as to stress

y=o

the importance of the choice of the sign of the square root. Actually, to be
consi‘stent with our previous convention, there is no choice left. We required

that \/(a- x)2+ y2 and \/(a- xo)2+ yi (and hence \/(B- xo)2+ yi )

be real and positive when o (and ) were real. This implies that we must

2
choose the sign of the square root so that when « and 3 are re<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>