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Chapter 1

INTRODUCTION

Exact solutions of diffraction problems are rare and until recently
there was only one method of solution applicable to more than one particular
problem. By diffraction problem is meant the general problem of deter-
mining a solution of the Helmholtz equation which satisfies homogeneous
boundary conditions, either Dirichlet or Neumann, has a prescribed
character both at infinity and in the neighborhood of any edges, and which
may be singular only at points corresponding to sources. The physical
problem then is the determination of a spatial field when an obs.tacle is in
the presence of a time harmonic source of wave motion. Although the term
diffraction is usually applied only when the boundary, in the language of
geometric optics, has an "illuminated" and a ''shadow' region it will not
prove inconvenient to include the limiting cases of no shadow, e.g. when the
boundary is an infinite plane.

The classic technique produces solutions as infinite series of eigen-
functions and is limited to coordinate systems in which the Helmholtz
equation is separable and boundaries which are level surfaces of these
coordinate systems. Importa,nt‘ as this method is, the usefulness of the
solutions thus obtained almost invariably suffers because of the slow con-

vergence of the series.



Exact solutions obtained in "closed form' are even rarer. What
constitutes a closed form solution is subject to debate but it is generally
agreed that infinite series do not qualify. When Sommerfeld (Ref. 25) intro-
duced his many valued wave functions to solve the half plane problem in 1896,
he thought this idea could be extended to solve other diffraction problems,
notably that of the strip. However, all subsequent attempts at extension,
except to wedges of which the half plane is a special case, have been unsuc-
cessful. Thus the Sommerfeld approach remains a technique, indeed a
remarkable and elegant one, for solving a particular problem rather than
a general method of solution.

More recently, Wiener Hopf techniques have been successful in
treating certain problems involving parallel half planes (see Bouwkamp,
Ref. 3, for a discussion of Wiener Hopf techniques in diffraction theory).
Exact solutions by this technique are, to date, limited to boundaries of
infinite extent.

A simpler integral equation formulation than that previously used
in the Wiener Hopf treatment has been given by Clemmow (Ref. 8) The
scattered field is considered as a superpositipn of plane waves of complex
angles of incidence and in this sense is the method comparable to Sommer-
feld's technique. This approach does not eliminate the restriction to

infinite boundaries for exact results.



In the present work, however, we shall concern ourselves with a
method for obtaining exact solutions in closed (integral) form even when
the boundary is finite. A general class of solutions of the Helmholtz equation
is derived which resemble Clemmow's and Sommerfeld's functions in that
they are superpositions of elementary solutions except that the superposition
is accomplished in a manner such that the solutions assume particularly simple
form on boundaries which are level surfaces of the coordinate system used.

The usefulness of these solutions is demonstrated by employing them to

construct an exact integral representation of the field diffracted by a strip.
This problem of diffraction by a strip has occupied a prominent

place in the literature since the work of Lord Rayleigh(Ref. 21)who found

an approximate solution for long wavelengths in 1897. Since that time exact

solutions in the form of infinite series have been found by Schwarzschild

(Ref. 23)who used the Sommerfeld half plane solution as a basis for calculating

successive interactions between the two edges, and Sieger (Ref. 24)who

found the solution in terms of Mathieu functions as suggested by Wien (Ref. 34).

We shall not attempt to give a complete bibliography but refer the reader

to the treatments of this problem given by Sommerfeld (Ref. 26) Baker and

Copson (Ref. 1) and Bouwkamp (Ref. 4) . Bouwkamp's exhaustive survey

just cited covers the many attempts to find long wavelength approximations

and summarizes the numerical results. Short wavelength approximations

have also been sought and, again without claiming completeness, we call



attention to the work of Clemmow (Ref. 9), Karp and Russek (Ref. 12),
Levine (Ref. 14) and Millar (Ref. 18), whose treatment is based in part on
the Schwarzschild approach of successive interaction, and Burger (Ref. 6)
and Timman (Ref. 30) who applied techniques of supersonic airfoil theory
to the hyperbolic (time dependent) wave equation.

The success of the present approach depends on the fact that the
problems of diffraction by a half plane and a strip are not really independent
and in fact the method consists, in part, of transforming the solution of one
into the solution of the other.

This is accomplished by using the new solutions of the Helmholtz
equation to derive an integral equation for the wave function satisfying a
Dirichlet condition on a line segment. We write these integral equations for
both the half plane and strip problems, one in parabolic coordinates and the
other in elliptic coordinates, and then assume that the unknown functions in
the integrand are related via the same transformation relating the two
coordinate systems. Since the half plane problem has been solved, we are
able to obtain an explicit representation of this function, hence, if the assump-
tion is valid, we also obtain, using the strip integral equation as an integral
representation, the solution of the strip problem. The validity of the
assumption is established by demonstrating in detail that it does indeed
produce the solution of the problem of diffraction by a strip.

As will be evident, the construction of the solutions depends vitally

on the fact that we consider line sources rather than plane wave incidence.



The plane wave solutions may be obtained but will involve a rather compli-
cated limiting process. Since it is almost standard procedure in diffraction
theory to consider the plane wave case first, the fact that line sources are
apparently more appropriate in this case may help to explain why the strip
problem has resisted closed form solution for so long.

We shall confine our attention entirely to two dimensional problems
which are particularly appropriate to the presentb approach. The possibility
of extension to three dimensional problems is not to be excluded but will

not be treated here,



Chapter 2

A CLASS OF SOLUTIONS OF THE HELMHOLTZ EQUATION

In this chapter we shall derive a class of solutions of Helmholtz'
equation which provides a basis for all that follows. These solutions can
be characterized as a non-trivial superposition of elementary solutions
where, as will be seen, non-trivial denotes that we integrate elementary
wave functions between variable end points.

1. Some Remarks on Superposition

+. + s
Although plane waves of the form e thx and e tky

are the elementary
solutions of the homogeneous Helmholtz equation (2.1.1), in rectangular

coordinates,

—_ o+ — +1<2 C@ = 0 (2.1.1)

we shall consider line sources, the elementary solutions of cylindrical
coordinates.

Following convention, we will use three dimensional terminology to
describe two dimensional problems ; thus we shall speak of line sources
rather than two dimensional point sources, diffraction by a half plane rather
than a half line, etc.

In cylindrical coordinates the non-homogeneous Helmholtz equation,

for a source at r = ro, 6 = 60,
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with a suppressed time dependence of e 1wt, -im H0 (kR) represents waves

diverging from R = 0. Neglecting the constant factor we write this as

120 = B e )% t7-3)% ) = B ferin - 6 iy ) foem19)- e -1, ] >

and observe that the function obtained by setting Yo" 0, replacing X by some
complex o, multiplying by an arbitrary function of o, and integrating over o,

viz

C% = S H(()z)(k \I(x+ iy-a)(x-iy-a) ) f(e)de, (2.1.3)
c

will still be a solution of the Helmholtz equation if the contour ¢ is independent
of x and y and f(a) is sufficiently well behaved. The points of the path of
integration represent sources of strength —4if(e). Similarly, letting X = 0

and Y, = io we obtain

\P = i Hf)z)(k \/z;+iy+a)(x—iy—a) )f(a)da (2.1.4)

which also remains a solution.
In a sense we have reversed the usual superposition where the elementary

solution of rectangular coordinates (plane wave) is written in cylindrical



coordinates and integrated over complex angles of incidence of the plane

wave, i.e.

g flo) orosO-a) o 2.1.5)

c
We have written the elementary solution of cylindrical coordinates and
integrated over complex positions of the line source.
2. Derivation of Non-Trivial Solutions

At first this reversed superposition may appear unnecessarily
complicated since now we must worry about the branch points of the integrands.
However, by choosing a particular path we are led to a rather surprising and
interesting result, namely: if f(o) is analytic in a simply connected region

containing the path of integration and A is constant, then the expressions

x+1iy
g JO@:\/(x+iy—a)(X—iy—a) > fle) da (2.2.1)
A
x-1iy
g 5\ tetiy-a)x-iy-a) ) te) de (2.2.2)
A
-X-1y
Joéi\/(x+iy+a)(x—iy—a) > flo) do (2.2.3)
A
and x- iy
S JOQ\/(X+iy+a)(X—iy—oz) > f(o) do (2.2.4)
A

are all solutions of the homogeneous Helmholtz equation in this region. J o

denotes the ordinary Bessel function of order 0.



To see that this is true, first for (2.2.1) we proceed as follows. In
formula (2.1.3), where the integrand has branch points at « = xTiy, take the
path of integration to be a loop enclosing the point o = x+iy as shown in

figure 2.2.1.

FIGURE 2.2.1: o-PLANE

Before discussing the branch cuts, let us note that, despite the square

root of its argument, J 04{ \/(x+ iy-a)(x-iy-a) > is an analytic function of o
in the entire finite a-plane, so we neéd only concern ourselves with the
logarithmic branch points of the Hankel function. These can be separated

out as follows:

HiZ)Q\/(x+iy-a)(x—iy—a)> = :_72r_1 J0<<\/(x+iy—a)(x-iy—a) >10g\ﬁx+iy—a)(x_ iy - ) >

+ F<\j(x+iy—oz)(x—iy—oz)> (2.2.5)

where F is an analytic function of «. This is evident on looking at the series

representations. Using the shorthand p = \/(x+iy-oz)(x— iy- @) , formula (2.1.3)

can be written as



H(2)
0o
C C C

(ko) £(@) do = 71 Jo(kp)logp2f(oz)da+ F(o) £a) da . (2.2.6)

Since f(o) is assumed analytic throughout a region containing the contour
¢ and F(p) is also an analytic function of @, the contour shown in Figure 2.2.1
is really closed for the second term on the right hand side of (2.2.6) hence,
by Cauchy's theorem, this term vanishes. We have written the logarithmic
part as log p2 to eliminate, when defining the branch cuts, any complications
due to the square root in the definition of p.

We choose as a branch cut the negative real axis in the p2 plane. To

see what this maps into in the o-plane, we write « = § +in and examine

p2 = (xtiy-o)(x-iy-a) = x+tiy-E-in)(x-iy-£&-in)
= (x-8)2 - oty 2n(E - %), (2.2.7)
The condition, p2 real —> 2n(E-x) =0 and p2<0:>(x-§)2 —n2+ y2<0.
If n=0 the second of these is violated hence & =x, n>|y|and € =x, n<—|y\ are
the branch cuts in the o-plane, as shown in Figure 2.2.1.
To keep track of which sheet of the Riemann surface of log p2 we are
dealing with, we employ the following notation: we define the n@" sheet to
consist of all values of log p2 where (2n-1)7 <arg p2 < (2n+1) 7 and indicate

2
this explicitly by writing logn pz. Finally, by requiring that arg 1ogop L =0,
=0

we remove all ambiguity from the definition. The values of log p2 on two
successive sheets are related by

log - 1ognp2 = 27i, (2.2.8)

n+1p

10



Now we can make precise the meaning of the contour shown in Figure 2.2.1.
Starting at the point o = A, we choose the principal value of the logarithm,
logopz, and let the function vary continuously along c¢c. Thus the solid portion
of ¢ indicates points on the oﬁ1 sheet of the Riemann surface of the logarithm,
but continuous variation across the branch cut takes us onto the _1_s_t sheet
which is indicated by the dotted portion of c.
Since we have assumed f(¢) to be analytic, however, we may deform

the contour to that shown in Figure 2.2.2.

Qm‘a=n

-_iy

FIGURE 2.2.2: o-PLANE

The integral in (2.2.6) can now be written

0
c c'!

H(Z)(kp) fl@)da = _-;rl S Jo(kp) logp2 f(o) de

X+ iy
e J {kp) f(c)(log pz-log p2)da.
m o o) -1

A

(2.2.9)

I
|

Using relation (2.2.8), this becomes

11



xtiy
H(()z)(kp) fedda = 2\ I (o) fle)dar .2.10)
c A

Since the left hand side of (2.2.10) is a solution of Helmholtz' equation,

the right hand side is also. Hence (2.2.1) is shown to be a solution of the
Helmholtz equation. This same procedure can be readily used to establish
that (2.2.2), (2.2.3), and (2.2.4) are also solutions and it would be needlessly
repetitious to do this explicitly.

3. An Alternate Proof.

An alternate procedure, consisting of direct substitution in the differ-
ential equation, can be employed to establish that the expressions (2.2.1) -
(2.2.4) are indeed solutions of Helmholtz' equation. Contrary to the method
used above, this gives no hint as to how the relations were found but does
have the advantage of being somewhat simpler. This is illustrated by
demonstrating directly that (2.2.2) is a solution. Whereas before we needed
f(a) to be analytic in order to deform contours, now the analyticity forms
a sufficient condition to permit differentiation according to the usual rule.

Thus, keeping in mind the following easily verifiable relations,

Jo<<\/(;;¥iy—a)(x—iy-a)> o = x-iy =1
2

% Joé\ﬂx+iy—a)(x—iy—a)> L=X_iy= -i&zl (2.3.1)
2

d k

— J (kK\/xtiy-a)(x-iy-a) = =3

oy o<\/ >a=x—iy 2

we find that

12



X -1y

0
—_ - +iv - R T
o JOQ\/(X iy - a)(x- iy oz)>f(oz)da
‘A
X -1y
= f(x - iy) + 2 J Q{\/(x-Fiy—a)(x—iy—a) >f(a/)da
09X o
A (2.3.2)
and
X -1y
~8—2— J Qi\/(;ﬂ-i -a)(x-i —a)>f(a/)da=—a—f(x_iy) - &Z}Lf(x—iy)
ox2 0 y y ax 2
A
X - 1y 32
] o e
+ P Joég\/(x iy - ) (x - iy a)>f(oz)da.
A
(2.3.3)
Similarly
X - iy
o’ f (x-iy) | ; k¥
Fivo o = _;of (x-iy) s
552 Jo<<\/(; iy -a)(x-1iy a)>f(a)da 18y 5 f(x - iy)
A
x—1y82
+ 8_y2 Joéi\/(eriy—a)(x—iy—a)>f(a/)doz.
A (2.3.4)
Since —igf-(x—ly )= _@i(x—ly) , upon substitution of (2.2.2) in the Helmholtz

oy ox
equation we obtain, with (2.3.3) and (2.3.4)

13



x- iy
82 82 2

5_;(_2. + -8—;2_ + k Joé{ \/(x+iy—a)(x—iy—a)> flo) do
A
Y 82 82 2
== az + —5}:2 + k Jo(kV(?'i"iy—O[)(X—iy—a’) ) fla)da = 0. (2.3.5)

A
Hence (2.2.2) is a solution of the Helmholtz equation and, of course, an almost
identical procedure could be used to establish that the other relations (2.2.1),
(2.2.3 ), and (2.2.4) are also solutions.
4. Some Properties of the Solutions
Upon subtracting (2.2.2) from (2.2.1), the constant end point of
integration is eliminated and we obtain a function, @(x, y), with some remark-
able properties. Explicitly
x+ 1y

b(x, y) = Joé( \/(x+iy—a)(x— iy -a) > flo)da . (2.4.1)
- iy

If the path of integration is entirely confined to a simply connected
region, R, where f(a) is analytic, then with no other restrictions on f(a),
f(x, y) is a solution of the homogeneous Helmholtz equation and vanishes on
the segment of the line y = 0 lying in R.

A similar expression is obtained from (2.2.3) and (2.2.4), viz.

14



X -1y
Ux, y) = Joéi\/(x+iy+a)(x-iy—a)> flo) da (2.4.2)

-xX -1y

where ¥/(x, y) vanishes on the appropriate segment of x = 0.

Further, the derivatives assume particularly simple form on these

boundaries:
_g}_?_(x, y) =0 ’ %@_(X: y) = 2if(x) (2.4.3)
y = O y y = 0
and
Qasbz(x: y) = 2f(-iy) —%‘ﬂx’ y) = 0. (2.4.4)
x=0 y x=0

As will be seen shortly, solutions of the form (2.4.1) and (2.4.2) can
be constructed for the non-homogeneous Helmholtz equation by allowing f(a)
to have singularities. We shall make use of these expressions in the following
chapters to find integral representations of solutions of some boundary value
problems, for which purpose these functions are obviously well suited.
5. A Limiting Case

To end this chapter we call attention to one of the most immediate
consequences of the particular form of the solutions (2.4.1) and (2.4.2).
With the simplest (a subjective but hopefully not an unreasonable judgment)
non-trivial choice of f(o), namely f(@) =1, (2.4.1) and (2.4.2) become the
Helmholtz equation generalizations of the simplest non-trivial solutions of

Laplace's equation, y and x.

15



Thus

x+iy x+iy
lim ; ; > .
+ - - - = =
K> 0 Joéq\/(x iy-a)(x-iy-a) )do da = 2iy (2.5.1)
x -1y x-1iy
and
X - iy X-1iy
lim
+iy+a)(x- iy - = =
ke 0 Joéf;\/& iyto)(x-iy-a) >da/ da 2x . (2.5.2)
-x -1y -x-1iy

The expressions for the wave functions can be simplified considerably.

In the first case, with the substitution o = iy cos 6 + x, we find that

x+iy T
Joé\/(x+iy—a)(x-iy—a)> da = iy Jo(kysine) sin 6 d 6. (2.5.3)
x-1iy o
This last form can be integrated explicitly, (see reference 16), obtaining
X+ iy P
‘ : -1
J \/(x+iy—a)(x—iy—a))= 2iy J_,.(ky) 2 /2 (1/2) (2.5.4)
0 / 1/2 1/2
. (ky)
x - iy
= 2 sinky | (2.5.5)

Similarly, the substitution o = xcosf-iy in the second form enables us to write

X -1y

Joé\/(x+iy+a)(x—iy—a)> dao = %sinkx.

-x -1y

(2.5.6)

While these forms are, of course, among the most elementary wave

functions it is noteworthy that when the expressions comparable to (2.4.1) and

(2.4.2) are developed in other coordinates, (see for example the discussion of

" the elliptic coordinates in Section 5. 3), it is possible to find wave equation

generalizations of solutions of Laplace's equation that are not so well known.

16



Chapter 3

A REPRESENTATION THEOREM FOR WAVE FUNCTIONS
SATISFYING DIRICHLET CONDITIONS ON A LINE SEGMENT

In this chapter, we use formula (2.4.1) as the basis for an integral
representation theorem for certain solutions of the Helmholtz equation
satisfying Dirichlet boundary conditions. This theorem is then employed
to obtain integral representations of combinations of cylinder functions.
Particular attention is devoted to the case of the line source, H(()z)(kR).

1. The Representation Theorem

With the understanding that by an analytic function of the real
variables x and y we mean that the function has a Taylor expansion in x
and y but not necessarily in z = x+1iy, the fundamental result of this
section, the representation theorem, is formulated as follows.

Theorem: If P(x, y) is an analytic solution of the Helmholtz equation
in a simply connected region, &, containing the line segment y = 0, x; <x<x,,
and §(x, y) = 0 on this segment, then, in this region, &, @(x, y) has the

integral representation

nx+iy
b(x, y) = _Zl—i J0<< \[(x+iy—oz)(x—iy—oz) > g%(a, v) do (3.1.1)
x- iy v=0

The proof of this theorem, proving that (3.1.1) is not an equation

but an identity, consists of showing that both sides of (3.1.1) have the same

17



value on the line segment and that their normal derivatives are also equal

on this segment. Then, by virtue of the Cauchy-Kowalewsky theorem which
ensures that there cannot be more than one analytic solution of the Helmholtz
equation in a neighborhood of a curve on which the function and its normal
derivative are prescribed, the validity of (3.1.1) as an identity follows.

Thus the left hand side of (3.1.1), @(x, y), is given to be an analytic solution
of the Helmholtz equation, vanishing on the line segment, and whose normal

Az, y)
oy

derivative on the segment is given by The right hand side of

=0

(3.1.1) is an analytic solution of the Helmholtz equation since it is of the
form (2.4.1); it obviously vanishes when y = 0; and its normal derivative

at y=0 (see (2.4.3)) is gg(x’ V) Hence by the uniqueness cited above,

v=0"

(3.1.1) is established as an identity.

Sommerfeld, (Ref. 27), shows very clearly and constructively why
uniquenéss obtains when the solution of an elliptic equation is given, with
its normal derivative, on a curve, Hadamard, (Ref. 11), discusses the more
general results of Cauchy and Kowalewsky which guarantee existence as
well as uniqueness. He also cites the work of Holmgren which indicates
that the requirement of analyticity might be weakened to a condition of
sufficient regularity, derivatives up to second order throughout the region,
but we shall not consider this possible generalization at present.

Note that a completely analogous representation of wave functions

vanishing on the line x=0 can be obtained using the expression (2.4.2), namely:

18



If ¥(x, y) is an analytic solution of the Helmholtz equation in a simply
connected region, ®, containing the line segment x = 0, y; < y<y,and
¥(x, y) = 0 on this segment, then, in this region &, ¥/(x, y) has the representation

X - iy

Yix, y) = _é_ JO<{ \/(X+iy+a)(x_iy_a)> g_%(V, i)

-X~ iy

do . (3.1.2)
v=0

The proof completely parallels that given above.,

The theorem of this section can be considered in two different ways.
On one hand it provides a method of obtaining integral representations of
solutions of specific boundary value problems if the solutions are known. On
the other hand, if the solution is not known, (3.1.1) provides us with an
integral equation which it must satisfy. This integral equation is akin to
that obtained through the use of Green's functions except that here we have
a Volterra equation where the path of integration does not have such a
ready interpretation as a physical boundary.

This integral representation can also be derived, as the Bessel
function kernel suggests, by employing Riemann's method of integrating the
linear second order hyperbolic differential equation (see Ref. 23). Intro-
ducing the characteristic coordinates

£ =x+iy n = x-iy (3.1.3)
transforms the elliptic wave equation
2 2

d
; t T3 tk pix,y) = 0 (3.1.4)
0X oy

19



into the hyperbolic equation

__8_2_+l<3 #(, n]= o0 (3.1.5)
dEdN 4 L : T

Following Riemann, we express a solution, @, of this hyperbolic
equation in terms of its values on a curve in the &rn-plane in a manner
completely analogous to the use of Green's theorem in elliptic equations, where
instead of Green's functions we employ the characteristic function or the

Riemann-Green function

v= 3 \E-E)0n) ). (3.1.6)

Requiring the solution §§ [‘5, n] to vanish on the line € = n (which corresponds

to the boundary condition @(x, 0) = 0 in the xy-plane ) and choosing the

region of interest to be bounded by segments of this line and two characteristics,
(see Figure 3.1.1) enables us to express the function at &’0, R in terms of

its values on r, the segment of € =7, as follows

¢[§0, no]= % {v %g cos(n, &) + v —g‘g cos(n, n)} ds . (3.1.7)
[
]

}

/ €.5)
N\

{
(no, n,) \Eo’ T}O)

o

FIGURE 3.1.1: &n-PLANE
20



Since r' is the segment of the line & =y lying between & = 'g"o and § = Mo
this can be simplified considerably. With the normal drawn outward,

cos(n, &) = - \—}—5— and cos(n, n) = Y?l thus (3.1.7) becomes

¢[So’n0] = + —Z-i/-—? V{%g—gg} ds . (3.1.8)
[

The distance S ds must be positive if £ and n are real thus we must
. r
define the line element along ' as

ds = \/d€2+ dn2 = - V2 at (3.1.9)

n

(6]
so that ds = -\\2 & = g§-n > 0. (3.1.10)

5
ry (6]

If EO— n, <0, that is if the point (&’0, no) were on the other side of the line

€ = 7n from that shown in Figure 3. 1.1 both the sense of I" and the sign of the

square root would alter. In either case (3.1.8) becomes, writing v explicitly,

nO
pleng) = -3 {Joé\/(‘é’—go)(n—no)> (fg-a—i)ys{s, n]} €. (3.1.11)
n=¢&

3

0
Although it has been convenient to consider &, n and EO, no as real, it is
of course true that the function defined by (3.1.11) is still a solution of the
hyperbolic equation (3.1.5) and vanishes when SO= n, even if €, n, %’0, and UR

become complex. In particular, with the transformation (3. 1.3) it is easily
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seen that

QO
(o b
e |

9 9
5% o 5y (3.1.12)

and n=& corresponds to y=0. Thus (3.1.11) becomes

+1y

X
¢(XO, yo)= é‘; S J<< (x- x—1y )(x - x+1y)> 9h(x, y)
X

dx . (3.1.13)

y=0

Renaming the dummy variables appropriately and dropping the subscripts yields
formula (3.1.1).

Choosing ["to be a segment of the line & = -y rather than § =y would
lead to formula (3.1.2) by the same procedure.

2. Some Remarks on the Application of the Representation Theorem.

It must be pointed out that some caution should be exercised in the
use of (3.1.1) as a representation of solutions of boundary value problems
valid for all values of x and y.

First of all, it is often true that physically significant problems
deal with functions that are not analytic at the boundary. As an example,
consider the problem of finding the field, ¢(x, y), of a single line source in
the presehce of a perfectly soft strip, a problem considered at some length
in Chapter 5. An attempt to immediately write the solution of this problem

in the form (3. 1. 1) for points in the region & (see Figure 3.2.1) might be

(x, y)

unsuccessful because @(x,y) is not analytic in y (when x; < x < %5, By

is not continuous at y =0).
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It is still possible to use the integral form (3.1.1) to represent the
field in this case without relaxing the analyticity requirement by considering
an intermediate problem, or more correctly, by considering an alternate
but equivalent problem; i.e., the mixed boundary value problem depicted in

Figure 3.2.2. The advantage in treating this problem is that the physical

y y
, _ N A _ .
(2\0, yo) source point (xo, yo) source point
(x,y) R~ (x,y)
field point field point
] !
&
X o X
Xy X9

X5
(x ,%y ) ordinary point n (x ,-y )-ordinary
o Yo o’ Yo )
point
FIGURE 3.2.1: A LINE SOURCE FIGURE 3.2.2: A LINE SOURCE
IN THE PRESENCE OF A SOFT IN THE PRESENCE OF A SOFT
STRIP STRIP IN A RIGID SCREEN

problem is confined to the upper half plane and an analytic continuation of ¥
to the lower half plane in the region % is possible, even if i/ has no physical
meaning there. Hence ¢ can be expressed in the integral form (3.1.1).

That the problems depicted in Figures 3.2.1 and 3.2.2 are really
equivalent, that is, given the solution to one of them it is possible to
construct the solution to the other, is easily seen. Following Bouwkamp,
(Ref. 5) , the solution to the problem of Figure 3.2.1 can be written, save

for a constant multiplicative factor that determines the strength of the source, as
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(2)

Bx, y) = H(()Z)(kR) -

(kR') + ¢b(x, y) y 20
¢D(x, -y) y<0 (3.2.1)

where ¢D(x, y) is finite for - <x <o, y >0 and vanishes for x; <x <x,,

y=0. Moreover, -g—g(x’ y) must be continuous at y =0 when thére is no physical

barrier, i.e., when x <x, or x > X, , hence, for these values of x,

op_(x, y) 8p._(x, -y)
—;— [H(()z)(kR) - H(2)(kR'g +3—9 = —é—P (3.2.2)
y (0] y - 0 y = O y y - O
Since, as is easily verified,
BH(()Z)(kR) aH(()Z)(kR')
e = - = (3.2.3)
oy y=0 oy y=0
it follows from (3.2.2) that
(2)
a¢D(x, y) aH0 (kR) x <x,
= = - —9 , (3.2.4)
oy %y X > X )
y= 0 y= 0 2
- With this relation it is clear that the function y(x,y), defined as
- <x<
s, 9 = B20R) - B2 0w + 20_x, 3, PSXS® (3.2.5)
0 0 D y>0

is a solution of the problem depicted in Figure 3.2.2. Thus, knowing any one
of the functions @, y, or ¢D’ it is possible to construct the other two. Further-
more, in the region &, these functions can be expressed as integrals of the

form (3.1.1)
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Of course the next step is to attempt, by analytic continuation, to
obtain an integral representation valid for the entire range of x and y. This
step must also be taken with caution. The function f(x, y) in the strip problem
and ¢/(x, y) in the mixed problem both have non analytic behavior at three
points of physical significance; (x = X, V= yo), (x=%;, y=0), and (x=%,, y=0).
The first of these, the source point, can be eliminated by considerihg
¢D(x, y), the diffracted field. The other two remain however, so when ‘extending‘
the definition of the integral representation of ¢D(x, y) to the .case when x <x;,
or X > x,, the path of integration will have to vary as illustrated in Figure 3.2.3

in order that the continuation be analytic.

(x+1iy) (fi +iy) (x+1iy)
1
4 ' 1 s 4
X4 X9 X X9 X X2
(x-iy) (x-iy) (x - iy)
a) x <x b) % <x <x c) x> X

FIGURE 3.2.3: CONTOURS FOR THE INTEGRAL FORM OF ¢D(X, y)

Thus it is seen how the integral (3.1.1), which apparently vanishes
on the entire line y =0, actually can represent a function which only vanishes
on a segment of tnat line. It will prove more convenient, however, when
considering the strip problem, to obtain a representation comparable to (3.1.1)
in elliptic coordinates where the apparent behavior and the actual behavior are

the same.
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3. Integral Representation of a Class of Cylinder Functions

Having pointed out some of the hazards involved in using (3.1.1) to
represent a function (solution of Helmholtz' equation) which vanishes on a
line segment, we now consider the representation of functions for which the
form (3.1.1) is ideally suited; that is, solutions of Helmholtz' equation which

vanish on the entire line y=0. A large class of such functions is known to be

cos\' kz— v2 X

sin\/ kz- 1/2 X

given by

sinvy. (3.3.1)

In the sense that cylinder functions result from solving the two dimen-
sional Helmholtz equation by separation of variables, leading to circular
cylinder functions in polar (circular) coordinates, parabolic cylinder functions
in parabolic coordinates, etc., the expressions (3.3. 1) can be called rectangular
cylinder functions. In this sense, "rectangular' coordinates are misnamed
and would be more correctly called "right angle' coordinates. However,
regardless of the possibly offensive nomenclature, the expressions (3.3.1)
cal; be written, with the representation (3.1.1), as

xX+1iy

cos \/ k%= 2 X sinvy = -2-11 Joé \V (x—a)2+ y2> cos\, K2-12 ada (3.3.2)
' X - iy

=

and

+iy
2 2
sin\} k -v xsinz/y=—2-y—i Jo<< \/(x—a/)2+y2 >sin \/ k2— y2 ada. (3.3.3)
, x-1y
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The representation of the sum of (3.3.2) and (3.3.3) has a particularly
simple form, i.e.,

x+1iy

AN, 2 2 \‘ 2 2
1Vk - i -
e vox sinvy = —2-1-/; Joét \} (x-oz)2+y2> e ki-v ¢ do (3.3.4)
x-1iy
which, with the substitution o = x+iy cosf), yields

\4 2 2
-v" cosf sing dg .

T

sinvy = 2 Jo(ky sinf) e Y

5 (3.3.5)

()

This is a special case of a formula discovered by Gegenbauer (Ref. 31). We

have already encountered formula (3.3.5) for the special case v =k in section 2.5.
Another, perhaps more fruitful, application of the representation theorem

involves the class of functions given by

L o
Z (KR) e e _ Z (kR') SO (3.3.6)

where ZV represents any circular cylinder function of order v, and (see Figure

3.3.1)

2 2 2 2 2 2

= (x- + (v - 7= (x- + (v+
R™ = (x xo) (y yo) R (x xo) (y yo)

- - - +
® =tam1 y yo ® =tan1 y yo (3.3.7)
X=-X X-X
[¢) (o]

Clearly if y =0, then R =R'and ® = - ®' hence the expression (3.3.6)

vanishes. This expression is of course an analytic solution of the Helmholtz
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4 (x,y)
R
&/
(Xo’yo
> X
@l
(x ,- yo)

FIGURE 3.3.1: GEOMETRY OF R,® AND R', @

equation in any simply connected region excluding the points x = Xo’ y = fyo .

(Indeed if Zv =J_ ,n=0, ¥1, T2,..., then it is analytic everywhere.) Then,

2n

if yo# 0, it follows from the representation theorem that in a neighborhood of

the line y = 0,

x+iy
+iv@® \ -iv® 1 N 2, 2
Zy(kR) e - ZU(kR )e = 33 J0<< (x-a) +y f(xo, Y a)da
. (3.3.8)
x - iy
and x+iy
-iv@®) +iv@' 1 \/ 2, 2
yA - ! = - - -+
V(kR)e ZV(kR)e 21 Joé (x-a) +y g(xo,yo,a)da
X-1iy
(3.3.9)
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where

b .
f(x ,y ,0) = 9 {Z (kR) e L Z (kR"e 17/@'] (3.3.10)
0’7o dy v v .
y=0
=
and
-2 -iv@ , +iv@’]
g(xo, Yy Q) 5y ZV(kR)e Zv (kR") e (3.3.11)
y=0
X=qa
From the definition of ) in (3.3.7) we find that
X=X y-y
cos@ = and sin@® = 2 (3.3.12)
V- x )2 (-3 \ Ge-x )% (y-y )2
o 0 o o

where, as Figure 3.3.1 makes clear, the positive square root is to be employed .

Thus
Xx-x +i y-y
[0) 1( O)

eic’D = cos® +isin@ = 5 5
| \/?x—xo) *-y,)

(3.3.13)

In exactly the same way we find that

N x-x +ify+y )
JO 2 : 9 > (3.3.14)
\x-x )P+ ey

With these expressions we may write f(xo, Y, a) and g(xo, Yy «) explicitly in

terms of xo, yo, and «. Thus, carrying out the indicated differentiation,

(3.3.10) becomes
dZV(kR)

f(xo,yo,a/)= [k G0<R) J/® R, inV(kR)e

v® 2@
oy oy

dZ (R) . .
z @R iVZV(kR') e

B - v@2®'
T D oy ]

5y (3.3.15)

y=0'
X=u
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Upon introducing the familiar recursion relations

dZV(kR)

PR T AR - 2 R
and (3.3.16)

2v B \

R ZV(kR) = 2 (kR)+Z VH(kR)
we obtain

_k ) iv@ oR . i

fx .y .0 = 2{ [Zy_l(kR) -7 VH(kR)Je oy IR [Zy_l(kR) +7 Vﬂ(kRﬂ O g—y@

_ e . -v@' OR' : , ) 8@
[Zy_l(kR) z ., (kR )] +1iR [zy_l<kR)+z (k.R} e 5

By
y=0
X=0
(3.3.17)
It follows from their definition that
2
= +
R|y=0 \y 0= \(x - x) v,
oR[  _ _oRY  _ Yo
dy oy \f 2 2
= = _ +
y=0 y=0 Ge-x ) +y, (3.3.18)

and

_8__@\ _ 3@ _ X-X_

oy | _ oy L,_

y=0 0 \/<X_X)2+y2
(o] (o]

Substituting these expressions, together with (3.3.13) and (3.3.14), in (3.3.17)

we obtain, aftervsimplification,

v-1

a-x —1y
f(xo, yo,a) = ik _1 (- X ) +y 2
(a X ) Y,
! a-xX -1y vl
. 2 2 0
+ ik ZWl{‘\ﬁa_xo) +y0) 20 5 (3.3.19)
\/(a—x ) +y
0 )
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A similar procedure yields

\ a-Xx tiy -1
2 2 "o Yo
gx ,y ,a) = —ik Z é\[(a—x)ﬂ’ >
o’Yo v-1 o} o \/(oz—x )2+y2
o 0
7 2 \[2 %Y, -
— ik Z k\/(oz—x iy ) —m— (3.3.20)
v+l o o) \/(oz—xo)2+y(2)

If, in (3.3.19) and (3.3.20), Z=J and v=2n+1 then f(xo,yo,a) and g(xo, yo, @)
have no singularities. In all other cases, however, they have branch points and
possibly poles as well at o = xo'l'iy'o. In these cases we must specify the branch
cuts and paths of integration in (3.3.8) and (3.3.8) in order for these repre-
sentations to be meaningful. This is accomplished by employing the same
branch cut convention adopted in Section 2.2. This ensures that when o is
re‘al the argument of the cylinder function is real and f)ositive. We number
the sheets of the Riemann surface of the logarithm exactly as in section 2.2
and then require that we remain on the Oth sheet along the paths of integration
in (3.3.8) and (3.3.9).

The branch of the factor (a.- XOJ_r iyo)yir ! is determined by requiring
consistency on both sides of (3.3.8) and (3.3.9). That is, in (3.3.8) the
e e-iu@’

factors e give rise (see (3.3.13) and (3.3.14) ) to terms

. . v . v '
like [x— x0+ i(y - yo)] and [x— X - 1(y+yo)] respectively, which are
equal, when y = 0, to [ X=X - iyo] V. We must then require that
the factor [a- X - iyo] Y in f(xo, Yy @) have exactly the same value when o = x,

then let it vary continuously as « becomes complex. Similarly, in (3.3.9)
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when y =0 the factor [x-— x0+ iy0] v appears on the left and tﬁis determines the

branch of | o - xo+ iyO] Y in g(xo, yo, a). Figure 3.3.2 shows the branch cuts

(x +1y

and a possible path of integration.

(x+1iy)

-*—— JAntegration path

branch cuts

G - 1y ) (x iy)

FIGURE 3.3.2: o-PLANE
While it is true that so far we have only established the validity of
the representations in a neighborhood of y=0 it is clear that by analytic
continuation these representations remain valid throughout the cut xy-plane.
The points x = X, ¥ * Yo are singular and in general the functions
)e™ Tv@ and ZV(kR') ei iv@’ are multiple valued thus we must cut
the xy - plane as well as the a-plane. However, in the special case when

+; + . (]
in® and Zn(kR')e'm®

v=n (=0, 1, T2,...) the functions Zn(kR) e
are single valued throughout the xy - plane hence in this case the integrals
(3.3.8) and (3.3.9) must also be single valued, even though the integrand
still has branch points. This means that for x= X,V > y the path of

integration can be either that shown in Figure 3.3.3a or 3. 3. 3b depending on

whether x — X from right or left but both paths must yield the same value
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of the integral. As long as y # Y, these integrals are defined and must be

equal since they both represent the same function.

(xo+ iy)ﬁ (%ot 1iy)
(x,*iyo) (%o iy,)
|

“ (%o~ 1¥) (xo- 1¥o)

(%0~ iy (%o~ iy)

_ +
a) X = X b) x = x
o 0

FIGURE 3.3.3: o-PLANE

The fact that (3.1.1) successfully represented a function with a
singularity illustrates how (2.4.1) and (2.4.2) can be used to represent
solutions of the inhomogeneous Helmholtz equation.

4. The Integral Representation of Line Sources

Of special interest is the particular case of (3.3.8) or (3.3.9) when

(2)

ZV is chosen to be H viz.:
x+iy " .
9 a-x —1y
12 ) - 5 gy = £ <k\/<x o) +y> (2)<\/ x )ty > .
(a x)
X - iy o
+l-‘
) a-X —1y
+H <\/(a X)+y > 5 da . (3.4.1)
(oz X yo
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Further simplification yields

x+iy (2)< \ 2 9
H &k \/lo-x ) +y >
10 - 1 w) = 1, JO<k \/(X_a)z +y2> 1 o Yo ©

o) o 2 2
- +
\ﬂa Xo) Vo

x-1y (3.4.2)

which can also be written

+iy
Hf)z)(kR) - Hf)z)(kR') =i JO<< \/<x-a)2+y2> —(%; H(()Z)é \/ (a—xo)2+y(2)> da.
x- iy (3.4.3)
In addition to being of interest in itself, this last identity proves to
be of considerable importance in the diffraction problems discussed in later
chapters. It can be proven valid without making use of the representation
theorem of this chapter and although this direct proof is somewhat tedious,
formula (3.4.3) is felt to be of sufficient importance to warrant its inclusion
here.

We proceed by first substituting o =iycost+x in the right hand side

of (3.4.3) obtaining

+_iy
i J <{ \ (x—oz)2+y2> 2 H(2)<{ \/(@-x )2+y2 >da
o 8y0 o} o} o
x- iy

) (2) \/ . 2, 2 .
= - — - - +
y Jo(ky sint) ayO Ho é (XO x-1iy cost) y0> sintdt . (3.4.4)

(o)
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We restrict y so that
(x- Xo)2 + ycz) > yz
which implies that
(X-Xo)2 + y(z) ‘ > ‘ iy cost ‘

and then make use of the addition theorem for the Hankel function (Ref. 32)

Hf)mé \/r2+ p2— 2rp cos P > i kp) H (kr) cosnf (3.4.5)

where €, =1 en=2 (n=1, 2, 3,...), andlr‘>‘p\.

In our case we choose

2 2
\/(x - +
(x xo) S

r:
(3.4.6)
p= liycost
and X -X
o)
cos f =
\/(x—x)2+y2
o) )
which implies
1 r e b 1 e !
cosnf = 3 9os¢+1sm¢] tg [cos¢-1s1n¢]
Fx—x+iy " X ~X- 1y
1 0 0
o4 . (3.4.7)
2 \/(x —X)2+ y2 \/(x x)
[’ 7o 0

Thus
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+

ik
4

(3.4.4), we first examine the Vs dependent part of a general term of (3. 4. 8).

H‘(Jz)é \/(xo— X - iy cos t)2+ yi>

—

X -x+1
0 yo

n=o

(x -x) Jr-y2
\f o 0

-+

X -Xx-1i
0 yo

2 2 °
\ , -x)+
(XO x) Y,
a

To obtain a useful form of the derivative with respect to Vo

the substitution r= m (

(3.3.16) we find that

(00]

>

n n
X -x+t+iy X -x-1y
2
) H( )(kr) { 0 0 L [Ze o)
Byo n r

Upon differentiating (3. 4.8) with respect to Yo

necessary in

@
= -2l Zean(ikycost) Hiz)ém> )

(3.4,

0
= T) and the recursion formulas

r

(2) x-xriy ) ™
(k) -—"——;——3 -

the indices of summation so that Hf)

n=1

'—8— (2)< \/(x -X- 1ycost) +y >

i +
\:en_ lJn— ] (iky cost) + €

ik

n+l Jn+1

36

occurs in the nth

(iky cos t)J

(2)

ntl

X -Xx-1
o) yo

H (kr)
n

r

€ J (1kycost) H( )(k )(

term, we obtain

8)

With

(3.4.9)

utilizing (3.4.9), and adjusting

r r
e T
X, - xtiy, X, X~y
—x+i %
X -xtly ) X -x-1y
r
(3.4.10) "



X -x-1 X -X+1i
0 yo 0 yo

But X xljri T ox i i - r - r
o Yo 0 Yo
thus, recalling the definition of € together with the fact that H_(_Zl) = - H(lz),

(3.4.10) becomes

3 (2) . 2, 2
— -X- +
ayO Ho é\/(;o x - iy cost) y0>

L ; . 2
= 1_2' 2: E]n_l(lkycost)+Jn+l(1kycost):l Hfl)(kr)

which, again employing the recursion formula for the Bessel functions,

becomes finally,

2 H(2)<< \/& -x—iycost)2+y2 >
Byo o o 0

n n
nd (iky cost) X -x+iy X -x-iy
= i = B ) | 2 o) ~1=—2] . (3.4.12)
£ ycost n r r

Substituting (3.4.12) in (3. 4.4) we obtain, after interchanging summation and

integration,

x+iy

2
N\ <(,[ @ty > kN H(z)é\ o 2 2 >da
0 ayo 0 0 0
x -1y
x+iy " X -xX-1y

. (2) 0. o o~ Yo . ,
= _n: an (kr) — | T Jo(kysmt)Jn(lkycost)tantdt.

0 (3.4.13)
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However

U 7 /2
Jo(kysint)Jn(ikycost)tantdt = 1 (-1) ]E J (kysmt)J (1kycost)tantdt
o

0 (3.4.14)

and this last form has been explicitly integrated by Rutgers (Ref. 22) who found that

7r/v2
, o . inF(nZZ)
Jo(kysmt) Jn(lkyuost)tantdt = 2@/ +D) J_(ky)
o) RO
= = J (ky). (3.4.15)"
n ‘n

With this result, (3.4.13) can be written as

X+ iy

2, 2 2
Joé \/(a-x) +y > a_-_?’o H(()2)<< \f(a—xo) +yi >da
x- iy

n
A X -xtiy X -x-1iy
— _ﬁ it [1_(_1)‘ (k)H(2)(kr) -"—r—‘l - 22 (3.4.16)
n=o

th
which upon multiplying out the factors with n powers and reintroducing the
€ notation (en/2 = 1) , which is possible since the n = o term is zero,

becomes

“Formula (3.4.13) appears in Watson (Ref. 33), but is in error by a factor of 2.
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+iy |
. N 2.2\ 0 _@/\/ 2 2
i Joé @-x)+y > ayO H0 <k (a—xo) Y, > do

X -1y

_ 2), |1
= i ean(ky) Hn (kr) 5

n=o

2, 1
~ i e J (y) H () 5

n=o

. (3.4.17)

Now we again make use of the addition theorem for which the earlier restriction

2
x- XO) +yi = r2 > y2 still suffices. For the first sum on the right hand side

of (3.4.17) we may write

@ y -ilx -x) . y +i(x -x) .
z €an(ky) HS)(kr)% ——0—-;-9——-* +(—2—2 H(Z)é\/y%*rz- 2yr cos ¢>

r o)
n=o
(3.4.18)
where
v -1 - 43 -
o — 1 Y, 1(X0 X) . Y, 1(xO X)
2 T r
_
r
Hence

H(()2)<< \/y2+ r2— 2yr cos > = H(()2)€\/ y2+ - 2yy,, > (3.4.19)
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2 2
or, since r = (x-x ) +y2 ,
0 )

Hf)é\/ y2+ - 2yr cos § >

2 2. 2, 2
Hi )é\/y +(X—XO) Ty - 2yy, >

H(()Z)(kR) , (3. 4.20)

i

Similarly, the second sum on the right hand side of (3.4.17) is found to be
Hf)Z)(kR') consequently the relation we set out to prove, (3.4.3), is established.
In order to use the addition theorem, it was necessary to restrict the values
of x and y but this is clearly a restriction on the use of the addition theorem
and not on the validity of (3. 4. 3) since the functions on both sides of (3. 4. 3)
can be analytically continued throughout any simply connected region excluding
the points X * Yo

In the ambiguous case when x = X, and y > Y, two integration contours
are possible, as showﬁ in Figure 3.3.3. The two integrals thus formed must
have the same value since they both represent the same function. That this

is so may be directly demonstrated by showing that their difference vanishes,

i.e., that

J <{ \/(x —-a/)2+y2 > 2 H(2)<<\/(a/-x )2+y2 >da/ =0 (3.4.21)
o o} 8y0 o) o} o
c

h
where the contour, shown in Figure 3.4.1, is to lie entirely on the Ot blade

of the Riemann surface of the Hankel function.
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"y
(xo iy)
i
(x 5 1yo)
(6]

T X

(xo- iyo)
(xo— iy)

FIGURE 3.4.1: INTEGRATION CONTOUR

Rewriting the integrand with the help of (2.2.5) we may treat the

singular part separately. Thus

2 2 0 (2) 2 2
JO<< \/(xo-a) +y >—-—ay0 H0 é \/(a—xo) +y, >doz
c

. 2y
_ i 2,42 > '
= -2 \da Joé (x -a)+y > Gl) + X Ty Ya-x iy )
(o} ] o Y
(¢}
5 2 2 2, 2
N _ -
ayo Joé (xo Q) +yo >10g Eoz xo) +yo]
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where G(a) is analytic. With Cauchy's theorem then
2 2
JO k \/(x ~a) +y Gl da = 0 (3.4.23)
0
c

and, since the residues at the two poles are equal but opposite in sign,

2 2
Joé‘: \)(Xo—-a) +y > yodoz

L R
(o X 1y0)(a X 1y0)

= 0. (3.4.24)
c
The logarithmic term is also easily evaluated. With the help of

formula (2.2.8) we find that

2 2 0 2 2 2 2
Joé \/(xo—oz) +y > Sy—o Joé \/(oz—xo) +yo> log [(a'—xo) +yo]doz
c

+i
x tiy
= - 27i J ({\/(X —a/)2+y2 ) 2 J <{ \ Mo -x )2+y2 >da
o} o} 8y0 o} o} o
+iy
%o Yo
o Yo
+ 27i J <{ (x —a)2+y2> 2 J <{\/(a—x )2+y2>da (3.4.25)
o\ ¥ o ayo (o} o} 0 .
x -y

The right hand side can be simplified, since it is independent of X yielding
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1y
R.H.S. = -27i J <{\/a2+y2> 9 J é\/a%—yz >doz
o} oy 0 0
0
Iy

+ 27i <\/ 2 2> < oz2+y2> do (3.4.26)

which is clearly seen to vanish on substitution of - for « in one of the
integrals but not in the other.
5. Asymptotic Behavior of the Line Source Representation

Formula (3. 4. 3) can be used to demonstrate that for large values of X,
and Y, the circular cylinder function relations pass over into the rectangular
cylinder function relations of section 3. 3.

Consider first the case of large Yo where

2
R = \ﬂx—xo)2+(y~yo) Nyo-y

' 2 2
"= - + +
R \/(x x)++y ) vy ty
2, .2
-x)" +
\ﬁa X) v, ~oy, (3.5.1)

Retaining the y in the phase and neglecting it in the amplitude in the customary

manner, we use Hankel's asymptotic form (Ref. 17) to obtain

. i
—1k(y0— y)* 4

2)(kR) v,
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_ik(y +y)+
H(Z)(kR')’l /__2_ . o 4
(o} 7Ty0
-iky +i—7L
Hf)z)% V(oz—xo)2+y(2)> aV \/;2— e o 4 (3.5.2)
yO |

Substituting (3.5.2) in (3. 4. 3) and retaining only the \j—:l—— term in the

differentiation of H(()z) é \/(a-xo)2+ y(z) >, we have,

factors,

and

Yo
after cancelling common

x+iy

elky- e_lky = k Joé \/(oz-x)2+y2 ) da. (3.5.3)
x-1y

This expression has been previously encountered in section 2,5 where it
appears as formula (2.5.5) and also as a special case of (3.3.5).
If instead of choosing Y, to be large, we consider X, large, formula

(3.4.3) becomes the trivial identity, 0 = 0. Of considerably more interest

is the case when r, = ch2>+ yi becomes large. Using polar coordinates

| (ro, 60) for the source and rectangular coordinates (x,y) for the field point

we have, for large I

R = \[x2+y2+r2—2xr cos@ -2yr sinf ~vr -xcosf -ysinf
o 0 0 0 ) 0 0 o)

R'= \/x2+y2+r2—2xr cos 6 +2yr sinf ~ur -xcosf +ysinf
) ) o ) 0 0 0 )

2 2
+r7- -
\fa ro Zozrocos 60 ~ r0 @ cos 60 (3.5.4)
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and for the Hankel functions

N im
-ik - 6 - in 6 + =
H@)(}{R)Nl/_z_ . i (rO xcos 6 -y sin 0) 4
o Tr
0
ir
-ik(r - +ysin® )+ —
H(z)(kR|)~ B . i (ro xcos@O y sin 0) i
o Tr

in
-1 - + —
@)/ 2. 2 2 ik(r -ccosf) + § (3.5.5)
HO k (a—xo) +yo AV e
o

Substituting the expressions (3.5.5) in (3. 4. 3) and retaining only the \/Tl-——

r
(2) 2, 2 °
term in the derivative of H0 k\/(a- xo) +yO we have, after cancelling

common factors,

x+iy

. 6. kv si e .

e1kx cos o(elky sinfy o iky sin 90) ~ ksin 90 Joé \ /(a-x)2+y2 > elka cos 6, do
X - iy (3.5.6)

With the substitution o = x+iy cost and the resulting simplification, (3.5.6)

becomes

ky sin 90

-kycos 6 cost |,
5 ) S

sin (ky sin 90) = Jo(ky sint) e int dt , (3.5.7)
0
Formula (3.5.7) is a disquised form of (3. 3.5) but perhaps a more useful
representation with application in the study of frequency modulation.
Although we have discussed the asymptotic results only for formula

(3.4.3) which is a very special case of (3.3.8) and (3.3.9), there is not much

to be gained in this regard from consideration of these more general cases.
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Choosing v # 0 would not change the asymptotic forms, choosing Z =J or N
would lead to forms in which the dependence on the parameter which was taken
: _ (D (2)
to be large could not be factored, and choosing Z = Ho rather that HO
would lead to essentially the same results presented here.
6. Double Integral Representations
Of particular interest, from the point of view of subsequent applications,
is the expression derivable from the formula obtained by adding (3.3.8) and

(3.3.9), i.e

x+1iy

ZV(kR)cosv@ -7 (kR')cosv@ < \/ (o - x) +y >F(x Yy a) do

x - iy (3.6.1)

where, adding (3.3.10) and (3.3.11),

_ 9 _ B !
F(xo, Yy Q) = oy [Zy(kR) cos v(H) ZU(RR)COS V@:I (3.6.2)

y=o
X=a

With the aid of (3.3.19) and (3.3.20), (3.6.2) can be written as
v-1
o-X —1y a X +1y
F(x ,yo,a) = = _1< - X
© (oz X, ) +y \\/(a X ) +y
r+1 . v+l
a-X —1y a-X tiy
‘,(a « ) +y _ o ‘o
I/+1 2 2 2

(oz X ) Y, (a-xo) Y,

e

. ey
With the expressions (3.3.13) and (3. 3. 14) which give e1® and e1® explicitly

in terms of x, vy, X s and Y, it is a simple matter to show that
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x-x +ily-y ) x-x -iy-y )
cosv@® = ';' 2 5 2 5 +é L > o 5 (3.6.4)
\RX—XO) +(y—yo) ‘\/(x—xo) +(y—yo)
and
x-x tily+y ) x-x -i(y+y ) g
cosv@/ =é 2 z 2 5 + -;- 2 > 9 5 , (3.6.5)
\/(X—XO) +(y+yo) %—Xo) +(y+yo)

Thus exhibited explicitly it is clear that interchanging x with X and y with
v, in cosv@# and cosv(@ is equivalent to multiplying by (—1)V. Since this
interchange leaves R and R' unaltered, we find that interchanging (x,y) with

(xo, yo) in formula (3.6.1) yields, bringing the factor -1)" to the right,

X +1y
Z (kR)cosv@—Z (kR')cosz/@ <{ \/B x) +y >F(x y,B) dp
X - 1yo (3.6.6)

where we have renamed the integration variable to avoid confusion in what

follows. Substituting (3.6.6) in (3.6.2) we obtain

X +iy
F(X Yy ) = é (x —B) +y > 9 Fly.f) dp (3.6.7)
p'e -1y y=0
where, using (3.6.3),
3 3 ik i v-1 v-1
— Fl,y,p)| =745 2 —
oy \y Jov) 2 -0
] 1 o\l
+ -2‘—‘ Zw1<<\/(5—a)2+y2> - —B——"f—*—‘g’——z (3.6.8)
(B-a)"ty
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Upon performing the indicated differentiation and evaluation we obtain

8 \fr a2\ -1 o \?
— Fl,y.p)l = kZ <k B-a) } e
o yo U Je-” \ G-
14
+ szlé\/(B—a)2> (””)2 =< 5 (3.6.9)
(B-a) (B-c)

We have written (3.6, 9) in this purposefully complicated form so as to stress
the importance of the choice of the sign of the square root. Actually, to be
consistent with our previous convention, there is no choice left. We required

2
that \/(o- x)2+ y2 and \/(x- XO) + y(z) (and hence \/(B- x0)2+ y(2) )

be real and positive when o (and ) were real. This implies that we must
choose the sign of the square root so that when o and 3 are real, \’ - 3)2
is also real and positive. Restricting the paths of integration to be straight
lines connecting the end points, it is clear from (3.6. 1) that the only real
value o can assume is o = x and from (3. 6. 6) that the only real value 8 can

assume is 8 = X, hence

(B-a/)z = B-a x0>x
a-f X <x . (3.6.10)
Formula (3.6.9) becomes, therefore
Z (kB -ka) Z . (kB-ka)
%) Fla,y,pB) = k(v-1) e S + k(v+1) s S s X >X
oy _ B-a B-a 0
y=0
Z  (ka-kp) Z . (ka-kp)
{k(v—l) v-1 + k(+1) S S (_1)1/ , X <X,
a-f3 a-f 0
(3.6.11)
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Substituting (3.6.11) in (3.6.7) yields

(W)

k
F(XO, Yo, CY) - 2

0_ 1y0
[w-Dz_ 6B-ke) + @+D2Z, (B-k D", x >x
V-1 v+l ’ o

(V—l)ZV_l(ka—kB) + (v+1) ZV_'_l(ka—kB) ;X <X (3.6.12)

and finally substituting (3.6.12) in (3.6. 1) we obtain the general representation

ZV(kR) cosv@ - ZU(kR') cos V@'

x+iy Nx +1y

() )

i
e
.
™
Qq

x-1iy xo— 1y

l:(v-l)zy_l(kB—ka)+(v+1)ZV+1(kB—ka)](—l)V+1 . x >x

(3.6.13)
- - + - <
(v-1) Zv_l(ka kB) + (v+1) Zw_l(kaf kB) , X, <X
Choosing ZV = Hf)z) in (3. 6. 13) yields the remarkable and useful
representation
2 2
1’ )(kR) ! )(kR')

x+1y X +iy

) ()(kIBa])
=-3\ da dBJ<\/(a x)+y> < 6-x) y> tB-a]

x - iy X" 1y0

(3.6.14)
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where the positive sign must be employed when X > x and the negative sign

when X <x. The paths of integration and branch cuts are shown in Figure 3.6.1.

a) X >x b) X <x
(XO+ 1y0) (X9+ iyO)

(x+1iy) (x+iy)

) )

|

| i

l !

! !

. .
(x - iy) (x-iy)

(Xo: iyo> (Xo_ liyo)

FIGURE 3.6.1: BRANCH CUTS IN THE B-PLANE FOR FORMULA (3. 6.14)
The same figure can be used to represent the o-plane by interchanging

a with 3, x with X and y with Y-
(2)

As suggested by the representation of the two sources, Ho (2)(1(R’),

(0]

(kR) - H
we may now derive a general double integral representation of the analytic
wave function, G(x,y, X yo), which vanishes on a segment of the line y =0
and, in addition, is symmetric in (x,y) and (xo,yo).
With (3.1.1) we write
X+1iy

1 \j 2 2 0
—_— — - _ + —_—
G(x,y, X yo) = 3] JO<§ (x-a) +y > 50 Glo, v, X yo) da (3.6.15) |
V:

0
x -1y
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which, we have shown, is valid in a region containing x = X, Y=y, even
if this is a source as long as G is analytic everywhere else. Making use

of the symmetry property,

G(x,y, X s yo) = G(xo, Yy %o y) , (3.6.16)

we interchange x with X and y with v, in (3.6.15) obtaining

X+1y

Gloy, %,y ) = é\/(x 3)2 2 ——G(Bvxy) dg (3.6.17)

=0

where we have renamed the variable of integration to avoid confusion in what
follows. Differentiating (3.6.17) with respect to y, evaluating at y = 0, and

replacing x by o, we obtain

‘% G(a,y,XO,yo) _= = <\ /(x —B) >—-—— G@B,v,a,y)| dp, (3.6.18)
y=o V=0

X - 1y y=o

Changing the dummy variables appropriately and substituting (3.6.18) in

(3.6.15), we obtain

+iy Mx +1y

G(X:y:xolyo) = — _ji do dB J < H X - Q’) +y> <V (X "}8) >—G(B vV, o, ,U)U .

x-1ly “x -iy =0
°° (3.6.19)
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Again making use of the symmetry property, this can be written

x+iy ~x +iy

1 ° 0 \l. 2,2 o e\ 8
G(x,y,xo,yo) =-7 da dp Joé{ (x-a) +y >JO€< (xo-B) +y0 > 307 Gla, 4, B, V)

x-iy “X - iyo

V=0
p=0
(3.6.20)

where, as (3.6. 14) bears witness, this interchange must be performed with
considerable care in particular cases.

This representation and the corresponding forms in parabolic and
eiliptic coordinates prove to be of considerable value in solving the problem
of diffraction by a strip.

Until now we have avoided the term "Green's function", although
suggested it in the notation, because Green's functions are most often not
analytic at the significant boundary (in this case the segment of the line y = 0
where G = 0) whereas our function must be analytic. In section 3.2 we showed
thaf this is not an essential difficulty, and hence we shall in the future refer
to (3.6.20) as the double integral representation for the Green's function for
a line segment.

After having so thoroughly diécussed the representation of known
wave functions, it would seem proper to devote some consideration to the use
of (3.1.1) or (3.6.20) as an integral equation for unknown wave functions.

Unfortunately, the scattering problems in rectangular coordinates for which

o2



(3.1.1) is appropriate are either so elementary in nature or so difficult that
such consideration is fruitless. That is, wave functions satisfying a Dirichlet
condition on the entire line y = 0 are easily found by the well known method
of images (Ref. 19), whereas wave functions satisfying Dirichlet conditions
on a part of the line y = 0, as indicated in section 3.2, will best be treated,

at least initially, in more appropriate coordinates.
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Chapter 4

DIFFRACTION BY A HALF PLANE

In this chapter we consider the canonical two dimensional diffraction
problem, diffraction by a half plane. The solution is expressed in the integral
form comparable to (3.6.19) in parabolic coordinates, the coordinates most
appropriate for this approach to the problem. The usefulness of parabolic
coordinates in connection with the half-plane problem has long been recognized,
having been used by Lamb (Ref. 13) early in this century.

First the parabolic coordinates are introduced, results comparable
to those of Chapters 2 and 3 are presented, and finally the solution is given.

The half plane problem, perhaps the most frequently solved problem
in diffraction theory, is discussed, not as a model to test a method of solu-
tion, but because we assert (and prove in Chapter 5) that implicit in the
solution of the half plane problem is the solution of the problem of diffraction
by a strip and indeed it may, when interpreted correctly, yield the exact
~ solution of a much wider class of two dimensional diffraction problems.

1. Important Relations in Parabolic Coordinates

We set
. . (2 ;
x+iy = (E+in) (4.1.1)
or X = 82— 772
(4.1.2)
y = 2&n

where the level curves are shown in Figure 4.1.1.
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£=0

N
(0]
R
/ E,n

=50

FIGURE 4.1.1: PARABOLIC COORDINATES

In the figure the range of § and n covering the entire xy - plane is taken

as ~0 < & <m, 0g<n<omw. We could also describe the plane with 0 < £ < oo,
- <n<o. The appropriate choice really depends on the problem being
considered but for the present we shall restrict the discussion to the upper
half plane, §, n >0.

The distance R becomes

R = \[X— X0)2+ (y—yo)2 = \[[(XJriy) - (Xo+ iyo):l [:(x— iy) - (xo— iyo)]

= \/&§+in)2- (€O+in0)2] E‘é’ -in)Z- (§o— ino)ﬂ (4.1.3)

and similarly

R' = \/I:(S—in)z -+ ino)Z_J‘ l}&ﬂn)z - & - ino)z:l , (4.1.4)
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The Helmholtz equation is now

—Q—Zé + 122— R ERED = 0
oE o
and the solutions which correspond to (2.4.1) and (2.4.2) are
€ +in
P, n) = J(€,m,w) f(u) du
§€-1in

and
E+in

v, = J(E, n,u) £(u) du

-§+in

where we have used, and will continue to use, the short hand

e o [ TRy

Of course it must be verified that (4.1.6) and (4.1.7) are indeed

solutions of the Helmholtz equation. While it is true that they are solutions

(4.1.5)

(4.1.6)

(4.1.7)

(4,1.8)

if f(u) is analytic in a simply connected region containing the path of integration

this unfortunately does not follow directly from the already proven results
in rectangular coordinates. That is, under the conditions for which (2.4.1)
and (2.4.2) were shown to be solutions, it is possible by a simple trans-
formation to show that (4.1.6) and (4.1.7) are solutions for a wide class of

functions f(u) but not all analytic functions since u = 0 is a singular point of
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the transformation. However, since the proof that (4.1.6) and (4.1.7) are
solutions with any analytic function f(u) is completely analogous to that of
section 2, 2, it will not be reproduced here. Of course this can also be
established by direct substitution in the Helmholtz equation but these tedious
details will also be omitted.
2. Parabolic Form of the Representation Theorems and Applications

With (4. 1.6) and (4.1.7) we can now establish representation theorems
comparable to (3.1.1) and (3.1.2).

If §(£,n) is an analytic solution of the Helmholtz equation in a simply
connected region containing a segment of the line n = 0, and § = 0 on this

segment then, in this region, @ has the integral representation

§+in
pen = 5 \ IEnw o Py)| du, (4.2.1)
§-1in V0

Similarly, if ¥ (€,7n) is an analytic solution of the Helmholtz equation
. in a simply connected region containing a segment of the line € =0, and ¢ =0
on this segment then, in this region, ¥ has the representation
§+in
1 9
Y€, n) = 5 J(E,n,u) Py (v, -iu)du . (4.2.2)

~-E+in

The proof of these forms of the representation theorem is exactly

the same as presented in 3.1. It consists of demonstrating that the integral
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representation preserves the value of the function and its normal derivative
on the line segment and since the function is given to be a solution and the
integral has been shown to be a solution of the Helmholtz equation, the
Cauchy-Kowalewsky theorem assures that they are identical.

We could, of course, employ (4.2.1) and (4.2.2) to find integral
representations of products of parabolic cylinder functions which vanish
when £ = 0 or n = 0, corresponding to the representation of "rectangular"
cylinder functions of section 3.3, but we shall confine our remarks to topics
more intimately connected with the half plane problem.

2
The expression for the difference of two sources, H(() )(kR) - H(()Z)

(kR'),
which is ofinterest in this regard, can be derived using these representations.
The two forms of the representation theorem produce two different expressions
which can also be obtained by a transformation of our previous result. Replacing

xT iy with the parabolic equivalent (£ in)2 and substituting o = u2 in (3.4.2)

we obtain two expressions, because of the sign ambiguity in u (i.e. o = uz = (—u)z),

as follows:
Stin 2)
(2) (2) JE 0w H (So’ My w) udu -
I-IO (kR) - I-Io (kR') = —4ik€ono = 2 2 D) (4.2.3)
\“_(Soﬂno) -] g - tn )% o]
§-1in
and
E+in : @)
@) 2 . JE,nWH (€ ,n ,u) udu
H, (<) - Hf) R = ~4kE 1, =00 (4.2.4)

Lt ] e - in 2]
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2
where the same abbreviation is used for H(1 ) as for J o Under this trans-

formation, straight lines are mapped into hyperbolas and the branch cuts

of the integrands lie along the curves

2 2_'] [ 2 2]
+ - - - = 0 4:. .
Jm [('g"o ino) u (So 1n0) u 0 (4.2.5)
If we write u = u1+iu2 then (4.2.5) implies that
2 2 2 2
-u- + - =
u -t tn -§ =0 (4.2.6)

and the curves described by this equation are plotted in Figure 4.2.1 with
the portion chosen as a branch cut indicated. Also shown are the values

2
of arg [(§O+ ino)z-uzJ ESO- ino)z— u Jalong these curves on the nth sheet

2 2
of the Riemann surface of log [(So+ ino) -u ] [(SO- ino)z— uz:l .

2 2 2 2
- > -
a) Eo n 0 b) So m, <0
FIGURE 4.2.1: BRANCH CUTS IN THE u-PLANE
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Since it is desirable to always be able to treat the path of integration as the
straight line connecting the end points, we alter the cuts somewhat as shown

in Figure 4.2.2. We still keep track of which sheet of the Riemann surface
we are on by calling the nth sheet that sheet where the argument of
2 2 . 2 2 . .
(§o+ iyo) -u (Eo— 1no) -u | along the dotted curves of Figure 4.2.1 is

2n7 and then confine our attention to the 0th sheet.

(-& +ino) (€o+ in )

( (€ +in) —
& +in ) (8 +in ) (-&+in) (€ +in)
° o I—— intoegraqcion path————']
(—g—in) i (& ~in) —
° (€ - in) ° -

(-& . ino) (& < ino)

a) Branch Cuts for Formula (4.2.3) b) Branch Cuts for Formula (4.2.4)

FIGURE 4.2.2: ALTERED BRANCH CUTS IN u-PLANE

In the same way, the double integral expression (3. 6. 14) leads to two

expressions in this parabolic form as follows:
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(2)

1% m) - 8@ wry)
(0] (o]

+i +1i
§+in SO in

H(z)( tk [Vz— u2])uv + if §O> g

= -2k du dv JE,nwWIE ,n,v) 1
0O 0 2 5 ,
Iv-u) -if £ <E
€-in £ -in o
o (4.2.7)
and
H(z)(kR) - H(Z)(kR')
0 ¢)
E+in NE +in
: @),+ T2 2 _
= -2k du dv J(S’n,u)J(g N ,V) Hl (-—k[V—u])uV + if n>n0
(8] (0] 5 5 ,
IL(V—u) —if)’]<n .
T, (4.2.8)

In each case the branch cuts of the integrand are chosen to lie along the
negative real axis of the argument of the Hankel function. In the v plane
this criterion leads to the cuts shown in Figure 4.2.3. Note that in formula
(4.2.7), Reu>0, -0 <¢3 mu < o, and in formula (4.2.8), - < Reu< oo,
& m u > 0, so while we may use the same figures for both formulas, they
correspond to different u values as indicated. In the cases illustrated in
Figures 4.2.3 b and d, the point u for formula (4.2.7) corresponds to the

point -u for formula (4.2.8). In all cases, the value of the phase of the
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argument of the Hankel function on the branch cut and its extension (the

positive real axis of the argument) are indicated.

a) Formula (4.2.7): § >, dmu>0
Formula (4.2.8): Mo <7 Reu>0

¢) Formula (4.2.7):

§O<§,.9mu>0
Formula (4.2.8): no>n, Reu>0

ol

I

+7 L

b) Formula (4.2.7): £ >&, Imu<0
Formula (4.2.8): no<n, Reu<0

d) Formula (4.2.7): .
Formula (4.2.8): n0>n_, Reu<)

FIGURE 4.2.3: BRANCH CUTS IN THE v-PLANE

£ <E,dmu<0

>

The same branch cut criterion in the u-plane leads to completely analogous

results. (Indeed, the same figures can be employed with some changes in

notation. )
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3. Green's Function for the Half Plane
Corresponding to (3.6.20) we have the double integral representation

for the Green's function which vanishes on a segment of the half line n = 0,

G(&, n, 50, no)

+ b
E+in EO mo ,

9 G(u,v, v,u)
VoM

du dv  J(E,n,u) J(EO, Ny V) (4.3.1)

1
4 v=0 °

. . u=0
&-in §O in

This holds as long as G(&, n, &O, no) is analytic (save for sources) in a simply
connected region containing the line segment. Clearly this representation
will be most appropriate for the case when the segment on which G vanishes
consists of the entire half line n = 0.

In order to have a physically significant problem and still have
G(E, n, SO, no) analytic at n = 0 we must limit the problem so that the points
in the neighborhood of one side of the line lie outside physical space. This
of course can be accomplished in various ways. Perhaps the simplest is
to impose another boundary condition when § = 0, i.e., on the complement
of the half line n = 0, thus restricting physical space to the upper half plane.
If we require that G also vanish when & = 0 we essentially will reproduce the
problems for the entire line treated in the previous chapter.

However, if we require that the normal derivative vanish at § = 0,

G

5 | T 0, we have a much more complicated problem.. That the
S

£=0

i.e.
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representation (4.3.1) is ideally suited to this problem is easily seen since

it is only necessary to restrict G to be even in £ in order for the integral
expression to satisfy both the Helmholtz equation and the boundary conditions.
Exactly the same procedure as discussed in section 3.2 shows that this mixed
problem is entirely equivalent to the problems where either the function

or its normal derivative vanish of the half plane, i.e., the classic half plane
problems.

Baker and Copson (Ref. 2) give a very thorough, well referenced
discussion of Sommerfeld's famous solution of this problem for plane wave
incidence. Our concern is with line sources and the exact solution for this
problem, finding the field, @, of a line source in the presence of a perfectly
soft screen (see Figure 4.3.1),was given by Carslaw (Ref. 7) in a form
comparable to Sommerfeld's result. Macdonald (Ref. 15) simplified the
result considerably and it is his form that we shall employ. Rewriting his
result in parabolic coordinates, Macdonald found that the total field,

(

B, n, SO, no), due to a line source, -7i H 2)(1<R), could be expressed as

(o]
Qo Q1
BE.mE n) = g lkReoshQ 4\ ikRIcosh@Q o (4.3.2)
~ oo +ie - tie
where
L e ) e )’
QO =5 log (4.3.3)

2 2
(& -So) +(n- no)
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(So,no)

¢ = 0 on screen

/
€=0 | n=0

FIGURE 4.3.1: A LINE SOURCE
IN THE PRESENCE OF A SOFT HALF PLANE

R &.n
(Eo,no)
QQ i i !
on 0 w=0
S \
£=0 n=0
(SOJ _nO)

)

FIGURE 4.3.2: A LINE SOURCE
IN THE PRESENCE OF AN INFINITE SCREEN HALF SOFT; HALF RIGID
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€+ )%+ (n-n )’

Q, = - log
1 2 2 2
('5-50) + (n+no)

R and R' are given by (4.1.3) and (4. 1.4) respectively
and the time dependence e+iwt'is suppressed.

With the help of Sommerfeld's integral representation of the Hankel
function (Ref. 29), this result has a ready interpretation as an "incomplete"
Hankel function in the following sense. Sommerfeld represents the Hankel
function as a complex integral where the contour goes from - i to +ooi in
such a way that convergence is assured. By choosing only a part of this path
we have an ""incomplete' Hankel function in the same sense that Fresnel
integrals are incbmplete factorial functions.

Specifically, Sommerfeld's result can be given in the following form:

(i)n -ikR cosw

H<2)(kR) = cosnw e dw

n

w

where the contour is shown in Figure 4.3.3.

N

A\

FIGURE 4.3.3: SOMMERFELD CONTOUR FOR HI(12>(kR)
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Note that the contour must necessarily be confined to the shaded regions only
in the neighborhood of infinity to ensure convergence.
Now with a slight transformation, Q = iw, (4.3.2) can be written as

-1 1 1
¢(§’Tb Eo’ no) - - o 1choswdw+i o ikR coswdw (4.3.6)

+ Y+ !
Wit Wy Ty

where the contours are shown in Figure 4.3.4,

T

FIGURE 4.3.4: CONTOURS IN THE w-PLANE

Comparison of Figures 4.3.3 and 4. 3.4 shows that if we add on the dotted
contours, w, and w!, (4.3.6) becomes the integral representation of the

geometric optics field,
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(2

-1 — 1!
_ix Ho )(kR)+i7rH ikR cosw ikR'cos w

f)z)(kR')=—i e dw+1i e dw. (4.3.7)

+w_+ R R)
W Ty T, Wy T,

The usual Sommerfeld contour is deformed so that it is entirely contained
within a shaded region (Figure 4.3.3) but this is only a convenience when
considering the asymptotic behavior. In this instance it is convenient to have
the contour symmetric about the origin passing through the points * iQo or
i‘in which can lie anywhere on the imaginary axis. Thus it is seen that the
diffraction phenomenon is described by the incomplete Hankel functions (4. 3. 6)
and in the geometric optics limit, i.e., no diffraction, this expression
becomes the complete Hankel functions, (4.3.7). From these integral forms
for the total and geometric optics fields, it is clear that the diffracted field,
¢D’ is given by
¢D — ; e—ichoswdw_ i e—ikR'coswdw. (4.3.8)
Y9 “%

As discussed in section 3,2, the total field, y(g,n, So, no), for the

mixed boundary value problem, Figure 4.3.2, with a source at So, R

is given by

vE g n) = -1 [BP0m) - 8P ami] + 29 (4.3.9)

With the expressions (4.3.8) and (4.3.7), this becomes

—. -o '
w(E, n,So, no) = -i e 1choswdw+i e ikR'cosw dw
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or iQ iQ

o} 1
_'kR _ t
WEnE n) = -1\ e HRCOSW 0 +1 o IKR'cosw \ (4.3.10)
—1Q0 _lQl

To cast this in the integral form (4.3.1), we first must calculate

2
9 Y EmE n,)

Note that when n = 0 and n = 0, the distances R and
8n8no 0

n=0
1,70

R' are given by

R

o0 = \/('52- £%)° (4.3.11)
n= o)

n=0
=0
nO

or, since distance is always >0,

2 .2 +if € >¢&
= ' = + -
ano R \TFO T (& E’O) , o (4.3.12)
n0=0 n0=0 - if &< §O
With this sign choice thus dictated we find that
2
_ , _ E+E ) +if £>¢
Qo =0 N Ql =0 = log 2—02— ’ (4.3.13)
= = 2. .
=0 =0 ZE-5 ) if § <€
and from (4. 3. 10)
2 .2 o el el
0’y € nEn)|  _ g5 'S THETE)
2 22
onon, i -8
n= o
o™ E+s )
ilog———
2KEE i“(gz—gi) ik [P si)] cosw
+ CE cosw e do (¢, (4.3.14)
Z(& -E’O)
0
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We now replace § and SO by complex u and v respectively with the sign
choice still

+if € = Reu > §’0= Rev

- if £ = Reu < 'g"O: Rev.
Then with (4.3. 1) we have

+i +i
s +in Eo in,

vE,nE ,n)= | du dv JE,n,WIE ,n_,v) Flu,v) (4.3.15)

§-in V& -in

where
D) ki)
Flu,v) = —/——— e
(w232 2
+ilo _2__2(u+v)
8 Tw?-v?) 5 9 +if £ > ¢
4kuv -ik l:f(u -v ﬂ cosw o
— ——2—2“ cosw e dw, )
T®-v) —1f§<§o
o) (4.3.16)

The paths of integration are straight lines in the u and v planes and the
branch cuts are treated exactly as they were in the corresponding repre-
sentation of the geometric optics field (4.2.7).

It would appear that this result represents the dubious accomplishment
of changing the relatively simple result of Macdonald, (4.3.10), into more
complicated form. However, while this is a valid objection in the half
plane context, the form of (4.3.15) is such that, when properly interpreted,

we are able to extrapolate to the problem of diffraction by a strip in the
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following way., For the moment consider the variables of integration, u
and v as "quasi" * parabolic coordinate variables related to ordinary
cylindrical coordinates, (o, v), as follows

2
pcosy=u t+v

(4.3.17)
p siny = -2iuv.
Then F(u,v) given by formula (4. 3. 16) becomes
Y
F [p '}Z] = -2 C—?} e“1kp COSY, 95k sinvy COS W e_lkp cosw dw , (4.3.18)
0

Now we assert that in a sense, the function F[ p, v ] describes the
essence of the general phenomenon of diffraction and is only specifically
related to the half plane problem through the specific integral (4.3.15) with
the specific definition of p and v (4.3.17). If we write the integral corresponding
to (4.3.15) in elliptic coordinates and define p and + in ""quasi" elliptic
coordinates, then this same F{p, 'y_] yields the solution to the problem of
diffraction by a strip.

In order to make more precise this admittedly vague assertion and
demonstrate that it is true we must first phrase the strip problem in appro-
priate form and develop in elliptic coordinates the basic solutions andl
representation theorems corresponding to those already presented in

rectangular and parabolic coordinates. This is done in the next chapter.

*If v were replaced by iv, then the definition (4.3.17) would correspond
exactly to (4.1.2).
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Chapter 5

DIFFRACTION BY A STRIP

An outstanding feature of the integral solutions of the Helmholtz
equation presented in the preceding chapters is the ease with which boundary
 conditions are satisfied, The basic solution in rectangular coordinates,
(2.4.1), is naturally suited to the problem of finding a wave function which
vanishes on the entire line since, under very general limitations on the
integrand, it already represents such a function. Similarly the basic solution
in parabolic coordinates, (4.1.4), is ideally suited to the problem of finding
wave functions which vanish on the half line.

In this chapter we present the corresponding solution in elliptic
coordinates where the appropriate boundary value problem concerns the
line segment or strip. Completely paralleling the presentation in parabolic
coordinates of the previous chapter, we first develop the necessary machinery
in elliptic coordinates and then use it to produce an exact solution to the
problem of finding the field due to a line source in the presence of a perfectly
soft strip. Since this problem is apparently of more than casual interest,
the presentation will be slightly more detailed than that given in the half
plane case.

1. Important Relations in Elliptic Coordinates
To begin with, we introduce the elliptic coordinates, express familiar

quantities in them, and adopt a shorthand notation without which the analysis
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would be prohibitively cumbersome. Thus we set

x+1iy = a cosh (u+1i0) (5.1.1)

or x = a coshucos6

(5.1.2)

"

y = a sinhu sin 8

where the level curves are shown in Figure 5.1.1.

FIGURE 5.1.1: ELLIPTIC COORDINATES

. As shown in the figure, the range of u and 6 covering the entire
plane was taken as -0 <u <o, 0L 0L 7. We could also describe the plane
with u >0, -# L6 7m. The choice is important when discussing boundary
value problems for the strip and slit but for now we shall restrict the discussion
to the upper half plane, u >0, 0<6< 7.

The distance R becomes

\ﬁx - xo)2+ (y- yo)2 = \/[(x+ iy) - (x0+ iyo)-:l ‘[(x - iy) - (xo— iyo)]

&
I

a \/[cosh(u +i6) - cosh(uo+ 190):] [cosh(u -i6) - cosh(,uo— 190)] (5.1.3)
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and similarly

R'= a \/Fosh(;ﬁ i6) - cosh(uo— i@o):l l:oosh(u ~1i0) - cosh(uo+ i@o)] ) (5.

The Helmholtz equation is now

2 2
-Q—-i + —?—2 + (ka)2 ‘:COShz/J—COSZQ—J p =0 (5.
ou 00

and the solutions which correspond to (2.4.1) and (2.4.2) are

+16
P, 0) = J[u,@,a] f(e) de (5.
-u+i6
and
p+io
Ui, 6) = J [u.6.0] fe)da (5.
-6

where we have introduced and will continue to employ the shorthand

J [/.t, 0, a] = Joéa\[[cosh(;ﬁrie) - coshoz] [cosh(u— i6) - cosh;_J>. (5.

The square brackets are used to differentiate between this and the previously

employed notation (4.1.8). Note that

3 [wo utig] = 3lwe tutio] = 1. (5.

2. Derivation of the Basic Solutions
Unfortunately, as in the parabolic case, it is not possible to establish

with sufficient generality that @(u, 6) and ¥ (u, 6) given by (5.1.6) and (5.1.7)
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are indeed solutions of the Helmholtz equation merely by a transformation
of the already established solutions (2.4.1) and (2.4.2). This can be seen
by writing (2.4.1) in elliptic coordinates obtaining

a cosh(u+i6)

¢[,u, 9_] = JO<<\[[a cosh(a+16) —a:] [a cosh(u - 16) —oz]> fe) da

a cosh(u - i6)
where f(o) is analytic. With the substitution o = acoshf3 and the ambiguity

thus introduced, i.e., coshp = cosh(-f), we obtain two expressions

+i6
¢ [,u, 9] = a J [u, 6, B] f(a coshp) sinhp d
-ut+ib
and
u+io

Y [u, G:I = a J [/.t, 6, B] f(a coshf) sinh 3 d

u-1i6
Thus, while it is true that the expressions (5.2.2) and (5.2.3) are solutions
of the Helmholtz equation under the condition that f(a coshp) is an analytic
function of acoshf, we wish to establish that this ié true if f(acoshp) sinh 8
were replaced by a g(8) where the only condition on g(B) is analyticity in .
It is not true that requiring that g(8) be analytic is sufficient to guarantee

that g(B) can always be written as f(a coshp) sinh where f(acoshp) is
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analytic. g(B) then represents a wider class of functions than f(a cosh B) sinh 3
and it is for this wider class that we wish to establish (5.1.6) and (5. 1. 7)_
Although this proof is quite similar to that of section 2.2, we present it here
not only for the sake of completeness but because it gives an opportunity

to discuss the branch cuts for the Hankel function‘ in elliptic coordinates

which will be necessary subsequently.

To this end, consider the following contour integral;

I= H(()2)€a \[[cosh(u-i- i0) - cosha] [cosh(/.c ~-1i6) - eosha]> fle) da (5.2.4)
(¢
where f(a) is analytic in a simply connected region containing all points of
the contour c¢ and in order to specify the contour we must first discuss the
branch points of the integrand.
Recall that the Hankel function HO(Z)(kap) is an analytic function of the
complex variable p in any simply connected region excluding p = 0 and has

| the form

g

5 (kap) = Fl(pz) 10gp2 + Fz(pz) . (5.2.5)

where F . and Fz are entire functions of the variable pz. The point p =0
is of course a logarithmic branch point while p = o0 is an essential singularity.

Clearly, in the finite plane, the singular behavior of the Hankel function is
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2
determined completely by logp and as we must consider the Hankel function
in (5.2.4) as a function of the complex variable @ we first investigate the

behavior of the function

2
logp = log Eosh(u+ iQ) - cosha] Eosh(u - 1i6) - cosha] . (5.2.6)
This function has the branch points
a=utio + 2kri

and o=-ptif+2kri k=0, +t1, *2,... . (5.2.7)

In the p2 plane, log p2 is single valued on a Riemann surface with a branch
cut along the negative real axis. The zeroth blade is defined by -7 <arg p2 <7
(see Figure 5.2.1) and every time a contour encircles the origin the amount
12mi is added to the function depending on the orientation of the contour.

The Riemann surface has an infinity of blades and the argument of p2(=&mlog p2)

2 2
argp =7 argp =0

2
argp =-7

FIGURE 5.2.1: CUT p2 PLANE

determines on which blade the function lies. By writing lognpz to denote

the function on the nth blade of its Riemann surface, it is clear that the
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values of the function on successive blades are related by

1ogn+19:2 - lognp2 = 27i. (5.2.8)

The function

2
p- = [cosh(u+16) - cosha] [cosh(u— i6) - coshafj (5.2.9)
is periodic in o with period 271 and in any strip of width 27i four values

2
of o correspond to each value of p~. Thus in the strip -o < o, < o,

-T <o, <7, where o« = a_+in_, there are four points, o = T fi@, which

2 1 72
correspond to p = 0 and therefore the function log pz, (5.2.6), has, in this

strip, logarithmic branch points at these four points.

The curves defined by the equation

Im [cosh(u+19) - cosha—J E:osh(u— i6) - cosha] =0 (5.2.10)
in the o-plane are mapped onto the real axis in the p2—p1ane. These curves
consist of the lines
. =0, =0 , and a =17 (5.2.11)
and the curve
coshucosf = coshozl cosa, . (5.2.12)

It is easy to see that the straight lines (5.2. 11) all map into portions of the

2
positive real axis in the p plane since

2 . 2
o I011=0 = lcosh(u+16)—cosa2| >0
2 . 2
P ! = |cosh(,u+ i6) - cosha] > 0 (5.2.13)
a/2—0 T
nd 2‘ i 2
a P, gy = Icosh(u+19)+cosha/1| >0
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Since the four zeros of p2 lie on the curve defined by (5.2.12), the image

of the negative real axis in the p2 plane lies on this curve (or curves) and
extends from each of the zeros to infinity. These four curves are branch

cuts for the Riemann surface in the a-plane since the negative real axis

was chosen as the branch cut in the p2 plane. These are shown in Figure 5.2.2
where the different shape of the curves (5.2. 12) depending on the value of
coshucos 6 is illustrated. The value of tzgmlognpz along these curves is
noted. In all cases the lines o= + 7 /2 are asymptotes of the branch cuts.

For each value of n, the function lognpz, and therefore H(()2)(kap) is analytic

in the cut o-plane.

ir im
n+ )7 . @Cn-1)7 (2n+1)7 0 2n-1)x
——— __19 v\~--l—"ﬁ
(n-D7 N o1, /7 Gt @n-17 oy~ (entbr
-u 0 \u -4 40w
Qotlr i “swlZDziT QUEDT e~ — T ~e——l2D2 )T
(2n-1)7 (2nt1)7 (2n-1)7 - @nth)7
~iT -im
a) coshucosf>1 b) -1 <coshucosf<1

ig
(2n+1)7 16> (2n-1)7
zzn~1)1r _ ‘ 22n+1;7r
str.l.K"“‘ 0 4 @nir
(2n-1)7 N ~i6, @n+l)7

Vi

d

-1
c) coshucosfh <-1

FIGURE 5.2.2: BRANCH CUTS IN THE o-PLANE

Returning to the integral (5.2.4), we designate the contour c as
beginning at a constant point A on the zeroth blade, encircling the branch
point o = u+10, and, since the integrand is to vary continuously across the

branch cut, returning to the point A on the -1st blade. This is shown in
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Figure 5.2.3 where the solid path lies on the 0th blade and the dotted path

st
on the -1 blade.

Ti
argp2 = 47 ° argo® = -x
-u+iod / 2
argp” = - e A I i
2 0 2
argp_ = +x /(—u— i6) (u-16) & AL8L = -7
2
arg p2 = -7 argp =+w
-ri

FIGURE 5.2.3: CONTOUR OF INTEGRATION IN - PLANE

Since f(o) is an analytic function of o throughout a simply connected region

containing the contour c,

we may deform the contour to that shown in

Figure 5.2.4.
7Ti
1
Tl | ST
—u-i0 (u-16)
amss——— ( ' ) - —
-7 i

FIGURE 5.2.4: DEFORMED CONTOUR

With notation of (5.2.5) we see that

Hf)(kap) fo) do =

(¢]

C

E‘“l(pz)log p2 + Fz(pz):l flo) da
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or, since Fz(pz)f(a) is analytic in «,

I= Fl(pz) 1ogp2 fle)da . (5.2.15)
c
With the deformed path, c', this becomes
u+ié A
2 2 2 2
1= Fl(p ) f(e) 1og0p da + Fl(p ) £(e) log_.p" da (5.2.16)
A utif
which, with (5.2.8), is easily seen to be
u+ié
} 2
I= 2mi Fl(P ) fl@) da . (5.2.17)
A

Examination of the series representation of the Hankel function reveals that

0
F (o) = -~ I[u0,0] (5.2.18)

hence
+06

1=2 \ 360l fl)de, (5.2.19)
A
Since in its original form, I was a solution of the Helmholtz equation we
have established that the integral (5.2.19) is a solution provided that f(a) is
analytic in a neighborhood of the path of integration. In exactly the same way,

and under the same conditions it can be shown that the expressions
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u-1i6

J [u, 9, a] fle) de
A

-u+if
5[ 6,a] 1) de (5.2.20)

A
- i

3[u 6,0 te)da
A

are also solutions of the Helmholtz equation. Since @(u, 6) and ¥(u, ), (5.1.6)

and (5.1.7), are linear combinations of these solutions, they are also solutions.

3. A Limiting Case: Laplace's Equation
Of some interest is the fact that if we choose f(@) =1 in (5.1.6) and

(5.1.7) we obtain the wave functions

utib
B, 6) = I[w 6.0 da (5.3.1)
-u+if
and
+1i6
v 6) = J[u.0,a] de (5.3.2)
u~1if
Since
lim
k—> 0 J[u,@,a] =1 (5.3.3)
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it is clear that

u+ib
klino ¢1(u,9) = de = 2u (5.3.4)
-u+i6b
and
u+ib
kli_n;() wl(u,e) = da = 2i6 (5.3.5)
u-1i6

hence @ l(u, 6) and wl(u, 0) are the wave equation generalizations of the velocity
potential and stream function respectively for an ideal fluid flowing through a

slit of width 2a in a plane barrier (Ref. 20).

4. Elliptic Form of the Representation Theorems and Applications

Of importance is the fact that the fundamental solutions allow us to
establish the elliptic form of the representation theorems as follows:

If B(u, 0) is an analytic solution of the Helmholtz equation in a simply
connected region containing a segment of the line 4 = 0 and @ = 0 on this

segment then, in this region, @ has the integral representation

u+id
Blu, 6) = % A\ 3w 6.a] %g(”"w‘) da (5.4.1)
v=0
-ut+ib
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Similarly, if ¥ (u, 6) is an analytic solution of the Helmholtz equation in a
simply connected region containing a segment of the line 6 =0 and ¥ = 0 on

this segment, then, in this region, ¥ has the integral representation

+i6
_ 1 (. v)
W, 0) = o J (10,0 ” do . (5.4.2)
v=0
u-1i6

The proofs of these forms of the representation theorem are exactly
the same as presented previously, consisting of demonstrating that the integral
representation preserves the value of the function and its normal derivative
on the line segment and since the function is given to be a solution and the
integral has been shown to be a Solution of the Helmholtz equation, the Cauchy-
Kowalewsky theorem assures that they are identical.

As with the rectangular and parabolic versions of the representation
theorem, (5.4.1) and (5.4.2) could be employed to find integral representations
of products of appropriate cylinder functions, in this case elliptic cylinder
or Mathieu functions. Here, in the integrand, special values of these Mathieu
fﬁnctions will appear. Since this line of investigation might prove too diverting
from the main purpose of the present work, we shall confine our remarks
to the representation of the line sources, H(()z)(kR) - ng)(kR'), in elliptic
coordinates which is indeed pertinent to the strip problem. The same results

obtained with the elliptic representation theorems can also be achieved by a

transformation of the expressions already derived. Replacing (x + iy) by the
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elliptic equivalent, acosh(ut i6), and substituting o = a coshe' in (3.6.14),
we obtain two expressions due to the sign ambiguity in o' (i.e. o = acosha'

= acosh(-a') ). These are, dispensing with the primes,

H(2) (kR) - H(z) (kR")
o o
u+io
(2) .
J[y, 6,0!_] H1 [y .0 ,a:[ sinhoda
= -ikasiohy sing_ 2 _© —  (5.4.3)
\/ I:cosh(/.to+ ieo) - cosha/] Ezosh(uo— iGO) - cosha]
-u+io
and
1@ cr) - 52 (cr)
0 o
u+ié
JD,;, 0, aj H?)[Ho’ 6, oz] sinheo do
= -ikasinhy sin6_ 2 (5.4.4)

N 19\/ E:osh(uo+ 160) - cosho;_] E:osh(uo— ieo) - cosha]

where the same abbreviation is used for the argument of H(12) as for J o These
expressions are exactly those obtained upon application of both elliptic forms
of the representation theorem, (5.4.1) and (5.4.2).

The branch cuts of the integrands lie along the curves

Jm [cosh(uo+160)—coshoa E:osh(uo— 160)-cosha] =0 (5.4.5)

and have been thoroughly discussed in section 5.2. With a slight change of
notation, viz., u—> Moy 6> 60, Figure 5.2.2 illustrates the branch cuts.

Since it is desirable to always be able to treat the path of integration as
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a straight line connecting the end points, lying entirely on one blade of the
Riemann surface of the integrand, we alter the cuts somewhat as shown in

Figure 5.4.1. The value of arg [cosh(u0+ 190)—coshoZl Eosh(uo— 190)—cosha]

i i
- +16 i (-p +16 ) | (u+i6 )
(uo o) (110190) o o' 4| To o
0 . .
(u o 1Qo) (uo_ 160)
(u o 160) (uo— 190) I I
-7i i | —
a) Branch Cuts for Formula 5.4.3 b) Branch Cuts for Formula 5.4.4
FIGURE 5.4.1: o-PLANE
‘ . 2 2
on that portion of the curve cosha 1 oS a, = coshu0 cos 60 where cos o, < cos 60
(i.e. along the dotted curves of Figure 5.2.2) is still utilized to number the
sheets of the Riemann surface. The nth sheet is that sheet where this
argument is 2n7. We then confine our attention to the Oth sheet.
In the same way, the representation theorems or the double integral
expression (3.6. 14) lead to two expressions in this elliptic form as follows:
) 0
u+i6 ~p +iod
Ko o 0 _1H(12)( *ka [cosha- coshp])
= -2\ da g J[u e,(ﬂJ[uo, O 1T Toosha—oosn ] sinha sinh 3
rio\y +i
u+io M 160 (5.4.6)
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where we choose + if 6 < 60 and - if 6> 90

and

(@)

H(z)(kR) H
0 0

(kR')

+ut+i6 ~u +i0

°© ° H(lz)( tka [cosha-coshfB])

= -2\ da B J[u6,0] J[uo, 0, 8] sinho sinh 3
: + |:cosha— coshB]

. .
H- 16 Ky 190 (5.4.7)

where we must use + if u >;,¢O and - if u< “o'

In each case the branch cuts of the integrand are chosen to lie along
the negative real axis of the argument of the Hankel function. In the 3-plane,
this criterion leads to the cuts shown in Figure 5.4.2. Note that in formula
(5.4.6), we can always restrict o so that 0 <9mea <7 and in formula (5.4.7),
Reo > 0 so while we may use the same figures for both formulas, they
correspond to different o values as indicated. In the cases illustrated in
Figures 5.4.2 c and d, the point o for formula (5. 4. 6) corresponds to the
point - for formula (5.4.7). The phase of the argument of the Hankel
function on the branch cut and its extension, the positive real axis of the
argument, or explicitly, the phase on the entire curve sinhalsinozz = ginh Blsin Bz,
is shown.

The same branch cut criterion in the ao-plane leads to analogous results.

Indeed, the same figures can be employed with some changes in notation. With

these branch cuts we can deform the path of integration to be the straight line
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a) Formula (5.4.6) 6 <0, Rea >0
Formula (5.4.7) u:> p, 0<dmao <7

Ti
T
- \
\
!
/0
/
//
0 pp——
//
0
/
\
\
N——
-Ti

¢) Formula (5.4.6) 60<6, Rea< 0
Formula (5.4.7) uo>u, -7<dma <0

b) Formula (5.4.6) 6 >0, Rea >0
Formula (5.4.7) u0> B 0<Oma<r

i

=

-ri

d) Formula (5.4.6) 6 >6, Rea <0
Formula (5.4.7) uo>uo, -1 <9ma <0

FIGURE 5.4.2: BRANCH CUTS IN THE 3-PLANE

connecting the end points in the case of formula (5. 4. 6) but this is not always

true for formula (5.4.7). For example if My > u and 90 —> 7, the path might

be as shown in Figure 5. 4. 3.
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FIGURE 5.4.3: POSSIBLE 3-CONTOUR - FORMULA (5.4.7)

To remedy this we alter the branch cuts somewhat for formula (5.4.7) as

shown in Figure 5.4. 4.
mi

7i

-
. |

0 ]
_a |
-

'

71
a) b >, 0<dma<nr

i

0 i
L -1

=S
c) /,¢0>u, -T<dma<0 ' d)u>u0, - < Smpu<0

FIGURE 5.4.4: BRANCH CUTS IN THE B-PLANE FOR FORMULA (5.4.7)
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5. Green's Function for the Strip
Corresponding to (3.6.20) we have the double integral representation
for the Green's function which vanishes on a segment of the line u = 0,
+i6 +1i6
i RRCN

2

_ 1 n 9 . .
Glu, 6,1 ,6) = 5 | de dp I[u 6.0 I[up 8] = Glo,-ie, 5, -1f)] .(.5.1)
o=0
s=0

~ut+iov-pu +i6
2 Ko

Since the line u = 0 is itself a line segment in physical space, this
expression, rather than the comparable representations in rectangular or
parabolic coordinates, is clearly the most suitable form for representing
the Green's function for a line segment. While it is true that the other forms,
(3.6.20) and (4.3.1), can also represent such a Green's function, they are
more naturally suited to the limiting cases when the line segment is infinite
or semi-infinite in extent.

Since G must be analytic at u = 0, we limit the physical significance
of G to the upper half plane by imposing the additional boundary condition that
the normal derivative must vaniéh on the complement of the line segment u = 0,

the two half lines 6 = 0 and 0 = 7 (see Figure 5.5.1). On these lines, the

oG

~—= =0

on .

0=m -a F

FIGURE 5.5.1: GEOMETRY FOR THE STRIP PROBLEM
90



normal derivative is proportional to —éa‘é This problem, as shown in
section 3.2, corresponds to the problems where either the function vanishes
at u =0 or the normal derivative vanishes at 6 =0 and 6 = 7.

We shall devote our attention to this problem. However, the comple-
mentary problem, where the function vanishes at 6 = 0 and 6 = 7 and the normal
derivative vanishes at u = 0, appears to present no new difficulties. It is
expected that a completely analogous treatment, beginning with (5. 1.7) which
leads to the expression for the Green's function

utio A 10

2
)

de \ dB [ 6.q] J[,uO,GO,BJ = Glo, 0.8, 9) (5.5.2)

=0

s=0

NG

GQ“; 6: “0) 90) = -

3

u-1i6 Mo 160
would be successful.

ﬂ'H(2)
o

i(wt-7/2)

If (kR) e represents cylindrical waves™ of length X,

frequency w. and velocity of propagation ¢ diverging from a line (uo, 90) in
the presence of a perfectly soft strip of width 2a set in a perfectly rigid screen,

then the field at any point in space (u >0, 0< 6 < 7) can be expressed as

mT1
( ot

Ti
i 2 ) 2 )
B (u, 9”“‘0’90) elwt_:_{ﬁH(())(kR)e —-7TH )(kR')e +¢D(”’9’“o’90) e (5.5.3)

(o)

where k = 2—;1 and

A. (v2+k2)¢D= 0, u>0, 0<6<m

a9 ou 0] _
B. ¢(0,e,uo,eo)—0, 56 oo = 0
6=0,

st
><

This choice of source strength is consistent with that of Chapter 4. To obtain
a "unit" source, we must multiply by - 1/47 .
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lim 8@
+ i =
> ( » ika cosh u @) 0

D. ¢D is everywhere finite.

We wish to find an explicit representation of §, the total field, or equivalently,
¢D’ the diffracted field. Introducing the diffracted field enables us to use

the homogeneous Helmholtz equation, (5.1.5), and also enables us to employ
the simple form of the edge condition, D. The boundary conditions, B, are
more succinctly stated in terms of the total field while the radiation condition,

C, applies equally well to §_. Implicit in condition A is the fact that ¢D

D
must be at least twice differentiable everywhere except at the boundary.
From the representation (5.5.1), we know that the total field,
Pu, 0, K 90), can be written in the form
+i6 0+ iGo

Plu, A 90) = da dg JI[m 6,a) J[uo, 0., Bl Fla.p) (5.5.4)
-u+if —u0+190

Actually, (5.5.1) tells us more about F(o, ) but for the moment we will
cénsider this expression for general F(o, ). It is clearly a solution of the
Helmholtz equation (possibly the inhomogeneous equation depending on F(x, 3) )
since it is of the form (5.1.6).

In order to satisfy the boundary conditions it is only necessary to
require that F(x, B) be even and periodic in «. This follows since the function

obviously vanishes when u = 0 and, upon differentiating (5.5.4), we find
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+if

o o
ol _ -
Y 9:0— i dp J[uo, QO,B] {F(,u,B)—F(—u,B)} (5.5.5)
_’uo+i60
and
u +1i6
o o
o =1\ dB I[u,0 ,8] {F(I.¢+i1r,B)—F(-u+i7r,B)} . (5.5.6)
20 o’ o
6=m .
-u +ib
o o

Clearly if F(u,B) = F(-u,B), (5.5.5) vanishes and if Fu+im,p) = F(-u+ir,p),
(5.5.6) vanishes.

Since the differential equation and the boundary conditions are satisfied
for so general an F(a,B), the question remains as to how to completely specify
F(o, B). A possible answer is to make use of all the information contained in
(5.5.1) and try to solve this integral equation. The feasability of this procedure
has not been seriously considered, however, since, as indicated at the close
of chapter 4, the half plane solution provides us with the proper definition
of F(o,B). That is, we use the same function F [p,'yJ, (4.3.18), that provided
the solution of the half plane problem except that now we must properly define
p and v interms « and B, i.e. the "quasi'" elliptic coordinates corresponding
to the ""quasi'' parabolic coordinates of Chapter 4.

To do this we look to the corresponding expressions for the two
Hankel functions. If we rewrite formula (4.2.7) using (4.3.17) to define p

and vy, we obtain
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E+in ‘s"o+ in,
H(()Z)(kR) - H(()2)(kR') =-ik du dv J(E,n,w J('g°o, Ny V) HEZ)(kp)sin'y. (5.5.)

€-in VE o~ in,
A comparable expression may be obtained from formula (5. 4. 6) if we define

pcosy =

i

a(coshocoshf-1)

(5.5.8)
psiny = -iasinhasinhf .

With this definition, (5. 4.6) becomes

L iy
u+ib ,uo 190
(2) 2, - _ -ika (2) .

H W (R) - HO(RR) = % | de dB J[u.6.d] J[uo, eo,sj H," (k) siny

tiod g 4
u+id M 190 (5.5.9)

Now we maintain that, except for the factor

5 which comparison of (5.5.7)

and (5.5.9) shows is necessary to ensure that the source remains unchanged,

the function F[p,v] given by (4.3.18) provides a solution of the strip problem.

That is, the field § is given by (5.5.4) where,

v
F(a,B) = —_a_gp(_)_S_y_ e“ikp €OS7 4 ika sinvy cos W e—ikp COSY qu (5.5.10)
(o)
and p and v are defined by (5.5.8).
In this form it is not clear that F(o,3) has apparent singularities at
a = (3. However, if we note that p and v, written explicitly as functions
of o and B, are
p = Hacosha-a coshp) r it 0<0
. cosh{a+f3) - 1 T if6>90 (5.5.11)
v =-ilo *(cosha - cosh ) ©
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then the apparent singular behavior becomes more obvious. Hence the
definition of ¢ is not complete until we specify the contours and branch cuts.
This we do, in the by now familiar manner, by requiring that the contours
in the o and B planes be deformable to straight lines connecting the end
points and treating the branch cuts in exactly the same way as was done
in the expression for the geometric optics field (5.4.6), as depicted in
Figure 5.4.2.

Except for the brief mention of how the proper definition of p and v
in "quasi" elliptic coordinates was suggested by the comparable expressions
for the two sources in elliptic and parabolic coordinates, we defer any further
discussion of this point and shall occupy ourselves in the remainder of this
chapter with demonstrating that the function ¢ defined‘above is indeed the
solution we seek.
6. Analyticity of the Diffracted Field

It is a rather difficult task to show that the function ¢ defined above
gives rise, through (5.5.3), to a diffracted field, ¢D’ that is twice differQ
entiable with respect to u and 6 throughout the region of physical significance,
u>0 and 0 <P <7m. Until we have shown that this is so, however, further
discussion of other properties of the field would be suspect so we shall
consider this point first. As will become evident, the same argument will

suffice, not only to show that ¢D is twice differentiable, but that, in the
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range of u and O of interest which, it should be noted, excludes the

boundaries and edges, §_ is infinitely differentiable, i.e., ¢ is analytic

D D

in 4 and 6.
First we explicitly exhibit the diffracted field. Utilizing the expressions
for the geometric optics field and the total field, (5.5.3) yields
u+io ,u0+ 160
¢D(“’ AT 90) = do dB J[m. 6,a] J[/.co, 6 s 5] Kla,p) (5.6.1)
-u+ib —,u0+160

where Ko, B)

-mika sinho sinhf H(2)

1-coshacoshf  +ika(l-cosha coshp)
2  *[cosha-coshf] "1

(cosha - coshB)2 °©

( *ka [cosha - coshf]) +

cosh(o+B) -1

-ilogy [cosha - cosh ] Lif <o
ka sinho sinh 3 oSt e‘fika(cosh B - cosha)cos O30 )
*[cosha - coshf] ©-if6>6

(5.6.2)

Since J l:u 0, a] is analytic in u, 6, and o, the kernel, J [:u, 0, a] J D"o’ 90, B-J
offers no problem. Further, if 6 # 90, the two contours of integration, which
we have chosen as straight lines, have no common points, i.e. « # *5. Hence
K(a, B) is analytic in a neighborhood of the path of integration in both the «
and (3 planes and, since the integral of an analytic function is an analytic

function of its end points, considered separately, §_ is analytic in u and 6.

D
However, when 0 = 60, the two contours are coincident and, as (5.6.2) exhibits,

K(a, B) presents three sorts of difficulty: poles, branch points and a sign change

in its definition.
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To show that the net effect of all this unpleasantness is nil and that
in reality K(o, 8) is analytic at o = 8 (and thus that ¢D is analytic when
0 = 90) we shall separate K(o, ) into a component that is analytic and a
component that is apparently singular and then show that the apparently
singular part is really analytic. Note that by restricting 60 so that 60 40, 7,
i.e., the source always lies off the screen, the paths of integration are
such that we need only consider the singularity at o =+ sincea # -8 -
throughout the entire range of physical interest.

For convenience, we reintroduce the p, < notation (5.5.11), obtaining

Y

-ikp cosw

Tk -1
Ko, p) = ‘5‘2 sinvy Hiz)(kp)_ﬂ’_s_’x e ikp cos v, ikasiny \ coswe dw

0 (5.6.3)
To achieve the separation we seek, consider first the last term on the
right hand side of (5.6.3). Expanding the exponential in the integrand in an
infinite series and interchanging the order of summation and integration which
is permissible, as long as « # 8, since the integral exists and the series
is absolutely convergent, we find that
W Y

n

» » "

ikasiny |\ cosw elkp Coswdw = ika siny ; ( :,{ ) cosn 1wdw (5.6.4)
n=o '

0 O

or, separating the even and odd powers,
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Y

ika siny COS W élkp Coswdw
o
Y Y
0] . 2n 2n+1
o (~ikp) antl . (~ikp) 2n+2
ika siny z on): cos w dw ont 1)1 cos wdw -, (5.6.5)
n=o0
o o

Repeated integration by parts yields (see Ref. 10)

4
: . -ikp cosw
ika sinvy cosw e dw
0
+
= ika sin {-ikp)” )2 nzl (2n;-2;v-1) V—l) 2n-20+2
! £ | @n )' £ (2n+1;-2;v

2nt+l n+1
(-ikp) ) (2n+1;-2;v-1) on-21+3 (1:2:n+1)
+ . W)
siny Z Ont2:-2:7) 9% YT @2mnt) ¥ (5.6.6)

where

(p;r;s) =plp+r)dp+2r) .... p+[s-1 1), s=1,2,3,.
- 1 3 S:O

With this notational definition it is easy to show that

(1;2;n+1)  (2n+2)!

(2;2;n+1) 22n+2[(n+1)! ]2

hence (5. 6. 6) becomes
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Y

. 2n+1
(%)
ika sinvy cosw e - dw = ikasinvy i v

-ikp cosw
n=0 (n+1)'n'

-ov+
i n+l (2n+l;—2;1/-1)(—ikpcosy)2n w3

(2n+2;-2;v) (2n+1)!

2
+ ika sin vy

-2+
(2n;-2;v-1)(-ikp cos '}/)zn w2

(2n+1;-2:v) (2n)!

2

k)2 (5.6.7)

The first term is of course a Bessel function and, since the general term in

the double sum has the explicit ¢ and 8 dependence

w-2 - sinhza/ sinth

.2 m m V-2
sin"y(pcosy) p = (cosha - cosh 5)2 (acoshacoshf3-a) (cosha-coshf) ,” m>0,
(5.6.8)
it is clear that only thev = 1 term is singular at o =3, hence we may write
9
. . -ikp cosw _ .
ika sinvy cosw e dw = kasinvy Jl(kp)'y+ g
0
2n+1
+ ika sin’ i (2n+1; -2; 0)(~ikp cos 1)~ , {2n;-2,0)(=ikp cos 7" (5.6.9)
i (20+2; -2; 1)(2n+1) ! (2n+1;-2;1)(2n) ! , e

where g1 is analytic at = 3. This simplifies to
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Y

. . 2 . . 2
ikasiny \ cosw élkp coswdw =kasinydJ (kp)y+ g, - 2807 tkp cosY, 28LY,
1 1 pcosy pcosy

() (5.6.10)
Substituting this result in (5. 6. 3) we obtain

rkasiny _(2) ae—ikp COST sin23{

= + : + - + .6.11

Ko, B) 5 H1 (kp) + ka sm'le(kp)’Y g 5 coS ¥ hcosy (5.6.11)

The singular part of the Hankel function term can also be separated out as follows:

(2)

) _2;11{@_@_ (5.6.12)

. 24
(kp) = psiny g, - — sinvy J, (kp) log p + >

siny H

where g, is analytic in p2 and hence in o and B. Substituting (5.6.12) in (5.6.11)

we obtain

-ikp cos
e kp cosy

, dasiny  _-iv kasiny J. (kp) [v-ilogp] .

wka
= —— i + -
K, B) 2 p sy g2 8 p cos Y p cosy

(5.6.13)
If we now insert the explicit @ and 3 dependence, given by (5.5.11), K(e, B)
becomes

2 e—ika(cosh a cosh 3-1)

sinh o sinh 8 g, 8 - sinh o sinh 3

coshacoshf3-1 * [cosh o cosh 8-1] E:osh(a'+B)—1]

Ko, B) = ”kza

ika sinh o sinh 3 Jl( tk [cosha cosh B] )
T [cosha - cosh ]

log [a cosh(a+p) -a]

(5.6.14)
Jl(kp)

which, since is analytic in p2 and B3 has been bounded away from 0, is

analytic at o =f3.
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7. Properties of the Solution

With this sticky que‘stion of continuity resolved we now proceed to examine
the other vital properties of the field. It is relatively simple to see that ¢D(u, 0, Mo 60)
given by (5.6.1) is a solution of the homogeneous Helmholtz equation since it
belongs to the general class of such solutions, given by (5.1.6). Hence condition
A of section 5.5 is satisfied. Further, the edge condition is also satisfied, since
¢D is expressed everywhere in the finite plane, including the boundary, as an
integral over a finite path of a bounded function.

That the boundary conditions are satisfied is also demonstrable without
undue difficulty. The function, @, certainly vanishes when u =0 since one of
the contours is of zero length. The normal derivative conditions are only slightly

more troublesome. From (5.5.5) we see that g‘g =0 if Flu, ) = F(-u, B).
60

To exhibit F(u, 8) and F(-u, B) explicitly, we employ formula (5. 5.10) for F[ p, 'y]
and use (5.5.11) to define p and v in terms of « and 3. We have chosen the

+ sign in these definitions since 6 =0 and therefore is always less than 90. Hence

1-coshucoshf ika(l - coshu coshp)

| F(u,pB) =

(coshp - cosh B)2 ©
cosh(u+pB) -1
coshu - cosh 8
ka sinh u sinh 08 e1ka1(coshB -coshu) cos P
(coshu - coshB)
A (5.7.1)
and
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1 - coshy cosh 3 eika(l ~ cosh u cosh §)

Flou, B) = (cosh - cosh B)2
i1 cosh(B-u)-1
coshu - cosh
_ kasinhusinh oS s e1k.2:1(cosh B - coshu) cos 1.
coshu - cosh 3
(5.7.2)
)
But the identity
2
E:osh(B -u) - 1:] [cosh(B+u)-1] = (coshu - coshp) (5.7.3)
enables us to see that
cosh(B-p-1 cosh(B+u)-1
log coshy-coshf log coshu-coshf (5.7.4)

With this relation, together with the fact that the integrand in (5.7.2) is an even
function of w, it follows that F(u, B) = F(-u, B).

The same kind of procedure establishes the condition on the normal
derivative when 6 =7, which vanishes if F(u+ir, B) = F(-u+ir, ), see (5.5.8).

Since 6 =7, we must chose the - sign in the definitions of p and v and we find

coshu cosh 8+1 eika.(coshu cosh 3+1)

+ 1 =
ilog
-1 +
ka sinh 4 sinh 3 cosL © ika(coshu+ cosh f3) cos V4w
coshu+ cosh 3

(5.7.5)
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and

+ i 5+
Flep+ir, ) = coshucosh S+1 e1]c<a(cosh/.¢coshp 1)

(coshu+ cosh )2
_ -cosh(B-u) -1
coshu+coshf
ka sinh u sinh 8 cosw e—1ka(coshu+ cosh §) cosw dw
coshu+coshf
0 (5.7.6)
As before, the identity
2
[cosh(u+pB)+1] E:osh(/.t—B)+1:l = (coshu+ coshp) (5.7.7)
enables us to see that
-cosh(B-u)-1 - cosh(u+pB)-1
coshu+cosh lo coshu+coshf (6.7.8)

and this fact, together with the even-ness of the integrand, implies that
Fu+ir,B) = F(-u+im,p).

In order to complete the proof that our function fulfills all the necessary
conditions, A-D of section 5.5, we must discuss the behavior of the field
at large distances from both the source and the strip. We shall bring this
discussion to the point where compliance with the radiation condition appears
assured but shall not present a complete asymptotic evaluation.

First note that the Sommerfeld representation for the Hankel function

presented in Chapter 4, formula (4.3.5), is not limited to real values of the
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ib
argument. In particular, if p = ]pl e1 , —m<b <7, we may write

ng)(kp) = 7: COS W e—lkp COSY 4w (5.7.9)

w

where the contour is shown in Figure 5.7.1.

\\
-7 -b|-T -b \ \\\
N\ N 0 b | 7w+b

-1 -T-b

V4

LD

T +b

a) O<b=argp<w b) -7# <b =argp <0

FIGURE 5.7.1: SOMMERFELD CONTOURS

In order to assure that the integral converges, the contour must terminate

in a shaded region, as can be seen from the following, if w=w 1+ iwz, then

e—ikp CosSW__
klo| {ewzsin(b -wy)+ e-—wzsin(b+w1) - ie™2cos(b- W) - ie” “2cos(b+ wl)}
e 2 . (5.7.10)

In this form we see that e"lkp cosw

vanishes when W, —> + o if we require
that sin(b—wl) <0 or b< W, <b+7 and when wz—) - o if we require that

sin(b+wl) <0 or -7 -b <w, <-b. These regions of convergence are the

1
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shaded regions of Figure 5.7.1. The contour may be deformed as long as
the tails lie in the shaded regions. In particular the contour may be chosen
as symmetric about the origin and passing through the complex points vy and

~-v as shown in Figure 5.7.2. There is of course, a comparable picture

N
N

S 7+b
\w.

§\

FIGURE 5.7.2: SPECIFIC CONTOUR

if argp <0 and, despite the figure, the points T v may be either in or out

of the shaded regions. The complete contour is W, +w2+ Wy but by dividing

the contour in this way it is easily seen that

-il W ) 2 _ik
cosw o EPCOSLL 17rH( )(kp) B cosw o kP COSL,
1
_.|..

“s Y1

But
Y io+s
cosw e_lkp ©%%w =\ cosw e_lkp CoSYw + cosw e_lkp 5L w
+ i
W T, io-s v
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and since the integrand vanishes at T (ico+s), integration by parts yields

-ikp cosw -2 oS —iko cos 1 o~ 1kp cosw
coswe " do = 2T TP COST dw, (5.7.13)
ikp siny ikp 2
sin w
+ - N
“17% w,tw,

If we substitute this result in (5.7.11) and make use of the fact that, because

the integrand is even in w,

Y
-ikp cosw -ikp cosw
CoSW e dw= 2 \ coswe dw (5.7.14)
wg o
then we obtain
Y
o8 e—ikp cosw, -iw H(Z)(k )+ cosze—1kp cosy ! e_lkp cosw
2 1 7T e siny 2ikp sinw dw.
0 wl+w2 (5.7.15)

If we now express p and vy in terms of o and 3 using the definition (5.5.11)
and substitute (5.7.15) in the expression for the total field given by formulas
(5.5.4) and (5.5.10) we find that the field can be written as

u+if ,u0+ 190

P 0u,0)=\ do | ap J[mo.adafu o p]"

~utif V-u +ib
o (6]

. , ~-ikp cosw
Tkasiny _.(2), asiny e
5 H (ko) - % . dw p . (5.7.16)
+
w o,
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With the use of formula (5.5.9), we could rewrite (5.7. 16) as

o

B(u, 6, us 90) = ﬂi[H(()z)(kR) - H(z)(kR'ﬂ

uti6 u +i6
o o .
, -ikp cosw
sinvy e

a =
-2\ de | ap |\ dv afwed] fu,0 4] Sine (5.7.17)

-u+if —/.LO+ 190 wl+w2
but to say that the first term represents the geometric optics field and the
second represents the diffracted field, tempting as it may seem, is not true.
This is due to the fact that the first term in (5.7.17) differs in sign from
the true geometric optics field and the second term, the integral, still has
a singularity at the source, i.e. when u = M, and 6 = 60. Thus, when
discussing the diffracted field in section 5.€, we did not make use of (5.7.17).
Our interest now, however, is in asymptotic behavior and in this regard
it is quite informative to have an integral form with known asymptotic
properties for comparison.

Specifically, if we integrate the Sommerfeld representation of the

Hankel function by parts obtaining

-ikp cosw
(2) 1 e !
H = —— L.
1 (ko) Tkp sinlw dw (5 18)
+w +
R M

and substitute this in formula (5.7.16) we obtain
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utib u +1i6
0 o

. sin e—ikp Ccos W
B b, 0) =5\ da dp dw I[w0.0] 3p 0, f L
psin w
-+ -1 +i +w_+
u+ié /40 100 wl wz w3
u+ib u +i6
. o o sin e—ikp CoS W
psin w
L ) . n
/,4+19 u0+100 wl wz (5‘719)

where we know that the first integral has the correct behavior as u — o
since it is just a representation of the two Hankel functions. (Note that the
w contours must avoid w = 0.) The only difference in the two integrals is
in the w-contour; in one case it is ""complete' and the other "incomplete'.
Of course this difference is not trivial since it accounts for the diffraction
effect but it seems reasonable to assume that it would not drastically alter
the asymptotic behavior since the integrands are exactly the same. Certainly
by choosing the "incomplete' w-contour no new saddle points are introduced
hence it is expected that a direct demonstration that the first integral in
(5.7.19) fulfills the radiation condition would suffice to show that the second
does also.
8. Some Further Properties

We end this chapter with a brief discussion of some further properties

of the field which the form of the solution makes easily demonstrable.
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First we consider the behavior in the static, k — 0, limit which
can be found with ease, Since

lim

poso JMwee] =1 (5.8.1)

the expression for the total field, (5.5.4) together with (5.5.10), becomes

+ih +ih
s o %

_lim . a cos
¢S = L o¢(“’ 0,1, 90> = do dg 5 (5.8.2)
4 I
u+if “o 160

or, with (5.5.11), explicitly

b iy
u+ié /.to 160
¢S _ da dp 1-cosha coleQ2 (5.8.3)
(cosha - cosh )
i I
u+i6 R 160
Since
1 -coshacoshfl  _ 82 } 1—ea+B 5.8. 4)
(cosha - coshB)2 9a9B 1- e—oz+B
(5.8.3) can be integrated explicitly yielding
+ - - + - +
¢S — log [cosh (u /.to) cos(0 GO)J [cosh(u /.zo) cos(6 90)] 685

[cosh(,u - uo) - cos(6- 90)] l—_cosh(u’— ,uo) - cos(6+ 90)]

which, as can be verified, is a solution of Laplace's equation, has a logarithmic

singularity corresponding to a source at (uo, 90), and satisfies the boundary
9

%y
a0

=0,
0=0,7

conditions ¢s =0,

u=0
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Another feature of the form of § or ¢D is that the symmetry in
source and field points, the reciprocity relation, is readily apparent. With
formulas (5.6.1) and (5.6.2) we see that the diffracted field can be written

+1i6 +1i6
" M Hi0

Kl(oz, B)if 6 < 90

Prls6.p,6) =\ da B I[u.0.0] [k, 8] K, (o, )it 6> 0

rie Jou v
ui0 -p +ib ) (5.8.6)

and further that

Kl(oz, B = Kz(B,a)

Kz(a,B) = Kl(B,a/) ] (5.8.7)

Replacing u with uo and 6 with 90 in (5. 8.6) we obtain
+1i +1
Uotig  (Cutio K (. f) 1 6 <0
¢D(u o Ot 0) = da g J [uo, 0 o] [, 6.8] K, (e, p) if 6 >0
4 i
Ho 16o u+io (5.8.8)
Changing the order of integration, which is permissible since there are no

singularities in the integrand, and renaming the integration variables yields

' s
uFi0 Nu 0 K, (B,0)if 9 <0

b ,6 ,u6 =\ da dg I[w 6,0 3(p ,0.8]
D0 o o o K,(B,0)if 6_>o0.

e s 41
10 Moy +i6 (5.8.9)

With (5.8.7) this is seen to be identical with (5. 8. 6) hence

Pyl 0 .m0 = § (w0,u,0). (5.8.10)
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Chapter 6

CONCLUSION

In this chapter we shall briefly review what has been presented and
comment on some consequences of the results. A possible generalization
of the work is also discussed.

In summary, .We derived a class of solutions of the two dimensional
Helmholtz equation which satisfied particularly simple boundary conditions.
These were used to construct a double integral equation for the Green's
function for a line segment. In particular, when the line segment was
infinite we obtained a double integral representation of the difference of

@ g 5@
o 0]

two Hankel functions (line sources), H (kR'). For the case
when the line was semi-infinite we used the known result for the Green's
function to obtain, via the integral equation, an integral representation
for this same Green's function. We then asserted that this integral form,
when properly interpreted, led to the corresponding form for the Green's
function for a finite segment and this assertion was verified.

Essential to the argument is the assertion that the known solution
of the half plane problem contains, in a sense, the solution of the strip
problem. That this assertion proved valid, i.e., that the mathematical

description of diffraction by one edge could be transformed so as to also

describe diffraction by two edges, indicates that introducing a second
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diffracting edge is not an essential complication in the sense that scattering
by a half plane is an essentially more complicated physical phenomenon
than scattering by a full plane. Whether this means that there is no inter-
action between the diffracting edges or just that this interaction is describable
in exactly the same way as is the half plane (single edge) phenomenon is still
to be decided.

If we consider the manner in which we constructed the solution,
however, a much more far reaching question is raised. Recall that we
cast the solution of the half plane problem into a double integral form in
which the dependence on the coordinates was contained in the limits of
integration and the kernel. The other factor in the integrand was hypothesized
to be the essence of the diffraction process, invariant under change of
coordinate systems from parabolic to elliptic hence the corresponding
diffraction problem in elliptic coordinates was essentially solved. Actually
this "universal'' diffraction kernel, to adopt a somewhat grandiose but
perhaps not unwarranted nomenclature, was not completely invariant but
by writing the corresponding expressions for Hc()z)(kR) - H(()z)(kR’) in the
two coordinate systems we were able to decide how it had to be altered.
Now, of course, the question occurs as to whether it is possible to system-
itize this procedure for transforming the solution of one diffraction problem

into the solution for another.

112



Actually, we are able to induce a general expression which is valid

at least for the three special cases we now have at our disposal, namely
scattering by a strip, by a half plane, and by a full plane (a limiting case
in which there is really no diffraction). Specifically, if we let x+iy = f(u+iv)
denote any of the three coordinate transformations

(1) x+iy = u+tiv

. . 12
(2) x+iy = (u+iv)

(3) x+iy = acosh(u+iv)

then the functions

fr(o+
wiv (u+iv o (Hlog Chdo)

@ - 1(B)]

doa dg dw

: . . f'{a+B)
u-iv Vu -iv ilog Tﬁ'(a—%_—f_'(ﬁﬂ

§ (u,v,u ,v) =
1 o o

N |-

oy oF KLEB) - fa)] cosw
Huv.e} afu,v B} £ @) e

) 2 9 (6.1.1)
° [£(@) - £(8)]" sin"w
and
. . . ' (@+B)

u+iv uo+ iv +ilog i'[f'(a)-f'(B)]

¢2(u,v,uo,vo) = % da dg dw
. o £t B)
mutiv Mu kv, VHog F T ) 1)
s erpon, Tik [E(B) - £@) ] cos w
| J{u, v, a} J{uo,\_ro, ;3} o) £1(B)e (6.1.2)

[ - f(ﬁq2 sinw
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where

J{u, ;L/, a} = Joé\/[f(lﬁ iv) - f(oz—)] [f(u— iv) - f(oz)-.‘> (6.1.3)

and

J{u, v, oz} = Joé \/[f(u+ iv) - 1)) [flu-iv) - f(—a)J) (6.1.4)

represent the total field due to a line source at us v, with the boundary
conditions, in one case, that the function vanish on a line segment and the
normal derivative vanish on its complement and in the other case that the
normal derivative vanish on the segment and the function vanish on the
complement. Since we have chosen the time dependence so that the Hankel
function of the second kind represents the source, the sign ambiguity in
these formulas is removed. In ¢ 1 the choice must be + if u > uo and - if
u<u_while in ¢2 it must be + if v <v_and - if v> v If we had chosen the
opposite time dependence we would have to reverse the choices.

Thus when f is the identity transformation (1) u = x, v =y, and
f(e) = . Since the limits in the w-integral become infinite the w-contour
must be the Sommerfeld contour if @ 1 is to be defined. Hence formula (6.1.1)
becomes

+iy Ax +Hi
Y (o) yO

i

¢1(x,y, xo,yo) = do dp dw

x-1iy X" iyo

Tik(3 - @) cosw

J (& \/(x+iy-a)x-iy-a) >J <k (x +iy -B)x - iy —B)>-‘e-‘“—‘—~ (6.1.5)
o<\/7 0 \/ o ‘o o ‘o (a—B)zsinzw
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where we use + if x > Xo and - if x < xo.
With the representation of the Hankel function, (5.7.18), this becomes
+1 +1
x+iy Xo 1yo

ikm
¢1(X’y’ Xo’yo) - g da dp

-y Mx -y

H(Z)( tilp- B:] )

JO<< V(x+iy—a/)(x—iy—a)> Joé \/&o+iyo_ B)(XO— iyo—B)> lf(a—B) - (6.1.6)

This in turn, with formula (3.6.14), is seen to be the known result for

scattering by a full plane

(2)

(<R) - 12 (kR 6.1.7)
(6] (6]

¢1(x,y,xo,yo) = —i7 [H

2
With the parabolic transformation (2), f(@) = ¢ and, using the more
familiar notation u = € and v = 7, formula (6.1. 1) becomes
at|
+1i +i +il
E+in SO mo ilog - p)
¢1(§J n’go; no) = 2i do dB dw
atf

g~ in Vg -in V-ilog 57y

+ . ,.2 2
0B o ik(3"-a") cosw

JE, n ) J('So,no,ﬁ) —(—5“—“)—* (6.1.8)
a -f) sin w

where we choose + if € >SO and - if & <$§’0.

Integrating the w-integral once by parts yields
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+1 +i
E+in SO 1170

¢l(§’,n,€o,no)=—2 do dg I m,a) IE ,m_,p)

§-in M -in

“"g*(_a%)

o0 202 ,
(a2+ 2) e-lk(a +B+) ko o5 eirik(Bz— o) CoSW,
(o2 g2 -89
_ilog%%i_%_s) (6.1.9)

which is identical with formula (4. 3. 15). This in turn was shown to be just
another form for the known result for scattering by a half plane.
For the elliptic transformation (3), f(z) = a cosha and, replacing u

and v by the more familiar u and 6, formula (6.1.2) becomes

, , ) sinh(o +B)
+ + +
prio Ho 160 ilog ¥(sinha - sinh )
¢2(.U, 9:“0’ 90) = _12- do dB dw
sinh(x+B)

L rioy 41 i
u+io Ho 190 tlog ¥(sinha - sinhp)

sinho sinhf3 e t ik(coshf - cosha)cosw
Lol J[M o & 2 (6.1.10)
(cosha - coshB) sin”w

where the + sign is to be employed if 6 < 60 and the - sign if 6 > 60. However,
since

sinh(o+B) _  cosh(a+p)-1

sinha-sinh =~ cosha- coshp

3 (6.1.11)

116



formula (6.1.10) is seen to be exactly the expression derived in Chapter 5
for the field scattered by a strip where, for this comparison, formula (5.7.19)
is perhaps best employed.

Now, of course, having shown the similarity between these diffraction
problems and, in fact, writing the solutions as special cases of a general
form, it appears not unreasonable to conjecture that other two dimensional
diffraction problems can also be solved using the "universal" diffraction
kernel. Future research will determine whether we have indeed correctly
induced the general solution for diffraction by bodies that can be conformally
mapped onto a line segment. It would seem more than an idle hope, however,
that even if formulas (6.1.1) and (6. 1.2) do not constitute this general
solution for an arbitrary analytic function f, either they will be significant
for a more restricted class of functions f (certainly the three treated above)
or by altering the form such a general result may be achieved. In any event
there is reason to expect that the results of this work, in addition to presenting
the long sought integral representation of the field diffracted by a strip,
may actually provide a basis for the application of the theory of conformal

mapping to the solution of two dimensional diffraction problems.
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SUMMARY

This work is concerned with the derivation and application of a
useful class of solutions of the two dimensional Helmholtz equation. The
utility is demonstrated by employing these solutions to find a closed (integral)
form for the field diffracted by a strip.

Chapter 1 presents a general picture of what is to follow together
with a short historical introduction to the strip problem. A brief discussion
of exact methods of solving diffraction problems is given in which they are
compared with the present approach.

In Chapter 2, a class of solutions of the Helmholtz equation is obtained
in the form of an integral with a particular kernel and an arbitrary weighting
function whose limits of integration are specified functions of the independent
variables.

These solutions are utilized in Chapter 3 to establish an integral
representation of those solutions of the Helmholtz equation which satisfy
Dirichlet boundary conditions on a line segment. This representation theorem
is then used to find new integral representations of combinations of cylinder
functions with particular attention paid to the case of line sources. Finally
a double integral representation of the Green's function for a line segment
is obtained.

Chapter 4 is devoted to the particular case when the line segment is

semi-infinite. Here the classical half plane result is recast into this double
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integral form. In order to do this most conveniently the previous results
are reformulated in parabolic coordinates. It is then hypothesized that the
corresponding Green's function for the strip is essentially the equivalent
form in elliptic coordinates.

In Chapter 5 this hypothesis is demonstrated to be correct and the
Green's function for a strip is given explicitly in integral form.

Some of the consequences and possible extensions of the results are

discussed in Chapter 6.
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